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I. Introduction

A DVANCES in networking and distributed computing enable
numerous applications for multivehicle systems including

space-based observations, future combat systems, smart homes,
enhanced surveillance systems, hazardous material handling
systems, and reconfigurable sensing systems. In some applications,
it is desirable that multiple vehicles maintain a geometric
configuration and achieve relative attitude alignment. One example
is deep-space interferometry (see [1,2] and references therein), where
a fleet of networked spacecraft are required to perform a sequence of
formationmaneuverswhilemaintaining relative attitudes accurately.

In multivehicle coordination, the interplay between information-
exchange topologies and control plays an important role. In [3]
information-exchange techniques are studied to improve stability
margins and accuracy for vehicle formations, where an information
flow filter provides each vehicle with the formation center so that this
information can be used by each vehicle as a reference. In [4–6]
consensus algorithms for single-integrator dynamics are studied in
the context of undirected or directed switching information-
exchange topologies. Extensions to double-integrator dynamics are
discussed in [7,8], in which flocking algorithms are addressed to
guarantee separation, alignment, and cohesion behaviors in a group
of vehicles under undirected information exchange.

In the area of spacecraft formation flying, [9–11] study the
problem of formation keeping and attitude alignment for multiple
spacecraft via information exchange with one or two adjacent
neighbors. In [9], a leader–follower approach is applied, where each
spacecraft tracks its leader’s position and attitude, and information
only flows from leaders to followers. Although the leader–follower
approach is easy to understand and implement, there are limitations.
For example, the unique team leader, to which the reference state for
the formation is only available, is a single point of failure for the
whole group. In addition, there is no explicit feedback from the
followers to the leaders: if the follower is perturbed by disturbance,
formation keeping and attitude alignment cannot be maintained. In
[10,11], the control law for each spacecraft is a function of the states
of its two adjacent neighbors. As a result, group feedback is

introduced in the team through coupled dynamics between the
spacecraft. However, [10,11] require a bidirectional ring
communication topology, which is rather restrictive in the sense
that each spacecraft needs to explicitly identify its two adjacent
neighbors in the group to form the ring. In addition, [10,11] require
that the reference state for the formation be available to every group
member, which may not be realistic in the presence of
communication bandwidth and range limitations.

The main purpose of this note is to address the problem of
formation keeping and attitude alignment under a general directed
information-exchange topology when the reference state for the
formation may only be available to a part of the group members and
these group member may not have a directed path to all of the other
spacecraft. The contributions of the current note are twofold. First,
we propose a formation keeping control law that guarantees that
multiple spacecraft can maintain a given formation configuration
during formation maneuvers with local neighbor-to-neighbor
information exchange when the time-varying reference position and
velocity for the virtual center of the formation are only available to a
part of the group members. Second, we propose a attitude alignment
control law that guarantees that multiple spacecraft can follow a
given time-varying reference attitude with local neighbor-to-
neighbor information exchange when the reference attitude is only
available to a part of the group members. It is worthwhile to mention
that althoughwe study the problem of formation keeping and attitude
alignment in the context of deep-space spacecraft formation flying,
the results hereafter are valid for other rigid bodies that satisfy the
same dynamics.

Compared to other work in spacecraft attitude control (e.g., [12]),
the emphasis of this note lies in the analysis of how interspacecraft
information exchange plays a key role in formation keeping and
attitude alignment. Compared to [7,8], the proposed formation
keeping control law takes into account the general case of directed
information exchange in the presence of a time-varying reference
state. In addition, the proposed attitude alignment control law
extends the consensus algorithms from single- or double-integrator
dynamics as addressed in [3–8] to rigid-body rotational dynamics
while taking into account the general case of directed information
exchange in the presence of a time-varying reference state. The
proposed control laws allow information to flow from any spacecraft
to any other spacecraft to introduce information feedback and
coupling between neighboring spacecraft so as to increase
redundancy and robustness to the whole group in the case of
failures of certain information-exchange links, which generalizes the
leader–follower approach (e.g., [9]) and the behavioral approach
requiring a bidirectional ring information-exchange topology (e.g.,
[10,11]).

