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In this paper, we propose a coordination framework
that decentralizes virtual structures in nuditi-vehicle
systems via consensus strategies. We instantiate a local
copy of the virtual structure state on each vehicle as
well as the same coordination algorithm. Then we
develop consensus strategies to guarantee that each
instantiation of the virtual strucrure stare comes nte
consensus when the virtual structure state is driven by a
common input or mputs with bounded inconsistency
under both fixed and switching Interaction topologies.
We show conditions wnder which consensus can be
achieved for each Instantiation of the virtual structure
state and provide boundedness analyses for the incon-
sistency of different instantiations when inconsistent
inputs exist. The decentralized framework is then
applied in simulations to a nwlti-vehicle formation
control scenario as a proof of concept.

Keywords: Formation control, virtual structures,
information consensus, multiple vehicle systems.

1. Introduction

Formation control of multiple vehicle systems has
been studied extensively in the literature with the hope
that through efficient coordination many inexpensive,
simple vehicles, can achieve better performance than a
single monolithic vehicle. One solution for formation
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control is the virtual structure approach [1,9]. Similar
ideas include the action reference scheme [7] and the
virtual leader approach [3,8]. The basic idea is to
specily a virtual leader or a virtual coordinate frame,
called virtual structure hereafter for simplicity, as a
reference {or the whole group such that each vehicle’s
desired states can be defined relative to the virtual
structure. As a result, single vehicle path planning and
trajectory generation techniques can be employed for
the virtual structure while trajectory tracking strate-
gies can be employed {or each vehicle.

In the current literature, the state of the virtual
structure is generally implemented at a central loca-
tion and broadcast to each vehicle (e.g., [1,2,11,16]).
One drawback for this centralized implementation is
that the central location is a single point of failure.
Another drawback is that this centralized impie-
mentation does not scale well with the number of
vehicles in the group. Furthermore, due to commu-
nication range constraints, the central location may
not be able to exchange information with every vehicle
mn the group when the formation covers a farge area.
One remedy to these drawbacks is to instantiate a
local copy of the state of the virtual structure and
implement the same coordination algorithm on each
vehicle. However, due to dynamically changing local
situational awareness, discrepancies may appear for
different instantiations of the virtual structure state.
As a result, we need to develop strategies to ensure
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that all instantiations of the virtual structure state
converge 1o a consistent value.

The study of information consensus is aimed at
guaranteeing that cach vehicle in a team converges to
a2 consistent view of their information states. Con-
sensus strategies have recently been studied in [4,6,10,
12,17}, to name a few (see [18} for a survey of con-
sensus algorithms in multivehicle coordination). The
basic idea for information consensus is that cach
vehicle updates its information state based on the
information states of its local (time-varying) neigh-
vors, denoted as N;(7), in such a way that the final
information state of each vehicle converges to a
common value.

The main contribution of this paper is to decen-
tralize the virtual structuges via consensus strategies
in the presence of noises and/or exogenous inputs,
expanding on our carlier work [14]. We propose
consensus strategies to guarantee that consensus is
reached for each instantiation of the virtual structure
state when the virtual structure state is driven by a
commion input or inputs with bounded inconsistency.
Each instantiation of the virtual structure state is then
used as a basis to derive coordination algorithms
for each vehicle. The decentralization of the virtual
structures has several advantages. First, the issue of a
single point of failure can be avoided. Second, the
decentralized framework is scalable to a large number
of vehicles in terms of communication constraints,
Third, only local information exchange is required for
its implementation. Finally, unlike the leader-follower
approach, there is no need to identify specific vehicles
using the decentralized coordination framework.
In contrast to the decentralized scheme in [15], the
current framework via consensus strategies allows
random packet loss for each communication link as
well as dynamically changing, sparse, and intermittent
inter-vehicle communication topotogies. In addition,
in the current framework via consensus strategies,
there is no need to identify two adjacent neighbors
in order to form a ring topology as in [15] since at each
time cach vehicle simply communicates with any
available local neighbors.

