
Automatica 48 (2012) 653–659
Contents lists available at SciVerse ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Brief paper

Distributed containment control for Lagrangian networks with parametric
uncertainties under a directed graph✩

Jie Mei a,c, Wei Ren b,1, Guangfu Ma c

a School of Mechanical Engineering & Automation, Harbin Institute of Technology Shenzhen Graduate School, Guangdong, 518055, PR China
b Department of Electrical Engineering, University of California, Riverside, CA, 92521, USA
c Department of Control Science & Engineering, Harbin Institute of Technology, Heilongjiang, 150001, PR China

a r t i c l e i n f o

Article history:
Received 21 October 2010
Received in revised form
18 April 2011
Accepted 24 August 2011
Available online 20 February 2012

Keywords:
Multi-agent systems
Cooperative control
Distributed control
Containment control
Lagrangian system

a b s t r a c t

In this paper, we study the distributed containment control problem for networked Lagrangian systems
with multiple dynamic leaders in the presence of parametric uncertainties under a directed graph that
characterizes the interaction among the leaders and the followers. We propose a distributed adaptive
control algorithm combined with distributed sliding-mode estimators. A necessary and sufficient
condition on the directed graph is presented such that all followers converge to the dynamic convex
hull spanned by the dynamic leaders asymptotically. As a byproduct, we show a necessary and sufficient
condition on leaderless consensus for networked Lagrangian systems under a directed graph. Numerical
simulation results are given to show the effectiveness of the proposed control algorithms.

© 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Recently, distributed coordination of multi-agent systems has
gained much attention due to its broad applications, including
consensus, flocking, and formation control. Many existing works
in distributed coordination focus on the consensus problem when
there is no leader. We refer the readers to Olfati-Saber, Fax, and
Murray (2007) and Ren, Beard, and Atkins (2007) and references
therein formore details. In reality, the presence of a single leader or
multiple leaders can broaden the applications as a group objective
can be encapsulated by the leader or the leaders. In the case
where there exists one leader, Hong, Hu, and Gao (2006) studies
the coordinated tracking problem with an active leader under the
assumption that the leader’s acceleration is knownby all followers.
In Cao and Ren (2012), the distributed coordinated tracking and
swarm tracking problems are studied in the absence of velocity or
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acceleration measurements. Distributed sliding-mode estimators
are proposed in Cao, Ren, and Meng (2010) to solve the finite-time
formation tracking problem. In the case where there exist multiple
leaders, Ji, Ferrari-Trecate, Egerstedt, and Buffa (2008) proposes a
distributed containment control algorithm for agents with single-
integrator dynamics such that a group of followers is driven to
the convex hull spanned by multiple leaders under an undirected
graph. The work of Ji et al. (2008) is extended in Cao, Stuart, Ren,
and Meng (2011) to the case of a directed interaction graph and
double-integrator dynamics and in Lou and Hong (2010) to the
case of random switching topologies. Note that the above results
focus on linear systemswith single-integrator or double-integrator
dynamics.

A class of mechanical systems including autonomous vehicles,
robotic manipulators, and walking robots are Lagrangian systems.
Therefore, distributed coordination of networked Lagrangian sys-
tems has many applications. Unfortunately, the results for single-
and double-integrator dynamics cannot be directly applied to
Lagrangian systems due to their inherent nonlinearity, especially
when there exist parametric uncertainties. Recent work on coor-
dination of networked Lagrangian systems focuses on the lead-
erless case (Chopra, Stipanovic, & Spong, 2008; Ren, 2009), the
case with a single leader (Cheah, Hou, & Slotine, 2009; Chung &
Slotine, 2009; Mei, Ren, & Ma, 2011; Spong & Chopra, 2007; Sun,
Zhao, & Feng, 2007), and the case with multiple leaders (Dimarog-
onas, Tsiotras, & Kyriakopoulos, 2009; Meng, Ren, & You, 2010).
In the leaderless case, a controller based on potential functions is
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proposed in Chopra et al. (2008) for networked Lagrangian sys-
tems to achieve leaderless flocking. In Ren (2009), three distributed
leaderless consensus algorithms are proposed for networked La-
grangian systems under an undirected graph. In the case of a single
leader, output synchronization of networked Lagrangian systems is
studied in Spong and Chopra (2007) under a passivity-based
framework. Both fixed and switching graphs as well as commu-
nication delays are considered. Based on nonlinear contraction
analysis, Chung and Slotine (2009) analyzes the stability of coop-
erative tracking control laws for multiple robotic manipulators. In
Sun et al. (2007), a model-independent cross-coupled controller
is proposed for position synchronization of multi-axis motions. In
Mei et al. (2011), the distributed coordinated tracking problem for
networked Lagrangian systems is solved in the presence of a dy-
namic leader, where the leader is a neighbor of only a subset of the
followers and the followers have only local interaction. A region-
based shape control scheme that utilizes potential functions is de-
signed in Cheah et al. (2009) for a swarm of robots such that the
robotsmove as a group inside a desired regionwhilemaintaining a
minimumdistance among themselves. In the case ofmultiple lead-
ers, Dimarogonas et al. (2009) studies the distributed attitude con-
tainment control problem for multiple rigid bodies with multiple
stationary leaders under an undirected graph. InMeng et al. (2010),
the distributed finite-time containment control problem is studied
for networked Lagrangian systems under the assumption that the
interaction graph associated with the followers is undirected.

