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a b s t r a c t

This paper considers the consensus problems for both continuous- and discrete-time linear multi-agent
systems with directed communication topologies. Distributed reduced-order observer-based consensus
protocols are proposed, based on the relative outputs of neighboring agents. A multi-step algorithm is
presented to construct a reduced-order protocol, under which a continuous-time multi-agent system
whose communication topology contains a directed spanning tree can reach consensus. This algorithm
is further modified to achieve consensus with a prescribed convergence rate. These two algorithms have
a favorable decoupling property. In light of the modified algebraic Riccati equation, an algorithm is then
given to construct a reduced-order protocol for the discrete-time case.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

Cooperative control of a group of agents has received com-
pelling attention from various scientific communities. A group of
autonomous agents can coordinate with each other via communi-
cation or sensing networks to perform certain challenging tasks,
which cannot be well accomplished by a single agent. Its potential
applications include spacecraft formation flying, sensor networks,
and cooperative surveillance [1,2]. In the area of cooperative con-
trol of multi-agent systems, consensus is an important and funda-
mental problem, which is closely related to formation control [3]
and flocking problems [4,5]. The main idea of consensus is to de-
velop distributed control policies that enable a group of agents to
reach an agreement on certain quantities of interest.

Consensus problems have been extensively studied by numer-
ous researchers from various perspectives. A theoretical explana-
tion is provided in [6] for the alignment behavior observed in [7]
by using graph theory. In [8], a general framework of the consensus
problem for networks of dynamic agents with fixed or switching
topologies is addressed. The conditions given by [6,8] are further
relaxed in [9]. The controlled agreement problem for multi-agent
networks is considered from a graph-theoretic perspective in [10].
Tracking control for multi-agent consensus with an active leader is
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considered in [11] by using a neighbor-based state-estimation rule.
A distributed algorithm is proposed in [12] to achieve consensus in
finite time. The distributedH∞ control and consensus problems are
investigated in [13,14] for networks of agents subject to external
disturbances. The consensus problem of networks of double- and
high-order integrators is studied in [15–18]. Sampled-data control
protocols are proposed in [19,20] to achieve consensus for fixed
and switching agent networks. One limitation in the aforemen-
tioned works is that the agent dynamics are assumed to be first-,
second-, or high-order integrators, which might be restrictive in
many cases.

This paper extends to consider the distributed consensus prob-
lems for multi-agent systems with continuous- and discrete-time
general linear dynamics and directed communication topologies
by expanding on our preliminary work [21]. Distributed reduced-
order observer-based dynamic consensus protocols, relying on the
relative outputs of neighboring agents, are proposed for both the
continuous- and discrete-time cases. The dynamic protocols here
can be regarded as extensions of the traditional reduced-order
observer-based controller for a single system to those for multi-
agent systems. It is shown that the separation principle of tra-
ditional observer-based controllers still holds in the multi-agent
setting. Previous works related to this paper include [22–26]. In
contrast to the static consensus protocol based on the relative
states in [22], the protocols in the current paper rely on the relative
outputs. In contrast to the dynamic protocols in [23–26], whose di-
mensions are equal to or even higher than that of a single agent, the

http://dx.doi.org/10.1016/j.sysconle.2011.04.008
http://www.elsevier.com/locate/sysconle
http://www.elsevier.com/locate/sysconle
mailto:wei.ren@usu.edu
mailto:wren@engineering.usu.edu
http://dx.doi.org/10.1016/j.sysconle.2011.04.008


Z. Li et al. / Systems & Control Letters 60 (2011) 510–516 511
protocols in the current paper are reduced-order and hence have
lower dimensions. In particular, the full-order observer-based pro-
tocol in [25] possesses a certain degree of redundancy,which stems
from the fact that while the observer constructs an estimate of the
entire state, part of the state information is already reflected in the
system outputs. The reduced-order protocol proposed here elim-
inates this redundancy and thereby can considerably reduce the
dimension of the protocol especially for the case where the agents
are MIMO systems.

