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a b s t r a c t

This paper addresses collective rotating motions of second-order multi-agent systems in three-
dimensional space (3D). Two distributed control protocols are proposed and sufficient conditions are
derived under which all agents rotate around a common point with a specified formation structure.
Simulation results are provided to illustrate the effectiveness of the theoretical results.
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1. Introduction

Distributed control of multi-agent systems has attracted great
attention in many fields such as biology, physics, robotics and
control engineering [1–22]. For example, in [4], Ren introduced
several second-order consensus algorithms for state consensus of
systems by taking into account actuator saturation and limited
available information. Also, in [5], Hong et al. addressed a
coordination problem for second-ordermulti-agent systems in the
presence of an active leader. Moreover, in [14], Lafferriere et al.
investigated a method for decentralized stabilization of vehicle
formations, while, in [16], Tanner et al. gave a set of control laws to
enable second-order agents to generate stable flocking motions.

A class of collective circular motions widely exist in nature.
Examples include flocks of birds flying along a circular orbit and the
motion of celestial bodies, which can be applied to formation flight
of satellites, circular mobile sensor networks and so on. However,
currently, rare results are derived to generate such motions. Only
recently,motivated by the applications of autonomous underwater
vehicles (AUVs) in oceanographic sampling, a novel rotating
formation control problem was solved in [18] to make all agents
circle around a common point with some special structures at a
unit speed. In [19], 3D circular motion coordination was studied
in the presence of a time-invariant flow field. Here all agents
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finally move on a unit circle. Also, in [20], collective circular
motions were addressed by introducing a cyclic pursuit policy to
make one vehicle pursuit another vehicle along the line of sight
rotated by a common offset angle. Subsequently, the results of [20]
were extended in [21] by introducing a rotation matrix to an
existing second-order consensus protocol. However, in [18–21],
the radii of the circles and the desired formation shape cannot be
arbitrarily set. While the circular motions with the same radius or
a priori unknown radii might be appropriate for some applications,
there exist other applications such as persistent surveillance,
where it is desirable to have different desired radii of circular
orbits for different agents. To specify a desired circle center, a
possible approach is to introduce a virtual leader. However, in
real applications and a distributed control context, it might not
be realistic to assume that the virtual leader’s state is known by
all agents. Using the algorithms in [18,19], it is not clear how to
introduce a virtual leader whose state is known by only a subset
of the agents to define a desired circle center. Moreover, in [20,21]
a certain control parameter, namely, the rotation angle, must be
exactly equal to a certain value to generate circular motions. As a
result, the algorithms are not robust in this case. Motivated by the
works of [18–21], a collective rotating formation control problem
was investigated in [22] for second-order multi-agent systems in
2D. Control protocols were proposed to make all agents surround
a common point with a desired formation structure. However, the
approach adopted in [22] is based on the complex system theory
and cannot be directly applied to the 3D situation.

In this paper, we extend the work of [22] to address the
collective rotating formation control problem for second-order
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multi-agent systems in a plane in 3D. We are interested in
collection motions where all agents finally converge to a desired
plane in 3D and move on desired circular orbits. This kind of
collective motion is relevant for many practical applications. Due
to the existence of the rotating mode, the desired relative position
between every two agents is time varying and thus the approach
used in the common formation control problems by introducing
desired relative separation vectors to the corresponding consensus
problems is invalid for the rotating formation control problem.
To solve the rotating formation control problem, we propose
two protocols and employ a Lyapunov-based approach to give
sufficient conditions under which all agents finally move around
a common point with a specific formation structure. When there
exists a virtual leader that specifies the desired center and radii
of the orbits, it is only required that one agent knows the
desired circle center and radius. Compared with [18–21], the
protocols designed in this paper guarantees that the desired
rotating formation can be arbitrarily set except for some singular
points. Also, the protocols are robust to control parameter changes.
Therefore, the results in this paper complements some of the
existing results [18–22].

The following notations will be used throughout this paper.
Rm and Cm denote the set of all m dimensional real and complex
column vectors; Im denotes the m dimensional unit matrix; ⊗

denotes the Kronecker product; 1 represents [1, . . . , 1]T with
compatible dimensions (sometimes, we use 1n to denote 1 with
a dimension n); 0 denotes the zero vector or zero matrix with
appropriate dimensions; I = {1, 2, . . . , n}; arg(·) denotes the
argument of a vector; ij denotes the imaginary unit; ‖ · ‖ denotes
the 2-norm; ∗ denotes the conjugate transpose; diag{· · ·} denotes
a diagonal matrix; ⊕ denotes the direct sum.

2. Preliminaries

2.1. Graph theory

Let G(V, E, A) be an undirected graph of order n, where V =

{s1, . . . , sn} is the set of nodes, E ⊆ V × V is the set of edges,
and A = [aij] is the weighted adjacency matrix. The node indices
belong to a finite index set I. An edge of G is denoted by eij =

(si, sj). The weighted adjacency matrix is defined as aii = 0 and
aij ≥ 0, where aij = aji > 0 if and only if eij ∈ E . Since the graph
considered is undirected, it means that once eij ∈ E , then eji ∈ E .
Thus,A is a symmetric nonnegativematrix. The set of neighbors of
node si is denoted by Ni = {sj ∈ V : (si, sj) ∈ E}. The in-degree
and out-degree of node si are defined as din(si) =

∑n
j=1 aji and

do(si) =
∑n

j=1 aij, respectively. Then, the Laplacian corresponding
to the undirected graph G is defined as L = [lij], where lii = do(si)
and lij = −aij, i ≠ j. Obviously, the Laplacian of any undirected
graph is symmetric. A path is a sequence of ordered edges of the
form (si1 , si2), (si2 , si3), . . . , where ij ∈ I and sij ∈ V . If there
is a path from every node to every other node, the graph is said
to be connected. If the undirected graph G is connected, then its
Laplacian L has a zero eigenvalue with an associated eigenvector 1
and all its other n − 1 eigenvalues are all positive [23].