The organization of this paper is as follows. In
Section 2 we proposc a decentralized coordination
framework for virtual structures via consensus strate-
gies. In Section 3 we propose consensus strategies that
are implemented in the decentralized coordination
framework. We show conditions under which con-
sensus can be achieved for different instantiations of
the virtual structure state and provide boundedness
analyses for inconsistency of the instantiations under
fixed and switching interaction topologies. In Section 4
we apply the concept of decentralization of virtual
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structures to a multi-vehicle formation control appli-
cation, while Section 5 concludes the paper.

2. Decentralized Coordination Framework
for Virtual Structures Via Consensus
Strategies

In this section, we first review the idea of virtual
structures and then propose a decentralized coordi-
nation framework for the virtual structures via con-
sensus strategies.

2.1. Virtual Structures

1n formation control, the entire desired formation can
be treated as a single rigid body or structure called the
virtual structure. The centroid of the desired formation
is often chosen as the virfual center of the virtual
structure. A formation frame is located at the virtual
center with a certain orientation to represent the
configuration of the desired formation. The desired
position and orientation for ecach vehicle can then be
represented relative to the formation frame.

Fig. 1 shows an illustrative example of a virtual
structure composed of three vehicles with planar
motions, where Cj represents the inertial frame and Cr
represents the formation frame located at virtual
center (xp,yr) with an orientation 8y relative to C;.
Note that here we choose an example in 2> for
illustrative purposes. The approaches hereafter can be
easily extended to 3D. In Fig. 1, V; denotes the actual
position of the i vehicle while V' denotes the desired
position of the i ™ vehicle, = 1,2,3. Note that ¥, Vi,
and V, form the virtual structure and £ = [xp,yr 8517
represents the virtual structure state. Also note that
the desired position and orientation of each vehicle in
C; can be specified by & and the vehicle’s desired
deviations from Cr. Letting {x¢,y¢) and 67 represent

Fig. 1. A virtual structus¢c composed of three vehicles.
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the desired position and orientation of the i vehicle
relative to C), respectively, we have

[XE’(E}} _ Pm} . {cos(ep(r)) ~sin(0r(1))
o] ] Lsin@r(t))  cos(@(1)
§ [x;.;(z)}
¥(e)
04(1) = 8x(2) + 0%(),
(1)

where (x%(¢), ¥%{1)} and 6. are the desired position and
orientation of the i vehicle relative to formation frame
Cr. If each vehicle can track its desired position and
orientation accurately, then the desired formation shape
can be preserved accurately,

2.2, Decentralized Coordination Framework

One way to apply the virtual structure approach to
formation control is through a centralized coordina-
tion scheme, where the virtval structure state is
implemented at a central station, and then the virtual
structure state is broadcast to each vehicle in the team
[1]. However, as the number of vehicles in the team
increases, this scheme may result in degraded overall
system performance due to heavy communication at
the central station, a single point of lailure for the
whole system,

As an alternative, each vehicle in the team can
instantiate a local copy of the virtual structure state.
Fig. 2 shows a decentralized coordination framework.
In Fig. 2 each vehicle instantiates a local copy of a
consensus module, denoted as C;. The consensus
module C; obtains instantiations of the virtual struc-
ture state, denoted as & =[xz, }"F,E,QF,']]‘ for the i
instantiation, from its local (time-varying) neighbors
and implements consensus strategies to guarantee that
each instantiation of the virtual structure state approa-
ches a common value (i.e., £(f) — &(1)ast — o0). Note
that each vehicle can initialize the initial condition of
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Fig, 2. A decentralized coordination [ramework.
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the virtual structure state £(0) = {xz(0), yr(0), 85{0)]"
in a distributed manner. Thatis, each vehicle can view its
initial position and orientation as its desired position
and orientation and solve &(0) from (1). The consensus
strategies used in C; will be introduced in Section 3. The
module K; is the local vehicle controller, which receives
& from the consensus module, converts &; to the desired
states for the /*® vehicle, and then controls the actual
state for the /™ vehicle to track its desired state (Le.,
xi(t) = x{(1), yi(t) - y{(1), and 6(6) -6V as
t — o0). Formation feedback from the i™ [ocal vehicle
controller to the i™ consensus module C; is achieved
through performance measure z;. The module V;
represents the i physical vehicle, with control mput w;
and outputy,.