In this paper, we study the distributed containment control
problem for networked Lagrangian systemswithmultiple dynamic
leaders in the presence of parametric uncertainties under a
directed graph that characterizes the interaction among the
leaders and the followers by expanding on our preliminary work
reported in Mei, Ren, and Ma (2011). The objective is that a
team of followers modeled by Euler–Lagrange equations converge
to the convex hull spanned by multiple dynamic leaders. The
problem has many applications such as securing a group of
followers in the area spanned by the leaders so that they can be
away from dangerous sources outside the area. The case where
there exists a single leader can be viewed as a special case. We
propose a distributed adaptive control algorithm combined with
distributed sliding-mode estimators. A necessary and sufficient
condition on the directed graph is presented such that all followers
converge to the dynamic convex hull spanned by the dynamic
leaders asymptotically. As a byproduct, we show a necessary
and sufficient condition on leaderless consensus for networked
Lagrangian systems under a directed graph.

Comparison with existing work in the literature: In contrast to
the containment control algorithms for first- and second-order
linear dynamics (Cao et al., 2011; Ji et al., 2008; Lou & Hong,
2010), we study the nonlinear Lagrangian systems in the presence
of parametric uncertainties. In contrast to the leaderless case or
the case with a single leader for networked Lagrangian systems
(Cheah et al., 2009; Chung & Slotine, 2009; Mei et al., 2011; Spong
& Chopra, 2007; Sun et al., 2007), we consider the containment
control problemwithmultiple leaders. In contrast to the rigid body
attitude containment control problem inDimarogonas et al. (2009)
and the finite-time containment control problem for networked
Lagrangian systems in Meng et al. (2010), we deal with the
containment control problem for networked Lagrangian systems
in the presence of parametric uncertainties under a directed graph.

Notations: Let 1m and 0m denote, respectively, them×1 column
vector of all ones and all zeros. Let 0m×n denote the m × n matrix
with all zeros and Im denote them×m identity matrix. For a point
x and a set M , let d(x,M) , infy∈M ∥x − y∥ denote the distance
between x andM . Throughout the paper, we use ∥ · ∥ to denote the
Euclidean norm.
2. Background

2.1. Euler–Lagrange system

Suppose that there exist m followers, labeled as agents 1 to m,
and n−m (n > m) leaders labeled as agentsm+ 1 to n, in a team.
The m followers are represented by Euler–Lagrange equations of
the form

Mi(qi)q̈i + Ci(qi, q̇i)q̇i + gi(qi) = τi, i = 1, . . . ,m, (1)

where qi ∈ Rp is the vector of generalized coordinates, Mi(qi) ∈

Rp×p is the symmetric positive-definite inertiamatrix,Ci(qi, q̇i)q̇i ∈

Rp is the vector of Coriolis and centrifugal torques, gi(qi) is the
vector of gravitational torque, and τi ∈ Rp is the vector of control
torque on the i th agent. We assume that the leaders’ motions are
independent of those of the followers.

Throughout the subsequent analysis we assume that the
following assumptions hold (Kelly, Santibanez, & Loria, 2005;
Spong, Hutchinson, & Vidyasagar, 2006):
(A1) Parameter Boundedness: For any i, there exist positive

constants km, km, kC , and kgi such that 0 < kmIp ≤ Mi(qi) ≤

kmIp, ∥Ci(x, y)∥ ≤ kC∥y∥ for all vectors x, y ∈ Rp, and
∥gi(qi)∥ ≤ kgi .

(A2) Skew symmetric property: Ṁi(qi) − 2Ci(qi, q̇i) is skew sym-
metric.

(A3) Linearity in the dynamic parameters: Mi(qi)x + Ci(qi, q̇i)y +

gi(qi) = Yi(qi, q̇i, x, y)Θi for all vectors x, y ∈ Rp, where
Yi(qi, q̇i, x, y) is the regressor and Θi is the constant param-
eter vector associated with the ith agent.

Remark 2.1. Assumptions (A1)–(A3) are three general properties
for Euler–Lagrange systems. Examples include robot manipulators
in joint space with unknown but constant masses, inertias and
distances of the centers of mass of the links (Kelly et al., 2005;
Spong et al., 2006), attitudedynamics of rigid bodieswithunknown
but constant inertias (Slotine & Li, 1991), and car-like robots with
unknown mass and damping constants (Cheah et al., 2009), to
name a few.