II. Background and Preliminaries

A. Notations

Let 1p denote the p � 1 column vector of all ones. Let Ip denote
the p � p identity matrix. Given a real scalar �, we use � > 0 to
denote that � is positive.Given ap � p realmatrixP, we useP > 0 to
denote thatP is symmetric positive definite. In the following, a lower
case symbol denotes a scalar or vector whereas an upper case symbol
denotes a matrix. Also let R denote the set of real numbers, and R�

denote the set of positive real numbers.
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Unit quaternions are used to represent spacecraft attitudes in this

note. A unit quaternion is defined as q� �q̂T; �q�T 2 R4, where q̂�
a � sin��

2
� 2 R3 denotes the vector part and �q� cos��

2
� 2 R denotes

the scalar part of the unit quaternion. In this notation, a 2 R3 is a unit
vector, known as the Euler axis, and� 2 R is the rotation angle about
a, called the Euler angle. Note that qTq� 1 by definition. A unit
quaternion is not unique because q and 	q represent the same
attitude. However, uniqueness can be achieved by restricting � to the
range 0 
 � 
 � so that �q � 0 [13].

The product of two unit quaternions p and q is defined by

qp� �q p̂� �p q̂�q̂ � p̂
�q �p	q̂Tp̂

� �
which is also a unit quaternion. The conjugate of the unit quaternion
q is defined by q� � �	q̂T; �q�T . The conjugate of qp is given by
�qp�� � p�q�. The multiplicative identity quaternion is denoted by
qI � �0; 0; 0; 1�T , where qq� � q�q� qI and qqI � qIq� q [13].

B. Spacecraft Dynamics

In this note, we assume that the spacecraft translational dynamics
and rotational dynamics are decoupled and address the translational
problem and the attitude control problem separately.

Spacecraft translational dynamics are given by

_r i � vi; mi _vi � fi; i� 1; . . . ; n (1)

where n is the total number of spacecraft in the group, ri 2 R3 and
vi 2 R3 denote the position and velocity of the ith spacecraft,
respectively, and mi 2 R� and fi 2 R3 are, respectively, the mass
and control force associated with the ith spacecraft.

Spacecraft attitude dynamics are given by

_bqi �	 1

2
!i � bqi �

1

2
qi!i; _qi �	 1

2
!i � bqi

Ji _!i �	!i � �Ji!i� � �i; i� 1; . . . ; n

(2)

where bqi 2 R3 and qi 2 R are, respectively, the vector and scalar
parts of the unit quaternion of the ith spacecraft, !i 2 R3 is the
angular velocity, and Ji 2 R3�3 and �i 2 R3 are, respectively, the
inertia tensor and control torque [13].

C. Graph Theory

It is natural to model information exchange between spacecraft by
directed or undirected graphs. The readers are referred to [14] for an
introduction to graph theory. A directed graph consists of a pair
�N ; E�, whereN is a finite nonempty set of nodes, and E 2 N �N
is a set of ordered pairs of nodes, called edges. An edge �i; j� in a
directed graph denotes that spacecraft j can obtain information from
spacecraft i, but not necessarily vice versa. In contrast, the pairs of
nodes in an undirected graph are unordered, where an edge �i; j�
denotes that spacecraft i and j can obtain information from one
another. Note that an undirected graph can be considered a special
case of a directed graph, where an edge �i; j� in the undirected graph
corresponds to edges �i; j� and �j; i� in the directed graph. In a
directed graph, if there is an edge from node i to node j, then i is
defined as the parent node, and j is defined as the child node.

A directed path is a sequence of edges in a directed graph of the
form �i1; i2�; �i2; i3�; . . ., where ij 2 N . An undirected path in an
undirected graph is defined accordingly. In a directed graph, a cycle
is a path that starts and ends at the same node. A directed graph is
strongly connected if there is a directed path fromevery node to every
other node. An undirected graph is connected if there is a path
between every distinct pair of nodes. A rooted directed tree is a
directed graph, where every node has exactly one parent except for
one node, called root, which has no parent, and the root has a directed
path to every other node.Note that in a rooted directed tree, each edge
has a natural orientation away from the root, and no cycle exists. In
the case of undirected graphs, a tree is a undirected graph in which
every pair of nodes is connected by exactly one path.