With the decentralized coordination framework,
formation control problems can be decoupled into
two subtasks. One is to design consensus strategies
such that each instantiation of the virtual structure
state comes into consensus. The other is to develop
local control algorithms such that each vehicle can
track its desired state. The second subtask is a single-
vehicle trajectory tracking problem and has been
extensively studied in the literature. Therefore, we will
only focus on the first subtask in this paper. In [15], a
decentralized scheme is proposed with the require-
ment that the communication topology form a fixed
bidirectional ring. In contrast, the current framework
via consensus strategies allows random packet loss
for each communication link as welt as dynamically
changing communication topologies. In addition, in
the current framework, there is no need to identify two
adjacent neighbors in order to form a ring topology as
in [15] since at each time each vehicle simply com-
municates with any available local neighbors,

3. Consensus Seeking for Virtual Structure
Instantiations

Convergence to a common value is called information
consensus or agreement in the literature. In this paper,
the set of vehicles is said to achieve consensus if for all
£(0), &(1) — &(1) as t — co. One common feature of
most research in information consensus is that the
common value on which consensus is reached is
assumed to be inhereatly constant. However, infor-
mation control problems, where the team moves with
a velocity, the virtual structure state is dynamically
evolving in time, which implies an exogenous input is
required in the consensus strategies. In addition, the
virtual structure state may be driven by noises due to
unreliable information exchange between neighboring
vehicles.
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Tn this section, we will consider a consensus strategy
for the cases where the virtual structure state is driven
by a common input or inputs with bounded incon-
sistency under fixed and switching interaction topo-
Jogies. As mentioned in Section 2.2, the consensus
strategy is implemented in consensus module C; in
Fig. 2. We provide boundedness analyses for the
inconsistency of different instantiations of the virtual
structure state when there exists inconsistent inputs
using an input-to-state stability (ISS) analysis.

3.1. Definitions and Background

Let A= {AlieT} be a set of n vehicles, where
T4{1.2,... ,n}. A directed graph ¢ will be used to
model the interaction topology among these vehicles.
In G, the i™® node represents the i 1 yehicle A; and a
directed edge from .A4; to A, denoted as (A A
represents a unidirectional information exchange link
from .4 to A;, that is, vehicle j can obtain information
from vehicle i.

A directed path in ¢ is a sequence of edges
(.A,’.-,,.Ak:), (Ah,‘/ik}), {/—Li\-_,, .A;‘-“), ..., where kj el
Directed graph G is strongly connected if there is a
directed path from A; to A; and A; to A; between
every pair of distinct nodes A and A;, Vi, je€ I. A
divected graph has or contains a directed spanning free
if there exists at least one node having a directed path
1o all other nodes. Fig, 3 shows a directed graph that
has more than one possible directed spanning tree.
The double arrows demote one possible directed
spanning tree with .4, as the root. Directed spanning
trees with A, and Az as the root are also possible.

Let M, (R) represent the set of all n > n real matri-
ces. Given a matrix A = [a;] € My(R), the directed
graph of A, denoted as I'(A), is the directed graph on n
vertices V;, i € Z, such that there is a directed edge in
T'(A) from V; to V; if and only if a; # 0 (c.f. [5D.

A matrix A = {a;] € M,(R) is nonnegarive, denoted
as A > 0, if all its entries are nonnegative. Further-
more, if all its row sums are 41, A is said to bea (row)
stochastic matrix [5).

3.2, Consensus Strategies

Let N and N* denote, respectively, the set of non-
negative integers and positive integers. Given T as the

T
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Fig. 3. A directed graph that has more than one possible directed
spanning tree, but is not strongly connected. One possible directed
spanning tree is denoted with double arrows.
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sampling period, a discrete-time consensus strategy
with an exogenous input is given by

g+ 1] = m Z okl kg k]

