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Leaderless and Leader-Following Consensus With
Communication and Input Delays Under

a Directed Network Topology
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Abstract—In this paper, time-domain (Lyapunov theorems) and
frequency-domain (the Nyquist stability criterion) approaches are
used to study leaderless and leader-following consensus algorithms
with communication and input delays under a directed network
topology. We consider both the first-order and second-order cases
and present stability or boundedness conditions. Several interest-
ing phenomena are analyzed and explained. Simulation results are
presented to support the theoretical results.

Index Terms—Communication and input delays, consensus
tracking, directed network graph, leaderless consensus, multi-
agent system.

I. INTRODUCTION

COOPERATIVE control of multiagent systems has re-
ceived significant research attention in recent years. Com-

pared with solo systems, additional benefits, such as high
robustness and great efficiency, can be obtained by having a
group of agents work cooperatively. Cooperative control has
broad applications in formation control [1], flocking [2], and
complex networks [3], [4]. A fundamental approach to achieve
cooperative control is consensus [5]–[7]. Consensus means
the agreement of a group of agents on their common states
via local interaction. In a leaderless consensus problem, there
does not exist a virtual leader, while in a leader-following
consensus problem, there exists a virtual leader that specifies
the objective for the whole group. More specifically, consensus
with a static virtual leader is called a consensus regulation
problem, and consensus with a dynamic virtual leader is called
a consensus tracking problem. It is worthwhile to mention that
the consensus tracking problem becomes much more complex
if only a portion of the agents in the group has access to the
virtual leader.

Since delays are inevitable in real systems, it is necessary and
beneficial to study leaderless and leader-following consensus
algorithms in the presence of the delays. Most existing refer-
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ences on consensus algorithms considered input delays. The
authors in [6] first gave a leaderless consensus algorithm with
input delays and then presented a frequency-domain approach
to find the stability conditions. A similar leaderless consensus
algorithm with uniform input delays was studied in [8], where
a time-domain approach, i.e., the Lyapunov–Krasovaskii theo-
rem, was used to obtain the stability conditions under strongly
connected and balanced network topologies. Besides leaderless
consensus algorithms, leader-following consensus algorithms
with input delays were also studied. By combining the results
in [8] and [9], the authors in [10] proposed a first-order consen-
sus tracking algorithm with input delays, where an estimator
was used to estimate the virtual leader’s velocity. Due to the
presence of the dynamic virtual leader and the input delays, the
tracking errors were shown to be uniformly ultimately bounded
instead of approaching zero. In the previous references, the
network topology is assumed to be either undirected or strongly
connected and balanced, which poses an obvious limitation.
The extension to the case where the network topology has a
directed spanning tree and the input delays are assumed to be
nonuniform was provided in [11], where a frequency-domain
method was used to find conditions to achieve leaderless con-
sensus. Except for input delays, the influence of communication
delays on consensus algorithms was also studied. The authors in
[12] showed that communication delays will not jeopardize the
stability of the first-order leaderless consensus algorithm under
a directed network topology. A similar algorithm was discussed
in [13], where the effect of initial conditions was highlighted. A
second-order consensus regulation algorithm with nonuniform
communication delays was studied in [14], but a damping
term was used to regulate the velocities of all agents to zero,
and the network topology was assumed to be undirected. The
previous references considered either only the input delays or
only the communication delays and, hence, lack completeness.
The case with both the communication and input delays was
studied in [15]. In particular, a first-order leaderless consensus
algorithm with both the communication and input delays was
studied in a discrete-time setting. However, a pure frequency-
domain approach was used, thus leading the obtained stability
conditions to be conservative.

This paper considers both leaderless and leader-following
consensus algorithms with communication and input delays in,
respectively, first-order kinematics and second-order dynamics
under a directed network topology. The stability or bound-
edness conditions of four different cases, namely, leaderless
consensus, consensus regulation, consensus tracking with full
access to the virtual leader, and consensus tracking with partial
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access to the virtual leader, are analyzed by using time-domain
and frequency-domain approaches.

The contributions of this paper are fourfold. First, we assume
a general network topology, i.e., a directed network topology
with a directed spanning tree, instead of an undirected con-
nected network topology or a directed strongly connected and
balanced network topology [6], [8], [10], [16]. Second, both
communication and input delays are considered in the cases
of leaderless consensus, consensus regulation, and consensus
tracking with full access to the virtual leader, which guarantees
the completeness of the algorithms. Third, we show that the
communication delay will not influence the stability of the first-
order system in the case of consensus tracking with partial
access to the virtual leader, which extends the results of [12]
and [17]. Fourth, as a byproduct, we find that in the case of
second-order leaderless consensus with both communication
and input delays, the final group velocity is always dampened to
zero rather than a possibly nonzero constant as compared with
the standard second-order consensus algorithm studied in [18].
A preliminary version of the second-order case of the work is
presented at the 2010 American Control Conference.

II. PRELIMINARIES

A. Notations

R and C are the set of real numbers and the set of complex
numbers, respectively.

1n and 0n are the n × 1 all-one vector and the n × 1 all-zero
vector, respectively.

In and 0n×n are the n × n identity matrix and the n × n
matrix with all zero entries, respectively.

λmin(A) and λmax(A) are, respectively, the minimal eigen-
value and the maximum eigenvalue of the matrix A.
‖A‖ is the norm of the matrix/vector A.
j is the imaginary unit.
�{•} and �{•} are, respectively, the real part and the

imaginary part of a complex number.
ρ(A) is the spectral radius of the matrix A.
Q < 0 means that the matrix Q is negative-definite.

B. Graph Theory Notions

Using graph theory, we can model the network topology in a
multiagent system consisting of n agents. A directed graph Gn

consists of a pair (V, E), where V = {v1, . . . , vn} is a finite
nonempty set of nodes, and E ∈ V × V is a set of ordered pairs
of nodes. An edge (vi, vj) denotes that node vj can obtain
information from node vi, but not necessarily vice versa. All
neighbors of node vi are denoted as Ni := {vj | (vj , vi) ∈ E}.

A directed path is a sequence of edges of the form
(vi1 , vi2), (vi2 , vi3), . . .. A directed graph has a directed span-
ning tree if there exists at least one node having a directed path
to all other nodes.

For the leaderless consensus case, the adjacency matrix
An = [aij ] ∈ Rn×n associated with Gn is defined such that
aij is positive if (vj , vi) ∈ E, while aij = 0 otherwise. Here,
we assume that aii = 0, ∀ i. The (nonsymmetric) Laplacian
matrix Ln = [�ij ] ∈ Rn×n associated with An is defined as
�ii =

∑
j �=i aij and �ij = −aij , where i �= j.

For the leader-following case, we assume that besides agents
1 to n, there exists a virtual leader, labeled as agent n + 1, in

the system. We use Gn+1 to model the network topology in
this case. The adjacency matrix An+1 = [aij ] ∈ R(n+1)×(n+1)

associated with Gn+1 is defined such that aij is positive if
(vj , vi) ∈ E, while aij = 0 otherwise, and a(n+1)j = 0 for all
j = 1, . . . , n + 1. Here, again, we assume that aii = 0, ∀ i.

III. DEFINITIONS AND LEMMAS

Suppose that f : R × C �→ Rn is continuous and consider
the retarded functional differential equation (RFDE)

ẋ(t) = f(t, xt). (1)

Let φ = xt be defined as xt(θ) = x(t + θ), θ ∈ [−τ, 0]. Sup-
pose that appropriate initial conditions are defined on the delay
interval [t0 − τ, t0]: xt0(θ) = φ(θ), ∀ θ ∈ [−τ, 0]. Specifically,
we assume that the initial condition satisfies x(θ) = 0, ∀ θ ∈
[t0 − τ, t0], in this paper. Suppose that the solution x(σ, φ)(t)
through (σ, φ) is continuous in (σ, φ, t) in the domain of
definition of the function, where σ ∈ R.

Definition 3.1 [19]: The solutions x(σ, φ) of the RFDE
(1) are uniformly ultimately bounded if there is a β > 0
such that for any α > 0, there is a constant t0(α) > 0 such
that |x(σ, φ)(t)| ≤ β for t ≥ σ + t0(α) for all σ ∈ R, φ ∈ C,
|φ| ≤ α.