A rooted directed spanning tree of a directed graph is a rooted
directed tree formed by graph edges that connect all of the nodes of
the graph. A directed graph has or contains a rooted directed
spanning tree if a rooted directed spanning tree is a subset of the
directed graph. Note that a directed graph has a rooted directed
spanning tree if and only if there exists at least one node having a
directed path to all of the other nodes. In the case of undirected
graphs, having an undirected spanning tree is equivalent to being
connected. However, in the case of directed graphs, having a rooted
directed spanning tree is a weaker condition than being strongly
connected.

Suppose that there are p nodes in the graph. The adjacency matrix
G� �gij� 2 Rp�p of a graph is defined as gii � 0 and gij � 1 if
�j; i� 2 E where i ≠ j. For a weighted graph,G is defined as gii � 0
and gij > 0 if �j; i� 2 E where i ≠ j. Note that the adjacency matrix
of an undirected graph is symmetric because �j; i� 2 E implies
�i; j� 2 E. However, the adjacency matrix of a directed graph does
not have this property. Let L� �‘ij� 2 Rp�p be defined as ‘ii �P

j≠igij and ‘ij �	gij where i ≠ j. The matrix L satisfies the

conditions

‘ij 
 0; i ≠ j;
Xp
j�1

‘ij � 0; i� 1; . . . ; p (3)

For an undirected graph,L is called the graph Laplacian [14], which
is symmetric positive semidefinite. However, L for a directed graph
does not have this property.

In the case of an undirected graph, L has a simple zero eigenvalue
with an associated eigenvector 1p and all of the other eigenvalues are
positive if and only if the undirected graph is connected [14]. In the
case of a directed graph, L has a simple zero eigenvalue with an
associated eigenvector 1p and all of the other eigenvalues have
positive real parts if and only if the directed graph has a rooted
directed spanning tree [6]. Let x� �x1; . . . ; xp�T , where xj 2 R,
j� 1; . . . ; p, and y� �yT1 ; . . . ; yTp�T , where yj 2 Rm, j� 1; . . . ; p.
Under the conditions of both cases,Lx� 0 implies that x� �1p (i.e.,
x1 � � � � � xp), where � 2 R, and �L
 Im�y� 0, where 
 is the
Kronecker product, implies that y� 1p 
 � (i.e., y1 � � � � � yp),
where � 2 Rm.

The directed graph of a p � p real matrix S� �sij� 2 Rp�p,
denoted by��S�, is the directed graph onp nodes such that there is an
edge in ��S� from j to i if and only if sij ≠ 0 (cf. [15]).

III. Formation Keeping with a Time-Varying Group
Reference Trajectory

In this section, we consider the case where multiple spacecraft
maintain a formation configurationwhile thewhole group, that is, the
virtual center of the formation, follows a time-varying reference
trajectory. Let rd0�t� 2 R3 and vd0�t� 2 R3 denote the time-varying
reference position and velocity for the virtual center of the formation.
Suppose that rd0 and vd0 satisfy the translational dynamics given by

_r d
0 � vd0 ; md

0 _v
d
0 � fd

0 (4)

where md
0 2 R� and fd

0 2 R3 denote, respectively, the virtual mass
and force of the group. The goal is to guarantee that ri !
rd0 �t� � rig�t� and vi ! vd0�t� � vig�t�, 8 i, where rig 2 R3 and
vig 2 R3 denote the desired position and velocity deviation vector of
the ith spacecraft from the virtual center of the formation with
_rig � vig. Note that once the virtual center of the formation is
specified, rig�t� and vig�t�, i� 1; . . . ; n, are determined according to
the desired formation configuration. The formation maneuvers are
determined by rd0 and v

d
0 .