=1
+ vitkl,

@)

where k € N is the discrete-time index, &[k] is the ith
instantiation of the virtual structure state af time
(=kT,, i, j€Z, vkl denotes the input at time
t =kTs, ik} >0 is uniformly lower and upper
bounded, gifk] & 1, and gylk], ¥/ # 4, is 1 if informa-
tion flows from .4; to A; and 0 otherwise. Eq. (2) is
implemented in consensus module C; in Fig. 2 to
guarantee the consensus of the instantiations of the
virtual structure state. Note that both «y and g; may
be time-varying. Assume that & € R™. Eq. (2) can be
written in matrix form as

gk + 1) = (D[] ® La)&lk] + ¥[K], (3)

where &= (&, .. &1, v=[],... 17, @ denotes
the Kronecker product, I, denotes the m x m identity
matrix, and D] = [dylkl]. {, N eT, with dyjk] =
ayklenl  Note that D is a stochastic matrix.
3 oulklssl
When the virtual structure state is inherently con-
stant and there does not exist information exchange
noise, we simply let v; = 0. In contrast, when the vir-
taal structure state is evolving with time, v; in (2) can
represent an exogenous feedforward signal to A
denoted as u; (i.e., the evolution velocity of the for-
mation), a distarbance to A; due to information
exchange noise denoted as wy, a nonlinear dynamic
evolution law {e.g., a group feedback term introduced
to the ;™ instantiation of the virtual structure state)
denoted as f(£;,u;), or a combination of the three.
Two methods will be used to describe consensus
errors in this paper. One is to define the consensus
error variables for each vehicle based on how far each
instantiation of the virtual structure state is from the
consensus equilibrium £ (i.c., the final common value
to which all & converge), In this case, the consensus
error variable for vehicle i can be denoted as

Ef = Ei - E (4)

The other is to define the consensus error variables
based on inconsistency between different instantia-
tions of the virtual structure state. In this case, the
consensus error variable between vehicle 7 and vehicle J
can be denoted as :

E!',’ =§&— gj' (5)
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For a fixed interaction topology, the consensus
equilibrium & can be defined explicitly as shown in
Section 3.3. As a result, we can explicitly show the
consensus equilibrium to which all & converge. We
will use (4} to describe the consensus error variables in
this case. Explicit bounds on the consensus errors will
be derived. For switching interaction topologies, & will
depend upon how the interaction topologies switch
with time and cannot be defined explicitly. Instead, we
will use (5) to describe the consensus error variables,
Boundedness analyses of the consensus errors will be
provided.

3.3. Analysis for a Fixed Interaction Topology

In this subsection, we wili focus on the consensus-
seeking problem with a fixed interaction topology and
constant weighting factors, that is, matrix D is constant.
in the following, we will focus on the case where £, ¢ R
and v; € R for simplicity. All results remain valid in the
case of ; € R™ and v; € R"” since each component of &
(respectively, v;) is decoupled and the proof can be
shown for each component of & (respectively, v;).

Lemma 3.1: Ler D = {dy] € M,(R) be given (3). If
directed graph G has a divected spanning tree, then one
is the unigue eigenvaiue of D with maximum modulus
and iMoo D7 — W7, where m e N*, 1is an n x|
vector wzth all entries  equal ro one and p=
[1, .. .,,u,,] > O satisfies D'p = p' and 1T = 1.

Proof: Follows from Corollary 3.5 and Lemma 3.7
in[t7). n

Lemma 3.2: If directed graph G has a directed spanning
tree, then p(D — 1u") < 1, where IY and w are defined
in Lemina 3.1, and p(-) denotes the spectral radius of a
marrix.

Proof: Following part (f) of Lemma 8.2.7 in 5}, we
know that every nonzero eigenvalue of D ~ Iu?

also an eigenvalue of D. Since one is an eigenvalue of
D with algebraic multiplicity one, we know that one is
not an eigenvalue of D — 1u? following part (g) of
Lemma 8.2.7 in [5]. Also every eigenvalue of D other
than one has modulus less than one. Combining above
gives p(D — 1p7) < 1. [ |

Note that the solution to (3) is given by

E[k] = D*&[0] + infﬁ*v[k —i], VkeN* (6)

iz ]

"rnatis, g is a left eigenvector of D associated with the
eigenvalue one.
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Consider the update scheme
Ik + 1] = 9] + u'v{k], (7)

where 9 ¢ R, 910] = n7€[0], and g is defined in
Lemma 3 1. The solution to (7) is given by 9[k] =

A[0) + 32F, wIvlk - 1], Yk € N*. Here 9 denotes the
consensus equilibrium £ (i.e., £ =9). In the special
case where vk =0 in (2), &=9=3 L, wé&0),
where p; is i component of g, if G has a directed
spanning tree. Defining f, & — € according to (4),
gives

.
£k = (DF - 1uDHE0]+ > (D7 =t ke~ 1, (8)

F=1

where 3 = {él,. . ,§,,] Note that &[k] — &{k] = é,[k}
k). I |E{k) — &lk) — 0, ¥(i, /) € T as k - oo, then
consensus is reached using discrete-time scheme (2).