Suppose that D : R × C �→ Rn is a linear operator on
the second variable such that D(t, φ) = A(t)φ(0) − G(t, φ),
where A(t) is a continuous nonsingular matrix, and G(t, φ) =∫ 0

−h dμ(t, θ)φ(θ) satisfies |
∫ 0

−s+ [dμ(t, θ)]φ(θ)| ≤ γ(s, t)|φ|
for 0 ≤ s ≤ h, where μ is an n × n matrix function of bounded
variation on θ, γ is continuous, and γ(0, t) = 0 for t ≥ 0. If
g : R × C �→ Rn is a continuous function, then the relation

d

dt
D(t, xt) = g(t, xt) (2)

is a neutral functional differential equation (NFDE) [20].
Definition 3.2 [20]: Consider the NFDE (2). Suppose that

operator D is stable. It defines a uniform ultimately bounded
process if there is a β > 0 such that for any α > 0, there is
a constant t0(α) > 0 such that |x(σ, φ)(t)| ≤ β for t ≥ σ +
t0(α) for all σ ∈ R, φ ∈ C, |φ| ≤ α.

Lemma 3.1. (Degenerate Lyapunov–Krasovskii Stability
Theorem) [21], [22]: Consider the NFDE (2). Suppose that
operator D is stable, g : R × C �→ Rn takes R× (bounded sets
of C) into bounded sets of Rn, and u(s), v(s), and w(s)
are continuous, nonnegative, and nondecreasing functions with
u(s), v(s) > 0 for s �= 0 and u(0) = v(0) = 0. If there exists a
continuous functional V : R × Cn × Cn �→ Rn, such that

1) u(‖D(t, φ)‖) ≤ V (t,D(t, φ), φ) ≤ v(‖φ‖c)
2) V̇ (t,D(t, φ), φ) ≤ −w(‖D(t, φ)‖)
then the trivial solution of (2) is asymptotically stable.
Lemma 3.1 will be used in the first-order and second-order

leaderless consensus and consensus regulation problems.
Lemma 3.2. (Lyapunov–Razumikhin Uniformly Ultimately

Bounded Theorem) [19]: Consider the RFDE (1). Suppose
that f : R × C �→ Rn takes R× (bounded sets of C) into
bounded sets of Rn and u, v, w : R+ �→ R+ are continuous
nonincreasing functions, u(s) → ∞ as s → ∞. If there is a
continuous function V : R × Rn �→ R, a continuous nonde-
creasing function p : R+ �→ R+, p(s) > s for s > 0, and a con-
stant H ≥ 0 such that u(|x|) ≤ V (x) ≤ v(|x|), t ∈ R, x ∈ Rn,
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and V̇ (t, φ) ≤ −w(|φ(0)|) if |φ(0)| ≥ H , V (t + θ, φ(θ)) <
p(V (t, φ(0))), θ ∈ [−τ, 0], then the solutions of (1) are uni-
formly ultimately bounded.

Lemma 3.2 will be used in the first-order and second-order
consensus tracking problems with full access to the virtual
leader.

Lemma 3.3. (Lyapunov–Razumikhin Uniformly Ultimately
Bounded Theorem for Neutral-Type Systems) [19], [20]: Con-
sider the NFDE (2). Suppose that operator D is stable and
g : R × C �→ Rn takes R× (bounded sets of C) into bounded
sets of Rn. If there is a continuous function V : R × Rn �→ R,
a continuous nondecreasing function p : R+ �→ R+, p(s) > s
for s > 0 such that u(|x|) ≤ V (x) ≤ v(|x|), ∀x ∈ Rn, and
V̇ (D(t, φ)) ≤ −w(|D(t, φ)|) for all functions φ if |D(t, φ)| ≥
H and V (φ(θ)) < p(V (D(t, φ))), θ ∈ [−τ, 0], where w(s) is a
continuous positive function for s ≥ KH , then the solution of
(2) is uniformly ultimately bounded.

Lemma 3.3 will be used in the first-order and second-order
consensus tracking problems with partial access to the virtual
leader.

IV. FIRST-ORDER CASE WITH COMMUNICATION AND

INPUT DELAYS UNDER A DIRECTED NETWORK TOPOLOGY

Here, we model a group of agents with single-integrator
kinematics as

ẋi(t) = ui(t), i = 1, 2, . . . , n (3)

where xi and ui are, respectively, the state and the control input
of the ith agent.

A. First-Order Leaderless Consensus

Consider the following leaderless consensus algorithm with
both communication and input delays:

ui(t) = − 1∑n
j=1 aij

n∑
j=1

aij [(xi(t − τ1) − xj(t − τ1 − τ2)] ,

i = 1, . . . , n, (4)

where τ1 and τ2 are the input and communication delays,
respectively, and aij , i = 1, . . . , n, j = 1, . . . , n, is the (i, j)
entry of the adjacency matrix An. Here, we assume that every
agent has a neighbor, which implies that

∑n
j=1 aij �= 0, ∀ i. To

achieve consensus, that is, xi(t) → xj(t), as t → ∞, the con-
ditions on the input delay τ1 and the communication delay τ2 to
guarantee the stability or the ultimately uniform boundedness
of the closed-loop system should be addressed. Using (4), (3)
can be written in the matrix form as

ẋ(t) = −x(t − τ1) + Ax(t − τ1 − τ2) (5)

where x = [x1, . . . , xn]T , and A = [âij ] ∈ Rn×n is defined as
âij = aij/

∑n
j=1 aij , i = 1, . . . , n, j = 1, . . . , n. Define L =

In − A. When Gn has a directed spanning tree, L has a
simple zero eigenvalue, and all other eigenvalues are on the
open right half-plane [7], [23]. The following singular vector
decomposition is valid:

W−1LW =
[

L̃ 0n−1

0T
n−1 0

]
.

Here, among the infinite options of W , we choose the one that
the last column of W is the vector 1n. Note that, here, all
the eigenvalues of L̃ are on the open right half-plane. Before
moving on, we need the following lemma.

Lemma 4.1 [10]: For any a, b ∈ Rn and any symmetric
positive-definite matrix Φ ∈ Rn×n, 2aT b ≤ aT Φ−1a + bT Φb.

Define x̃
Δ= W−1x. Denote x̃n−1 as the first n − 1 rows of

x̃ and x̃2 as the last row of x̃. Note that A = In − L. By
multiplying W−1 on both sides of (5), it follows that (5) can
be rewritten as[ ˙̃xn−1(t)

˙̃x2(t)

]
= −

[
In−1 0n−1

0T
n−1 1

] [
x̃n−1(t − τ1)
x̃2(t − τ1)

]

+
[

Ã 0n−1

0T
n−1 1

] [
x̃n−1(t − τ1 − τ2)
x̃2(t − τ1 − τ2)

]

where Ã = In−1 − L̃. Equation (5) can be decoupled into the
following two equations:

˙̃xn−1(t) = − x̃n−1(t − τ1) + Ãx̃n−1(t − τ1 − τ2) (6a)

˙̃x2(t) = − x̃2(t − τ1) + x̃2(t − τ1 − τ2). (6b)

Theorem 4.1: If the fixed directed graph Gn has a directed
spanning tree and every agent has a neighbor, there exist τ1 and
τ2 such that the following three conditions1 are satisfied.

1) 2τ1 + τ2 < 1.
2) 1 − ((1 − e−sτ1)/s) + λi(Ã)((1 − e−s(τ1+τ2))/s) �= 0,

for all s ∈ C+.
3) Qfc = (−In−1 + Ã)T Pfc+ Pfc(−In−1+ Ã) + τ1Sfc +

(τ1 + τ2)Hfc + τ1[(−In−1 + Ã)T PfcS
−1
fc Pfc(−In−1 +

Ã)]+ (τ1+ τ2)[(−In−1+ Ã)TPfcÃH−1
fc ÃTPfc(−In−1+

Ã)] < 0, where Pfc is a symmetric positive-definite
matrix chosen properly such that (−In−1 + Ã)T Pfc +
Pfc(−In−1 + Ã) < 0, and Sfc and Hfc are arbitrary
symmetric positive-definite matrices.

In addition, if the above conditions are satisfied, τ1 ∈ [0, τ1],
and τ2 ∈ [0, τ2], system (3) using (4) reaches the consensus
equilibrium (pT x(0)/(1 + τ2))1n asymptotically, where p ∈
Rn is a nonnegative left eigenvector of L associated with the
zero eigenvalue satisfying pT 1n = 1.

Proof: We first prove that the stability of system (3) using
(4) is guaranteed if the three conditions in Theorem 4.1 are
satisfied. Then, we show that these three conditions are, indeed,
satisfied if Gn has a directed spanning tree, and every agent
has a neighbor. At last, the consensus equilibrium is explicitly
presented by using the final value theorem.