Next, we consider two special cases where either all of the
spacecraft in the team or the unique team leader has access to the
reference model (4) and then consider the general case where only a
part of the spacecraft have access to the reference model. In the
following we assume that all the vectors in each control law have
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been appropriately transformed and represented in the same
coordinate frame.

When each spacecraft has access to the reference model, the
control force for each spacecraft is designed as

fi �mif _vd0 � _vig 	 ���ri 	 rd0 	 rig� � ��vi 	 vd0 	 vig��

	
Xn
j�1

gijkij��ri 	 rj 	 rig � rjg� � ��vi 	 vj 	 vig � vjg��g

(5)

where � 2 R�, � 2 R�, kij 2 R�, gii ≜ 0, and gij is 1 if information
flows from spacecraft j to spacecraft i and 0; otherwise,8 i ≠ j. The
control law (5) is motivated by [16].

With the control force (5) and the reference model (4), Eq. (1) can
be written in matrix form as

_̂r
�̂r

� �
� 0n�n In

	��In � L� 	���In � L�
� �
|��������������������������{z��������������������������}

�

0BB@
1CCA
 I3� r̂

_̂r

� �

where r̂� �r̂T1 ; . . . ; r̂Tn �T with r̂i � ri 	 rd0 	 rig, and L� �‘ij� 2
Rn�n is given as ‘ii �

P
j≠igijkij and ‘ij �	gijkij, 8 i ≠ j. Note

that L satisfies the property (3). Also note that all eigenvalues of
	��In � L� have negative real parts according to Gershgorin’s disc
theorem [15]. Theorem 6 in [17] shows that if

� > max
i�1;...;n

��������������������������������������������������
2

j�ij cos��2 	 tan	1 	Re��i�
Im��i� �

s
(6)

where �i is the ith eigenvalue of 	��In � L�, and Re��� and Im���
represent the real and imaginary parts of a number, respectively, then
all eigenvalues of� have negative real parts. Therefore, if � satisfies

(8), then r̂i ! 0 and _̂ri ! 0, which implies that ri ! rd0 � rig and
vi ! vd0 � vig, i� 1; . . . ; n. Note that when each spacecraft has
access to the reference model, the information-exchange topology
does not affect the convergence result as long as � satisfies (6).
However, the existence of intervehicle information exchange
improves the formation maintenance accuracy during the transition
as shown in [16].

To illustrate from a graphical point of view, consider the
information-exchange topology given by Fig. 1, where each
spacecraft has access to the referencemodel. Here we treat node rd0 as
a virtual spacecraft denoting the reference model. Note that there
exists a link from node rd0 to every spacecraft in the team.

In the leader–follower strategy [9], only the unique team leader has
access to the reference model, and each vehicle except the team
leader has exactly one parent vehicle. Suppose that spacecraft k is the
unique team leader. The control force for each spacecraft is designed
as

fi �mi� _vd0 � _vig 	 Kri�ri 	 rd0 	 rig� 	 Kvi�vi 	 vd0 	 vig��;
i� k

(7)

fi �mi� _vi‘ � _vig 	 _vi‘g 	 Kri�ri 	 ri‘ 	 rig � ri‘g�
	 Kvi�vi 	 vi‘ 	 vig � vi‘g��;

i ≠ k

(8)

where Kri 2 R3�3 > 0, Kvi 2 R3�3 > 0, and spacecraft i‘ is the
leader, that is, the parent, of spacecraft i.†

With the control laws (7) and (8) and the reference model (4),
Eq. (1) can be written as