Theorem 3.1. Given discrete-time scheme (2), assume that
directed graph G has a directed spanning tree. If
v1 [k] ==y fkl=wlkl, VkeN, ithen &lk] -

TE0) + Z vk —j] and &Glk)—0, Viel, as
k — o0.If ||v[k} — Y{ming ve[k])|| is uniformiy bounded, so

is [|E[k]]l.

Proof: For the first statement of the lemma, we know
thatD* — 147 ask — ccand u”1 = 1from Lemma3.1.
Note that v[k] = 1v.[k}. Also note that D'l = 1,¥i € N,
since 1 is an eigenvector of D and therefore an eigen-
vector of D', Vi @ N, associated with eigenvalue one.
From (6), we can see limy..os k] — 1uTE0)+
Sy D v e/l = 1 TE0) + 1375 vk —/]. There-
fore, consensus can be achieved with the consensus
equilibrium & zuTE({])—I-ZL, v.[k—j if each instan-
tiation of the virtual structure state is driven by a
common input v, k].

For the second statement of the lemma, noting that
(D7 — 1M1 = 0, we get

- k
8] = f[0* - oo + 3 o= -

® (vlk—i] - l(mfm velke — z}))”
| i PRI

+ (imé}l‘g_l Hv{r] - l(mgn vdi}}”)

k
x Y D —1uT).
pasy
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Noting that D' — 17 = (D — 1u”) for i € N* fol-
lowing part (e) in Lemma 8.2.7 in [5]. Also note that
p(D —1u7) <1 foliowing Lemma 3.2. Therefore,
there exists a matrix norm |[[|-{{| such that
|ID — 1x7]]l < r < 1 from Lemma 5.6.10 in [5], which
implies that ||[D' — 1u™}] = (D — 17 < < L
Since every vector norm is equivalent on a finite
Euclidean space, there exists a positive constant das
such that ||| € dalli-||l- As a result, we see that
|ID¥ — 1,7} is bounded, vk € N*. Following the same
reason as above, it is straightforward to see that

k
S - 147
=1
k
=i = 17+ S - 17|
=2

k N
< Iy = 17+ dy D NID = 1)

Je=2
< ”ln - “—LTH + er/(] - "')'

Combining the above arguments, we¢ $¢e that if
v[k] — T(ming vek]} s uniformly bounded, so is

[1§[k]l |

Corollary 3.2: Let b=[by,...,b) . where bi € R,
Wie I, are arbitrary constants. Given discrete-tine
scheme (2}, if divected graph G has a directed spanning
tree and vjk] =b, Vk € N, then &kl is uniformiy
bounded — and  Ek] = (L, — 1p")b+ {D — 1p7)x
L, - (M- 1.7 ask — oo, that is, the inconsistency
of different instantiations of the virtual structure staie
approaches a constant valie.

Proof: The uniform boundedness of &k} follows
Theorem 3.1 since vik] is a constant vector vk € N.
When v[k] = b, (8) can be rewritten as

Ek) = (DF — 1uT)8(0) + (1, — 1uT)b
k-1
+ 3 (' — 12",

i=1

From Lemma 86.1 in [5], we know that
SN - 1p”) = (D - 1p7) {1, — D+ 1)L —

(D — 127)1"". The above limit as k — oo then directly
follows the fact that D¥ — 1g7 ask — co. ]

Note that although each &k}, i € Z, may become
unbounded as k — oo when driven by an input, their
inconsistency is guaranteed to be bounded by the
above analyses. Also note that if [wik]] is uni-
formly bounded for each ie€Z, the condition
that [Jv[k} —~ 1{ming ve{k])|| is uniformly bounded is
trivially satisfied. If the virtual structure state evolves