We know that the stability of the following system:

d

dt

⎛
⎝̃xn−1(t) −

0∫
−τ1

x̃n−1(t + θ) dθ + Ã

0∫
−τ1−τ2

x̃n−1(t + θ) dθ

⎞
⎠

= −(In−1 − Ã)x̃n−1(t) (7)

1Note here that the three conditions are used to obtain the upper bounds τ1
and τ2 for allowable delays.
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implies the stability of system (6a) if condition 2 in
Theorem 4.1 is satisfied [22]. Consider a Lyapunov function
candidate

V
(
x̃(n−1)t

)
=

⎡
⎣x̃n−1(t) −

0∫
−τ1

x̃n−1(t + θ) dθ

+ Ã

0∫
−τ1−τ2

x̃n−1(t + θ) dθ

⎤
⎦

T

× Pfc

⎡
⎣x̃n−1(t) −

0∫
−τ1

x̃n−1(t + θ) dθ

+ Ã

0∫
−τ1−τ2

x̃n−1(t + θ) dθ

⎤
⎦

+

0∫
−τ1

t∫
t+θ

x̃n−1(ξ)T Sfcx̃n−1(ξ) dξ dθ

+

0∫
−τ1−τ2

t∫
t+θ

x̃n−1(ξ)T Hfcx̃n−1(ξ) dξ dθ.

Taking the derivative of V along (7) gives

V̇
(
x̃(n−1)t

)
≤ x̃n−1(t)T Qfcx̃n−1(t)

where Qfc is defined as in Theorem 4.1, and we have used
Lemma 4.1 to derive the inequality. Note that Qfc < 0 satisfies
condition 2 in Lemma 3.1. Also, note that α1‖D(x̃(n−1)t)‖ ≤
V(x̃(n−1)t)≤α2‖x̃(n−1)t‖c [24], where D(x̃(n−1)t)= x̃n−1(t)−∫ 0

−τ1
x̃n−1(t + θ) dθ+Ã

∫ 0

−τ1−τ2
x̃n−1(t + θ) dθ, ‖x̃(n−1)t‖c =

supθ∈[−τ1−τ2,0] ‖x̃(n−1)(t + θ)‖, α1 = λmin(Pfc), and α2 =
λmax(Pfc) + τ1λmax(Sfc) + (τ1 + τ2)λmax(Hfc). This satis-
fies condition 1 in Lemma 3.1. Therefore, if conditions 2 and
3 in Theorem 5.1 are satisfied, the asymptotical stability of
system (6a) is guaranteed by using Lemma 3.1.

For system (6b), we apply the Nyquist stability criterion
to find its stability condition. After Laplace transformation,
system (6b) can be written as

sx̃2(s) = −e−τ1sx̃2(s) + e−(τ1+τ2)sx̃2(s).

Thus, the stability is determined by the roots’ distribution of the
following:

s = −e−τ1s + e−(τ1+τ2)s. (8)

Define f(s) Δ= (e−τ1s − e−(τ1+τ2)s)/s. Based on the Nyquist
stability criterion, if the trajectory of f(jω), ∀ω ∈ (−∞,∞),
does not enclose the point (−1, j0), then (8) is stable. One
sufficient condition is that �{f(jω)} > −1, ∀ω ∈ (−∞,∞).
Noting that �{f(jω)} = (− sin(τ1 + τ2)ω/ω) + (sin τ1ω/ω)
and functions (− sin(τ1 + τ2)ω/ω) and (sin τ1ω/ω) have min-
imum values, respectively, −(τ1 + τ2) and −τ1 with respect
to ∀ω ∈ (−∞,∞), we have that �{f(jω)} ≥ −(2τ1 + τ2).
Therefore, it is easy to verify that the stability of system (6b)
is guaranteed if condition 1 in Theorem 4.1 is satisfied.

Next, we show that these three conditions in Theorem 4.1
are, indeed, satisfied if Gn has a directed spanning tree, and

every agent has a neighbor. It is straightforward to see that there
exist τ1 and τ2 such that conditions 1 and 2 are satisfied. For
condition 3, we know that L̃ = In−1 − Ã has all eigenvalues on
the open right half-plane. Therefore, when τ1 = τ2 = 0, there
always exists a Pfc to guarantee that (−In−1 + Ã)T Pfc +
Pfc(−In−1 + Ã) < 0. Thus, based on the continuity, there
must exist τ1 and τ2 such that Qfc < 0 when τ1 ∈ [0, τ1] and
τ2 ∈ [0, τ2].

Finally, for the consensus equilibrium, we have that

lim
t→∞

x̃2(t) = lim
s→0

sx̃2(0)
s + e−τ1s − e−(τ1+τ2)s

=
x̃2(0)
1 + τ2

and x̃n−1(t) → 0, as t → ∞. It follows that the consensus
equilibrium is given by pT x(0)/(1 + τ2)1n. �

Remark 4.1: We know that the additional dynamics caused
by the model transformation from (6a) to (7) can be character-
ized by the solutions of the following complex equation [25]:

det
(

In−1 − In−1
1 − esτ1

s
+ Ã

1 − es(τ1+τ2)

s

)
= 0, s ∈ C.

Thus, if τ1 + (τ1 + τ2)‖Ã‖ < 1, there are no additional eigen-
values induced by the model transformation from (6a) to (7),
which implies that the condition τ1 + (τ1 + τ2)‖Ã‖ < 1 can be
used to replace condition 2 in Theorem 4.1.

Remark 4.2: If we let Sfc = Hfc = In−1, condition 3 in
Theorem 4.1 can be written as

τ1 + τ2 <
λmin

[
(In−1−Ã)T Pfc+Pfc(In−1−Ã)

]
2+

∥∥∥(−In−1+Ã)T Pfc

∥∥∥2

+
∥∥∥(−In−1+Ã)T PfcÃ

∥∥∥2 .

Remark 4.3: Note that, in Theorem 4.1, it is assumed that
the fixed directed graph has a directed spanning tree, and every
agent has a neighbor. Thus, the conclusion can be viewed as a
generalization of [8], [10], and [16], where the directed graphs
are assumed to be strongly connected and balanced.

Remark 4.4: For first-order leaderless consensus, the case
of a general network topology that has a directed spanning
tree was also considered in [11]. However, only input delays
were considered. The extension to the case where there exist
both communication and input delays was studied in [15].
A discrete-time setting was assumed, and a pure frequency-
domain approach was used. In contrast, we here introduce
both time-domain and frequency-domain approaches in a
continuous-time setting.

B. First-Order Consensus Regulation

Here, we assume that there exists a virtual leader, labeled as
agent n + 1, whose state is a constant reference state xd. The
consensus regulation algorithm with both communication and
input delays is proposed as

ui = − 1∑n+1
j=1 aij

n+1∑
j=1

aij [xi(t − τ1) − xj(t − τ1 − τ2)] ,

i = 1, . . . , n (9)

where τ1 and τ2 are, respectively, the input and communication
delays, aij , i = 1, . . . , n, j = 1, . . . , n + 1, is the (i, j) entry



MENG et al.: LEADER-FOLLOWING CONSENSUS WITH COMMUNICATION AND INPUT DELAYS 79

of the adjacency matrix An+1, and x(n+1) ≡ xd. Note that
the condition that Gn+1 has a directed spanning tree and the
fact that all entries of the last row of An+1 are zero imply
that no other rows of An+1 have all zero entries. It thus
follows that

∑n+1
j=1 aij �= 0, i = 1, 2, . . . , n [26]. The objective

of (9) is to guarantee accurate regulation, i.e., xi(t) → xd as
t → ∞. Denote xi = xi − xd and x = [x1, . . . , xn]T . Define
A = [āij ] ∈ Rn×n as āij = aij/

∑n+1
j=1 aij , i = 1, . . . , n, j =

1, . . . , n. Using (9), (3) can be written in the matrix form as

ẋ = −x(t − τ1) + Ax(t − τ1 − τ2) (10)

where we have used the fact that xd is a constant. Before
moving on, we need the following lemma regarding (In −A).

Lemma 4.2 [27]: The real parts of all eigenvalues of (In −
A) are positive if the fixed directed graph Gn+1 has a directed
spanning tree.

Theorem 4.2: If the fixed directed graph Gn+1 has a directed
spanning tree, there exist τ1 and τ2 such that the following two
conditions are satisfied.

1) 1 − ((1 − e−sτ1)/s) + λi(A)((1 − e−s(τ1+τ2))/s) �= 0,
∀ s ∈ C+.

