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a b s t r a c t

In this paper, swarm tracking problems with group dispersion and cohesion behaviors are discussed
for a group of Lagrange systems. The agent group is separated into two subgroups. One is called the
leader group, whosemembers are encapsulatedwith the desired generalized coordinates and generalized
coordinate derivatives. The other one, referred to as the follower group, is guided by the leader group.
The objective is to guarantee distributed tracking of generalized coordinate derivatives for the followers
and to drive the generalized coordinates of the followers close to the convex hull formed by those of the
leaders. Both the case of constant leaders’ generalized coordinate derivatives and the case of time-varying
leaders’ generalized coordinate derivatives are considered. The proposed control algorithms are shown to
achieve velocity matching, connectivity maintenance and collision avoidance. In addition, the sum of the
steady-state distances between the followers and the convex hull formed by the leaders is shown to be
bounded and the bound is explicitly given. Simulation results are presented to validate the effectiveness
of theoretical conclusions.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

Coordination of networked Lagrange systems has been receiv-
ing significant attention recently. This research interest is aroused
in part by the rapid development of distributed control of multi-
agent systems. We refer the readers to [1] and [2] for an overview
of these research efforts. Traditionally, the system model is often
simplified to that of a single-integrator kinematics or a double-
integrator dynamics to highlight the interactions among different
agents. But this simplification imposes an obvious limitation on
the model’s abilities to represent the real physical objects. On the
other hand, a Lagrange model is often used to describe mechani-
cal systems, such as mobile robots, autonomous vehicles, robotic
manipulators, and rigid bodies. Indeed, coordination of networked
Lagrange systems has numerous practical applications. One typical
example of such applications is the relative attitude keeping prob-
lem in the context of deep space interferometry [3–5].
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Much effort has been made toward coordination problems
of networked Lagrange systems. For instance, with the attitude
kinematic and dynamic equations transformed into the Lagrange
model, the author of [6] solves the leader–follower cooperative at-
titude synchronization problem where there exists a time-varying
leader. Global exponential stability and various communication
topologies are considered in [7] and [8] for consensus tracking of a
group of Lagrange systems, where the nonlinear contraction anal-
ysis is introduced. The cases of actuator saturation and unavail-
ability of measurements of generalized coordinate derivatives are
addressed in [9]. Communication delays and dynamic topologies
are considered in [10], where collision avoidance behavior is high-
lighted. An adaptive approach is introduced in [11] to compen-
sate for the unknown parameters in the Lagrange dynamicmodels.
In addition, Ref. [12] takes into consideration delays, limited data
rates and bounded disturbance input in the design of the control
law. An ultimate boundedness result instead of an absolute track-
ing result is obtained.

Group dispersion and cohesion behaviors are often very impor-
tant for coordination of multi-agent systems. Group dispersion is
to ensure minimum safety distance between different agents and
group cohesion is to maintain the connectivity once two agents
are connected. A variable structure approach is taken in [13,14] to
guarantee cooperative swarm tracking for a group of agents with
or without a leader. Ref. [15] extends this result to the case of a
general directed communication topology. In [16], the framework
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of a leaderless and a leader-following flocking is given,where three
behaviors, i.e., velocity matching, cohesion, and collision avoid-
ance are established. Connectivity maintenance approaches are
proposed in [17] and [18], where a bounded or an unbounded in-
put function is introduced. Most of the existing works on flock-
ing with a leader relies on the strict assumption that all the
followers have access to the leader’s information. In contrast,
a variable structure approach is developed in [19] to address a
swarm tracking problem with reduced interaction. For multiple
Lagrange systems, coordination and collision avoidance are stud-
ied in [20], where the case of cooperative regulation is consid-
ered. The authors of [21] designed a so-called region-based shape
control algorithm to force a group of mobile robots modeled by
Lagrange dynamics to move into a desired region while maintain-
ing a minimum distance among themselves. However, this algo-
rithm relies on the strict assumptions that the minimum distance
be small enough and all the followers have access to the informa-
tion of the desired region.

Although there are many results on coordination of multi-
agent systems, we note that the existing research often considers
a leaderless or a one-leader case. The case of multiple leaders,
where the leaders form a cohesive inclusion and the followers
are guided by the leaders, is also of practical value, for example,
in the analysis of collective behaviors of biological groups or
in a rescue mission in a disaster area. Here, the term cohesive
inclusion means a rigidly enclosed space formed by the leaders.
Withmultiple leaders, the system robustness can be improved and
the design flexibility can be increased. The concept of multi-leader
was proposed in [22], which also gives a containment control
algorithm to solve themulti-leader problem. Here, ‘‘containment’’,
also referred to as ‘‘cohesive inclusion’’, means the containment of
the leaders. Refs. [23,24] extend the results given in [22] to the case
of switching communication topologies. In [22–24], the system
model is simplified to that of a single-integrator kinematics. Ref.
[25] extends this simplification to the case of attitude containment
control for multiple rigid bodies. Finite-time attitude containment
control problems are addressed in [26] for both cases of multiple
stationary and dynamic leaders.

In this paper, we focus on the swarm tracking problem in the
presence of multiple leaders and multiple followers. In particu-
lar, we establish the leader–follower swarm tracking framework
with group dispersion and cohesion behaviors, where there exist
multiple leaders and multiple followers. In our formulation, the
systemmodel is described asmore realistic nonlinear Lagrange dy-
namics, instead of simpler single-integrator kinematics or double-
integrator dynamics. The information interaction is assumed to
be strictly distributed, i.e., the leaders’ information is available to
only a portion of the followers. This is a rather mild assumption
compared with those in the existing works, such as [14,16,21], es-
pecially when the leaders’ generalized coordinate derivatives are
time varying. We further show that only a compromised result can
be obtained when the group dispersion and cohesion behaviors
and the containment objective are all considered together, i.e., the
sum of the steady-state distances between the followers and the
convex hull formed by the leadersmight be bounded instead of ap-
proaching zero. In addition, we give an explicit description of the
magnitude of this bound.