�~r i �	Kri ~ri 	 Kvi ~vi (9)

where ~rk � rk 	 rd0 	 rkg, ~vk � vk 	 vd0 	 vkg, ~ri � ri 	 ri‘ 	 rig�
ri‘g, i ≠ k, and ~vi � vi 	 vi‘ 	 vig � vi‘g, i ≠ k. Note that Eq. (9)
implies that ~ri ! 0 and ~vi ! 0 because Kri and Kvi are symmetric
positive definite matrices, which in turn implies that rk 	 rkg ! rd0 ,
vk 	 vkg ! vd0 , ri 	 rig ! ri‘ 	 ri‘g, i ≠ k, and vi 	 vig ! vi‘	
vi‘g, i ≠ k. Therefore, it follows from [9] that ri ! rd0 � rig and
vi ! vd0 � vig, i� 1; . . . ; n, under the leader–follower topology.‡

To illustrate, consider the information-exchange topology shown
in Fig. 2, where spacecraft 1 is the unique team leader, spacecraft j is
the leader of spacecraft j� 1, j� 2, 4, 5, and spacecraft 1 is the
leader of spacecraft 2 and 4. Note that node rd0 has a link only to the
team leader.

Note that in the leader–follower topology, information only flows
from leaders to followers. When a follower is perturbed by
disturbance, the leaders are unaware of this disturbance, and their
motions remain unaffected. It might be intuitive to introduce
information flow from followers to leaders to introduce feedback so
as to improve group robustness. However, it is not clear how
information from the followers can be incorporated into the control
laws for the leaders without affecting the stability result.

In the general case that the information-exchange topologymay or
may not have a rooted directed spanning tree and one or more
spacecraft may have access to the reference model, we propose the
control force

fi �mi

�
_vig � 1

�i

P
n
j�1 gij� _vj 	 _vjg 	 Kri�ri 	 rj 	 rig � rjg�

	 Kvi�vi 	 vj 	 vig � vjg�� �
1

�i
gi�n�1�� _vd0 	 Kri�ri 	 rd0

	 rig� 	 Kvi�vi 	 vd0 	 vig��
�

(10)

where gii ≜ 0, gij, 8 i, j 2 f1; . . . ; ng is 1 if information flows from
spacecraft j to spacecraft i and 0 otherwise, gi�n�1� is 1 if spacecraft i
has access to the reference model and 0 otherwise, �i �

P
n�1
j�1 gij,

Kri 2 R3�3 > 0, and Kvi 2 R3�3 > 0.
We have the following theorem for formation keepingwith a time-

varying group reference trajectory under a general directed
information-exchange topology.

Theorem 3.1: Let G� �gij� 2 R�n�1���n�1�, where gij and gi�n�1�,
1 
 i, j 
 n, are as defined after Eq. (10) and g�n�1�i � 0,
i� 1; . . . ; n� 1. With the control force (10), ri ! rd0 � rig and
vi ! vd0 � vig asymptotically if and only if the directed graph of G
has a rooted directed spanning tree (with node rd0 being the root).§

Fig. 1 Information-exchange topology where each spacecraft has

access to the reference model.

Fig. 2 A leader–follower topology where only the team leader has
access to the reference model.

†That is, information flows from spacecraft i‘ to spacecraft i in the
information-exchange topology. However, spacecraft i‘ might not be the
team leader.

‡A leader–follower topology corresponds to a directed graph that is itself a
rooted directed spanning tree.

§Equivalently, rd0 is the only node that has a directed path to all of the
spacecraft in the team.
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Proof: Let ~rn�1 � rd0 and ~vn�1 � vd0 . Note that �rd0 � _vd0 and
�rj � _vj, j� 1; . . . ; n. With (10), Eq. (1) can be rewritten as

�i �~ri �
Xn�1

j�1

gij��~rj 	 Kri� ~ri 	 ~rj� 	 Kvi� ~vi 	 ~vj��; i� 1; . . . ; n

where ~ri � ri 	 rig and ~vi � _~ri. Then it follows that
�	i �	Kri	i 	 Kvi _	i, i� 1; . . . ; n, where 	i �

P
n�1
j�1 gij� ~ri 	 ~rj�.