2) Qfr = (−In + A )T Pfr + Pfr(−In + A ) + τ1 Sfr +
(τ1 + τ2)Hfr+ τ1[(−In+ A)TPfrS

−1
fr Pfr(−In + A)] +

(τ1 + τ2)[(−In+ A)TPfr AH−1
fr ATPfr(−In+ A)] < 0,

where Pfr is a symmetric positive-definite matrix chosen
properly such that (−In + A)T Pfr + Pfr(−In + A) <
0, and Sfr and Hfr are arbitrary symmetric positive-
definite matrices.

In addition, if the above conditions are satisfied, τ1 ∈ [0, τ1],
and τ2 ∈ [0, τ2], system (3) using (9) guarantees xi(t) → xd,
∀ i = 1, . . . , n, asymptotically as t → ∞.

Proof: Similar to the analysis in Section IV-A, the stabil-
ity of the following system:

d

dt

⎛
⎝x(t) −

0∫
−τ1

x(t + θ) dθ + A
0∫

−τ1−τ2

x(t + θ) dθ

⎞
⎠

= −(In −A)x(t) (11)

implies the stability of system (10) if condition 1 in
Theorem 4.2 is satisfied.

Consider a Lyapunov function candidate

V (xt) =

⎡
⎣x(t)−

0∫
−τ1

x(t+θ) dθ + A
0∫

−τ1−τ2

x(t+θ) dθ

⎤
⎦

T

×Pfr

⎡
⎣x(t)−

0∫
−τ1

x(t+θ) dθ + A
0∫

−τ1−τ2

x(t+θ) dθ

⎤
⎦

+

0∫
−τ1

t∫
t+θ

x(ξ)T Sfrx(ξ) dξ dθ

+

0∫
−τ1−τ2

t∫
t+θ

x(ξ)T Hfrx(ξ) dξ dθ.

Taking the derivative of V along (11) gives

V̇ (xt) ≤ x(t)T Qfrx(t)

where Qfr is defined as in Theorem 4.2, and we have used
Lemma 4.1 to derive the inequality. Thus, if the two conditions
in Theorem 4.2 are satisfied, the stability of (10) can be guar-
anteed by using Lemma 3.1. In addition, it is straightforward
to see that there exist τ1 and τ2 such that condition 1 is
satisfied. For condition 2, we know that there also exist τ1 and
τ2 such that Qfr < 0 by following a similar analysis to that
in Section IV-A since In −A has all eigenvalues with positive
real parts if Gn+1 has a directed spanning tree (Lemma 4.2). �

Remark 4.5: Although the approaches used in the leaderless
consensus case and the consensus regulation case are similar,
the control goals of these two cases are different. For the leader-
less consensus case, the final states of each agent are determined
by the network topology, the control gains, and the time delays
rather than being prespecified. However, for the consensus
regulation case, there exists a virtual leader that determines the
final state, and the control objective is to guarantee that the final
states of all agents approach the state of the virtual leader. Plus,
the result of the case of consensus regulation can be generalized
to general weights, while the case of leaderless consensus
requires special weights. Also, note that the remarks given in
Remarks 4.1–4.3 are still valid in the consensus regulation case.

Remark 4.6: Using the similar model and analysis provided
in [28], the results in this subsection can be extended to the case
of multiple (nonuniform) delays.

C. First-Order Consensus Tracking With Full Access to the
Virtual Leader

Here, we consider the case where the reference state xd is
time varying. Here, we assume that all agents have access to
ẋd. The consensus tracking algorithm with both communication
and input delays is proposed as

ui = ẋd(t − τ1 − τ2) −
1∑n+1

j=1 aij

n+1∑
j=1

aij [xi(t − τ1)

− xj(t − τ1 − τ2)] , i = 1, . . . , n (12)

where τ1 and τ2 are, respectively, the input and communication
delays, aij , i = 1, . . . , n, j = 1, . . . , n + 1, is the (i, j) entry
of the adjacency matrix An+1, and xn+1 ≡ xd. Using (12), (3)
can be written in the matrix form as

ẋ = −x(t − τ1) + Ax(t − τ1 − τ2) + Rft (13)

where A and x are defined as in Section IV-B, and Rft =
1n[ẋd (t−τ1−τ2)−ẋd (t)]−1n[xd (t−τ1)−xd (t−τ1−τ2)]=
−1n

∫ 0

−τ1−τ2
ẍd(t + θ) dθ − 1n

∫ 0

−τ2
ẋd(t + θ) dθ by using the

Leibniz–Newton formula [19]. Here, we also assume that |ẋd|<
δv, |ẍd| < δa, where δv and δa are two positive constants.

Theorem 4.3: If the fixed directed graph Gn+1 has a
directed spanning tree, there exist τ1 and τ2 such that Qft =
(−In+ A)TPfr+ Pfr(−In+ A)+ τ1(Pfr+ PfrAP−1

frATPfr+
2qfPfr)+ (τ1 + τ2)(PfrAP−1

frATPfr+ PfrAAP−1
frATATPfr+

2qfPfr) < 0, where Pfr is the same matrix given in
Theorem 4.2 and qf > 1. In addition, if Qft < 0, τ1 ∈ [0, τ1],
and τ2 ∈ [0, τ2], system (3) using (12) guarantees that all
xi − xd are uniformly ultimately bounded. In particular,
the ultimate bound of x is given by λmax(Pfr)af/
λmin(Pfr)κfλmin(−Qft), where af = 2[(τ1 + τ2)δa +
τ2δv][‖Pfr‖ + τ1‖Pfr‖ + (τ1 + τ2)‖PfrA‖] and 0 < κf < 1.
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Proof: Using the Leibniz–Newton formula [19], we trans-
form (13) to the following system:

d

dt
x(t) = − (In −A)x(t) +

0∫
−τ1

ẋ(t + θ) dθ

−A
0∫

−τ1−τ2

ẋ(t + θ) dθ + Rft

= − (In −A)x(t)

+

0∫
−τ1

[−x(t − τ1 + θ) + Ax(t − τ1 − τ2 + θ)] dθ

+

0∫
−τ1

Rft(t + θ) dθ

−A
0∫

−τ1−τ2

[−x(t−τ1+θ) +Ax(t−τ1−τ2+θ)] dθ

−A
0∫

−τ1−τ2

Rft(t + θ) dθ + Rft

= − (In −A)x(t) −
−τ1∫

−2τ1

x(t + θ) dθ

+ A
−τ1−τ2∫

−2τ1−τ2

x(t + θ) dθ +

0∫
−τ1

Rft(t + θ) dθ

+ A
−τ1∫

−2τ1−τ2

x(t + θ) dθ −A2

−τ1−τ2∫
−2τ1−2τ2

x(t + θ) dθ

−A
0∫

−τ1−τ2

Rft(t + θ) dθ + Rft.

Consider a Lyapunov function candidate V (x) = xT Pfrx.
Taking the derivative of V (x) along (13) gives

V̇ (x)≤xT
[
−(In −A)T Pfr − Pfr(In −A)

]
x

+ τ1x
T PfrP

−1
fr Pfrx +

−τ1∫
−2τ1

xT (t + θ)Pfrx(t + θ) dθ

+ τ1x
T PfrAP−1

fr AT Pfrx

+

−τ1−τ2∫
−2τ1−τ2

xT (t + θ)Pfrx(t + θ) dθ

+ 2‖x‖ ‖Pfr‖ [τ1(τ1+ τ2)δa + τ1τ2δv]
+ (τ1+ τ2)xT PfrAP−1

fr AT Pfrx

+

−τ1∫
−2τ1−τ2

xT (t + θ)Pfrx(t + θ) dθ

+ (τ1+ τ2)xT PfrAAP−1
fr ATAT Pfrx

+

−τ1−τ2∫
−2τ1−2τ2

xT (t + θ)Pfrx(t + θ) dθ

+ 2‖x‖ ‖PfrA‖[(τ1+ τ2)(τ1+ τ2)δa+(τ1+ τ2)τ2δv]
+ 2‖x‖ ‖Pfr‖[(τ1+ τ2)δa + τ2δv]

where we have used Lemma 4.1 and the facts that |ẋd| <
δv and |ẍd| < δa to derive the inequality. Take p(s) = qfs
for some constant qf > 1. If V (x(t + θ)) < qfV (x(t)), for
−2τ1 − 2τ2 ≤ θ ≤ 0, we have

V̇ (x)≤xT
[
−(In −A)T Pfr − Pfr(In −A)

]
x

+ τ1x
T (Pfr + qfPfr)x

+ τ1x
T

(
PfrAP−1

fr AT Pfr + qfPfr

)
x

+ (τ1+ τ2)xT
(
PfrAP−1

fr AT Pfr + qfPfr

)
x

+ (τ1+ τ2)xT
(
PfrAAP−1

fr ATAT Pfr + qfPfr

)
x

+ 2‖x‖ ‖Pfr‖[τ1(τ1+ τ2)δa + τ1τ2δv]

+ 2‖x‖ ‖PfrA‖[(τ1+ τ2)(τ1+ τ2)δa+(τ1+ τ2)τ2δv]

+ 2‖x‖ ‖Pfr‖[(τ1+ τ2)δa + τ2δv]

≤x(t)T Qftx(t) + af‖x‖

where Qft and af are defined as in Theorem 4.3. Because
In −A has all eigenvalues on the open right half-plane
(Lemma 4.2), there exist τ1 and τ2 such that Qft < 0 if Pfr

is chosen such that (−In + A)T Pfr + Pfr(−In + A) < 0.
Moreover, we have that λmin(−Qft) > 0. For 0 < κf < 1, if
‖x‖ ≥ (af/κfλmin(−Qft)), we can obtain

V̇ (x) ≤ − (1 − κf )λmin(−Qft)‖x‖2

− κfλmin(−Qft)‖x‖2 + af‖x‖
≤ − (1 − κf )λmin(−Qft)‖x‖2.