2.2. Graph theory

We use a directed graph to describe the network topology
between the n agents. Let G , (V, E) be a directed graph with
the node set V , {1, . . . , n} and the edge set E ⊆ V × V . An
edge (i, j) ∈ E denotes that agent j can obtain information from
agent i, but not vice versa. Here, node i is the parent node while
node j is the child node. Equivalently, node i is a neighbor of node
j. A directed path from node i to node j is a sequence of edges of
the form (i1, i2), (i2, i3), . . . , in a directed graph. A directed tree is
a directed graph, where every node has exactly one parent except
for one node, called the root, and the root has directed paths to
every other node. A directed spanning tree of a directed graph is a
direct tree that contains all nodes of the directed graph. A directed
graph has a spanning tree if there exists a directed spanning tree
as a subset of the directed graph.

The adjacency matrix A = [aij] ∈ Rn×n associated with G is
defined as aij > 0 if ( j, i) ∈ E , and aij = 0 otherwise. In this
paper, self-edges are not allowed, i.e., aii = 0. The (nonsymmetric)
Laplacian matrix LA = [lij] ∈ Rn×n associated with A and hence G
is defined as lii =

n
j=1,j≠i aij and lij = −aij, i ≠ j.

Lemma 2.1 (Ren & Beard, 2008). Let G be a directed graph of order n
and LA ∈ Rn×n be the associated (nonsymmetric) Laplacian matrix.
The following three statements are equivalent:
(1) The matrix LA has a single zero eigenvalue and all other

eigenvalues have positive real parts;
(2) G has a directed spanning tree;
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(3) Given a system ż , −LAz, where z = [z1, . . . , zn]T , consensus is
reached exponentially. In particular, for all i = 1, . . . , n, and all
zi(0), zi(t) →

n
i=1 pizi(0) exponentially as t → ∞, where p ,

[p1, . . . , pn]T is a nonnegative left eigenvector of LA associated
with the zero eigenvalue satisfying

n
i=1 pi = 1.

For the n agents with m(m < n) followers and n − m leaders,
we use VF , {1, . . . ,m} and VL , {m + 1, . . . , n} to denote,
respectively, the follower set and the leader set. Let qF and qL be the
column stack vectors of, respectively, qi, ∀i ∈ VF , and qi, ∀i ∈ VL.
In this paper, we assume that the directed graph G satisfies the
following assumption.

Assumption 2.2. For each of the m followers, there exists at least
one leader that has a directed path to the follower.

2.3. Mathematic background

Definition 2.3 (Rockafellar, 1972). Let C be a set in a real vector
space S ⊆ Rn. The set C is convex if, for any x and y in C, the point
(1 − t)x + ty ∈ C for any t ∈ [0, 1]. The convex hull for a set of
points X , {x1, . . . , xn} in S is the minimal convex set containing
all points in X . We use Co(X) to denote the convex hull of X . In
particular, Co(X) , {

n
i=1 αixi|xi ∈ X, αi ≥ 0,

n
i=1 αi = 1}.

Definition 2.4 (Berman & Plemmons, 1979). Let Zn ⊂ Rn×n denote
the set of all square matrices of dimension n with nonpositive off-
diagonal entries. A matrix A ∈ Rn×n is said to be a nonsingular
M-matrix if A ∈ Zn and all eigenvalues of A have positive real parts.

Lemma 2.2 (Berman & Plemmons, 1979). A matrix A ∈ Zn is a non-
singular M-matrix if and only if A−1 exists and each entry of A−1 is
nonnegative.

We assume that the leaders have no neighbors. Therefore, the
(nonsymmetric) Laplacian matrix LA associated with A hence G
can be written as

LA =


L1 L2
0(n−m)×m 0(n−m)×(n−m)


, (2)

where L1 ∈ Rm×m and L2 ∈ Rm×(n−m).

Lemma 2.3. The matrix L1 defined as in (2) is a nonsingular M-
matrix if and only if Assumption 2.2 holds. In addition, if Assump-
tion 2.2 holds, then each entry of −L−1

1 L2 is nonnegative and all row
sums of −L−1

1 L2 equal to one.

Proof. See Appendix A. �

Lemma 2.4 (Khalil, 2002). Consider the system

ẋ = f (t, x, u), (3)

where f (t, x, u) is continuously differentiable and globally Lipschitz
in (x, u), uniformly in t. If the unforced system ẋ = f (t, x, 0) has a
globally exponentially stable equilibrium point at the origin x = 0,
then the system (3) is input-to-state stable.