The remainder of this paper is organized as follows. In Section 2,
we state the problem to be solved and present some relevant
background materials. In Sections 3 and 4, we derive swarm
tracking control algorithms for the followers when the leaders’
generalized coordinate derivatives are, respectively, constant and
time-varying, where the detailed analysis is given in Appendix.
The proposed control algorithms are shown to achieve velocity
matching, connectivity maintenance, collision avoidance and
containment boundedness. Simulation results are presented in
Section 5 to validate our control laws and Section 6 contains our
conclusions.
2. Background and problem statement

2.1. Lagrange dynamics

Suppose that there are n follower Lagrange systems. The dy-
namics of the Lagrange systems are described as

Mi(qi)q̈i + Ci(qi, q̇i) q̇i + gi(qi) = τi, i = 1, 2, . . . , n, (1)

where qi ∈ Rp is the vector of generalized coordinates, Mi(qi) is
the p × p inertia (symmetric) matrix, Ci(qi, q̇i)q̇i is the Coriolis and
centrifugal terms, gi(qi) is the vector of gravitational force, and τi
is the control force. Note that the dynamics of a Lagrange system
satisfies the following properties.

(1) There exist positive constants kM , kM , kC , kg such that kM Ip ≤

Mi(qi) ≤ kM Ip, ‖Ci(qi, q̇i)‖ ≤ kC‖q̇i‖
1, and ‖gi(qi)‖ ≤ kg .

(2) Ṁi(qi) − 2Ci(qi, q̇i) is skew symmetric.
(3) The left-hand side of the dynamics can be parameterized, i.e.,

Mi(qi)x + Ci(qi, q̇i)y + gi(qi) = Yi(qi, q̇i, x, y)θi, ∀x, y ∈ Rp,
where Yi ∈ Rp×pθ is a regression matrix with a constant
parameter vector θi ∈ Rpθ .

From property 3, we know that the nominal dynamics satisfyMi(qi)q̈i +Ci(qi, q̇i)q̇i +gi(qi) = Yi(qi, q̇i, q̇i, q̈i)θi, (2)

where Mi,Ci,gi, andθi are nominal dynamics terms. For later use,
we define

ϕi(t) = △Mi(qi)q̈i + △Ci(qi, q̇i)q̇i + △gi(qi) = Yi(qi, q̇i, q̇i, q̈i)△θi,

where △Mi(qi) = Mi(qi) − Mi(qi), △Ci(qi, q̇i) = Ci(qi, q̇i) −Ci(qi, q̇i), △gi(qi) = gi(qi) −gi(qi), and △θi = θi −θi.
Suppose that in addition to the n follower agents with Lagrange

dynamics, there are m leader agents with the desired generalized
coordinates and generalized coordinate derivatives. Our goal here
is to drive the generalized coordinate derivatives of the followers
to converge to those of the leaders and to force the generalized
coordinates of the followers close to the cohesive inclusion formed
by those of the leaders. Both the cases of constant and time-varying
leaders’ generalized coordinate derivatives will be discussed.

2.2. Graph theory

Wewill use graph theory tomodel the communication topology
among agents (both followers and leaders). A directed graph G
consists of a pair (V, E), where V = {ν1, ν2, . . . , νn+m} is a finite
nonempty set of nodes and E ⊆ V × V is a set of ordered pairs
of nodes. An edge (νi, νj) denotes that node νj obtains information
from node νi.

All neighbors of node νi are denoted as Ni := {νj|(νj, νi) ∈ E}.
An undirected graph is defined such that (νj, νi) ∈ E implies
(νi, νj) ∈ E . A directed path in a directed graph or an undirected
path in an undirected graph is a sequence of edges of the form
(νi1 , νi2), (νi2 , νi3), . . . .

The adjacencymatrix A = [aij] ∈ R(m+n)×(m+n) associated with
the directed graphG is defined such that aij is positive if (νj, νi) ∈ E
and aij = 0 otherwise. For the undirected graph, we assume that
aij = aji. In this paper, we assume that aii = 0, ∀i. The Laplacian
matrix L = [lij] ∈ R(m+n)×(m+n) associated with A is defined as
lii =

∑
j≠i aij and lij = −aij, where i ≠ j.

Definition 2.1. Suppose that there existm leader nodes and n fol-
lower nodes. Without loss of generality, we let nodes ν1 to νn

1
‖x‖ denotes the Euclidean vector norm of x ∈ Rp in this paper, i.e., ‖x‖ =

√
xT x.
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represent the followers, and nodes νn+1 to νn+m represent the lead-
ers. The follower set and the leader set are denoted as, respectively,
F := {ν1, ν2, . . . , νn} and L := {νn+1, νn+2, . . . , νn+m}.

We also define the communication graphs for the generalized
coordinates and the generalized coordinate derivatives, respec-
tively. Consistentwith [10] and [27], we assume that all the follow-
ers are equipped with communication units and sensing units. The
sensing unit accounts for themeasurements of relative generalized
coordinates between different agents and the communication unit
accounts for the measurements of relative generalized coordinate
derivatives. In such case, we use, respectively, the sensing graph
GS

:= (V = L


F , E S) (or the generalized coordinate graph) and
the communication graph GC

:= (V, EC ) (or the generalized co-
ordinate derivative graph) to denote the information interaction
between different agents, where E S and EC are defined in Defini-
tion 2.2 below.

Definition 2.2. The neighbors of the followers and the leaders
in the generalized coordinate graph GS are defined as NS

i :=

{νj|(νj, νi) ∈ E S
}, where

E S
:=


{(νi, νj) ∈ V × V | ‖qi − qj‖ ≤ r}, ∀i ∈ V, ∀j ∈ F
{(νi, νj) ∈ ∅}, ∀i ∈ V, ∀j ∈ L.

Note that r denotes the sensing radius.

Definition 2.3. The neighbors of the followers and the leaders
in the generalized coordinate derivative graph GC are defined as
NC
i := {νj|(νj, νi) ∈ EC

}, where

EC
:=


{(νi, νj) ∈ V × V | νi ⇔ νj}, ∀i ∈ F , ∀j ∈ F
{(νi, νj) ∈ V × V | νi ⇒ νj}, ∀i ∈ L, ∀j ∈ F
{(νi, νj) ∈ ∅}, ∀i ∈ V, ∀j ∈ L,

⇔ denotes unordered adjacency, and ⇒ denotes ordered
adjacency.

2.3. Graph connectivity assumptions and Laplacian matrix decompo-
sition

In this paper, the following graph connectivity assumptionswill
bemade to guarantee the necessary information sharingwithin the
group.

Assumption 2.1. For each follower, there exists at least one leader
that has a path to the follower at the initial time t = 0 in the
sensing graph GS .

Assumption 2.2. The graph connectivity relationship is fixed and
for each follower, there exists at least one leader that has a path to
the follower in the communication graph GC .