W. Ren

Fig. 4. Communication topalegy for five vehicles. An edge froms A;
to A; denotes that gy = 1.

i

D 3,00

o5t b

o ; i ; ; ; ; i ; i
0 2 4 & 8 i 12 14 16 i8 20
t{s}

Fig. 5. Consensus with k] = sin(26{k]). 7==1,....5.

according to some nonlinear dynamics f{k, &k, uikd),
where u is the common exogenous input, then we can
let vilk] = f{k, &{k], ulk}) in (2). In this case, consensus
is not guaranteed to be achicved in general although
a_similar analysis to Theorem 3.1 guarantees that
[E[k]ii is uniformly bounded if {flk, Elk], ulk) -
mine fUc, &k), uik})} is uniformly bounded, Vi€ I.
Consider an example for five vehicles with a com-
munication topology given by Fig. 4. We assume that
vk = sin(2¢;{k]) and oy = 1, where (i, ) =1.....5.
Fig. 5 shows |& — &qaf, I=1,...,4. We can see that
consensus is not achieved but the differences between
¢; are uniformly bounded since [sin{2&{k])| is uni-
formly bounded.

3.4. Analysis for Switching Interaction Topologies

In the case of switching interaction topologies, matrix
D is time-varying. Unlike the case of a fixed interac-
tion topology, we generally cannot explicitly define
the consensus equilibrium £ for the case of switching
interaction topologies. Instead, we will provide qua-
litative boundedness analyses for the inconsistency
between different instantiations of the virtual struc-
ture state. Define EU = {; - £ according to (5). Define
fy; = v; — v;. Also define £ and ¥ as column vectors
composed of each é,_-,» and ¥ respectively when i # J.
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Lemma 3.3: /17,19] Given discrete-time scheme (2), &
achieves consensus under divected switching interaction
topologies Glke] if there exist infinitely many, con-
secutive, uniformly bounded, time intervals such that the
union of the directed interaction topologies across each
such interval has « directed spanning tree.

Theorem 3.3: Given discrete-time scheme (2), assume
that the conditions in Lemma 3.3 are satisfied. If
wilk] == k] == v k], then [€5k]l — 0 as k — oo,
Vi j I VKL is uniformly bounded, so is |€jk]),
Vi

Proof: The first statement of the lemma follows a
similar argument to that of Theorem 3.1,

For the second statement, following the structure of
(2), we have the equation

Elk + 1) = D{k)Ek] + ¥[k], (9)

where Dik] is a time-varying matrix, When v[k] = 0,
the solution to (2) is given by &[k] = ®{k}&[0], where
®[k] = Dk — 1]D[k — 2} ... D[0]. Noting that each D]
is a stochastic matrix and the product of stochastic
matrices is also a stochastic matrix, we know that ®[k] is
a stochastic matrix. As a result, we know that [k} =
2 oie1 BilKk1E[0], where S5k} > 0 and 2 et Byl = 1.
Thmefone we know that max; k] < max; &[0] and
min; §lk] > min; £[0], which in turn implies that
max,j if,j[k]] < max;; |€;{0]. Therefore, we see that

&kl < |IE0})],., Yk € N*, which implies that (9) is
uniformly stable when vik] = 0. From Lemma 3.3, we
know that &[k] — 0 when vik] = 0. Combining the
above arguments, we know that (9) is uniformly
asymptotically stable when v(k} = 0, which in turn
implies that (9) is uniformly exponentially stable (see
[20]). Following [20}, we show that if |{#{k]{| is uniformly
bounded, so is [|£[k]||. Therefore, we know that £l
Vi j is uniformly bounded if ||¥[&]| is uniformly
bounded. [ ]

Note that if jv,{k]| is uniformly bounded for each
i € T, the condition that §9[k]|| is uniformty bounded
is trivially satisfied. Also note that periodic packet
losses are naturally considered in the case of directed
switching interaction topologies.

4. Application to Formation Centrol

In this section, we apply the decentralized coordina-
tion framework to a muiti-vehicle formation control
scenario where 25 mobile robots need to preserve
a formation shape when performing formation
MAaneuvers.