3. Distributed containment control with multiple dynamic
leaders

In this section, we deal with the distributed containment
control problem where the leaders have varying vectors of
generalized coordinate derivatives. Suppose that the leaders’
vectors of generalized coordinate derivatives and their first-order
and second-order derivatives are all bounded. We will design
a distributed control algorithm for (1) such that all followers
converge to the convex hull spanned by the dynamic leaders.
Before moving on, we introduce the following auxiliary vari-
ables

ˆ̇qri , v̂i − α


j∈VL


VF

aij(qi − qj), (4)

ˆ̈qri , âi − α


j∈VL


VF

aij(q̇i − q̇j), (5)

ŝi , q̇i − ˆ̇qri = q̇i − v̂i + α


j∈VL


VF

aij(qi − qj), i ∈ VF , (6)

where α is a positive constant, aij is the (i, j)th entry of the adja-
cency matrix A associated with G, and v̂i (respectively âi) is the ith
follower’s estimate of its desired vector of generalized coordinate
derivatives (respectively, accelerations) in the convex hull spanned
by those of the dynamic leaders that will be designed later. We
then propose the following distributed algorithm combined with
distributed sliding-mode estimators

τi = −Kiŝi + Yi(qi, q̇i, ˆ̈qri, ˆ̇qri)Θi, (7a)

˙̂vi = −β1sgn

j∈VF

aij(v̂i − v̂j) +


j∈VL

aij(v̂i − q̇j)


(7b)

˙̂ai = −β2sgn

j∈VF

aij(âi − âj) +


j∈VL

aij(âi − q̈j)

, (7c)

̇Θ i = −ΛiY T
i (qi, q̇i, ˆ̈qri, ˆ̇qri)ŝi, i ∈ VF , (7d)

where Ki and Λi are symmetric positive-definite matrices, β1 and
β2 are positive constants, sgn(·) is the signum function defined
componentwise, Θi is the estimate ofΘi, and Yi(qi, q̇i, ˆ̈qri, ˆ̇qri) is de-
fined as in (8).

Remark 3.1. The distributed discontinuous sliding-model estima-
tors (7b) and (7c) are inspired by the finite-time coordinated track-
ing algorithmproposed in Cao et al. (2010). As shown in Lemma3.1,
v̂i and âi, i ∈ VF , converge to some certain limits located in the con-
vex hull spanned by the vectors of, respectively, the generalized co-
ordinate derivatives and the generalized coordinate accelerations
of the leaders in finite time. Actually, after some finite time, v̂i and
âi become the final desired vectors of, respectively, the general-
ized coordinate derivatives and the generalized coordinate accel-
erations of the ith follower.

Remark 3.2. The auxiliary variable ŝi is inspired by the sliding
variable introduced in Slotine and Li (1991). The control algorithm
(7a) is designed to drive the variable ŝi to zero. Then on the sliding
surface ŝi = 0, one can conclude that the followers converge to the
convex hull spanned by the dynamic leaders asymptotically.

Lemma 3.1. Suppose that Assumption 2.2 holds. Let qd , [qTd1, . . . ,
qTdm]

T
= −(L−1

1 L2 ⊗ Ip)qL, where qdi ∈ Rp.2 If β1 > ∥q̈d∥, then
∥v̂i(t)−q̇di(t)∥ → 0, ∀i ∈ VF , in finite time. Similarly, if β2 > ∥

...
qd∥,

then ∥âi(t) − q̈di(t)∥ → 0, ∀i ∈ VF , in finite time.

Proof. See Appendix B. �

Theorem 3.3. Suppose that the leaders have varying vectors of gen-
eralized coordinate derivatives, β1 > ∥q̈d∥, and β2 > ∥

...
qd∥,

where qd is defined in Lemma 3.1. Using (7) for (1), d{qi(t), Co[qL(t)]}
→ 0 as t → ∞, ∀i ∈ VF , for arbitrary initial conditions in the pres-
ence of parametric uncertainties if and only if Assumption 2.2 holds.
Specifically, ∥qF (t) + (L−1

1 L2 ⊗ Ip)qL(t)∥ → 0 as t → ∞.

2 When Assumption 2.2 holds, it follows from Lemma 2.3 that L−1
1 exists.

Therefore, qd is well defined.
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Proof (Sufficiency). First, we show that for bounded initial values
qi(0) and q̇i(0), using the control algorithm (7) for (1), the states
qi(t) and q̇i(t), ∀i ∈ VF , will remain bounded in finite time.
From (7b) and (7c), we can get that v̂i(t) and âi(t), ∀i ∈ VF , are
bounded in finite time for bounded initial values v̂i(0) and âi(0).
For bounded states qi and q̇i, ∀i ∈ VF , we can get that ŝi, ˆ̇qri and
ˆ̈qri, ∀i ∈ VF , are bounded. From Assumption (A3), it follows that

Mi(qi) ˆ̈qri + Ci(qi, q̇i) ˆ̇qri + gi(qi)

= Yi(qi, q̇i, ˆ̈qri, ˆ̇qri)Θi, i ∈ VF . (8)