Then we know that 	i ! 0 and _	i ! 0, i� 1; . . . ; n, because Kri

andKvi are symmetric positive definite matrices. LetL	 � �‘ij� be an
�n� 1� � �n� 1� matrix, where ‘ii �

P
n�1
j�1;j≠i gij and ‘ij �	gij,

8 i ≠ j. Note that L	 satisfies the property (3). Also note that all
entries of the n� 1th row of L	 are zero. In addition, note that
	i ! 0 and _	i ! 0, i� 1; . . . ; n, as well as a dummy equation
0 ! 0, i� n� 1, can be written in matrix form as �L	 
 I3� ~r ! 0
and �L	 
 I3� ~v ! 0, respectively, where ~r� � ~rT1 ; . . . ; ~rTn�1�T and

~v� _~r. Therefore, it follows that ~ri ! ~rj and ~vi ! ~vj,
8i; j 2 f1; . . . ; n� 1g, if and only if the directed graph of G has a
rooted directed spanning tree from Sec. II.C, which in turn implies
that ri ! rd0 � rig and vi ! vd0 � vig, i� 1; . . . ; n, because ~rn�1 �
rd0 and ~vn�1 � vd0 . □

To illustrate, consider the information-exchange topology shown
in Fig. 3, where only spacecraft 1 and 5 have access to the reference
model. Note that although neither spacecraft 1 nor spacecraft 5 has a
directed path to all of the other spacecraft in the team, there exists a
directed path from node rd0 to all of the spacecraft in the team.
Therefore, the condition in Theorem 3.1 is satisfied.

Note that with the full access strategy (5), each spacecraft must
have access to the reference model. In contrast, the control law (10)
does not impose this constraint and allows one or more spacecraft to
have access to the reference model. Also note that with the leader–
follower strategy (7) and (8), information only flows from leaders to
followers, and each spacecraft except the unique team leader has
exactly one parent (e.g., no information loops allowed). In contrast,
the control law (10) allows information toflow fromany spacecraft to
any other spacecraft (e.g., followers to leaders) while guaranteeing
that the stability result remains unchanged as long as the minimum
information-exchange requirement in Theorem 3.1 is satisfied. As a
result, information feedback can be introduced through the general
information exchange and coupling between neighboring spacecraft,
which increases redundancy and robustness to the whole group in the
case of failures of certain information-exchange links. The full access
strategy (5) can be considered a special case of (10), where each
spacecraft has access to the reference model. The leader–follower
strategy (7) and (8) can also be considered a special case of (10),
where only the unique team leader has access to the reference model,
and each spacecraft has at most one neighbor (i.e., its leader).

IV. Attitude Alignment with a Time-Varying
Reference Attitude

In this section, we consider the case where multiple spacecraft
follow a time-varying reference attitude. Let qd

0�t� 2 R4 and!d
0�t� 2

R3 denote the time-varying reference attitude and angular velocity,
which satisfy the rotational dynamics given by

_bq d
0 �	 1

2
!d
0 �bqd

0 �
1

2
qd
0!

d
0 ; _qd

0 �	 1

2
!d
0 �bqd

0

Jd0 _!
d
0 �	!d

0 � �Jd0!d
0� � �d0

(11)

where Jd0 and �d0 denote, respectively, the virtual inertia tensor and

control torque for the group. The goal is to guarantee that qi !
qj ! qd

0�t� and !i ! !j ! !d
0�t�, 8 i ≠ j.

In the general case that the reference model is only available to a
part of the group members, we propose the control torque to the ith
spacecraft as

�i � !i � �Ji!i� �
1

jN ij � 1
Ji

�
_!d
0 �

X
j2N i

_!j

�

	 1

jN ij � 1

�
kqicp�i

� K!i��!i 	 !d
0� �

X
j2N i

�!i 	 !j��
�

i 2 L

(12)

�i � !i � �Ji!i� �
1

jN ij
Ji
X
j2N i

_!j 	
1

jN ij
�
kqicq�i

� K!i

X
j2N i

�!i 	 !j�
�

i =2 L

(13)

where N i denotes the set of neighboring spacecraft whose
information is available to spacecraft i, jN ij denotes the
cardinality of N i, L denotes the set of spacecraft to which the
reference model (11) is available, kqi 2 R�, K!i 2 R3�3 > 0,
p�i

� �Qj2N i
�q�

j qi��qd�
0 qi, and q�i

�Q
j2N i

�q�
j qi�. We assume that

i =2 N i. Note that j 2 N i does not imply that i 2 N j in the case of
directed information exchange.