99

The kinematic equations of a holonomic mobile

robot are

?‘szl!,', f=l,...,25 (10)
where z; = [x;, y,~]T represents the position of the /™
robot, and w; = [uy;, U}-;‘]T represents the control input.
Note that {10) can also denote the kinematics for a
nonholonomic mobile robot after feedback lineariza-
tion for a fixed point off the center of the wheel
axis {13]. While feedback linearization will result in
loss of robot orientation information in the case of
nonholonomic mobile robots, the virtual structure
approach is sufficiently general to tackle the case
without feedback linearization by employing tracking
control laws that account for nonholonomic con-
straints. Note that although we use very simple robat
kinematics, the decentralized coordination {framework
is applicable to formation control of vehicles with
complicated dynamics.

For our tests, the 25-robot feam is required to
preserve a desired formation shape as shown in Fig. 6,
where squares represent the desired positions of each
robot and the two perpendicular arrows located at the
geometric center of the formation denote formation
frame Cp. In Fig. 6 one robot is located at the origin of
the formation frame while the others are uniformly
distributed along circles centered at the origin with a
radius of 20 m and 40 m, respectively.

Define the virtual structure state as &(1) =
[xe(6, ye(, 06(0)T, where (x#(e), v#(¢)) and Br (1)
denote, respectively. the position and orientation of
formation frame Cr. Given £(), the desired trajectory
for each robot can in turn be defined as

xp(t)| | [eos(8r(1)) —sin{Br(r))] [x5(0)
()= L»?(r)] + [sinwﬁm) cos(B(1)) } [y:fi(r)]’

y{m}

x{m)

Fig. 6. 25-robot virtual structure with central formation frame Cp.



100

where (x{(1), y%(1)) is the specified desired deviation
of each robot from the formation center. To further
simplify the problem, we parameterize the virtual
structure state by s € R, which is a function of fime.
As a result, the virtual structure state can be defined as
E(s(1)) = [xrp(s(D), ye(s()), 8r(s(N))”. In this case, we
can certainly instantiate & on each vehicle, denoted as
&, and apply consensus strategy {2) to guarantee that
each instantiation comes into consensus. However,
noting that parameter s represents the information
needed by each robot to coordinate its motion with
the group, we can also drive s; (i.¢., each instantiation
of 5) into consensus via intervehicle communications.
By doing so, the amount of information that needs to
be communicated between vehicles is reduced from
E;€R3tOS;€R.
By applying (2} to s, we get
1 n
S,[]( + 1} = m; O[,",U(.}gu[k]

x (silk] +wylkl) + Ais

where alk] is chosen as arbitrary positive constants,
wylk] denotes the communication noise associated
with the communication channel from robot j to robot
i, ) is the input, and gglk] is 11f information {lows
from robot j to robot i and 0 otherwise. Note that

)\,-+§: alj[mgj[k} Sy alilgyliwylk] corresponds to
et TS

y; in (2). In the simulation, we choose the sample
period as T = 0.5 sec. Then each robot i can track its
desired states specified by its parameter instantiation
s; based on a simple tracking law

i = i'i?’(Sf) — iz — Z?(S-")L

where v; > 0. Euler approximation is used to compute
i in the simulation.

We simulate the case where formation frame Cr
follows a trajectory of a circle with radius 200m, In
the simulation, we let xp{s) = 200 cos(3Es), yr(s) =
200 sin(% ), and Or(s) =2, where S specifies the
period of the desired trajectory for the formation
frame in terms of parameter s. That is, when s evolves
from 0 to S, the trajectory of the formation frame
completes one cycle. We assume that each robot has a
communication range of 30m. Taking into account
random communication packet losses, we assume that
the ;™ robot can obtain information from the 7 robot
but not vice versa at a certain time. That is, the
communication topology is generally bidirectional but
may be sporadically unidirectional over one oI more
time steps. Specifically, we assume that there are
20% communication packet losses for any existing

2 Not necessarity 7 € [0, S} since s is a function of 1.
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communication link. We also assume that each robot
has limited control authority such that luw| <1,
|, < 1. In the following, we assume that there is no
collision between robots.

Table 1 shows parameter values used in three test
cases. In Cases 1 and 2, cach s; is driven by a common
exogenous input in the presence of communication
noise. In Case 3, each s; is driven by inputs with
bounded inconsistency, particularly a nonlinear signal
representing group feadback information, in the pre-
sence of communication noise.