From Assumption (A1), we can get that Yi(qi, q̇i, ˆ̈qri, ˆ̇qri) is
bounded for bounded states qi and q̇i, ∀i ∈ VF , and therefore, Θi(t)
is bounded for bounded initial value Θi(0). Thus, we can get from
(7a) that τi is bounded. Finally, from (1), for bounded qi, q̇i, and τi,
underAssumption (A1),we can get that q̈i is also bounded. Thus,we
can conclude that for bounded initial values qi(0) and q̇i(0), qi(t)
and q̇i(t), ∀i ∈ VF , remain bounded in finite time. Let

q̇ri , q̇di − α


j∈VL


VF

(qi − qj), (9)

and

si , q̇i − q̇ri = q̇i − q̇di + α


j∈VL


VF

(qi − qj), i ∈ VF , (10)

where qdi is defined in Lemma 3.1. Under the condition of the
theorem, using the sliding-mode estimators (7b) and (7c), we can
get from Lemma 3.1 that v̂i(t) ≡ q̇di(t) and âi(t) ≡ q̈di(t) when
t ≥ max{T1, T2} , T0. Therefore, ˆ̇qri(t) ≡ q̇ri(t), ˆ̈qri(t) ≡ q̈ri(t),
and ŝi(t) ≡ si(t), ∀i ∈ VF , when t ≥ T0. Let Θi , Θi − Θi. Also
let sF , q̇r , ˆ̇qr , ˆ̈qr , Θ, Θ , and Θ be, respectively, the column stack
vectors of si, q̇ri, ˆ̇qri, ˆ̈qri, Θi, Θi, and Θi, ∀i ∈ VF .

Hence, using (7) and (8), when t ≥ T0, the closed-loop system
(1) can be written in a vector form as

M(qF )ṡF = −C(qF , q̇F )sF − KF sF − Y (qF , q̇F , ˆ̈qr , ˆ̇qr)Θ, (11)

where M(qF ), C(qF , q̇F ), Y (qF , q̇F , ˆ̈qr , ˆ̇qr), and KF are, respectively,
the block diagonal matrices of Mi(qi), Ci(qi, q̇i), Yi(qi, q̇i, ˆ̈qri, ˆ̇qri),
and Ki, ∀i ∈ VF .

When t ≥ T0, consider the following Lyapunov function
candidate

V (t) =
1
2
sTFM(qF )sF +

1
2

ΘTΞΘ, (12)

where Ξ is the block diagonal matrix of Λ−1
i , ∀i ∈ VF . Taking the

derivative of V along (11) gives that

V̇ (t) = sTFM(qF )ṡF +
1
2
sTF Ṁ(qF )sF + ΘTΞ ̇Θ

= −sTFKF sF , (13)

where we have used Assumption (A2) and (7d) to obtain (13).
Because KF is symmetric positive definite, we can get V̇ (t) ≤ 0,
which means that sF and Θ are bounded when t ≥ T0. Also note
that q̇d is bounded. Combiningwith the fact that for bounded initial
values qi(0), q̇i(0), Θi(0), qi(t), q̇i(t), and Θi(t), ∀i ∈ VF , remain
bounded in finite time, we can conclude that sF (t) and Θ(t) are
bounded for all t ≥ 0. If Assumption 2.2 holds, it follows from
Lemma 2.3 that L1 is a nonsingular M-matrix, which implies that
L−1
1 exists. Note that (10) can be written in a vector form as

˙̄qF = −α(L1 ⊗ Ip)q̄F + sF , (14)

where

q̄F , qF + (L−1
1 L2 ⊗ Ip)qL. (15)
Because L1 is a nonsingularM-matrix, it follows fromDefinition 2.4
that all eigenvalues of L1 have positive real parts. It thus follows
that when sF = 0mp, (14) is globally exponentially stable at the
origin q̄F = 0mp. We can conclude from Lemma 2.4 that (14) is
input-to-state stable with respect to the input sF and the state q̄F .

Because sF is bounded, so is q̄F . It follows from (14) that ˙̄qF is
bounded. Because q̇d is bounded, we can get from (9) that q̇ri, ∀i ∈

VF , is bounded. Differentiating (9), we can get that q̈ri, ∀i ∈ VF , is
bounded because q̈d is bounded. It also follows from (10) that q̇F
is bounded. Note that ˆ̇qr and ˆ̈qr are bounded when t ≤ T0 and
ˆ̇qr ≡ q̇r and ˆ̈qr ≡ q̈r when t ≥ T0. We can conclude that ˆ̇qr
and ˆ̈qr are bounded for all t ≥ 0. Note from Assumption (A1) that
∥Ci(qi, q̇i) ˆ̇qri∥ ≤ kC∥q̇i∥ ∥ˆ̇qri∥ and ∥gi(qi)∥ ≤ kgi , ∀i ∈ VF . There-
fore, both ∥Ci(qi, q̇i) ˆ̇qri∥ and ∥gi(qi)∥ are bounded. Note that in (8),
Mi(qi), ˆ̈qri, Ci(qi, q̇i) ˆ̇qri and gi(qi), ∀i ∈ VF , are all bounded.We con-
clude from (8) that Yi(qi, q̇i, ˆ̈qri, ˆ̇qri) is bounded. Note again fromAs-
sumption (A1) that ∥Ci(qi, q̇i)si∥ ≤ kC∥q̇i∥∥si∥, ∀i ∈ VF . From (11),
we can get that ṡF is bounded. By differentiating (13), we can see
that V̈ (t) is bounded. Therefore, V̇ (t) is uniformly continuous in
time. From Barbalat’s Lemma (Khalil, 2002), we can conclude that
V̇ (t) → 0 as t → ∞, i.e., sF (t) → 0mp as t → ∞. Because (14)
is input-to-state stable with respect to the input sF and the state
q̄F , we have that q̄F (t) → 0mp as t → ∞. As a result, it follows
that qF (t) → −(L−1