By expanding the Kronecker product, we have that

(L ⊗ Ip)
[
xf
xl

]
=

[
T ⊗ Ip Td ⊗ Ip
0pm×pn 0pm×pm

] [
xf
xl

]
,

where T ∈ Rn×n, Td ∈ Rn×m, xf = [xT1, x
T
2, . . . , x

T
n]

T
∈ Rpn,

and xl = [xTn+1, x
T
n+2, . . . , x

T
n+m]

T
∈ Rpm. Also define xd =

[xTd1, x
T
d2, . . . , x

T
dn]

T
= −(T −1

⊗ Ip)(Td ⊗ Ip)xl ∈ Rpn. Then we have
that T ⊗ Ipxf + Td ⊗ Ipxl = T ⊗ Ip(xf − xd).

Definition 2.4. The convex hull co{X} of the set X is defined as
co{X} = {

∑k
i=1 αixi|xi ∈ X, αi ∈ R, αi ≥ 0,

∑k
i=1 αi = 1}.

Lemma 2.1. T is positive-definite if GC satisfies Assumption 2.2. In
addition, each entry of −T −1Td is nonnegative and the sum of each
row of −T −1Td is equal to one. This further shows that −T −1Td ⊗

Ipxl ∈ co{xj, j ∈ L}. Also note that when m = 1, −T −1Td = 1.

Proof. See Lemma 4 in [26]. �
3. Followers’ swarm tracking control when the leaders’ gener-
alized coordinate derivatives are constant

In this section, q̇i ∈ Rp, i ∈ L, is assumed to be identical and
constant. We let q̇i = q̇d, i ∈ L.

3.1. Followers’ swarm tracking control

Since the leaders have the same generalized coordinate deriva-
tive q̇d, the relative generalized coordinates between different
leaders remains unchanged. Thus, the leaders have formed a stable
cohesive inclusion. The goal here is to drive the generalized coor-
dinate derivatives of the followers to converge to q̇d and the gener-
alized coordinates of the followers close to the cohesive inclusion
formed by the leaders. Note here that the leaders’ information is
available to only a portion of the followers andwe use nominal pa-
rameters of the model. The proposed control law for the followers
is given by

τi = Yi(qi, q̇i, q̇ri, q̈ri)θi − kisi − δ


n+m−
j=1

∂Vij

∂qi

+

n+m−
j=1

aij(q)(qi − qj)


, i ∈ F , (3)

where Yi, Vij and aij are defined in Section 2.1, Appendix A.1, and
Appendix A.2, and ki, i ∈ F , and δ are arbitrary positive constants.
Note that the term

∑n+m
j=1

∂Vij
∂qi

is used to guarantee the group cohe-

sion and the group dispersion and the term
∑n+m

j=1 aij(q)(qi − qj)
is used to drive the generalized coordinates of the followers close
to the cohesive inclusion formed by the leaders. In addition, the
virtual reference trajectory, the adaptive control term, the leaders’
generalized coordinate derivative estimator, and the sliding sur-
face are, respectively, given by

q̇ri =vi − δ


n+m−
j=1

aij(q)(qi − qj) +

n+m−
j=1

∂Vij

∂qi


, i ∈ F , (4)

̇θ i = −Y T
i si, i ∈ F , (5)

̇vi = −

n+m−
j=1

bij(vi −vj) − δ


n+m−
j=1

aij(q)(qi − qj)

+

n+m−
j=1

∂Vij

∂qi


, i ∈ F , (6)

and

si = δ


n+m−
j=1

aij(q)(qi − qj) +

n+m−
j=1

∂Vij

∂qi


+ (q̇i −vi), i ∈ F . (7)

Herevj = q̇d, j ∈ L, and bij denotes the (i, j)th entry of the adja-
cencymatrixAC

= [bij] associatedwithGC (defined in Section 2.2).
It then follows from Property 3 in Section 2.1 that

Miq̈ri + Ciq̇ri + gi(qi) = Yi(qi, q̇i, q̇ri, q̈ri)θi, ∀i ∈ F ,

and

Miṡi + Cisi = −Miq̈ri − Ciq̇ri − gi + τi, ∀i ∈ F .

Before proceeding on, we first give a definition for describing the
distance between follower i and the convex hull formed by the
leaders.

Definition 3.1. We use ϕi to describe the distance between
follower i and the convex hull formed by the leaders, where
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ϕi = inf ‖qi − yi‖, ∀yi ∈ co{qj, j ∈ L}. The sum of the distances
between all the followers and the convex hull formed by the
leaders is then given by ϕ =

∑n
i=1 ϕi.

Theorem 3.1. Assume that GS satisfies Assumption 2.1 and GC

satisfies Assumption 2.2. Also assume that ‖qi(0) − qj(0)‖ > d1
for all i, j ∈ V , i ≠ j. By using the proposed distributed control
law (3)with (4)–(7) for followers’ dynamics (1), we can conclude that

(1) NS
i (0) ⊆ NS

i (t) for all i ∈ F and t ≥ 0.
(2) q̇i → q̇d, ∀i ∈ F .
(3) ‖qi(t) − qj(t)‖ > d1 for all i, j ∈ V , i ≠ j.
(4) lim supt→∞ ϕ ≤

n(n+m)

λmin(T S )
α∗ for some α∗ > 0, where ϕ and T S

are as defined in Definition 3.1 and Section 2.3.

Proof. The proof involves four parts: connectivity maintenance
analysis, velocity matching analysis, group dispersion analysis,
and containment boundedness analysis. In the connectivity
maintenance analysis, we show that no edge in GS will be
lost for t ≥ 0 if the initial connectivity relationship for GS

satisfies Assumption 2.1. In the velocity matching analysis, we
prove that the generalized coordinate derivatives for the followers
will track those of the leaders. In the group dispersion analysis
and the containment boundedness analysis, the group dispersion
and cohesion behaviors within the group will be evaluated. The
detailed proof can be found in Appendix A.3. �

Remark 3.1. As seen in the proof of Theorem 3.1 in Appendix A.3,
the bound on the sum of the steady-state distances between the
followers and the convex hull formed by the leaders is related to
the sensing radius r , the minimum safety distance d1, the cohesive
radius d2, the numbers of leaders and followers, λmin(T

S), and the
system initial state U(0).

Remark 3.2. The group dispersion result readily implies collision
avoidance of different agents within the group. The extension to
the case of avoidance of external obstacles, as considered in [16],
is important in some applications and will be one of our future
research directions.

Remark 3.3. In this paper,we assume that the leaders’ generalized
coordinate derivatives are identical. In such a situation, the
formation of the leaders is fixed. The extension to the case of a
time-varying leader formation is of interest and will need further
consideration.