2.2. Transformation of coordinates

In this subsection, we introduce some concepts and results of
transformation of coordinates (referring to [24]). Consider two
rectangular coordinate systems with a common origin, denoted
by Sa(x, y, z) and Sb(ξ , η, ζ ). Let ix, iy, iz ∈ R3 and iξ , iη, iζ ∈ R3

be two sets of orthogonal unit vectors parallel to their respective
coordinate axes. Consider an arbitrary vector p expressed in terms
of the components along the x, y, z axes and the ξ, η, ζ axes. Then

we have two equivalent representations: p = xix + yiy + ziz =

ξ iξ + ηiη + ζ iζ . To obtain any coordinate representation in one
system in termsof that of another system,we simply take the scalar
product of the above identity with the corresponding unit vector.
In this manner, we obtain two sets of three linear equations which
can be written in a vector form as

[x, y, z]T = R[ξ, η, ζ ]
T or [ξ, η, ζ ]

T
= RT

[x, y, z]T , (1)

where R ∈ R3×3. The matrix R is called the rotation matrix of Sb
with respect to Sa and it has the property that RRT

= RTR = I3.
Let k ∈ R3 be a unit vector whose coordinate representation in

Sa is k = [kx, ky, kz]T , and Sc be a new coordinate system obtained
by rotating Sa about the axis k with an angle θ . Then the rotation
matrix of Sc with respect to Sa is [24] Rk(θ) = (cos θ)I3 + (1 −

cos θ)kkT + (sin θ)S(k), where S(k) ,
[

0 −kz ky
kz 0 −kx

−ky kx 0

]
.

3. Problem statement

Consider a multi-agent system consisting of n agents. Each
agent is regarded as a node in an undirected graph G. Each edge
(sj, si) ∈ E corresponds to an available information channel
between agents si and sj. Moreover, each agent updates its current
state based upon the information received from its neighbors.
Suppose that each agent has the dynamics as follows:

ṙi = vi, v̇i = ui, (2)

where ri = [ri1, ri2, ri3]T ∈ R3 and vi = [vi1, vi2, vi3]
T

∈ R3

are the position and velocity of agent si and ui(t) ∈ R3 is the
control input (or protocol). It should be noted that all vectors are
represented in an inertial rectangular coordinate system, denoted
by So, throughout this paper unless otherwise stated.

In practice, groups of agents often need to move around a com-
mon point while maintaining some specific formation structure,
e.g., satellite formation flying and the motion of celestial bodies. In
such multi-agent systems, each agent can only use its neighbors’
information to cooperate with other agents, and the desired rela-
tive position between every twoagents is time varyingwhich is dif-
ferent from the common formation control problems as discussed
in [14].

In this paper, our main objective is to design rules to make
all agents surround a common point with a desired formation
structure on a plane whose normal is a specified unit vector iρ ∈

R3.
Note that the agentsmay finallymove in the clockwise direction

or counterclockwise direction. Without loss of generality, we
assume that all agents finally move in the counterclockwise
direction. Moreover, for convenience of discussion, we introduce
a new rectangular coordinate system Sn such that the third
coordinate axis of Sn is parallel to the unit vector iρ and Sn and
So share the common origin. The rotation matrix from So to Sn is
denoted as Rno ∈ R3×3. Here, we do not define the other two axes
of Sn explicitly and thus the rotation matrix Rno can take different
values, which does not affect the analysis and results in this paper.

Definition 3.1. A rotating formation in R3 is a constant vector

F(h(ρ, θ), iρ)

= [hT
1, . . . , h

T
n, i

T
ρ]

T

= [(ρ1 cos θ1, ρ1 sin θ1), . . . , (ρn cos θn, ρn sin θn), iTρ]
T

∈ R2n+3,

where hi = (ρi cos θi, ρi sin θi)
T , θi ∈ [0, 2π) and ρi ∈ R is

a positive constant for any i ∈ I. The multi-agent system (2)
converges to the formation F(h, θ, iρ) if
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Fig. 1. One example of a formation structure with four agents.

lim
t→+∞

iTρvi(t) = 0, (3)

lim
t→+∞


v̇i(t) − ωRT

noRl0

π

2


Rnovi(t)


= 0, (4)

lim
t→+∞


ri(t) + ω−1RT

noRl0

π

2


Rnovi(t)


−


rk(t) + ω−1RT

noRl0

π

2


Rnovk(t)


= 0, (5)

lim
t→+∞

[
1
ρi

RT
noRl0(−θi)Rnovi(t) −

1
ρk

RT
noRl0(−θk)Rnovk(t)

]
= 0, (6)

lim
t→+∞

[vi(t)
ω

 − ‖hi‖

]
= 0, (7)

for any i, k ∈ I and a positive constant ω, where Rl0(θi) =[
cos θi − sin θi 0
sin θi cos θi 0
0 0 1

]
is the rotation matrix of a rotation about the

axis l0 = [0, 0, 1]T with an angle θi.1 In particular, if only the
conditions (3)–(6) are satisfied, it is said that a quasi-rotating
formation is achieved.

In Definition 3.1, condition (3) means that each agent finally
travels on a plane perpendicular to the unit vector iρ . Note that the
term Rnovi(t) is the coordinate representation of vi(t) in Sn. The
terms RT

noR


π
2


Rnovi(t) and RT

noR(−θi)Rnovi(t) are the coordinate
representations of vi rotated about the axis iρ with an angle θ =
π
2 and θ = −θi, respectively, in So. Then, condition (4) means
that the acceleration of each agent tends to contain only the
component of the centripetal acceleration ωRT

noR


π
2


Rnovi(t). By

mechanical knowledge, it can be obtained that conditions (3) and
(4) guarantee that each agent finally moves on a circle with the
angular velocity ω on a plane perpendicular to the vector iρ . Also,
ri(t) + ω−1RT

noR


π
2


Rnovi(t) denotes the circle center surrounded

by agent si at time t . Then, condition (5) means that the circle
centers surrounded by all agents tend to be the same as t →

+∞. Condition (6) means that limt→+∞

 vi
ρi

 −

 vk
ρk


= 0 and

limt→+∞[(arg(vi) − arg(vk)) − (θi − θk)] = 0 for any i, k ∈ I,
which makes all agents finally form a formation that has the same
shape but perhaps a different size from the desired formation h.
Condition (7) guarantees that the final formation has the same size
as the desired formation h. In summary, under conditions (3)–(7),
all agents finally surround a commonpoint in the counterclockwise
direction with an angular velocity ω on a plane perpendicular
to the vector iρ while maintaining a specific formation h. For
simplicity of the following analysis, we assume ω = 1.