For the continuous-time case, a multi-step algorithm is
presented to construct a reduced-order observer-based consensus
protocol for a multi-agent systemwhose communication topology
contains a directed spanning tree. It is shown that a sufficient
condition for the existence of such a protocol is that each
agent is stabilizable and detectable. Another algorithm is further
proposed to construct a protocol, under which the agents can
reach consensus with a prescribed convergence rate. These two
algorithms have a favorable decoupling feature. Specifically, the
first three steps in these algorithms deal with only the agent
dynamics, while the last step tackles the communication topology.
The case with discrete-time agent dynamics is also considered,
where the row-stochastic matrix, rather than the Laplacian matrix
as in the continuous-time case, is utilized to characterize the
communication topology. In light of the modified algebraic Riccati
equation, an algorithm is given to construct a reduced-order
protocol to solve the consensus problem for a discrete-time multi-
agent system whose communication topology contains a directed
spanning tree. It is observed that the nonzero eigenvalue with
the smallest real part of the Laplacian matrix plays a key role in
the continuous-time case, while the non-one eigenvalue of the
stochastic matrix with the largest magnitude is critical in the
discrete-time case.

The rest of this paper is organized as follows. Some basic no-
tation and useful results of the graph theory are reviewed in Sec-
tion 2. The consensus problems of continuous- and discrete-time
multi-agent systems are investigated in, respectively, Sections 3
and 4. Section 5 concludes the paper.

2. Concepts and notation

Let Rn×n and Cn×n be the set of n× n real matrices and complex
matrices, respectively. The superscript T means transpose for real
matrices and H means conjugate transpose for complex matrices.
IN represents the identity matrix of dimension N . Matrices, if not
explicitly stated, are assumed to have compatible dimensions.
Denote by 1 the column vector with all entries equal to one. Re(ζ )
denotes the real part of ζ ∈ C. A⊗B denotes the Kronecker product
of matrices A and B. The matrix inequality A > (≥)B means that
A and B are square Hermitian matrices and that A − B is positive
(semi-)definite. Amatrix is Hurwitz (in the continuous-time sense)
if all of its eigenvalues have negative real parts, while it is Schur
stable (in the discrete-time sense) if all of its eigenvalues have
magnitude less than 1.

A directed graph G is a pair (V, E), where V is a nonempty
finite set of nodes and E ⊆ V × V is a set of edges, in which
an edge is represented by an ordered pair of distinct nodes. For an
edge (i, j), node i is called the parent node, node j the child node,
and i is a neighbor of j. A graph with the property that (i, j) ∈ E
implies (j, i) ∈ E is said to be undirected. A path on G from node
i1 to node il is a sequence of ordered edges of the form (ik, ik+1),
k = 1, . . . , l − 1. A directed graph has or contains a directed
spanning tree if there exists a node called the root, which has no
parent node, such that there exists a directed path from this node
to every other node in the graph.

Suppose that there aremnodes in a graph. The adjacencymatrix
A = (aij) ∈ Rm×m is defined by aii = 0, aij = 1 if (j, i) ∈ E and aij =
0 otherwise. The Laplacian matrix L ∈ Rm×m is defined as Lii =∑
j≠i aij, Lij = −aij for i ≠ j. Let D ∈ Rm×m be a row-stochastic

matrix with the additional assumption that dii > 0, dij > 0
if (j, i) ∈ E and dij = 0 otherwise.

Lemma 2.1 ([8,9,27]). Zero is an eigenvalue of L with 1 and a
nonnegative vector rT ∈ R1×N , respectively, as the corresponding
right and left eigenvectors, and all nonzero eigenvalues have positive
real parts. Furthermore, zero is a simple eigenvalue of L if and only if
the graph G has a directed spanning tree.

Lemma 2.2 ([9]). One is an eigenvalue of D with 1 and a
nonnegative vector r̂T ∈ R1×N , respectively, as the corresponding
right and left eigenvectors, and all other eigenvalues of D are in the
open unit disk. Furthermore, one is a simple eigenvalue of D if and
only if G contains a directed spanning tree.

3. Continuous-time multi-agent systems

Consider a group ofN identical agentswith general continuous-
time linear dynamics. The dynamics of the i-th agent are described
by

ẋi = Axi + Bui,

yi = Cxi, i = 1, . . . ,N,
(1)

where xi ∈ Rn is the state, ui ∈ Rp the control input, and yi ∈ Rq the
measured output. A, B, C , are constant matrices with compatible
dimensions, where C is assumed to have full row rank.