Fig. 7 shows formation maneuvers of the 25 robots
with each instantiation of parameter s driven by the
same input A =2 at =0, 400, 800, and 1200 sec,
respectively, in Case 1. The green circle represents the
desired trajectory of the formation center, square
vertices denote the actual locations of each robot, and
star vertices denote the desired locations of each
robot. Fig. & shows consensus of s5; with random
communication noise in Case 1. We can see that the
differences between the instantiations are bounded.
Fig. 9 shows the tracking errors and formation keep-
ing errors with random communication mnoise in
Case 1. Here dist(a,b) is defined as {la — bl|. Due to
the fact that the formation center evolves at a rela-
tively low speed (S = 500 sec), the formation is pre-
served well even if there exists communication noise
and each robot has control limitation.

Table 1. Parameter values used in Case i,i= 1,2,3.

Case Number Parameter Vaiues

Case 1 § = 500sec, N =5
Case 2 $ = 300sec, \ =&
Case 3 § = 300sec, A = Zalilz — 27

y (m)

00 ; i : - ; : ;
_p50 -200 150 ~100 50 o s 100 180 200 250
x(m)

Fig. 7. Virtual structure maintenance for Case 1.
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Fig. 9. Tracking errors and formation keeping errors with random
communication noise in Case 1.

In Case 2, each instantiation of parameter s is also
driven by A, = {f However, in this case the formation
center evolves at a higher speed (S = 300 sec). Fig. 10
shows consensus of s5; with random communication
noise in Case 2. Fig. 11 shows the tracking errors and
formation keeping errors with random communication
noise in Case 2. Compared to Case 1, formation is not
preserved well due to the limited control authority of
each robot to track trajectories evolving relatively fast.

In Case 3, we replace the common exogenous input
with group feedback from each vehicle to its instan-
tiation of parameter s by defining X = Ze9(f|z; — 2|},
where 7(-) is defined in such a way that 7{||z:—
iy =1if [z -2 <e and 0<n(z -z < I
decreases as ||z; — z¢|| increases. As a result, if the
tracking error for the /™ robot is below a certain
bound ¢, the /™ instantiation of parameter s evolves at
its nominal speed. If the tracking error for the it

101

Q 5 10 20 25 30

15
s

Fig. 10. Consensus of s; with random communication noise in
Case 2.

disliz,z°% (m}

"y

disl{z.z) fm)

15 20 25 0
t{s)

Fig. 11. Tracking errors and formation keeping ecrrors with
random communication noise in Case 2,

robot exceeds the bound, the i instantiation of para-
meter s evolves more slowly as the tracking error
increases. In this paper, we simply define function#(-) as

1, x<e
n(x) = !

—_— X > ¢,
14 k{x—¢)’ Yo

where e = 0.2 and k = 100. Fig. 12 shows consensus of
§; with random communication noise in Case 3,
Fig. I3 shows the tracking errors and formation
keeping errors with random communication noise
in Case 3. In this case, formation is preserved well even
if §is also chosen to be 300sec as in Case 2. By
comparing Figs. [0 and I2, we can see that each s, in
Case 3 evolves more slowly than those in Case 2 due to
the effect of group feedback. Note that there exists
inconsistency between & = ﬂ‘n( zi — z¥]) due to the
inconsistency between z; — z¥. However, noting that
iAil is bounded, we see that the inconsistency between
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Fig. 13, Tracking errors and formation keeping crrors with
random communication neise in Case 3.

) is bounded since | — A< A+ Al Therefore,
according to Theorem 3.3, the inconsistency between
s; is bounded as shown in Fig. 12.

5. Conclusion

This paper has addressed the problem of decen-
tralization of virtual structures in muiti-vehicle sys-
tems via consensus strategies. Using discrete-time
consensus schemes, we have shown conditions under
which consensus can be achieved for each instantia-
tion of the virtual structure state driven by a common
input and performed boundedness analyses for the
inconsistency between instantiations when there
are inconsistent inputs under both fixed and switch-
ing interaction topologies. An application to robot
{ormation maneuvering is presented to show the
effectiveness of our results.

W. Ren
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