Fig. 1 shows a specific formation structure with four agents.
Fig. 2 shows a rotating formation with four agents, where the

1 To simplify the notation, we replace all ‘‘Rl0 (·)’’ with ‘‘R(·)’’ in the remainder of
this paper.

Fig. 2. A rotating formation with a desired formation structure h = [hT
1 , h

T
2 ,

hT
3 , h

T
4 ]

T as shown in Fig. 1.

Fig. 3. One example of two agents in a desired rotating formation.

agents maintain a specific formation structure as shown in Fig. 1
while surrounding a common point with a constant angular
velocity ω on a plane perpendicular to the vector iρ . Fig. 3
shows one example of two agents, agents si and sk, in a desired
rotating formation, where the vectors from the circle center
to the positions of agents si and sk are −ω−1RT

noR


π
2


Rnovi(t)

and −ω−1RT
noR


π
2


Rnovk(t), which correspond to hi and hk,

respectively.

4. Rotating formation control of second-order multi-agent
systems in 3D

Due to the existence of the rotating mode, the desired relative
position between every two agents is time varying and thus the
approach used in the common formation control problems by in-
troducing desired relative separation vectors to the corresponding
consensus problems is invalid for the rotating formation control
problem.

4.1. Quasi-rotating formation

In this subsection, we study quasi-rotating formation control
to make all agents finally surround a common point on a plane
perpendicular to the vector iρ while maintaining a formation
structure that has the same shape but perhaps a different size from
the desired formation structure h. The protocol is given as

ui = ui1 + ui2, (8)
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ci = ri + RT
noR

π

2


Rnovi, ξ = [vT

1 , . . . , v
T
n , c

T
1 , . . . , cTn ]

T and

Γ =

[
In ⊗ (RT

noR
⊥Rno) 03n×3n

03n×3n 03n×3n

]
−

 F [(H−1LH−1) ⊗ I3]F T L ⊗ I3

F

(H−1LH−1) ⊗


RT
noR

π

2


Rno


F T L ⊗


RT
noR

π

2


Rno

 ∈ R6n

where H = diag{ρ1, ρ2, . . . , ρn}, F = diag{RT
noR(θ1)Rno, . . . , RT

noR(θn)Rno} and L is the Laplacian of the graph G.
Box I.

where ui1 = RT
noR

⊥Rnovi and ui2 = −
∑

sk∈Ni
aij[ρ−2

i vi −

ρ−1
i ρ−1

k RT
noR(θi −θk)Rnovk]−

∑
sk∈Ni

aij[(ri − rk)+RT
noR(

π
2 )Rno(vi −

vk)] for any i ∈ I, where aij is the (i, j)th entry of the
adjacency matrix A,Ni is the neighbor set of agent si and R⊥

=

diag


0 −1
1 0


, −1


. In protocol (8), ui1 is a local velocity feedback

term that plays a role in making each agent surround a point on a
plane perpendicular to the vector iρ , while ui2 is a distributed state
information feedback term that plays a role in making all agents
converge to a specific structure.

We define the equations as in Box I, Here, it should be noted
that R(−θi) = R(θi)T = R(θi)−1, R(θi − θk) = R(θi)R(−θk) and
R(θi)R(θk) = R(θk)R(θi). Then using protocol (8) for (2), the closed-
loop system can be written in a vector form as

ξ̇ = Γ ξ . (9)

Let ξ̄ = (In ⊗ Rno)ξ = [v̄T
1 , . . . , v̄

T
n , c̄

T
1 , . . . , c̄Tn ]

T
∈ R6n, where

v̄i = [v̄T
i1, v̄

T
i2, v̄

T
i3]

T
∈ R3 and c̄i = [c̄Ti1, c̄

T
i2, c̄

T
i3]

T
∈ R3 for all i ∈ I.

Then system (9) can be written as

˙̄ξ = Γ̄ ξ̄ , (10)

where Γ̄ =

[
In ⊗ R⊥

− F̄ [(H−1LH−1) ⊗ I3]F̄
T

−L ⊗ I3
−F̄


(H−1LH−1) ⊗ R

 π

2


F̄T −L ⊗ R

 π

2

] and

F̄ = diag{R(θ1), R(θ2), . . . , R(θn)}.

Further, let

ϕ1 = [v̄11, v̄12, . . . , v̄n1, v̄n2, c̄11, c̄12, . . . , c̄n1, c̄n2]T ∈ R4n

and

ϕ2 = [v̄13, v̄23, . . . , v̄n3, c̄13, c̄23, . . . , c̄n3]T ∈ R2n.

Also, let R̄(θi) =


cos θi − sin θi
sin θi cos θi


and ¯̄F = diag{R̄(θ1), . . . , R̄(θn)}.

Here, it should be also noted that R̄(θi) also satisfies that R̄(−θi) =

R̄(θi)T = R̄(θi)−1, R̄(θi − θk) = R̄(θi)R̄(−θk) and R̄(θi)R̄(θk) =

R̄(θk)R̄(θi). Then system (9) is equivalent to the following two
systems:

ϕ̇1 = Φ1ϕ1, (11)

and

ϕ̇2 = Φ2ϕ2, (12)

where

Φ1 =

In ⊗ R̄
π

2


−

¯̄F [(H−1LH−1) ⊗ I2] ¯̄F
T

−L ⊗ I2

−
¯̄F

(H−1LH−1) ⊗ R̄

π

2


¯̄F
T

−L ⊗ R̄
π

2




and

Φ2 =

[
−In − H−1LH−1

−L
−H−1LH−1

−L

]
.

Remark 4.1. In fact, system (10) or (11)–(12) is the representa-
tion of system (9) in the rectangular coordinate system Sn. Specif-
ically, v̄i, i = 1, 2, . . . , n, are the coordinate representations
of velocities of all agents in Sn whereas c̄i, i = 1, 2, . . . , n,
are the coordinate representations of the circle centers of all
agents in Sn. Then it is easy to see that system (9) satisfies con-
ditions (3)–(6) if and only if system (10) or system (11)–(12) sat-
isfies that limt→+∞


1
ρi
R̄(−θi)[v̄i1, v̄i2]

T
−

1
ρk
R̄(−θk)[v̄k1, v̄k2]

T


=

0, limt→+∞ v̄i3 = 0, limt→+∞(c̄i−c̄k) = 0 and limt→+∞([ ˙̄vi1, ˙̄vi2]
T

− R̄(π
2 )[v̄i1, v̄i2]

T ) = 0 for any i, k ∈ I.