Therefore, the uniformly ultimate boundedness of x follows
from Lemma 3.2. Moreover, the ultimate bound is given by
λmax(Pfr)af/λmin(Pfr)κfλmin(−Qft) by following a simi-
lar analysis to that in [29, pp. 172–174]. �

Remark 4.7: Note that if τ1 = τ2 = 0, limt→∞ ‖x‖ = 0.
Also, note that when τ1 and τ2 are larger, the bound will be
larger.

D. First-Order Consensus Tracking With Partial Access to the
Virtual Leader

Here, we assume that the time-varying reference states xd

and ẋd are available to only a portion of all agents and are
bounded. We also assume that there exists only the commu-
nication delay. Enlightened by [17], we propose the following
consensus tracking algorithm with the communication delay:

ui =
1∑n+1

j=1 aij

n+1∑
j=1

aij {ẋj(t − τ2) − [xi(t) − xj(t − τ2)]} ,

i = 1, . . . , n (14)

where τ2 is the communication delay, aij , i = 1, . . . , n, j =
1, . . . , n + 1, is the (i, j) entry of the adjacency matrix An+1,
xn+1 ≡ xd, and ẋn+1 ≡ ẋd. Using (14), (3) can be written in
the matrix form as

ẋ = Aẋ(t − τ2) − x(t) + Ax(t − τ2) + Rfft (15)

where A and x are defined as in Section IV-B, and Rfft =
[ẋd(t − τ2) − ẋd(t)]1n − [xd(t) − xd(t − τ2)]1n.
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Theorem 4.4: If the fixed directed graph Gn+1 has a directed
spanning tree, system (3) using (14) guarantees that all xi −
xd are uniformly ultimately bounded no matter how large the
communication delay is.

Proof: The proof follows from Lemma 3.3. First, it is easy
to verify that ρ(A) < 1 based on the same analysis as that in
[27], which means that the neutral operator Dxt = x −Ax(t −
τ2) is stable. Consider a Lyapunov function candidate V (x) =
xT x. It is easy to show that V (x) is positive definite. Taking the
derivative of V (x) along (15) gives

V̇ (Dxt) = (Dxt)T [−x(t) + Ax(t − τ2) + Rfft]
= − (Dxt)T (Dxt) + (Dxt)Rfft.

We then have that2

V̇ (Dxt) ≤ −‖Dxt‖ (‖Dxt‖ − ‖Rfft‖) .

If ‖Dxt‖ > ‖Rfft‖ (xd and ẋd are assumed bounded), we have
that V̇ (Dxt) < 0. Therefore, the uniformly ultimate bounded-
ness of x is guaranteed according to Lemma 3.3. �

Remark 4.8: From Theorem 4.4, it can be noted that the
communication delay does not jeopardize the stability of the
first-order system for the consensus tracking problem with
partial access to the virtual leader. However, with the increase
in the communication delay, the tracking errors will increase
as well.

Remark 4.9: In real applications, the derivatives of the
neighbors’ information states ẋj(t − τ2) can be calculated by
using numerical differentiation. For example, ẋj(t − τ2) can
be approximated by (xj(kT − τ2) − xj(kT − T − τ2))/T ,
where T is the sampling period, and k is the discrete-time index.

V. SECOND-ORDER CASE WITH COMMUNICATION AND

INPUT DELAYS UNDER A DIRECTED NETWORK TOPOLOGY

Here, we model a group of agents with double-integrator
dynamics as

ṙi(t) = vi(t) v̇i(t) = ui(t), i = 1, . . . , n (16)

where ri, vi, and ui denote, respectively, the position, the
velocity, and the control input of the ith agent.

A. Second-Order Leaderless Consensus

The proposed leaderless consensus algorithm with both com-
munication and input delays is given as

ui(t) = − 1∑n
j=1 aij

n∑
j=1

aij [ri(t − τ1) − rj(t − τ1 − τ2)]

− γc∑n
j=1 aij

n∑
j=1

aij [vi(t − τ1) − vj(t − τ1 − τ2)] ,

i = 1, . . . , n (17)

where τ1 and τ2 are, respectively, the input and communication
delays, aij , i = 1, . . . , n, j = 1, . . . , n, is the (i, j) entry of
the adjacency matrix An, and γc is a positive gain. Here, we

2According to Lemma 3.3, if we let p(s) = q2
ff s for some constant qff >1,

we then know that p(V (Dxt)) > V (x(ξ)) for t − τ2 ≤ ξ ≤ t. However, this
condition is not used in the proof because of the special expression of V̇ .

also assume that every agent has a neighbor, which implies that∑n
j=1 aij �= 0, ∀ i. The control objective here is to guarantee

that ri(t) → rj(t) and vi(t) → vj(t) as t → ∞ when there
exist both communication and input delays. Using (17), (16)
can be written in the matrix form as[

ṙ(t)
v̇(t)

]
=

[
0n×n In

0n×n 0n×n

] [
r(t)
v(t)

]
+

[
0n×n 0n×n

−In −γcIn

]

×
[

r(t − τ1)
v(t − τ1)

]
+

[
0n×n 0n×n

A γcA

] [
r(t − τ1 − τ2)
v(t − τ1 − τ2)

]

where A is defined as in Section IV-A, r = [r1, . . . , rn]T , and

v = [v1, . . . , vn]T . Define r̃
Δ= W−1r and ṽ

Δ= W−1v, where
W is defined as in Section IV-A. Denote r̃n−1 and ṽn−1 as,
respectively, the first n − 1 rows of r̃ and ṽ. Denote r̃2 and ṽ2

as, respectively, the last row of r̃ and ṽ. System (17) can be
decoupled into the following:

˙̃xn−1(t) =A0x̃n−1(t) + A1x̃n−1(t − τ1)
+ A2x̃n−1(t − τ1 − τ2) (18a)[ ˙̃r2(t)

˙̃v2(t)

]
=

[
0 1
0 0

] [
r̃2(t)
ṽ2(t)

]
+

[
0 0
−1 −γc

] [
r̃2(t − τ1)
ṽ2(t − τ1)

]

+
[

0 0
1 γc

] [
r̃2(t − τ1 − τ2)
ṽ2(t − τ1 − τ2)

]
(18b)

where

x̃n−1 =
[
r̃ T
n−1, ṽ

T
n−1

]T

A0 =
[
0(n−1)×(n−1) In−1

0(n−1)×(n−1) 0(n−1)×(n−1)

]

A1 =
[
0(n−1)×(n−1) 0(n−1)×(n−1)

−In−1 −γcIn−1

]

A2 =
[
0(n−1)×(n−1) 0(n−1)×(n−1)

Ã γcÃ

]

and Ã is defined as in Section IV-A.
Theorem 5.1: If the fixed directed graph Gn has a directed

spanning tree, every agent has a neighbor, and γc > γc =
maxμi �=0{

√
�(μi)2/�(μi)|μi|2}, where μi is the ith eigen-

value of L = In − A, there exist τ1 and τ2 such that the
following three conditions are satisfied.

1) γc(2τ1 + τ2) + ((2τ1 + τ2)τ2/2) < 1.
2) 1 + λi(A1)((1 − e−sτ1)/s) + λi(A2)((1 −

e−s(τ1+τ2))/s) �= 0, for all s ∈ C+.
3) Qsc = (A0 + A1 + A2)T Psc + Psc(A0 + A1 +

A2) + τ1Ssc + (τ1 + τ2)Hsc + τ1[(A0 + A1 +
A2)T PscA1S

−1
sc AT

1 Psc(A0 + A1 + A2)] + (τ1 +
τ2)[(A0 + A1 + A2)T PscA2H

−1
sc AT

2 Psc(A0 +
A1 + A2)] < 0, where Psc is a symmetric
positive-definite matrix chosen properly such that
(A0 + A1 + A2)T Psc + Psc(A0 + A1 + A2) < 0, and
Ssc and Hsc are arbitrary symmetric positive-definite
matrices.