3.2. Extension to the case where the communication graph is replaced
by the sensing graph

We note that the sensing graph and the communication
graph are considered separately in Section 3.1. In addition, the
communication graph is assumed to be connected for all time. In
this section, we replace the communication graphwith the sensing
graph and only impose an assumption on the initial connectivity
relationship. In such a case, the generalized coordinate derivative
estimator is replaced by

̇vi = −

n+m−
j=1

aij(q)(vi −vj)

−δ


n+m−
j=1

aij(q)(qi − qj) +

n+m−
j=1

∂Vij

∂qi


, i ∈ F , (8)

wherevj , q̇d, j ∈ L.
Theorem 3.2. Assume that GS satisfies Assumption 2.1. Also assume
that ‖qi(0)−qj(0)‖ > d1 for all i, j ∈ V , i ≠ j. By using the proposed
distributed control law (3) with (4), (5), (7), and (8) for the followers’
dynamics (1), we can conclude that

(1) NS
i (0) ⊆ NS

i (t) for all i ∈ F and t ≥ 0.
(2) q̇i → q̇d, ∀i ∈ F .
(3) ‖qi(t) − qj(t)‖ > d1 for all i, j ∈ V , i ≠ j.
(4) lim supt→∞ ϕ ≤

n(n+m)

λmin(T S )
α∗ for some α∗ > 0.

Proof. The proof is similar to that of Theorem 3.1. Construct the
same Lyapunov function as (15). It is easy to show that

U̇ = −

n−
i=1

kis2i −

n−
i=1

δ2


n+m−
j=1

aij(q)(qi − qj) +

n+m−
j=1

∂Vij

∂qi

2

+

n−
i=1

(vi − q̇d)
n+m−
j=1

aij(q)(vi −vj).

Assume that GS switches at tk, k = 1, 2, . . . . Then, following
the same analysis as given in the proof of Theorem 3.1, we know
that for t ∈ [0, t1), U(t) ≤ U(0). By the definition of Vij,
lim‖qi−qj‖→r Vij = ∞, and thus no edge will be lost at time t1 for
i, j ∈ V . Therefore, new edges must be added for GS at switching
time t1. The definition of Vij also guarantees the boundness and
continuity of U . Therefore, we can verify that U(t1) is bounded.
Similar to the aforementioned analysis, it follows that no edge will
be lost for i, j ∈ V and t ∈ [tk−1, tk). Therefore NS

i (0) ⊆ NS
i (t) for

all i ∈ F and t ≥ 0.
The velocity matching analysis, group dispersion analysis and

containment boundedness analysis are the same as those in the
proof of Theorem 3.1. �

4. Followers’ swarm tracking control when the leaders’ gener-
alized coordinate derivatives are time-varying

In this section, q̇i ∈ Rp, i ∈ L, is assumed to be identical and
time-varying. We let q̇i = q̇d, i ∈ L.

4.1. Followers’ swarm tracking control

The control goal here is the same as the one in Section 3, i.e.,
to drive the generalized coordinate derivatives of the followers to
converge to q̇d and the generalized coordinates of the followers
close to the cohesive inclusion formed by the leaders.Wewill use a
variable structure approach instead of an adaptive control method
to compensate for themodel uncertainties. Thus, besides assuming
that q̇d and q̈d are bounded, we also assume that △θi, i ∈ F ,
is bounded, where △θ is defined in Section 2.1.2 The proposed
control law for the followers is given by

τi = Ciq̇i +gi + κi − Mi


d
dt


n+m−
j=1

aij(q)(qi − qj)



+
d
dt


n+m−
j=1

∂Vij

∂qi


+ Ksi


, i ∈ F , (9)

where Mi,Ci andgi represent Mi(qi,θi), Ci(qi, q̇i,θi) and gi(qi,θi),
as given in Section 2.1, Vij and aij are defined in Appendix A.1 and

2 This is naturally satisfied for constant θi andθi .
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Appendix A.2, and K is any positive constant. The sliding surface is
specified as

si =

n+m−
j=1

aij(q)(qi − qj) +

n+m−
j=1

∂Vij

∂qi

+

n+m−
j=1

bij(q̇i − q̇j), i ∈ F , (10)

and κi is given by

κi = −µiYisgn


Y T
i
M−T

i

n+m−
j=1

bij(si − sj)



− ρiMisgn


n+m−
j=1

bij(si − sj)


, i ∈ F , (11)

where Yi is as defined in Section 2.1, bij denotes the (i, j)th entry of
the adjacencymatrixAC

= [bij] associatedwithGC , defined in Sec-
tion 2.2, sj = 0, ∀j ∈ L, sgn(x) = [sgn(x1), sgn(x2), . . . , sgn(xn)]T

for x = [x1, x2, . . . , xn]T , with sgn being the signum function, and
µi and ρi are positive constants, whose values are to be specified.

Applying the control law (9) to the followers’ dynamics (1) leads
to

Mi
d
dt

(q̇i − q̇d) = −Miq̈d − Y (qi, q̇i, q̈i)△θi − Mi

×


d
dt


n−

j=1

∂Vij

∂qi



+
d
dt


n+m−
j=1

aij(q)(qi − qj)


+ Ksi


+ κi, i ∈ F . (12)

Theorem 4.1. Assume that GS satisfies Assumption 2.1 and GC

satisfies Assumption 2.2. Also assume that ‖qi(0) − qj(0)‖ > d1 for
all i, j ∈ V , i ≠ j. If µi > ‖△θi‖∞ and ρi > ‖q̈d‖∞, ∀i ∈ F , then, by
using the proposed distributed control law (9) with (10) and (11) for
the followers’ dynamics (1), we can conclude that

(1) NS
i (0) ⊆ NS

i (t) for all i ∈ F and t ≥ 0.
(2) q̇i → q̇d, ∀i ∈ F .
(3) ‖qi(t) − qj(t)‖ > d1 for all i, j ∈ V , i ≠ j.
(4) lim supt→∞ ϕ ≤

n(n+m)

λmin(T S )
α∗ for some α∗ > 0.

Proof. See Appendix A.4. �

Remark 4.1. Different from Section 3, we do not use the general-
ized coordinate derivative estimator to obtain the leaders’ gener-
alized coordinate derivatives in this section. Thus, a large amount
of calculation is avoided.