Remark 4.2. It should be noted that the approach used in [22]
cannot be applied directly to analyze the stability of the system
(11) because the multi-agent system in [22] is described in a
complex number field, which has a lower dimension and is thus
much easier to analyze than system (11).

Define

sgn(x) =

1, if x = 0
−1, if x = π
0, otherwise

and
M = diag{1, sgn(|θ2 − θ1|), sgn(|θ3 − θ1|), . . . , sgn(|θn − θ1|)}.

Assumption 1. 1T
nHM1n ≠ 0 when |θi − θk| = 0 or |θi − θk| = π

for all i, k ∈ I.

Remark 4.3. When 1T
nHM1n = 0 and |θi −θk| = 0 or |θi −θk| = π

hold for all i, k ∈ I, then it is easy to see that
∑n

i=1 hi = 0
and all agents in the desired formation are in a line. This might
make the matrix Φ1 have other imaginary eigenvalues that are not
equal to ±ij and 0. For example, consider a multi-agent system
consisting of two agents with [ρ1, θ1, ρ2, θ2] = [1, 0, 1, π] and
L =


1 −1

−1 1


. By simple calculations, it can be obtained that Φ1

has imaginary eigenvalues at ±2ij except 0 and ±ij, which renders
the desired quasi-rotating formation to be unreachable. Therefore,
Assumption 1 is made to eliminate these unreachable formation
structures.

Lemma 4.1. Suppose that the graph G is connected. Under Assump-
tion 1, the following statements hold.
(a) Φ1 has a zero eigenvalue of multiplicity 2 with associated

eigenvectors [0T
2n, 1

T
n ⊗ [1, 0]]T and [0T

2n, 1
T
n ⊗ [0, 1]]T .

(b) Φ1 has two simple eigenvalues at ij and −ij with associated
eigenvectors [βT

1 , 0T
2n]

T and [βT
2 , 0T

2n]
T , where β1 =

¯̄F [(1T
nH) ⊗

[ij, 1]]T and β2 =
¯̄F [(1T

nH) ⊗ [−ij, 1]]T .
(c) All its other 4n − 4 eigenvalues have negative real parts.
Proof. Let λa be an eigenvalue of Φ1 and [zT1 , zT2 ]

T be its corre-
sponding eigenvector, where z1, z2 ∈ C2n. Then we have that
In ⊗ R̄

π

2


z1 −

¯̄F [(H−1LH−1) ⊗ I2] ¯̄F
T
z1

−(L ⊗ I2)z2 = λaz1, (13)

−
¯̄F

(H−1LH−1) ⊗ R̄

π

2


¯̄F
T
z1 −


L ⊗ R̄

π

2


z2 = λaz2. (14)
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For statement (a), it can be checked that Φ1 has a zero
eigenvalue with two associated linearly independent eigenvectors
[zT1 , zT2 ] = [0T

2n, (1
T
n ⊗ ([1, 0]T ))T ]T and [zT1 , zT2 ] = [0T

2n, (1
T
n ⊗

([0, 1]T ))T ]T . To prove that the multiplicity of the zero eigenvalue
is 2, we only need to prove that Φ1 has no generalized eigenvec-
tor of a grade higher than 1 associated with the zero eigenvalue.
Suppose that there is a grade 2 generalized eigenvector associated
with the zero eigenvalue. That is, there is a nonzero 4n × 1 col-
umn vector, denoted by [z̃T1 , z̃T2 ]

T where z̃1, z̃2 ∈ R2n, such that
(Φ1 − 0)[z̃T1 , z̃T2 ]

T
= [zT1 , zT2 ]

T . After simple calculations, it can be
obtained that z̃1 = z2 and thus (In ⊗ R̄(π

2 ))z2 −
¯̄F [(H−1LH−1) ⊗

I2] ¯̄F
T
z2 − (L ⊗ I2)z̃2 = 0, because z1 = 0n and z2 = 1n ⊗ ([1, 0]T )

or 1n ⊗ ([0, 1]T ). On the other hand, since R̄(π
2 )+ R̄(π

2 )T = 0, then
¯̄F [(H−1LH−1)⊗ R̄(π

2 )] ¯̄F
T
+[

¯̄F [(H−1LH−1)⊗ R̄(π
2 )] ¯̄F

T
]
T

= 0. There-

fore, −z∗

2 (In ⊗ R̄(π
2 ))[(In ⊗ R̄(π

2 ))z2 −
¯̄F [(H−1LH−1) ⊗ I2] ¯̄F

T
z2 −

(L ⊗ I2)z̃2] + [−z∗

2 (In ⊗ R̄(π
2 ))[(In ⊗ R̄(π

2 ))z2 −
¯̄F [(H−1LH−1) ⊗

I2] ¯̄F
T
z2 − (L ⊗ I2)z̃2]]∗ = 2n + z∗

2
¯̄F [(H−1LH−1) ⊗ R̄(π

2 )] ¯̄F
T
z2 +

[z∗

2
¯̄F [(H−1LH−1) ⊗ R̄(π

2 )] ¯̄F
T
z2]∗ = 2n ≠ 0, which is a contradic-

tion. Therefore, the multiplicity of the zero eigenvalue is 2. State-
ment (a) is proved. �

For statements (b) and (c), pre-multiplying both sides of (14) by
In ⊗ R̄


π
2


yields that

−


In ⊗ R̄

π

2


¯̄F

(H−1LH−1) ⊗ R̄

π

2


¯̄F
T
z1

−


In ⊗ R̄

π

2

 
L ⊗ R̄

π

2


z2

=
¯̄F [(H−1LH−1) ⊗ I2] ¯̄F

T
z1 + (L ⊗ I2)z2

= λa


In ⊗ R̄

π

2


z2. (15)

Substituting (15) into (13), we have that

λa


In ⊗ R̄

π

2


z2 =


In ⊗ R̄

π

2


− λaI2n


z1. (16)

Combining (15) and (16), we have that

K1z1 − K2z1 − K3z1 = 0, (17)

where K1 = In ⊗ R̄


π
2


− λaI2n, K2 =

¯̄F [(H−1LH−1) ⊗ I2] ¯̄F
T
and

K3 =
1
λa

(L ⊗ I2)

In ⊗ R̄


π
2

−1
 

In ⊗ R̄


π
2


− λaI2n


. Consider a

system given by

ẋ = (K1 − K2 − K3)x, (18)

where x ∈ Cn. Construct a Lyapunov function for system (18) as
V = x∗x. Calculating V̇ , we have that