If the above conditions are satisfied, τ1 ∈ [0, τ1], and τ2 ∈
[0, τ2], system (16) using (17) reaches consensus asymptoti-
cally. Specifically, ri(t) → (pT v(0)/τ2) and vi(t) → 0, where
p is defined as in Theorem 4.1.

Proof: Similar to the analysis given in Section IV-A, we
first prove that the stability of system (16) using (17) is guaran-
teed if the three conditions in Theorem 5.1 are satisfied. Then,
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we show that these three conditions are, indeed, satisfied when
Gn has a directed spanning tree, every agent has a neighbor,
and γc > γc. At last, the consensus equilibrium is explicitly
presented by using the final value theorem.

For system (18a), consider a Lyapunov function candidate

V
(
x̃(n−1)t

)
=

⎡
⎣x̃n−1(t) + A1

0∫
−τ1

x̃n−1(t + θ) dθ

+ A2

0∫
−τ1−τ2

x̃n−1(t + θ) dθ

⎤
⎦

T

× Psc

⎡
⎣x̃n−1(t) + A1

0∫
−τ1

x̃n−1(t + θ) dθ

+ A2

0∫
−τ1−τ2

x̃n−1(t + θ) dθ

⎤
⎦

+

0∫
−τ1

t∫
t+θ

x̃n−1(ξ)T Sscx̃n−1(ξ) dξ dθ

+

0∫
−τ1−τ2

t∫
t+θ

x̃n−1(ξ)T Hscx̃n−1(ξ) dξ dθ.

Taking the derivative of V gives

V̇
(
x̃(n−1)t

)
≤ x̃n−1(t)T Qscx̃n−1(t)

where Qsc is defined in Theorem 5.1. Thus, the stability of
system (18a) is guaranteed if conditions 2 and 3 are satisfied
by using Lemma 3.1.

For system (18b), define g(s) Δ= (γcs + 1)(e−τ1s −
e−(τ1+τ2)s)/s2. By using the Nyquist stability criterion,
we know that the stability of (18b) can be guaranteed if
�{g(jω)} > −1, ∀ω ∈ (−∞,∞). Because

�{g(jω)} =
−γc sin τ1ω + γc sin(τ1 + τ2)ω

ω

+
− cos τ1ω + cos(τ1 + τ2)ω

ω2

=
−γc sin τ1ω + γc sin(τ1 + τ2)ω

ω

−
2 sin (2τ1+τ2)

2 ω sin τ2
2 ω

ω2

≥ − γcτ1 − γc(τ1 + τ2) −
(2τ1 + τ2)τ2

2
condition 1 in Theorem 5.1 guarantees the stability of
system (18b).

Next, we show that the three conditions in Theorem 5.1 are,
indeed, satisfied if Gn has a directed spanning tree, every agent
has a neighbor, and γc > γc. It is straightforward to see that
there exist τ1 and τ2 such that conditions 1 and 2 are satisfied.
For condition 3, noting that

A0 + A1 + A2 =
[
0(n−1)×(n−1) In−1

−L̃ −γcL̃

]

we know that the assumptions that Gn has a directed spanning
tree, every agent has a neighbor, and γc > γc imply that all

eigenvalues of A0 + A1 + A2 are on the open left half-plane
according to [30]. Thus, there always exists a Psc to guarantee
that (A0 + A1 + A2)T Psc + Psc(A0 + A1 + A2) < 0, which
implies that condition 3 is satisfied.

For the consensus equilibrium, we know that the asymp-

totical stability of (18b) implies that

[
r̃2(t)
ṽ2(t)

]
→

[
ṽ2(0)/τ2

0

]
as t → ∞, and the asymptotical stability of (18a) implies

that x̃n−1 → 0 as t → ∞. Thus, it follows that

[
r(t)
v(t)

]
→[

(pT v(0)/τ2)1n

0n

]
as t → ∞. �

Remark 5.1: Due to the existence of the communication
delay, the final velocity is dampened to zero instead of a pos-
sible nonzero constant as compared with the standard second-
order consensus algorithm studied in [18]. Also, note that if
there exists only the input delay, the final velocity is a possibly
nonzero constant, and the final position is a ramp signal, which
are consistent with the results in [18].

Remark 5.2: Note that compared with the first-order case
in Section IV-A, the second-order case requires more stringent
conditions to guarantee stability, and the final consensus states
are different.

B. Second-Order Consensus Regulation With a Constant
Final Velocity

Here, we assume that there exists a virtual leader, labeled
as agent n + 1 with position rd and velocity vd. Here, we
assume that vd is constant. The control objective here is to
guarantee that all agents can track the virtual leader under
limited communication in the presence of delays. The proposed
consensus regulation algorithm is given as

ui = − 1∑n+1
j=1 aij

n+1∑
j=1

aij [ri(t − τ1) − rj(t − τ1 − τ2)]

− γr∑n+1
j=1 aij

n+1∑
j=1

aij [vi(t − τ1) − vj(t − τ1 − τ2)] ,

i = 1, . . . , n (19)

where τ1 and τ2 are, respectively, the input and communication
delays, aij , i = 1, . . . , n, j = 1, . . . , n + 1, is the (i, j) entry of
the adjacency matrix An+1, rn+1 ≡ rd, vn+1 ≡ vd, and γr is a
positive gain. Note that if Gn+1 has a directed spanning tree,
then it follows that

∑n+1
j=1 aij �= 0, i = 1, . . . , n, [26]. Using

(19), (16) can be written in the matrix form as

ẋ(t) = A0x(t) + A1x(t − τ1) + A2x(t − τ1 − τ2) + Rsr

(20)
where

r
Δ= [r1 − rd, . . . , rn − rd]T

v
Δ= [v1 − vd, . . . , vn − vd]T x = [rT , vT ]T

A0 =
[
0n×n In

0n×n 0n×n

]
A1 =

[
0n×n 0n×n

−In −γrIn

]

A2 =
[
0n×n 0n×n

A γrA

]
Rsr =

[
0n

−τ2vd1n

]
.
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Note that, here, we have used the fact that vd is constant and A
is defined as in Section IV-B.

By letting M = (A0 + A1 + A2)−1Rsr and x̂ = x − M , we
can transform (20) as

˙̂x = A0x̂(t) + A1x̂(t − τ1) + A2x̂(t − τ1 − τ2). (21)

Theorem 5.2: If the fixed directed graph Gn+1 has a directed
spanning tree and γr > γr = maxμi

{
√

�(μi)2/�(μi)|μi|2},
where μi is the ith eigenvalue of In −A, there exist τ1 and
τ2 such that the following two conditions are satisfied.

1) 1+λi(A1)((1−e−sτ1)/s)+λi(A2)((1−e−s(τ1+τ2))/s) �=
0, for all s ∈ C+.

2) Qsr = (A0 + A1 + A2)T Psr + Psr(A0 + A1 + A2) +
τ1Ssr+(τ1 + τ2)Hsr+ τ1[(A0 + A1 + A2)T PsrA1S

−1
sr

AT
1 Psr(A0 + A1 + A2)]+(τ1 + τ2)[(A0 + A1 + A2)T

PsrA2H
−1
sr AT

2 Psr(A0 + A1 + A2)] < 0, where Psr is a
symmetric positive-definite matrix chosen properly such
that (A0 + A1 + A2)T Psr + Psr(A0 + A1 + A2) < 0,
and Ssr and Hsr are arbitrary symmetric positive-definite
matrices.

In addition, if the above conditions are satisfied, τ1 ∈ [0, τ1],
and τ2 ∈ [0, τ2], system (16) using (19) guarantees that
limt→∞ r(t) → τ2vd(In −A)−11n and limt→∞ v(t) → 0n

asymptotically as t → ∞.
Proof: Consider a Lyapunov function candidate

V (x̂t) =

⎡
⎣x̂(t) + A1

0∫
−τ1

x̂(t + θ) dθ

+ A2

0∫
−τ1−τ2

x̂(t + θ) dθ

⎤
⎦

T

× Psr

⎡
⎣x̂(t) + A1

0∫
−τ1

x̂(t + θ) dθ

+ A2

0∫
−τ1−τ2

x̂(t + θ) dθ

⎤
⎦

+

0∫
−τ1

t∫
t+θ

x̂(ξ)T Ssrx̂(ξ) dξ dθ

+

0∫
−τ1−τ2

t∫
t+θ

x̂(ξ)T Hsrx̂(ξ) dξ dθ.