1 L2 ⊗ Ip)qL and q̇F → 0mp as t → ∞. If As-
sumption 2.2 holds, it follows from Lemma 2.3 that each entry of
−L−1

1 L2 is nonnegative and each row of −L−1
1 L2 has a sum equal to

one. We then get from Definition 2.3 that−(L−1
1 L2 ⊗ Ip)qL is within

the convex hull spanned by the dynamic leaders. It thus follows
that d[qi(t), Co(qL)] → 0 as t → ∞. This concludes the sufficiency
part.

(Necessity) We prove the necessity part by contradiction. If As-
sumption 2.2 does not hold, there exists a subset of the followers
who cannot receive any information from the leaders directly or
indirectly. That is, the motions of these followers are independent
of the states of the leaders. Therefore, these followers cannot al-
ways converge to the convex hull spanned by the dynamic leaders
for arbitrary initial conditions. �

Remark 3.4. Note that a single leader is a special case of multiple
leaders. Therefore, the distributed coordinated tracking problem
with a single leader for networked Lagrangian systems is a
special case of the distributed containment control problem. Thus
the results in the current paper can be used to deal with the
coordinated tracking problem and hence extend thework in Chung
and Slotine (2009), Mei et al. (2011) and Spong and Chopra (2007)
to a directed graph.

It is worth to mention that the distributed adaptive control
algorithm (7) can deal with the general case where the leaders
have varying vectors of generalized coordinate derivatives but
rely on two discontinuous sliding-mode estimators. We next show
that if the leaders have constant vectors of generalized coordinate
derivatives, only one distributed continuous estimator is required
for each follower. Define the following auxiliary variables

q̇ri , v̂i − α


j∈VL


VF

aij(qi − qj), (16)

si , q̇i − q̇ri = q̇i − v̂i + α


j∈VL


VF

aij(qi − qj), i ∈ VF , (17)

where α is a positive constant, aij is defined as in (4), and v̂i
is the ith follower’s estimate of its desired vector of generalized
coordinate derivatives in the convex hull spanned by those of the
leaders that will be designed later. In this case, we propose the
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following control algorithm for (1) in the presence of parametric
uncertainties

τi = −Kisi + Yi(qi, q̈ri, q̇i, q̇ri)Θi, (18a)

˙̂vi = −β


j∈VF

aij(v̂i − v̂j) +


j∈VL

aij(v̂i − q̇j)

, (18b)

̇Θ i = −ΛiY T
i (qi, q̈ri, q̇i, q̇ri)si, i ∈ VF , (18c)

where β is a positive constant, and Ki, Λi, and Θi are defined as
in (7). We next state the main result of containment control with
multiple dynamic leaders that have constant vectors of generalized
coordinate derivatives.

Corollary 3.5. Suppose that the leaders have constant vectors of gen-
eralized coordinate derivatives. Using (18) for (1), d{qi(t), Co[qL(t)]}
→ 0, ∀i ∈ VF , as t → ∞ for arbitrary initial conditions in the pres-
ence of parametric uncertainties if and only if Assumption 2.2 holds.
Specifically, ∥qF (t) + (L−1

1 L2 ⊗ Ip)qL(t)∥ → 0 as t → ∞.

Furthermore, we show that if the leaders are stationary, no
estimators are required. In this case, q̇d defined in Lemma 3.1
equals to zero. Thus, (9) and (10) reduce to

q̇ri , −α


VL


VF

aij(qi − qj), (19)

si , q̇i + α


VL


VF

aij(qi − qj), i ∈ VF . (20)

We propose the following distributed adaptive control algo-
rithm for (1) in the presence of parametric uncertainties

τi = −Kisi + Yi(qi, q̇i, q̈ri, q̇ri)Θi, (21a)̇Θ i = −ΛiY T
i (qi, q̇i, q̈ri, q̇ri)si, i ∈ VF , (21b)

where Ki, Λi, and Θi are defined as in (7).

Corollary 3.6. Suppose that all leaders are stationary. Using (21)
for (1), d[qi(t), Co(qL)] → 0 and q̇i → 0p as t → ∞, ∀i ∈ VF , for
arbitrary initial conditions in the presence of parametric uncertainties
if and only if Assumption 2.2 holds. Specifically, qF (t) → −(L−1

1 L2 ⊗

Ip)qL as t → ∞, that is, the final vectors of generalized coordinates of
the followers are given by −(L−1

1 L2 ⊗ Ip)qL.

For the leaderless consensus problem for networked Lagrangian
systems, we have the following result.