V̇ = x∗

[
K1 + K ∗

1 − 2K2 + (L ⊗ I2)

In ⊗ R̄

π

2

−1


+ (L ⊗ I2)

In ⊗ R̄

π

2

−1
∗

−
λa + λ∗

a

‖λa‖
2

(L ⊗ I2)
]
x

= x∗

[
−(λa + λ∗

a)I2n − 2K2 −
λa + λ∗

a

‖λa‖
2

(L ⊗ I2)
]
x. (19)

Because K2 and L⊗I2 are both positive semi-definite, if the real part
of λa is positive, then V̇ ≤ 0. This implies that all the eigenvalues
of thematrix K1 −K2 −K3 have negative real parts. Eq. (17) implies
that z1 should be a zero vector and hence z2 should also be a zero
vector from (16). Therefore, the eigenvector of Φ1 associated with
the eigenvalue λa is a zero vector, which is a contradiction. Thus,
the real part of λa is nonpositive.

Suppose that λa = bij (b ≠ 0). Then the derivative of V
becomes V̇ = −2x∗K2x ≤ 0. Note that Rank(K2) = 2n − 2 and
K2β̃1 = K2β̃2 = 0, where β̃1 =

¯̄F [(1T
nH) ⊗ [1, 0]]T and β̃2 =

¯̄F [(1T
nH) ⊗ [0, 1]]T . Then by LaSalle’s Invariant Principle, it follows

that the solution of (18) will converge to the kernel space of the
matrixK2 that is spannedby the vectors β̃1 and β̃2. Also, note that z1
is an eigenvector of thematrix K1−K2−K3 associatedwith the zero
eigenvalue from (17). Therefore, the vector z1 falls into the kernel
space of thematrix K2, i.e., K2z1 = 0. Then z1 can be represented by
a linear combination of β̃1 and β̃2. That is, there exist two numbers
b1, b2 ∈ C such that b1β̃1 + b2β̃2 = [β̃1, β̃2][b1, b2]T = z1.

We now prove that Φ1 has two simple eigenvalues at ij and
−ij with associated eigenvectors [βT

1 , 0T
2n]

T and [βT
2 , 0T

2n]
T . From

(16), we have z2 =
1
λa
z1 −


In ⊗ R̄


π
2


z1. Observing the form

of β̃1 and β̃2, we easily see that ¯̄F

(H−1LH−1) ⊗ R̄


π
2


¯̄F
T
z1 =

0 and z2 can be represented linearly by β̃1 and β̃2 since z1 and
In ⊗ R̄


π
2


z1 can both be represented linearly by β̃1 and β̃2. It

follows that −

L ⊗ R̄


π
2


z2 = λaz2 from (14). Then as in the

subsequent proof of statement (c), it can be proved that z2 = 0
when λa = bij ≠ 0 by a contradiction approach. Thus by simple
calculations, it can be checked that Φ1 has two eigenvalues at ±ij
with associated eigenvectors [βT

1 , 0T
2n]

T and [βT
2 , 0T

2n]
T . We then

prove that the multiplicities of the eigenvalues ±ij are both 1.
Suppose that there is a grade 2 generalized eigenvector associated
with the eigenvalue ij. That is, there is a nonzero 4n × 1 column
vector, denoted by [z̃T1 , z̃T2 ]

T , such that
In ⊗ R̄

π

2


z̃1 −

¯̄F [(H−1LH−1) ⊗ I2] ¯̄F
T
z̃1 − ijz̃1

−(L ⊗ I2)z̃2 = β1, (20)

−
¯̄F

(H−1LH−1) ⊗ R̄

π

2


¯̄F
T
z̃1

−


L ⊗ R̄

π

2


z̃2 − ijz̃2 = 02n, (21)

where z̃1, z̃2 ∈ C2n. Pre-multiplying both sides of (20) with In ⊗

R̄


π
2


, we have

−z̃1 −
¯̄F

(H−1LH−1) ⊗ R̄

π

2


¯̄F
T
z̃1

−ij

In ⊗ R̄

π

2


z̃1 −


L ⊗ R̄

π

2


z̃2 =


In ⊗ R̄

π

2


β1.

(22)

Rewriting β1, we have β1 = [ρ1ijeijθ1 , ρ1eijθ1 , . . . , ρnijeijθn ,
ρneijθn ]T . Then combining (21) and (22) yields

z̃2 = In ⊗

[
−ij −1
1 −ij

]
z̃1 + β1. (23)

Pre-multiplying both sides of (20) with β∗

1 , we have

−β∗

1 (L ⊗ I2)z̃2 = β∗

1β1,

i.e.,

−β∗

1 (L ⊗ I2)

In ⊗

[
−ij −1
1 −ij

]
z̃1 + β1


= −β∗

1 (L ⊗ I2)β1 = β∗

1β1.

Since L is symmetric and positive semi-definite, then −β∗

1 (L ⊗

I2)β1 ≤ 0. Note that β∗

1β1 > 0. Then we have −β∗

1 (L ⊗ I2)β1 ≠

β∗

1β1. It is a contradiction. This proves that the multiplicity of the
eigenvalue ij is 1. Similarly, it can be proved that themultiplicity of
the eigenvalue −ij is 1. Statement (b) is proved. �

Next, we prove statement (c). It is easy to see that (K1 −

K3)z1 =

In ⊗ R̄


π
2


− λaI2n

 
I2n +

1
λa


L ⊗ R̄


π
2


z1 = 0. Since
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In ⊗ R̄


π
2


− λaI2n is nonsingular for any λa ≠ ±ij, then it follows

that

I2n +

1
λa


L ⊗ R̄


π
2


z1 = 0, i.e.,


L ⊗ R̄


π
2


z1 = −λaz1. It

thus follows that z1 is also an eigenvector of L ⊗ R̄


π
2


associated

with a nonzero eigenvalue and has the form of e ⊗ ([ij, 1]T ) or
e ⊗ ([ij, −1]T ), where e = [e1, . . . , en]T ∈ Rn is an eigenvector of
L associated with a nonzero eigenvalue. If z1 = e ⊗ ([ij, 1]T ), then
z1 = [β̃1, β̃2][b1, b2]T can be decomposed into ρmR̄(θm)[b1, 0]T +