Taking the derivative of V along (21) gives

V̇ (xt) ≤ x(t)T Qsrx(t)

where Qsr is defined as in Theorem 5.2.
By following a similar analysis to that in Section V-A,

we can prove the stability of (21) and the existence of τ1

and τ2 such that the two conditions in Theorem 5.3 are sat-

isfied. Since x̂(t) → 02n, as t → ∞, and M = [τ2vd[(In −
A)−11n]T ,0T

n ]T , it follows that limt→∞ r(t) → τ2vd(In −
A)−11n and limt→∞ v(t) → 0n asymptotically as t → ∞. �

Corollary 5.1: If vd = 0, we can get that limt→∞ ri(t) → rd

and limt→∞ vi(t) → 0 as t → ∞ given that the conditions in
Theorem 5.2 are satisfied.

Remark 5.3: Note that different from the results in the first-
order case in Section IV-B, the final positions of the followers
might not be equal in the second-order case. The final relative
positions of the followers are constant.

C. Second-Order Consensus Tracking With Full Access to the
Virtual Leader

Here, the reference states rd, vd, and v̇d are assumed to
be time-varying, and v̇d is assumed to be available to all
agents. The following consensus tracking algorithm with both
communication and input delays is proposed as

ui = v̇d(t − τ1 − τ2) −
1∑n+1

j=1 aij

×
n+1∑
j=1

aij {[ri(t − τ1) − rj(t − τ1 − τ2)]

+ γt [vi(t − τ1) − vj(t − τ1 − τ2)]} ,

i = 1, 2 . . . , n (22)

where τ1 and τ2 are the input and communication delays,
respectively, aij , i = 1, . . . , n, j = 1, . . . , n + 1, is the (i, j)
entry of the adjacency matrix An+1, rn+1 ≡ rd(t), vn+1 ≡
vd(t), and γt is a positive gain. We also assume that |vd| <
δv, |v̇d| < δa, and |v̈d| < δȧ, where δv , δa, and δȧ are posi-
tive constants. Using (22), (16) can be written in the matrix
form as

ẋ(t) = A0x(t) + A1x(t − τ1) + A2x(t − τ1 − τ2) + Rst

(23)

where r, v, x, A, A0, A1, and A2 are defined as in Sec-

tion V-B, Rst =
[
0n

R1

]
, and R1 = −1n

∫ 0

−τ1−τ2
v̈d(t + θ) dθ −

1n

∫ 0

−τ2
vd(t + θ) dθ − γt1n

∫ −τ1

−τ1−τ2
v̇d(t + θ) dθ by using the

Leibniz–Newton formula [19].
Theorem 5.3: If the fixed directed graph Gn+1 has a

directed spanning tree and γt > γr, where γr is defined as in
Theorem 5.2, there exist τ1 and τ2 such that Qst = (A0 +
A1+A2)TPsr+Psr(A0+A1+A2)+ τ1(PsrA1A0P

−1
sr AT

0 AT
1

Psr + PsrA1A1P
−1
sr AT

1 AT
1 Psr + PsrA1A2P

−1
sr AT

2 AT
1 Psr +

3qsPsr) + (τ1+τ2)(PsrA2A0P
−1
sr AT

0 AT
2 Psr+PsrA2A1P

−1
sr

AT
1 AT

2 Psr + PsrA2A2P
−1
sr AT

2 AT
2 Psr + 3qsPsr) < 0, where

Psr is the same matrix given in Theorem 5.2, and qs > 1. In
addition, if Qst < 0, τ1 ∈ [0, τ1], and τ2 ∈ [0, τ2], system (16)
using (22) guarantees that all ri − rd and vi − vd are uniformly
ultimately bounded. In particular, the ultimate bound of x
is given by λmax(Psr)as/λmin(Psr)κsλmin(−Qst), where
as = 2[‖Psr‖ + ‖PsrA1‖τ1+‖PsrA2‖(τ1+τ2)][(τ1+τ2)δȧ+
τ2δv + γtτ2δa] and 0 < κs < 1.
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Proof: Similar to the analysis given in Section IV-C, by
using the Leibniz–Newton formula [19], we transform (23) to
the following system:

d

dt
x(t)= (A0 + A1 + A2)x(t) −A1A0

0∫
−τ1

x(t + θ) dθ

−A2
1

−τ1∫
−2τ1

x(t + θ) dθ −A1A2

−τ1−τ2∫
−2τ1−τ2

x(t + θ) dθ

−A2A0

0∫
−τ1−τ2

x(t+θ) dθ−A2A1

−τ1∫
−2τ1−τ2

x(t+θ) dθ

−A2
2

−τ1−τ2∫
−2τ1−2τ2

x(t + θ) dθ + Rst

−A1

0∫
−τ1

Rst(t + θ) dθ −A2

0∫
−τ1−τ2

Rst(t + θ) dθ.

Consider a Lyapunov function candidate V (x) = xT Psrx.
Taking the derivative of V (x) along (23) gives

V̇ (x) ≤xT
[
(A0 + A1 + A2)T Psr + Psr(A0 + A1 + A2)

]
x

+ τ1x
T PsrA1A0P

−1
sr AT

0 AT
1 Psrx

+

0∫
−τ1

xT (t + θ)Psrx(t + θ) dθ

+ τ1x
T PsrA1A1P

−1
sr AT

1 AT
1 Psrx

+

−τ1∫
−2τ1

xT (t + θ)Psrx(t + θ) dθ

+ τ1x
T PsrA1A2P

−1
sr AT

2 AT
1 Psrx

+

−τ1−τ2∫
−2τ1−τ2

xT (t + θ)Psrx(t + θ) dθ

+ (τ1 + τ2)xT PsrA2A0P
−1
sr AT

0 AT
2 Psrx

+

0∫
−τ1−τ2

xT (t + θ)Psrx(t + θ) dθ

+ (τ1 + τ2)xT PsrA2A1P
−1
sr AT

1 AT
2 Psrx

+

−τ1∫
−2τ1−τ2

xT (t + θ)Psrx(t + θ) dθ

+ (τ1 + τ2)xT PA2A2P
−1
sr AT

2 AT
2 Psrx

+

−τ1−τ2∫
−2τ1−2τ2

xT (t + θ)Psrx(t + θ) dθ

+ 2‖x‖ ‖Psr‖ [(τ1 + τ2)δȧ + τ2δv + γtτ2δa]
+ 2‖x‖ ‖PsrA1‖τ1 [(τ1 + τ2)δȧ + τ2δv + γtτ2δa]
+ 2‖x‖ ‖PsrA2‖(τ1 + τ2)
× [(τ1 + τ2)δȧ + τ2δv + γtτ2δa]

where we have used Lemma 4.1 and the facts that |vd| < δv ,
|v̇d| < δa, and |v̈d| < δȧ to derive the inequality. Take p(s) =
qss for some constant qs > 1. If V (x(t + θ)) ≤ qsV (x(t)) for
−2τ1 − 2τ2 ≤ θ ≤ 0, by following a similar analysis to that in
Section IV-C, we have that

V̇ (x) ≤ x(t)T Qstx(t) + as‖x‖

where Qst and as are defined as in Theorem 5.3. It is easy
to verify that there exist τ1 and τ2 such that Qst < 0 by
following a similar analysis to that in Section IV-C. More-
over, we have that λmin(−Qst) > 0. For 0 < κs < 1, if ‖x‖ ≥
as/κsλmin(−Qst), we can obtain that

V̇ (x) ≤ − (1 − κs)λmin(−Qst)‖x‖2

− κsλmin(−Qst)‖x‖2 + as‖x‖
≤ − (1 − κs)λmin(−Qst)‖x‖2.