Corollary 3.7. Suppose that VL = ∅.3 Using (21) for (1), ∥qi(t) −

qj(t)∥ → 0 and q̇i(t) → 0p as t → ∞ for arbitrary initial conditions
in the presence of parametric uncertainties if and only if the directed
graph G associated with the n agents has a directed spanning tree.

Proof (Sufficiency). BecauseVL = ∅, (20) can bewritten in a vector
form as

q̇ = −α(LA ⊗ Ip)q + s, (22)

where LA ∈ Rn×n is the (nonsymmetric) Laplacian matrix
associated with G, and q and s are column stack vectors of qi and
si, i = 1, . . . , n. Following the same steps as in the proof of
Theorem 3.3, we can get that s(t) → 0np as t → ∞. For the
linear system q̇ = −α(LA ⊗ Ip)q, if G has a directed spanning
tree, then it follows from Lemma 2.1 that consensus is reached

3 In this case, there does not exist a leader. Therefore, (21) becomes a leaderless
consensus algorithm accounting for parametric uncertainties.
Fig. 1. The directed graph that characterizes the interaction among the four leaders
and the six followers, where Li, i = 1, . . . , 4, denotes the ith leader and Fi, i =

1, . . . , 6, denotes the ith follower.

exponentially. Thus, there exists q̄ =
n

i=1 piqi(0), where pi is
defined in Lemma 2.1, such that 1n ⊗ q̄ is a globally exponentially
stable equilibrium point of q̇ = −α(LA ⊗ Ip)q. We can conclude
from Lemma 2.4 that the system (22) is input-to-state stable with
the input s and the state q−1n⊗q̄. Note that s(t) → 0np as t → ∞.
We can conclude that ∥qi(t) − qj(t)∥ → 0 and q̇i(t) → 0p as
t → ∞.

(Necessity) The proof of the necessity part is the same as
Theorem 3.3 and is omitted here. �

Remark 3.8. In Corollary 3.7, we have shown that the adaptive
control algorithm (21) can be used to deal with the leaderless
consensus problem for networked Lagrangian system. Thus,
Corollary 3.7 extends the first algorithm in Ren (2009) to a directed
graph in the presence of parameter uncertainties.

Remark 3.9. In the current paper, we assume that the interaction
graph among the followers and the leaders is fixed. As a result, the
followers converge to some certain limits located in the convex
hull spanned by the leaders. But the case where the interaction
graph is time varying occurs commonly in real-world applications.
In future work, it will be interesting to consider the distributed
containment control problem for multiple nonlinear Lagrangian
systems in the presence of parametric uncertainties under time-
varying interaction graphs and introduce the strict containment-
preserving mechanisms.

4. Simulation results

In this section, numerical simulations are performed to show
the effectiveness of the proposed control algorithm. We consider
the containment control problem for ten agents with four leaders
and six followers. The dynamic equation of each follower is
modeled by Cheah et al. (2009)

miq̈i + βiq̇i = τi, i = 1, . . . , 6,

where qi ∈ R2, and mi and βi represent, respectively, the mass
and damping constants of the i follower, which are assumed to be
constant but unknown.

Fig. 1 shows the directed graph that characterizes the
interaction among the leaders and the followers. In our simulation,
we choose aij = 1, i = 1, . . . , 6, j = 1, . . . , 10, if
agent j is a neighbor of agent i, and aij = 0 otherwise.
For simplicity, the dynamics of the followers are assumed to
be the same, and we let mi = 1, and βi = 0.5, i =

1, . . . , 6. Also let the initial positions of the six followers
be, respectively, [−4, 4]T , [0, 6]T , [4, 4]T , [−4, −4]T , [0, 6]T , and
[4, −4]T , and the initial velocities of the six followers be,
respectively, [5, −1]T , [1, −3]T , [−12, −8]T , [10, 3]T , [0, 6]T , and
[−7, 0]T . In the following, we call q̄F = qF + (L−1

1 L2 ⊗ I2)qL
the containment error vector and let q̄F = [q̄TF1, . . . , q̄

T
F6]

T , where
q̄Fi ∈ R2. Let q̄(1)

Fi and q̄(2)
Fi denote, respectively, the first and the

second component of q̄Fi, ∀ i = 1, . . . , 6.
Let the initial positions of the fours leaders be, respectively,

[−2, 2]T , [2, 2]T , [−2, −2]T , and [2, −2]T , the initial velocities be
identical, [2, 4]T , and the accelerations be identical, [0, −4 sin(t)]T .
Here for better visualization of the plot, we have chosen identical
accelerations and initial velocities for the leaders. However, the
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Fig. 2. Trajectories of the followers with four dynamic leaders that move with
varying velocities using (7). The blue circles denote the four leaders, and the blue
rectangle is the convex hull spanned by the leaders. The black, green, and red
squares denote, respectively, the positions of the followers at, respectively, t =