ρmR̄(θm)[0, b2]T = ρmR̄(θm)[b1, b2]T = em[ij, 1]T for all m ∈ I.
Clearly, all the included angles of each pair of ρm[b1, b2]T and
|em|[ij, 1]T are equal for all m ∈ I. Then it follows that θk = θm
or |θk − θm| = π for all k,m ∈ I. Moreover, if z1 = e ⊗

([ij, −1]T ), it can be similarly obtained that all θk should satisfy
that θk = θm or |θk − θm| = π for all k,m ∈ I. Then, β̃1

and β̃2 can be written as β̃1 = [(1T
nHM) ⊗ ([1, 0]R̄(θ1)T )]T and

β̃2 = [(1T
nHM) ⊗ ([0, 1]R̄(θ1)T )]T . Note that L1n = 0 and L is a

symmetric matrix. Then 1T
ne = 0 and hence 1T

nHM1n = 0, which
contradicts Assumption 1. Statement (c) is proved. �

Lemma 4.2. If the graph G is connected, then limt→+∞ v̄i3(t) = 0
and limt→+∞[c̄i3(t) − c̄k3(t)] = 0 for any i, k ∈ I. That is, all agents
finally converge to a plane perpendicular to the vector iρ .

Proof. Consider system (12). Let λb be an eigenvalue of Φ2 and
[yT1, y

T
2]

T be its corresponding eigenvector,where y1, y2 ∈ Rn. Then
we have

−y1 − H−1LH−1y1 − Ly2 = λby1, (24)

−H−1LH−1y1 − Ly2 = λby2. (25)

Similar to the proof of Lemma 4.1, it can be proved that Φ2 has
a simple zero eigenvalue with an associated eigenvector [0T

n, 1
T
n]

T

and all its other 2n − 1 eigenvalues have negative real parts.
Then it is easy to see that the solution of system (12) converges
to the eigenvector space, span{[0T

n, 1
T
n]

T
}, of Φ2 associated with

the zero eigenvalue. This implies that limt→+∞ v̄i3(t) = 0 and
limt→+∞[c̄i3(t) − c̄k3(t)] = 0 for any i, k ∈ I. �

Remark 4.4. As Φ2 has no imaginary eigenvalues except 0,
Assumption 1 is not required in Lemma 4.2, which is different from
Lemma 4.1.

Theorem 4.5. Consider a network of second-order agents with a
fixed topology. If the graph G is connected, the multi-agent sys-
tem (2) with protocol (8) achieves a desired quasi-rotating formation
F(h(ρ, θ), iρ) under Assumption 1.

Proof. From Lemma 4.1, Φ1 has a zero eigenvalue of multiplicity
2 with associated eigenvectors [0T

2n, 1
T
n ⊗ [1, 0]]T and [0T

2n, 1
T
n ⊗

[0, 1]]T , two simple eigenvalues at ij and −ij with associated
eigenvectors [βT

1 , 0T
2n]

T and [βT
2 , 0T

2n]
T and all its other 4n − 4

eigenvalues have negative real parts. Also, the initial condition
ϕ1(0) can be decomposed into ϕ1(0) = µ1[0T

2n, 1
T
n ⊗ [1, 0]]T +

µ2[0T
2n, 1

T
n ⊗ [0, 1]]T + µ3[β

T
1 , 0T

2n]
T
+ µ̄3[β

T
2 , 0T

2n]
T
+ ϕ10, where

µ1, µ2 ∈ R, ϕ10 ∈ R3n and µ3, µ̄3 ∈ C are conjugate complex
numbers. Then, it is easy to see that

lim
t→+∞

[ϕ1(t) − µ1[0T
2n, 1

T
n ⊗ [1, 0]]T − µ2[0T

2n, 1
T
n ⊗ [0, 1]]T

−µ3eijt [βT
1 , 0T

2n]
T

− µ̄3e−ijt [βT
2 , 0T

2n]
T
] = 0,

i.e.,

lim
t→+∞

[ϕ1(t) − µ1[0T
2n, 1

T
n ⊗ [1, 0]]T − µ2[0T

2n, 1
T
n ⊗ [0, 1]]T

−[
¯̄F [(1T

nH) ⊗ β̂T
12]

T , 0T
2n]

T
] = 0,

where β̂T
12 = [ij(µ3 − µ̄3)cost − (µ3 + µ̄3) sin t, (µ3 +

µ̄3) cos t + ij(µ3 − µ̄3)sint] ∈ R2. This implies that limt→+∞(c̄i1 −

c̄k1) = 0, limt→+∞(c̄i2 − c̄k2) = 0 and limt→+∞( 1
ρi
R̄(−θi) ×

[v̄i1, v̄i2]
T

−
1
ρk
R̄(−θk)[v̄k1, v̄k2]

T ) = 0 for any i, k ∈ I. From
Lemma 4.2, we have limt→+∞ v̄i3 = 0 and limt→+∞(c̄i3 − c̄k3) =

0 for any i, k ∈ I. Moreover, calculating [ ˙̄vi1, ˙̄vi2]
T , we have

limt→+∞


[ ˙̄vi1, ˙̄vi2]

T
− R̄


π
2


[v̄i1, v̄i2]

T


= 0. Therefore, it follows
from Remark 4.1 that the multi-agent system (2) with protocol (8)
achieves a desired quasi-rotating formation F(h(ρ, θ), iρ). �

Remark 4.6. By analyzing the eigenvalue–eigenvector solution of
the system as in [2, Theorem 3], the final motions of systems
(11) and (12) can be accurately given in terms of the left
and right eigenvectors of Φ1 and Φ2. Then through coordinate
transformation, the final point, i.e., the common center of the
circles, surroundedby the agents and the corresponding radii of the
circles can also be calculated. We have omitted these expressions
here due to their complexity.

4.2. Rotating formation

In this subsection, we will study the rotating formation control
problem based on protocol (8) to make all agents finally surround
a common point on a plane perpendicular to the vector iρ while
maintaining the desired formation structure h. To achieve this, we
introduce a virtual leader approach.