4.2. Extension to containment control

In Section 4.1, the bound on the sum of the steady-state
distances between the followers and the convex hull formed by
the leaders might not be zero when we have other requirements
on group cohesion and dispersion. In this section, group cohesion
and dispersion behaviors are not considered in the control law. In
such a case, we will show that the followers will converge into the
convex hull formed by the leaders, i.e., the bound on the sum of the
steady-state distances between the followers and the convex hull
formed by the leaders will converge to zero. The proposed control
law for the followers is given by

τi = Ciq̇i +gi − Mi
d
dt


n+m−
j=1

aij(q)(qi − qj)


− KMisi + κi, i ∈ F , (13)

where the sliding mode is defined as

si =

n+m−
j=1

aij(q)(qi − qj) +

n+m−
j=1

bij(q̇i − q̇j), i ∈ F , (14)

and κi is given in (11) in Section 4.1.

Theorem 4.2. Assume that GS satisfies Assumption 2.1 and GC sat-
isfies Assumption 2.2. If µi > ‖△θi‖∞ and ρi > ‖q̈d‖∞, ∀i ∈ F ,
then, by using the proposed distributed control law (13)with (11) and
(14) for the followers’ dynamics (1), we can conclude that

1. q̇i → q̇d, ∀i ∈ F .
2. qi → co{qj, j ∈ L}, ∀i ∈ F .

Proof. Following the similar analysis in the proof of Theorem 4.1,
we construct a Lyapunov function as:

U =
1
2

n−
i=1

sTi si +
α

2

n−
i=1

n−
j=1

Qij + α

n−
i=1

m+n−
j=1+n

Qij.

It is easy to show that U̇ ≤ 0 when 0 < α < 2λmin(T
C )

√
K ,

µi > ‖△θi‖∞ and ρi > ‖q̈d‖∞, ∀i ∈ F . Therefore, the connectivity
maintenance analysis follows from the proof of Theorem 3.1.
Note that the connectivity maintenance result guarantees that
λmin(T S) > 0. Similar to the proof of Theorem 4.1, it follows that
si → 0 and q̇i → q̇d, ∀i ∈ F , as t → ∞. On the sliding surface, by
Lemma 2.1,

∑n+m
j=1 aij(q)(qi − qj) = 0 implies qi → co{qj, j ∈ L},

∀i ∈ F . This completes the proof. �

Corollary 4.1. If there is only one leader in the leader set, the convex
hull formed by the leaders will reduce to a single point, i.e., with the
proposed control law in this section, the final generalized coordinates
of the followers will track that of the leader exactly.

Remark 4.2. A containment control algorithm for networked
Lagrange systems is also proposed in [26] when the leaders’
generalized coordinate derivatives are time-varying. However,
the model uncertainties are not considered and the design of
the sliding mode estimator may increase the complexity of the
algorithm in [26]. In contrast, the control law (13) of this paper is
easier to implement and the control parameters only rely on the
local information.

5. Simulation results

In this section, numerical simulation results are given to vali-
date the effectiveness of the theoretical results obtained in this
paper.We assume that there exist four followers (n = 4) and three
leaders (m = 3) in the group. The system dynamics is given by
[11,28][
M11 M12
M21 M22

] [
q̈ix
q̈iy

]
+

[
−bq̇iy −b(q̇ix + q̇iy)
bq̇ix 0

] [
q̇ix
q̇iy

]
=

[
τix
τiy

]
, i = 1, 2, 3, 4,

where M11 = a1 + 2a3 cos qiy + 2a4 sin qiy, M12 = M21 = a2 +

a3 cos qiy + a4 sin qiy, M22 = a2, and b = a3 sin qiy − a4 cos qiy. In
addition, we choose a1 = 8, and a2 = a3 = a4 = 1.
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(a) The generalized coordinates of the leaders and the followers. The
circles denote the leaders and the big triangle is the convex hull spanned
by the leaders. The squares and the crosses denote, respectively, the
generalized coordinates of the followers at, respectively, t = 0 s,
t = 200 s, and t = 300 s. The lines between the squares and crosses are
the trajectories of the followers.

(b) The generalized coordinate derivatives of the followers and the leaders.

Fig. 1. Trajectories of the leaders and the followers under control law (3) with (4), (5), (6) and (7) for the followers’ dynamics (1).
The adjacency matrix AC of the generalized coordinate deriva-
tives associated with GC is chosen to be

AC
=



0 2 0 4 0 1 9
2 0 1 0 2 4 0
0 1 0 1 0 0 0
4 0 1 0 0 1 1.6
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

 .

For the case of the leaders’ generalized coordinate derivative
being constant, the initial states of the followers are chosen as
q1(0) = [−10, 10]T , q2(0) = [8, 10]T , q3(0) = [−10, −12]T ,
q4(0) = [0, −20]T , q̇1(0) = [−0.1, 0.1]T , q̇2(0) = [0.2, −0.2]T ,
q̇3(0) = [0.7, −0.7]T and q̇4(0) = [0.4, −0.4]T . The trajectory of
the leaders is chosen as q5(0) = [6, 0]T , q6(0) = [0, −6]T , q7(0) =

[0, 6]T , q̇d(0) = [0.32, 0]T and q̈d(0) = [0, 0]T . The adjacency
matrix AS of generalized coordinates associated with GS can be
calculated by the initial states of the followers and the leaders. The
initial setup for the generalized coordinate derivative estimators
(6) is chosen as v1(0) = [0.1, −0.1]T , v2(0) = [−0.1, 0.1]T ,v3(0) = [0.3, −0.3]T and v4(0) = [−0.2, 0.2]T . The control
parameters are chosen as r = 20, d = 1, d2 = 4 and δ = 0.05
for i = 1, 2, 3, 4, ki = 1, ∀i ∈ F .

Fig. 1(a) shows the generalized coordinates of the leaders and
the followers under control law (3) with (4), (5), (6) and (7). It can
be seen that the generalized coordinate derivatives of the followers
are close to the convex hull formed by the leaders. However,
there exists a non-zero bound on the distance of the followers
and the convex hull formed by the leaders. Fig. 1(b) shows that
the generalized coordinate derivatives of the followers converge
to those of the leaders.

Fig. 2(a) shows the generalized coordinates of the leaders and
the followers under control law (3) with (4), (5), (7) and (8) for
the followers’ dynamics (1). It can be seen that the generalized
coordinate derivatives of the followers are close to the convex
hull formed by the leaders even if only the sensing information
is available. Fig. 2(b) shows that the generalized coordinate
derivatives of the followers converge to those of the leaders.