Theorem 4.1: Let G� �gij� 2 R�n�1���n�1�, where gij, i, j 2
f1; . . . ; ng is 1 if information flows from spacecraft j to spacecraft i
and 0 otherwise, gi�n�1�, i� 1; . . . ; n is 1 if the reference model is
available to spacecraft i and 0 otherwise, and g�n�1�j � 0,
j� 1; . . . ; n� 1. With the control torques (12) and (13), if the
directed graph of G has a rooted directed spanning tree,¶thencp�i

! 0, i 2 L, cq�i
! 0, i =2 L, and !i ! !d

0 , i� 1; . . . ; n,
asymptotically.

Proof: Let qn�1 � qd
0 and !n�1 � !d

0 . Also let J i �N i if
gi�n�1� � 0 and J i �N i [ fn� 1g if gi�n�1� � 1. Then Eqs. (12)
and (13) can be rewritten as

�i � !i � �Ji!i� �
1

jJ ij
Ji
X
j2J i

_!j 	
1

jJ ij
�
kqics�i

� K!i

X
j2J i

�!i 	 !j�
�

i� 1; . . . ; n

(14)

where s�i
�Q

j2J i
�q�

j qi�. Combining Eqs. (2) and (14), gives

Ji _!	i
�	kqics�i

	 K!i!	i
; i� 1; . . . ; n (15)

where !	i
�P

j2J i
�!i 	 !j�. In [12], it shows that if the unit

quaternion and angular velocity pairs �qk; !k� and �q‘; !‘� both
satisfy the quaternion kinematics defined by the first two equations in
Eq. (2), then the unit quaternion and angular velocity pair
�q�

‘qk; !k 	 !‘� also satisfies the quaternion kinematics. It is
straightforward to extend this argument by induction to show that the
unit quaternion and angular velocity pair �s�i

; !	i
� also satisfies the

quaternion kinematics. Thus Eq. (15) implies that cs�i
! 0 and

!	i
! 0, i� 1; . . . ; n according to [12]. Let L! � �‘ij� be an �n�

1� � �n� 1�matrix, where ‘ii �
P

n�1
j�1;j≠i gij and ‘ij �	gij, i ≠ j.

Fig. 3 A general information-exchange topology, where only a part of

the spacecraft have access to the reference model and the original

topology without node rd0 does not have a rooted directed spanning tree.

¶Define a virtual node n� 1 representing the referencemodel (11).WithG
defined in Theorem 4.1, where g�n�1�j � 0, j� 1; . . . ; n� 1, the condition
that the directed graph of G has a rooted directed spanning tree implies that
node n� 1 is the root of the rooted directed spanning tree. This condition is
also equivalent to the condition that node n� 1 is the only node that has a
directed path to all of the spacecraft in the group. That is, the reference states
qd
0 , !

d
0 , and _!d

0 can flow to any spacecraft in the team directly or indirectly.
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Note that L! satisfies the property (3) and all of the entries of the
n� 1th row of L! are zero. Also note that !	i

! 0, i� 1; . . . ; n,
together with a dummy equation 0 ! 0, i� n� 1, can be written in
matrix form as �L! 
 I3�! ! 0, where !� �!T

1 ; . . . ; !
T
n�1�T .