Suppose that one of the agents, denoted by si0 , has access to
the desired velocity v0 = RT

no[ρi0 cos t, ρi0 sin t, 0]T ∈ R3 and the
desired circle center c0 ∈ R3. The protocol of agent si0 is given as
ui0 = ui01 + ui02, (26)

where ui01 = RT
noR

⊥Rnovi0 and

ui02 = −

−
sk∈Ni0

ai0j[ρ
−2
i0

vi0 − ρ−1
i0

ρ−1
k RT

noR(θi0 − θk)Rnovk]

−

−
sk∈Ni0

ai0j

(ri0 − rk) + RT

noR
π

2


Rno(vi0 − vk)


− (vi0 − v0) −


ri0 + RT

noR
π

2


Rnovi0 − c0


.

The protocols of all other agents are given as
ui = ui1 + ui2, i ∈ I \ {i0}, (27)
where ui1 = RT

noR
⊥Rnovi and

ui2 = −

−
sk∈Ni

aij[ρ−2
i vi − ρ−1

i ρ−1
k RT

noR(θi − θk)Rnovk]

−

−
sk∈Ni

aij

(ri − rk) + RT

noR
π

2


Rno(vi − vk)


.

In (26), the term −

ri0 + RT

noR


π
2


Rnovi0 − c0


plays a role in

making the final point surrounded by all agents converge to c0
while the term −(vi0 − v0) plays a role in guaranteeing that the
final formation has the desired size.

We define the equations as in Box II. It can be easily obtained
that
v̇0 = RT

noR
⊥
[ρi0 cos t, ρi0 sin t, 0]T

= RT
noR

⊥RnoRT
no[ρi0 cos t, ρi0 sin t, 0]T

= RT
noR

⊥Rnov0.

Thus,
˙̃vi = v̇i −

ρi

ρi0
RT
noR(θi − θi0)Rnov̇0

= v̇i −
ρi

ρi0
RT
noR(θi − θi0)RnoRT

noR
⊥Rnov0

= v̇i − RT
noR

⊥Rno ×
ρi

ρi0
RT
noR(θi − θi0)Rnov0.
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ṽi = vi −
ρi

ρi0
RT
noR(θi − θi0)Rnov0, c̃i = ri + RT

noR
π

2


Rnovi − c0,

ξ̃ = [ṽ1, . . . , ṽn, c̃1, . . . , c̃n]T ,

Γ̃ =

[
In ⊗ (RT

noR
⊥Rno) 03n×3n

03n×3n 03n×3n

]
−


F [(H−1LH−1

+ E1) ⊗ I3]F T (L + E1) ⊗ I3
F


(H−1LH−1

+ E1) ⊗


RT
noR

π

2


Rno


F T (L + E1) ⊗


RT
noR

π

2


Rno


∈ R6n

where E1 is a diagonal matrix whose i0th diagonal entry is 1 and all other entries are 0.
Box II.

Moreover, it is easy to see that
ρ−2
i vi − ρ−1

i ρ−1
k RT

noR(θi − θk)Rnovk

=


ρ−2
i vi −

1
ρiρi0

RT
noR(θi − θi0)Rnov0


−


ρ−1
i ρ−1

k RT
noR(θi − θk)Rnovk −

1
ρiρi0

RT
noR(θi − θi0)Rnov0


= ρ−2

i ṽi − ρ−1
i ρ−1

k RT
noR(θi − θk)Rnoṽk

and

(ri − rk) + RT
noR

π

2


Rno(vi − vk)

=


ri + RT

noR
π

2


Rnovi − c0


−


rk + RT

noR
π

2


Rnovk − c0


= c̃i − c̃k.

Then by simple calculations, using protocol (26)–(27) for (2), the
closed-loop system can be written in a vector form as

˙̃
ξ = Γ̃ ξ̃ , (28)
where L is the Laplacian of the graph G. It should be noted that
v̇0(t) = RT

n0R
⊥Rnov0. Clearly, if the graph G is connected, L+E1 and

L + ρ2
i0
E1 are both symmetric positive definite matrices according

to [5, Lemma 3] and hence H−1LH−1
+ E1 is also a symmetric

positive definite matrix. Then by a similar argument to that of the
proofs of Lemma 4.1 and Theorem 4.5, the following lemma and
theorem can be obtained.

Lemma 4.3. If the graph G is connected, then all the eigenvalues of
Γ̃ have negative real parts.

Theorem 4.7. Consider a network of second-order agents with a
fixed topology. If the graph G is connected, the multi-agent system
(2) with protocol (26)–(27) achieves the desired rotating formation
F(h(ρ, θ), iρ). Moreover, limt→+∞


vi −

ρi
ρi0

RT
noR(θi − θi0)Rnov0


= 0 and limt→+∞


ri + RT

noR


π
2


Rnovi − c0


= 0 for all i ∈ I.

Remark 4.8. Theorem 4.7 shows that protocol (26)–(27)makes all
agents finally surround a pre-specified point c0 with a desired
formation structure h. It should be noted that if we eliminate the
term −


ri0 + RT

noR


π
2


Rnovi0 − c0


, then the multi-agent system

(2) can also reach the desired rotating formation h but the common
point surrounded by the agents might not be c0.

Remark 4.9. In [21], to achieve circular motions, one control gain,
namely, the rotation angle, must be exactly equal to a certain value
to have the eigenvalues on the imaginary axis, which is not robust.
In this paper,we do not impose such an assumption and the control
parameters ρi, θi, i = 1, . . . , n, can be arbitrarily chosen in the real
number field except for the points satisfying that 1T

nHM1n = 0
when |θi − θk| = 0 or |θi − θk| = π for all i, k ∈ I.

Remark 4.10. In protocols (8) and (26)–(27), each agent need
access its neighbors’ position and velocity information, which
might bring in communication time-delays. Further research could
be directed towards considering the communication time-delays.

1 2

43

Ga

Fig. 4. The communication topology for the multi-agent system (2).

Fig. 5. Position trajectories of the multi-agent system using protocol (8).

5. Simulations

Numerical simulations will be given to illustrate the theoreti-
cal results obtained in the previous sections. The graph Ga in Fig. 4
is the communication topology for the multi-agent system (2),
where the weight of each edge is 1. The initial condition of the
multi-agent system is taken as [rT1 , vT

1 , r
T
2 , vT

2 , r
T
3 , vT

3 , r
T
4 , vT

4 ]
T

=

[−1, 2, −4, −3, −2, 0, 1, 2, −3, 0, 2, 1, −1, −3, −4, 0, −3, 1, 1,

−1, −3, −3, 0, −2]T and iρ is taken as


1
√
3
, 1

√
3
, 1

√
3

T
.