For the case of the leaders’ generalized coordinate derivative
being time-varying, the initial states of followers are chosen as
q1(0) = [−10, 5]T , q2(0) = [8, 7]T , q3(0) = [−10, −10]T ,
q4(0) = [5, −10]T , q̇1(0) = [−0.1, 0.1]T , q̇2(0) = [0.2, −0.2]T ,
q̇3(0) = [0.7, −0.7]T and q̇4(0) = [0.4, −0.4]T . The initial
states of the leaders are chosen as q5(0) = [6, 0]T , q6(0) =

[0, −6]T , q7(0) = [0, 6]T , q̇d(0) = [0.5, −0.5]T , and
q̈d(0) = [−

t−40
300 , − t−20

300 ]
T . The adjacency matrix AS of generalized

coordinates associated with GS can be calculated by the initial
states of the followers and the leaders. The control parameters are
chosen as r = 20, d = 1, d2 = 4, K = 1, and ρi = 1, ∀i ∈ F .

Fig. 3(a) shows the generalized coordinates of the leaders
and the followers under control law (9) with (10) and (11) for
the followers’ dynamics (1). It can be seen that the generalized
coordinate derivatives of the followers are close to the convex hull
formed by the leaders when the leaders’ generalized coordinate
derivatives are time-varying. Fig. 3 shows that the generalized
coordinate derivatives of the followers converge to those of the
leaders.

Fig. 4(a) shows the generalized coordinates of the leaders
and the followers under control law (13) with (11) and (14) for
the followers’ dynamics (1). It can be seen that the generalized
coordinate derivatives of the followers converge into the convex
hull formed by the leaders. Fig. 4(b) shows that the generalized
coordinate derivatives of the followers converge to those of the
leaders.

6. Conclusions

In this paper, the leader–follower swarm tracking control with
groupdispersion and cohesion behaviorswas studied for a group of
Lagrange systems. Both the cases of leaders’ generalized coordinate
derivatives being constant and time-varying were considered.
The proposed control algorithms were shown to achieve velocity
matching, connectivity maintenance, collision avoidance and the
followers were driven close to the cohesive inclusion formed by
the leaders. In addition, the bound on the sum of the steady-
state distances between the followers and the convex hull formed
by the leaders was shown to be bounded and the bound was
explicitly given. Numerical simulation verified these theoretical
results. One interesting future research direction is the swarm
tracking problem of multiple non-holonomic mobile agents.
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(a) The generalized coordinates of the leaders and the followers. The
circles denote the leaders and the big triangle is the convex hull spanned
by the leaders. The squares and the crosses denote, respectively, the
generalized coordinates of the followers at, respectively, t = 0 s,
t = 200 s, and t = 300 s. The lines between the squares and crosses are
the trajectories of the followers.

(b) The generalized coordinate derivatives of the followers and the leaders.

Fig. 2. Trajectories of the leaders and the followers under control law (3) with (4), (5), (7) and (8) for the followers’ dynamics (1).
(a) The generalized coordinates of the leaders and the followers. The
circles denote the leaders and the big triangle is the convex hull spanned
by the leaders. The squares and the crosses denote, respectively, the
generalized coordinates of the followers at, respectively, t = 0 s,
t = 40 s, and t = 60 s. The lines between the squares and crosses are the
trajectories of the followers.

(b) The generalized coordinate derivatives of the followers and the leaders.

Fig. 3. Trajectories of the leaders and the followers under control law (9) with (10) and (11) for the followers’ dynamics (1).
Appendix

A.1. Potential function for group cohesion and dispersion behaviors

In this paper,Vij is chosen as follows: for the case of ‖qi−qj‖ ≥ r
when t = 0, Vij is given by

Vij =


(r2 − ‖qi − qj‖2)3

(‖qi − qj‖2 − d21)r4
, d1 < ‖qi − qj‖ ≤ r,

0, ‖qi − qj‖ > r,
for which,

∂Vij

∂qi
=


−

2(r2 − ‖qi − qj‖2)2(2‖qi − qj‖2
+ r2 − 3d21)

(‖qi − qj‖2 − d21)2r4
(qi − qj),

d1 < ‖qi − qj‖ ≤ r,
0, ‖qi − qj‖ > r,
and

∂2Vij

∂q2i
=



−2(r2 − ‖qi − qj‖2)

(2‖qi − qj‖2

+ r2 − 3d21)
×(−‖qi − qj‖4

− 3‖qi − qj‖2r2 + 5‖qi − qj‖2d21
−d21r

2) + 4(‖qi − qj‖2
− d21)(r

2
− ‖qi − qj‖2)

‖qi − qj‖2 /[(‖qi − qj‖2
− d21)

3r4],
d1 < ‖qi − qj‖ ≤ r,

0, ‖qi − qj‖ > r.
For the case of d1 < ‖qi − qj‖ < r when t = 0, Vij is given by

Vij =
1

2(r2 − ‖qi − qj‖2)
+

d22
2

1
‖qi − qj‖2 − d21

,

for which,
∂Vij

∂qi
=


1

(r2 − ‖qi − qj‖2)2
−

d22
(‖qi − qj‖2 − d21)2


(qi − qj),
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(a) The generalized coordinates of the leaders and the followers. The
circles denote the leaders and the big triangle is the convex hull spanned
by the leaders. The squares and the crosses denote, respectively, the
generalized coordinates of the followers at, respectively, t = 0 s,
t = 31 s, and t = 47 s. The lines between the squares and crosses are the
trajectories of the followers.

(b) The generalized coordinate derivatives of the followers and the leaders.

Fig. 4. Trajectories of the leaders and the followers under control law (13) with (11) and (14) for the followers’ dynamics (1).
and

∂2Vij

∂q2i
=

r2 + 3‖qi − qj‖2

(r2 − ‖qi − qj‖2)3
+ d22

d21 + 3‖qi − qj‖2

(‖qi − qj‖2 − d21)3
.

We also assume that ‖qi − qj‖ > d1 when t = 0. It will be shown
in Appendix A.3 that ‖qi(t)− qj(t)‖ > d1 for t ≥ 0, ∀i, j ∈ V , i ≠ j,
if ‖qi(0) − qj(0)‖ > d1 by using the proposed control laws. Note

that Vij achieves its local minimum when ‖qi − qj‖ =


d2R2+d21
1+d2

,

where d2 is used to adjust the minimum value of Vij. Also note that
d
dt

∑n+m
j=1

∂Vij
∂qi


=
∑n+m

j=1 (q̇i − q̇j)
∂2Vij
∂q2i

.