Noting that the directed graph of G has a rooted directed spanning
tree, we know that !i ! !j, i, j 2 f1; . . . ; n� 1g from Sec. II.C,
which in turn implies that!i ! !d

0 ,8 i, because!n�1 � !d
0 . □

In the information-exchange topology, if a node k has exactly one

parent, node ‘, then cs�k
� dq�

‘qk ! 0 implies that qk ! q‘. That is,
spacecraft k approaches the reference attitude qd

0 if ‘� n� 1, or
spacecraft k and ‘ approach the same attitude if ‘ ≠ n� 1. As a
result, edge �‘; k� can be deleted in the information-exchange
topology, and nodes k and ‘ can be combined as one single node
whose incoming and outgoing edges are the union of the incoming
and outgoing edges of nodes k and ‘. By repeating this procedure, we
can simplify the information-exchange topology. If the information-
exchange topology can be simplified to a directed graph with only
one node, then cp�i

! 0, i 2 L and cq�i
! 0, i =2 L, directly imply

that qi ! qj ! qd
0 . Similar to the formation keeping case, the

leader–follower approach for attitude alignment (e.g., [9]) can be
considered a special case of the control laws (12) and (13), where
each spacecraft has at most one neighbor (i.e., its leader).

As an illustrative example, Fig. 4 shows the information-exchange
topologies between four spacecraft, where node qd

0 (i.e., node n� 1)
denotes the reference model and node i, i� 1; . . . ; 4 denotes the ith
spacecraft. Note that in Fig. 4 a link from node qd

0 to node j denotes
that the reference model is available to spacecraft j. In particular, the
leader–follower approach (e.g., [9]) corresponds to Figs. 4a and 4b,
where each spacecraft except the team leader has only one parent
node. In contrast, the control laws (12) and (13) correspond to
Figs. 4c and 4d, which are more general than Figs. 4a and 4b in the
sense that information can flow between all spacecraft to introduce
feedback between neighbors and the reference model may be
available to one or more spacecraft in the group. Note that node qd

0

has a directed path to all of the spacecraft in the group in Figs. 4a–4d.

Also note that Figs. 4a–4d can all be simplified to a directed graph
with only one node, which directly implies that qi ! qj ! qd

0 with
the control laws (12) and (13).

V. Simulation

In this section, we only show an attitude alignment example due to
space limitations. We apply the control laws (12) and (13) to
guarantee that four spacecraft follow a time-varying reference
attitude qd

0�t� and angular velocity !d
0�t�.

In the simulation, we let �d0 � �0; 0; 0�T , Jd0 � diagf1; 2; 1g,
qd
0�0� � �0; 0; 0; 1�T , and !d

0�0� � �0:1; 0:3; 0:5�T . We also choose
qi�0� and !i�0�, i� 1; . . . ; 4 randomly. Also let kqi � 1 and
K!i � 2I3, i� 1; . . . ; 4 in Eqs. (12) and (13). The information flow
between the four spacecraft is shown in Fig. 4c, in which the
reference model is only available to spacecraft 3 and 4. In the
following, a superscript �j� denotes the jth component of a
quaternion or vector.

Figure 5 shows the actual attitudes of each spacecraft and the
reference attitude. Figure 6 shows the actual angular velocities of
each spacecraft and the reference angular velocity. Note that the
actual attitudes and angular velocities of each spacecraft converge to
their reference values. Figure 7 shows the control torques of each
spacecraft.

VI. Conclusions

We have studied formation keeping and attitude alignment for
multiple spacecraft with local neighbor-to-neighbor information

Fig. 4 Information-exchange topologies between four spacecraft

where Figs. 4a and 4b correspond to the leader–follower approach and

Figs. 4c and 4d correspond to the control laws (12) and (13).
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Fig. 5 Actual attitudes of each spacecraft and the reference attitude qd0.
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Fig. 6 Actual angular velocities of each spacecraft and the reference

angular velocity !d
0.
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Fig. 7 Spacecraft control torques.
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exchange. Control laws have been proposed for formation keeping
and attitude alignment during formation maneuvers in the presence
of arbitrary information loops or feedback between neighboring
spacecraft. Simulation results on reference attitude tracking for
multiple spacecraft have demonstrated the effectiveness of our
approach. In this note, we have not addressed the robustness of the
proposed control laws in the presence of model uncertainties and
noise, the issue of collision avoidance, and the problem of coupling
between translation dynamics and rotational dynamics. Thesewill be
topics of future research.
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