0 s, t = 7.5 s, and t = 15 s,while the black lines are the trajectories of the followers.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Fig. 3. The containment errors of followers 1, 3, and 5 with four dynamic leaders
that move with varying velocities using (7).

leaders can have different accelerations and initial velocities,
which means that the shape of the convex hull can be changing
over time. The control parameters are chosen as α = 0.5, Ki =

0.8I2, and Λi = 5I2, ∀i = 1, . . . , 6. The gains for the distributed
sliding-mode estimators are chosen as β1 = β2 = 4. Fig. 2
shows the trajectories of the six followers when the leaders move
with varying velocities using (7). Fig. 3 shows the containment
errors of followers 1, 2, and 3 using (7). We can see that the six
followers converge to the dynamic convex hull spanned by the
four dynamic leaders and the containment errors converge to zero
asymptotically.

5. Conclusions

The distributed containment control problem for networked
Lagrangian systemswithmultiple dynamic leaders in the presence
of parametric uncertainties has been studied under a directed
graph that characterizes the interaction among the leaders and
the followers. We have proposed a distributed adaptive control
algorithm combinedwith distributed sliding-mode estimators and
a necessary and sufficient condition on the directed graph such
that all followers converge to the dynamic convex hull spanned
by the dynamic leaders asymptotically. As a byproduct, we have
presented a necessary and sufficient condition on a leaderless
consensus algorithm for networked Lagrangian systems under a
directed graph.
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Appendix A. Proof of Lemma 2.3

Consider the following new (nonsymmetric) Laplacian matrix
given by

L =


L1 L21n−m

0T
m 0


.

Treat the set of leaders as a new leader, labeled as agent 0. Note
that all entries of the matrix L2 are nonpositive. Thus, for i ∈

VF , if there exists an entry of L2, denoted as −aij, j ∈ VL, such
that −aij < 0 (equivalently, there exists a leader in VL that is
a neighbor of follower i), the ith entry of the vector L21(n−m) is
negative (equivalently, the new leader 0 is a neighbor of follower i);
on the other hand, for i ∈ VF , if the ith entry of the vector L21(n−m)

is negative, there must exist an entry of L2, denoted as −aij, j ∈ VL,
such that −aij < 0. We can conclude that Assumption 2.2 holds
if and only if the graph associated with L, denoted as G, has a
directed spanning tree. From Lemma 2.1,G has a directed spanning
tree if and only if L has exactly one zero eigenvalue, which is
equivalent to the fact that L1 is nonsingular.

Note that L1 ∈ Zm is diagonally dominantwith positive diagonal
entries. From the Gershgorin disc theorem (Horn & Johnson, 1985),
it follows that the eigenvalues of L1 have nonnegative real parts.
Also note that L1 is nonsingular,which means that all eigenvalues
of L1 have positive real parts. It thus follows from Definition 2.4
that L1 is a nonsingularM-matrix.

In addition, note from (2) that L11m + L21(n−m) = 0m, i.e.,
−L−1

1 L21n−m = 1m. Because L1 is a nonsingular M-matrix, we can
conclude from Lemma 2.2 that each entry of L−1

1 is nonnegative.
Also note that each entry of L2 is nonpositive, it thus follows that
−L−1

1 L2 is a matrix with nonnegative entries and each row of
−L−1

1 L2 has a sum equal to 1.

Appendix B. Proof of Lemma 3.1

Let v̂ and â be, respectively, the column stack vectors of v̂i and
âi, ∀i ∈ VF . Note that (7b) can be written in a vector form as

˙̂v = −β1sgn

(L1 ⊗ Ip)(v̂ − q̇d)


. (23)

Let v̄i , v̂i − q̇di and ai0 ,


j∈VL
aij. Then (23) can be written as

˙̄vi = −β1sgn
 m

j=0

aij(v̄i − v̄j)


− q̈di, i ∈ VF , (24)

where v̄0 , 0p. If Assumption 2.2 holds, from the proof of Theorem
3.1 in Cao et al. (2010), we can get that if β1 > ∥q̈di∥∞, v̄i(t) → 0p
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in finite time, i.e., ∥v̂i(t) − qdi(t)∥ → 0, ∀i ∈ VF , in finite time.
Note that we have β1 > ∥q̈d∥ ≥ ∥q̈di∥∞. The settling time T1
is upper bounded by

maxi∈VF ∥v̄i(0)∥∞

β1−supt≥0 ∥q̈d∥
. Similarly, we can show that

if β2 > ∥
...
qd∥, ∥âi(t) − q̈di(t)∥ → 0, ∀i ∈ VF , in finite time,

and the settling time T2 is upper bounded by
maxi∈VF ∥āi(0)∥∞

β2−supt≥0 ∥
...
q d∥

, where
āi , âi − q̈di.
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