A.2. The adjacency matrix for the sensing graph

In order to design a smooth control law, we give a proper
definition for the adjacency matrix AS

= [aij(q)] associated with
GS , where q = [qT1, q

T
2, . . . , q

T
n+m]

T
∈ Rp(n+m). Let

Qij =

 (r2 − ‖qi − qj‖2)3

6r4
, 0 < ‖qi − qj‖ ≤ r,

0, ‖qi − qj‖ > r.

aij is defined as

aij(q) =


(r2 − ‖qi − qj‖2)2

r4
, 0 < ‖qi − qj‖ ≤ r,

0, ‖qi − qj‖ > r.

Note that ∂Qij
∂qi

= aij(q)(qi − qj). Each element aij(q) of A is
nonnegative, differentiable and a function of ‖qi − qj‖. Also note
that the boundedness of Qij guarantees the boundedness aij(q) and
∂aij
∂qi

.

A.3. Proof of Theorem 3.1

Proof. 1) Connectivity maintenance analysis
Motivated by [29], [30], and [31], we construct a Lyapunov

function candidate as
U =
1
2

n−
i=1

sTi Misi +
δ

2

n−
i=1

n−
j=1

Vij + δ

n−
i=1

n+m−
j=n+1

Vij +
δ

2

n−
i=1

n−
j=1

Qij

+ δ

n−
i=1

m+n−
j=1+n

Qij +
1
2

n−
i=1

‖vi − q̇d‖2
+

1
2

n−
i=1

‖△θi‖
2, (15)

where △θi is defined in Section 2.1. Taking the derivative of U , we
have

U̇ =

n−
i=1

sTi


Yi△θi − kisi − δ

n+m−
j=1

aij(q)(qi − qj) − δ

n+m−
j=1

∂Vij

∂qi



−

n−
i=1

△θ T
i Y

T
i si + δ

n−
i=1

q̇Ti


n−

j=1

aij(q)(qi − qj) +

n−
j=1

∂Vij

∂qi



+ δ

n−
i=1

(q̇i − q̇d)T


n+m−
j=1+n

aij(q)(qi − qj) +

n+m−
j=1+n

∂Vij

∂qi



+

n−
i=1

(vi − q̇d)T̇vi = −

n−
i=1

kis2i

+

n−
i=1


q̇i − q̇d + q̇d −vi + δ

n+m−
j=1

aij(q)(qi − qj)

+ δ

n+m−
j=1

∂Vij

∂qi

T 
−δ

n+m−
j=1

aij(q)(qi − qj) − δ

n+m−
j=1

∂Vij

∂qi



+ δ

n−
i=1

(q̇i − q̇d)T


n+m−
j=1

aij(q)(qi − qj) +

n+m−
j=1

∂Vij

∂qi



+

n−
i=1

(vi − q̇d)T̇vi = −

n−
i=1

kis2i −

n−
i=1

δ2

×


n+m−
j=1

aij(q)(qi − qj) +

n+m−
j=1

∂Vij

∂qi

2

−

n−
i=1

(vi − q̇d)T
n+m−
j=1

bij(vi −vj),
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where we have used the facts that ∂Vij
∂qi

=
∂Vij

∂(qi−qd)
, ∀i ∈ F , j ∈ L,

q̇d
∑n

i=1
∑n

j=1


aij(q)(qi − qj) +

∂Vij
∂qi


= 0 and ∂Vij

∂qi
= −

∂Vij
∂qj

, ∀i,
j ∈ F .

The fact that GC satisfies Assumption 2.2 implies that λmin(T
C )

> 0, where T C is as defined in Section 2.3 associated with the
graph GC . Therefore, we have

U̇ ≤ −

n−
i=1

kis2i − δ2
n−

i=1


n+m−
j=1

aij(q)(qi − qj)

+

n+m−
j=1

∂Vij

∂qi

2

− λmin(T
C )

n−
i=1

‖vi − q̇d‖2
≤ 0.

This implies that U(t) is bounded for t ≥ 0 and hence ‖qi − qj‖ is
bounded for all i, j ∈ V and t ≥ 0. On the other hand, the definition
ofVij implies that lim‖qi−qj‖→r Vij = ∞. Thus,we know that no edge
will be lost at switching times, which implies that NS

i (0) ⊆ NS
i (t)

for all i ∈ F and t ≥ 0.
2) Velocity matching analysis
From the fact that U(t) is bounded, we know that si, △θi,vi −

q̇d, Vij and Qij are bounded. Since the boundedness of Vij and Qij

guarantee the boundedness ∂Vij
∂qi

and ∂Qij
∂qi

, we know that
∑n+m

j=1
∂Vij
∂qi

+∑n+m
j=1 aij(q)(qi − qj) is bounded and further know that q̇i −vi is

bounded in view of (7). In view of (6), it follows that̇vi is bounded
from the fact that q̇d is bounded. Since the boundedness of Vij and

Qij also guarantees the boundedness of ∂2Vij
∂q2i

and ∂aij
∂qi

, it is easy

to show that d
dt

∑n+m
j=1

∂Vij
∂qi

+
∑n+m

j=1 aij(q)(qi − qj)


is bounded.
Thus, we know that q̇ri is bounded and q̈ri is bounded. Then, from
the closed-loop dynamics

Mi(qi)ṡi + Ci(qi, q̇i)si = Y (qi, q̇i, q̇ri, q̈ri)△θi − kisi

− δ


n+m−
j=1

aij(q)(qi − qj) +

n+m−
j=1

∂Vij

∂qi


, i ∈ F ,

we know that ṡi is bounded. This implies that Ü is bounded. Then,
by the Barbalat’s lemma, we have U̇ → 0 as t → ∞. Therefore,
we know that si → 0 and q̇i → vi → q̇d, ∀i ∈ F , as t → ∞. This
shows that the velocity matching is achieved for each follower.

3) Group dispersion analysis
Because U(t) is bounded, it is easy to show that ‖qi − qj‖

is bounded for all i, j ∈ V and t ≥ 0. We also know that
lim‖qi−qj‖→d1 Vij = ∞. Therefore, it follows that ‖qi(t) − qj(t)‖ >
d1 for all i, j ∈ V , i ≠ j.