We first present simulation results to illustrate Theorem4.5, we
take [θ1, θ2, θ3, θ4] = [0, π/3, −π/3, 0] and [ρ1, ρ2, ρ3, ρ4] =

[0.5, 1, 1, 2]. Fig. 5 shows the position trajectories of all agents
with protocol (8). It is obvious that all agents finally surround a
common point with a formation structure that has the same shape
but a different size from the desired formation structure on a plane
perpendicular to the vector iρ . That is, the multi-agent system (2)
reaches a desired quasi-rotating formation, which is consistent
with Theorem 4.5.

Now, we give simulation results to illustrate Theorem 4.7.
Suppose that the second agent s2 has access to the desired velocity

v0 =


1

√
6

1
√
2

1
√
3

−
2

√
6

0
1

√
3

1
√
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−
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√
2

1
√
3

 [
cos t
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0

]
and the desired circle center

c0 = [−1, −1, −1]T . Fig. 6 shows the position trajectories of all
agents with protocol (26)–(27). It is clear that all agents finally
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Fig. 6. Position trajectories of the multi-agent system using protocol (26)–(27).

surround a common point with the desired formation structure
on a plane perpendicular to the vector iρ . That is, the multi-agent
system reaches the desired rotating formation, which is consistent
with Theorem 4.7.

6. Conclusions

In this paper, we have investigated the collective rotating
formation control problem of second-ordermulti-agent systems in
3D. We proposed two distributed control protocols and employed
a new Lyapunov-based approach to give conditions to make
all agents surround a common point with a desired formation
structure. Simulation results were provided to illustrate the
theoretical results. Finally, it should be pointed out that the
communication graph considered in this paper is undirected and
fixed, and future research could be directed towards considering
directed and switching communication graph.

Acknowledgements

This work was supported by the NSFC (60672029, 60334030,
and 60774003) and the NSF CAREER Award (ECCS–0748287).

References

[1] A. Jadbabaie, J. Lin, A.S. Morse, Coordination of groups of mobile autonomous
agents using nearest neighbor rules, IEEE Transactions on Automatic Control
48 (6) (2003) 988–1001.

[2] R. Olfati-Saber, R.M. Murray, Consensus problems in networks of agents with
switching topology and time-delays, IEEE Transactions on Automatic Control
49 (9) (2004) 1520–1533.

[3] W. Ren, R.W. Beard, Consensus seeking in multi-agent systems under
dynamically changing interaction topologies, IEEE Transactions on Automatic
Control 50 (5) (2005) 655–661.

[4] W. Ren, On consensus algorithms for double-integrator dynamics, IEEE
Transactions on Automatic Control 53 (6) (2008) 1503–1509.

[5] Y. Hong, L. Gao, D. Cheng, J. Hu, Tracking control for multi-agent consensus
with an active leader and variable topology, Automatica 42 (7) (2006)
1177–1182.

[6] Z. Li, Z. Duan, G. Chen, L. Huang, Consensus of multi-agent systems and
synchronization of complex networks: a unified viewpoint, IEEE Transactions
on Circuits and Systems. I. Regular Papers 57 (1) (2010) 213–224.

[7] G. Xie, L. Wang, Consensus control for a class of networks of dynamic agents,
International Journal of Robust and Nonlinear Control 17 (10–11) (2007)
941–959.

[8] M. Porfiri, D.J. Stilwell, Consensus seeking over random weighted directed
graphs, IEEE Transactions on Automatic Control 52 (9) (2007) 1767–1773.

[9] R. Olfati-Saber, J.A. Fax, R.M.Murray, Consensus and cooperation in networked
multi-agent systems, Proceedings of the IEEE 95 (1) (2007) 215–233.
2008.

[10] F. Xiao, L. Wang, Asynchronous consensus in continuous-time multi-agent
systems with switching topology and time-varying delays, IEEE Transactions
on Automatic Control 53 (8) (2008) 1804–1816.

[11] M. Cao, A.S. Morse, B.D.O. Anderson, Agreeing asynchronously, IEEE Transac-
tions on Automatic Control 53 (8) (2008) 1826–1838.

[12] P. Lin, Y. Jia, Average-consensus in networks of multi-agents with both
switching topology and coupling time-delay, Physica A 387 (1) (2008)
303–313.

[13] P. Lin, Y. Jia, L. Li, Distributed robust H∞ consensus control in directed
networks of agents with time-delay, Systems and Control Letters 57 (8) (2008)
643–653.

[14] G. Lafferriere, A. Williams, J. Caughman, J.J.P. Veerman, Decentralized control
of vehicle formations, Systems and Control Letters 54 (9) (2005) 899–910.

[15] R.S. Smith, F.Y. Hadaegh, Closed-loop dynamics of cooperative vehicle
formations with parallel estimators and communication, IEEE Transactions on
Automatic Control 52 (8) (2007) 1404–1414.

[16] H. Tanner, A. Jadbabaie, G. Pappas, Flocking in fixed and switching networks,
IEEE Transactions on Automatic Control 52 (5) (2007) 863–868.

[17] H. Su, X. Wang, Z. Lin, Flocking of multi-agents with a virtual leader, IEEE
Transactions on Automatic Control 54 (2) (2009) 293–307.

[18] R. Sepulchre, D. Paley, N.E. Leonard, Stabilization of planar collective motion
with limited communication, IEEE Transactions on Automatic Control 53 (3)
(2007) 706–719.

[19] S. Hernandez, D. Paley, Three-dimensional motion coordination in a time-
invariant flowfield, in: Proceedings of the 48th Decision and Control
Conference, 2009, pp. 7042–7048.

[20] M. Pavone, E. Frazzoli, Decentralized policies for geometric pattern formation
and path coverage, ASME Journal of Dynamic Systems, Measurement, and
Control 129 (5) (2007) 633–643.

[21] W. Ren, Collectivemotion fromConsensuswith Cartesian coordinate coupling,
IEEE Transactions on Automatic Control 54 (6) (2009) 1330–1335.

[22] P. Lin, Y. Jia, Distributed rotating formation control of multi-agent systems,
Systems and Control Letters 59 (10) (2010) 587–595.

[23] C. Godsil, G. Royle, Algebraic Graph Theory, Springer-Verlag, New York, NY,
2001.

[24] Richard H. Battin, An Introduction to the Mathematics and Methods of
Astrodynamics, AIAA press, Washington, DC, 1987.