The uniformly ultimate boundedness of x then follows from
Lemma 3.2. Moreover, we can obtain that λmax(Psr)as/
λmin(Psr)κsλmin(−Qst) is the ultimate bound of x by follow-
ing a similar analysis to that in [29, pp. 172–174]. �

D. Second-Order Consensus Tracking With Partial Access to
the Virtual Leader

Here, we assume that the reference states rd, vd, and v̇d are
time-varying and available to only a portion of all agents. We
also assume that the system is only influenced by the commu-
nication delay. The proposed consensus tracking algorithm is
given as

ui =
1∑n+1

j=1 aij

n+1∑
j=1

aij {v̇j(t − τ2) − [ri(t) − rj(t − τ2)] ,

− γft [vi(t) − vj(t − τ2)]} , i = 1, 2, . . . , n (24)

where τ2 is the communication delay, aij , i = 1, . . . , n, j =
1, . . . , n + 1, is the (i, j) entry of the adjacency matrix An+1,
rn+1 ≡ rd, vn+1 ≡ vd, v̇n+1 ≡ v̇d, and γft is a positive gain.
Using (24), (16) can be written in the matrix form as

ẋ(t) = Df ẋ(t − τ2) + Af0x + Af1x(t − τ2) + Rsft (25)

where

Df =
[
0n×n 0n×n

0n×n A

]
Af0 =

[
0n×n In

−In −γftIn

]

Af1 =
[
0n×n 0n×n

A γftA

]
Rsft =

[
0n

R2

]
R2 = [v̇d(t − τ2) − v̇d(t)]1n − [rd(t) − rd(t − τ2)]1n

− γft [vd(t) − vd(t − τ2)]1n

and r, v, A, and x are defined as in Section V-B.
Theorem 5.4: If the fixed directed graph Gn+1 has a directed

spanning tree, and γft > γr, where γr is defined as in Theorem
5.2, system (16) using (24) guarantees that all ri − rd and vi −
vd are uniformly ultimately bounded if

λ > 2qsf ‖Psr(Af0Df + Af1)‖ + 2‖PsrAf1‖ (26)
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where λ = λmin[−(Af0 + Af1)T Psr − Psr(Af0 + Af1)],
Psr is the same matrix given in Theorem 5.2, and qsf > 1.

Proof: First, it is easy to verify that ρ(Df ) < 1 based on
the same analysis as in [27], which means that the neutral op-
erator Dxt = x − Dfx(t − τ2) is stable. Consider a Lyapunov
function candidate V (x) = xT Psrx. Taking the derivative of V
along (25) gives

V̇ (Dxt) = 2(Dxt)T Psr [Af0x + Af1x(t − τ2) + Rsft]
= 2(Dxt)T Psr [Af0Dxt + Af0Dfx(t − τ2)

+ Af1x(t − τ2) + Rsft]
= (Dxt)T

[
(Af0 + Af1)T Psr + Psr(Af0 + Af1)

]
×Dxt + 2(Dxt)T Psr(Af0Df + Af1)x(t − τ2)
− 2(Dxt)T PsrAf1(Dxt) + 2(Dxt)T PsrRsft.

Letting f(s) = q2
sfs for some constant qsf > 1, f(V (Dxt)) >

V (x(ξ)) for t − τ2 ≤ ξ ≤ t implies that q2
sf (Dxt)T (Dxt) >

x(ξ)T x(ξ). It follows that x(t − τ2) < qsf (Dxt). Thus, it
follows that

V̇ (Dxt) ≤ −λ‖Dxt‖2 + 2qsf‖Psr(Af0Df + Af1)‖ ‖Dxt‖2

+ 2‖PsrAf1‖ ‖Dxt‖2 + 2‖PsrRsft‖ ‖Dxt‖

where λ is defined in Theorem 5.4. Note here that the as-
sumptions that Gn+1 has a directed spanning tree and γft >
γfr guarantee that there exists A such that (26) is satisfied.
Therefore, if λ > 2qsf‖Psr(Af0Df + Af1)‖ + 2‖PsrAf1‖,
the uniformly ultimate boundedness of x can be achieved
according to Lemma 3.3. �

Remark 5.4: Note that different from the first-order case
where uniformly ultimate boundedness is guaranteed no mat-
ter how large the communication delay is, a certain delay-
independent condition has to be satisfied beforehand to en-
sure the possibility of uniformly ultimate boundedness in the
second-order case.

VI. SIMULATION

Here, we present simulation results to validate the theoretical
results in Sections IV and V. We consider a group of six agents.
For the leaderless consensus problem, the adjacency matrix An

is chosen as

An =

⎡
⎢⎢⎢⎢⎢⎣

0 5 0 2.5 0 2.5
8 0 1 0 1 0
0 2 0 2 3 3
1 0 1 0 8 0
0 1.2 0 1.8 0 7
5 1 0 2 2 0

⎤
⎥⎥⎥⎥⎥⎦ .

For the leader-following cases, the adjacency matrix An+1 is
defined as

An+1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 1 0 0 1
8 0 1 0 1 0 0
0 3 0 0 0 3 4
1 0 0 0 1 0 8
0 1.2 0 1.8 0 7 0
5 1 0 0 4 0 0
0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Fig. 1. First-order cases. (a) Simulation results using (4). (b) Simulation
results using (9). (c) Simulation results using (12). (d) Simulation results
using (14).
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For the first-order cases, the initial states are chosen as
x(0) = [−1, 5, 7, 4, 6, 3]T . The input delay and the communi-
cation delay are chosen, respectively, as τ1 = 0.1 s and τ2 =
0.2 s. In the case of the first-order consensus regulation, we
let the reference state be xd = 3.5. In the case of the first-
order consensus tracking with full access to the virtual leader,
we let the reference state be xd(t) = 3.5 − 4 cos(t/4). In the
case of the first-order consensus tracking with partial access
to the virtual leader, we let the reference state be xd(t) =
3.5 − 4 cos(t/4) and the communication delay be τ2 = 0.2 s.

Fig. 1(a)–(d) shows the states of the agents for system (3)
using, respectively, (4), (9), (12), and (14). It can be seen that for
the leaderless consensus and consensus regulation problems,
there are no final tracking errors between the agents and the
virtual leader, while for the consensus tracking problem, there
exist bounded tracking errors between the agents and the virtual
leader due to the existence of the delays and the fact that the
virtual leader is dynamic.

For the second-order cases, we choose r(0) = [−0.4, 0.5,
0.7, 0.4, 1.2, 0.3]T and v(0) = [−0.1, 0.2, 0.7, 0.4,−0.1, 0.3]T

as the initial states. The input delay and the communication
delay are chosen, respectively, as τ1 = 0.3 s and τ2 = 0.1 s.
In the case of the second-order consensus regulation with a
zero final velocity, we let the reference states be rd = −0.2 and
vd = 0. In the case of the second-order consensus regulation
with a nonzero constant final velocity, we let the reference
states be rd(t) = −0.2 + 0.1t and vd(t) = 0.1. In the case of
the second-order consensus tracking with full access to the
virtual leader, we let the reference states be rd(t) = −0.2 +
0.3t − 1.6 sin(t/4) and vd(t) = 0.3 − 0.4 cos(t/4). In the case
of the second-order tracking with partial access to the virtual
leader, we let the reference states be rd(t) = −0.2 + 0.3t −
1.6 sin(t/4) and vd(t) = 0.3 − 0.4 cos(t/4), and the commu-
nication delay be τ2 = 0.1 s.

Fig. 2(a) shows the states ri and vi of system (16) using (17).
It is interesting to notice that unlike the standard second-order
consensus algorithm in [18], the final velocities are always
dampened to zero rather than a possibly nonzero constant.
Fig. 2(b) and (c) shows, respectively, the states ri and vi of
system (16) using (19) when vd = 0 and vd = 0.1. It is worth
noticing that when vd is a nonzero constant, the final tracking
errors of all ri − rd approach constant (not necessary identical)
values.

Fig. 2(d) and (e) shows the states ri and vi of system (16)
using, respectively, (22) and (24). There exist bounded tracking
errors between the agents and the virtual leader due to the
existence of the delays and the fact that the virtual leader is
dynamic.

VII. CONCLUSION

Leaderless consensus, consensus regulation, and consensus
tracking problems for both first-order and second-order inte-
grators have been discussed under a directed network topology
with communication and input delays. By using decoupling
techniques, we have presented the stability conditions for the
leaderless consensus problems. The consensus regulation prob-
lems can be viewed as a direct extension of the leaderless

Fig. 2. Second-order cases. (a) Simulation results using (17). (b) Simulation
results using (19). (c) Simulation results using (19). (d) Simulation results using
(22). (e) Simulation results using (24).
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consensus problems. In particular, the final velocities of the
agents have been shown to be dampened to zero for the second-
order leaderless consensus problem when there exists a com-
munication delay. For the consensus tracking problems, the
conditions to guarantee the uniformly ultimate boundedness of
the tracking errors with full/partial access to the virtual leader
have been presented. Finally, simulation results have been given
to validate the theoretical results. Future works will include
the design of zero-error consensus tracking algorithms in the
presence of delays, the study on the case of consensus tracking
algorithms with partial access to the virtual leader when there
exist both communication and input delays, and the discussion
on the influence of multiple time-varying delays.
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