4) Containment boundedness analysis
Since si → 0 and q̇i → vi → q̇d, ∀i ∈ F , as t → ∞, we

know that
∑n+m

j=1 aij(q)(qi − qj) +
∑n+m

j=1
∂Vij
∂qi

= 0 as t → ∞. Thus,
we have that ϕi = inf ‖qi − yi‖, ∀yi ∈ ∂co{qj, j ∈ L} (defined in
Definition 3.1) is bounded by

ϕi ≤

qi −
1

n+m∑
j=1

aij

n+m−
j=1

aijqj

 ≤
1

λmin(T S)

n+m−
j=1

aij(qi − qj)


=

1
λmin(T S)

n+m−
j=1

∂Vij

∂qi

 ≤
1

λmin(T S)

n+m−
j=1

∂Vij

∂qi

 ,

where we have used the fact that 1∑n+m
j=1 aij

∑n+m
j=1 aijqj is in the

convex hull formed by the leaders because −T −1Td ⊗ Ipql ∈

co{qj, j ∈ L}, with ql = [qTn+1, q
T
n+2, . . . , q

T
n+m]

T
∈ Rpm
(see Section 2.3). Note that the connectivity maintenance result
guarantees that λmin(T

S) > 0.
Consider any i ∈ F and j ∈ V . If ‖qi(0) − qj(0)‖ > r , we

know that Vij(0) = 0 and ∂Vij
∂qi

(0) = 0. Let l1(i,j) > 0 be such that
(r2−l21)

3

(l21(i,j)−d21)
1
r4

= U(0). Then, based on the fact that U(t) ≤ U(0)

and monotonicity of the function (r2−‖qi−qj‖2)3

‖qi−qj‖2−d21

1
r4

with respect to

‖qi − qj‖, we have that ‖qi − qj‖ ≥ l1∗ = mini,j{l1(i,j)}. Note
that ∂Vij

∂qi
= 0 for ‖qi − qj‖ > r . Therefore, for the case of

‖qi(0) − qj(0)‖ > r , we have that∂Vij

∂qi

 ≤
6(r2 − l21∗)

2(r2 − d21)
(l21∗ − d21)2r3

.

Similarly, if d1 < ‖qi(0) − qj(0)‖ ≤ r , let l2(i,j) > 0 be such
that 1

2
1

(r2−l22(i,j))r
4 = U(0). Then, based on the fact that U(t) ≤ U(0)

and monotonicity of the function 1
2

1
(r2−‖qi−qj‖2)r4

with respect to
‖qi − qj‖, we have that ‖qi − qj‖ ≤ l2∗ = maxi,j{l2(i,j)}. Also let

l3(i,j) > 0 be such that d22
2

1
(l23(i,j)−d21)r

4 = U(0). Then based on the fact

thatU(t) ≤ U(0) andmonotonicity of the function d22
2

1
(‖qi−qj‖2−d21)r

4

with respect to ‖qi − qj‖, we have that ‖qi − qj‖ ≥ l3∗ = mini,j{l3}.
Therefore, for the case of d1 < ‖qi(0) − qj(0)‖ ≤ r , we have that∂Vij

∂qi

 ≤


1

(r2 − l22∗)2
+

d22
(l23∗ − d21)2


l2∗
r4

.

In all cases, we have that∂Vij

∂qi

 ≤ α∗ , max

6(r2 − l21∗)

2(r2 − d21)
(l212∗ − d21)2r3

,
1

(r2 − l22∗)2
+

d22
(l23∗ − d21)2


l2∗
r4


,

and ϕ ≤
n(n+m)

λmin(T S )
α∗.

A.4. Proof of Theorem 4.1

Proof. Motivated by [32], we construct a Lyapunov function can-
didate as

U =
1
2

n−
i=1

sTi si +
α

2

n−
i=1

n−
j=1

Vij + α

n−
i=1

m+n−
j=1+n

Vij

+
α

2

n−
i=1

n−
j=1

Qij + α

n−
i=1

m+n−
j=1+n

Qij,

where 0 < α < 2λmin(T
C )

√
K . Taking the derivative ofU , we have

U̇ =

n−
i=1

n−
j=1

T C
ij s

T
j

M−1
i Yi△θi − q̈d − ρisgn


n−

j=1

T C
ij sj



− µiM−1
i Yisgn


Y T
i
M−T

i

n−
j=1

T C
ij sj


− Ksi



+ α

n−
i=1

(q̇i − q̇d)T


n+m−
j=1

aij(q)(qi − qj) +

n+m−
j=1

∂Vij

∂qi



= −

n−
i=1

(µi − ‖△θi‖∞) ‖Y T
i
M−T

i

n−
j=1

T C
ij sj‖1
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−

n−
i=1

(ρi − ‖q̈d‖∞)‖

n−
j=1

T C
ij sj‖1 − Kλmin(T

C )

n−
i=1

s2i

+ α

n−
i=1

(q̇i − q̇d)T

si −

n+m−
j=1

bij(q̇i − q̇j)



≤ − Kλmin(T
C )

n−
i=1

s2i + α

n−
i=1

(q̇i − q̇d)T si

− λmin(T
C )

n−
i=1

(q̇i − q̇d)2,

where T C
ij is the (i, j)th entry of matrix T C (defined in Section 2.3)

associated with GC , and we have used the facts that µi > ‖△θi‖∞,
ρi > ‖q̈d‖∞, ∀i ∈ F , ∂Vij

∂qi
=

∂Vij
∂(qi−qd)

, ∀i ∈ F , j ∈ L,

q̇d
∑n

i=1
∑n

j=1


aij(q)(qi − qj) +

∂Vij
∂qi


= 0 and ∂Vij

∂qi
= −

∂Vij
∂qj

, ∀i, j ∈

F .
Then, if α is selected as 0 < α < 2λmin(T

C )
√
K , we have that

U̇ ≤ 0. Therefore, the connectivity maintenance analysis follows
from Theorem 3.1.

Similarly to the analysis given in Appendix A.3, we know that
si, △θi, and d

dt

∑n+m
j=1 aij(q)(qi − qj) +

∑n+m
j=1

∂Vij
∂qi


are bounded. It

follows from the closed-loop dynamics (12) that q̈i is bounded. This
implies that Ü is bounded when

∑n
j=1 T

C
ij sj ≠ 0, ∀i ∈ F . It is easy to

show that Ü is also bounded when
∑n

j=1 T
C
ij sj = 0, i ∈ F . Then, by

the Barbalat’s lemma, we have U̇ → 0 as t → ∞. Therefore, it fol-
lows that si → 0 and q̇i → q̇d, ∀i ∈ F , as t → ∞. Then, the veloc-
ity matching analysis, group dispersion analysis and containment
boundedness analysis all follow from the proof of Theorem 3.1.
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