It is assumed that each agent has access to the relative output
measurements with respect to its neighbors. Differing from the
dynamic protocols in [23–26], whose dimensions are equal to
or even higher than that of a single agent, we introduce here a
reduced-order observer-based consensus protocol as

v̇i = Fvi + Gyi + TBui,

ui = cKQ1

N−
j=1

aij(yi − yj)

+ cKQ2

N−
j=1

aij(vi − vj), i = 1, · · · ,N,

(2)

where vi ∈ Rn−q is the protocol state, c > 0 is the coupling
strength, aij is the (i, j)-th entry of the adjacency matrix A of
a directed graph G, F ∈ R(n−q)×(n−q) is Hurwitz and has no
eigenvalues in commonwith those of A, G ∈ R(n−q)×q, T ∈ R(n−q)×n

is the unique solution to the following Sylvester equation:
TA − FT = GC, (3)

which further satisfies that

C
T


is nonsingular, Q1 ∈ Rn×q and

Q2 ∈ Rn×(n−q) are given by [Q1 Q2] =


C
T

−1
, and K ∈ Rp×n is

the feedback gain matrix to be designed. Note that protocol (2)
is distributed, since it is based only on the relative information of
neighboring agents.

Let zi = [xTi , v
T
i ]

T and z = [zT1 , . . . , z
T
N ]

T . Then, the closed-loop
network dynamics resulting from (1) and (2) can be written as
ż = (IN ⊗ M + cL ⊗ R)z, (4)
where L ∈ RN×N is the Laplacian matrix of G, and

M =

[
A 0
GC F

]
, R =

[
BKQ1C BKQ2
TBKQ1C TBKQ2

]
.

We say that the protocol (2) solves the consensus problem for (1),
if the states of (4) satisfy limt→∞ ‖xi(t) − xj(t)‖ = 0,∀ i, j =

1, . . . ,N.
Next, an algorithm is presented to select the control parameters

in (2).
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Algorithm 3.1. Given that (A, B, C) is stabilizable and detectable,
the protocol (2) can be constructed as follows:

(1) Choose a Hurwitz matrix F having no eigenvalues in common
with those of A. Select G such that (F ,G) is stabilizable.

(2) Solve (3) to get a solution T , which satisfies that

C
T


is

nonsingular. Then, computematricesQ1 andQ2 by

Q1 Q2


=

C
T

−1
.

(3) Solve the following linear matrix inequality (LMI):

AP + PAT
− 2BBT < 0, (5)

to get one solution P > 0. Then, choose the matrix K =

−BTP−1.
(4) Select the coupling strength c ≥

1
min
λi≠0

{Re(λi)}
,where λi is the i-th

eigenvalue of L.

Remark 3.2. By Theorem 8.M6 in [28], a necessary condition for
the matrix T to the unique solution to (3) and further to satisfy
that


C
T


is nonsingular is that (F ,G) is stabilizable, (A, C) is

detectable, and F and A have no common eigenvalues. In the case
where the agent in (1) is single-input single-output (SISO), this
condition is also sufficient. Under such a condition, it is shown
for the general multi-input multi-output (MIMO) case that the
probability for


C
T


to be nonsingular is 1 [28]. If


C
T


is singular in

step (2), we need to go back to step (1) and repeat the process.
As shown in [25], a necessary and sufficient condition for the
existence of a positive-definite solution to the LMI (5) is that (A, B)
is stabilizable. Therefore, a sufficient condition for Algorithm 3.1 to
successfully construct a protocol (2) is that (A, B, C) is stabilizable
and detectable.

Theorem 3.3. For the multi-agent network (4) whose communica-
tion topology G contains a directed spanning tree, the dynamic pro-
tocol (2) constructed by Algorithm 3.1 solves the consensus problem.
Specifically,

xi(t) → ϖ(t) , (rT ⊗ eAt)

x1(0)
...

xN(0)

 , (6)

vi(t) → GCϖ(t), i = 1, . . . ,N, as t → ∞,

where r ∈ RN is a nonnegative vector such that rTL = 0 and
rT1 = 1.

Proof. Let ξ = ((IN − 1rT )⊗ I2n−q)z. Then, it follows from (4) that
ξ satisfies the following dynamics:

ξ̇ = (IN ⊗ M + cL ⊗ R)ξ . (7)

Clearly, 0 is a simple eigenvalue of IN − 1rT with 1 as the right
eigenvector, and 1 is the other eigenvalue with multiplicity N − 1.
Thus, by the definition of ξ , ξ = 0 if and only if z1 = · · · = zN ,
i.e., the consensus problem is solved if system (7) is asymptotically
stable.

Because G contains a directed spanning tree, it follows from
Lemma 2.1 that zero is a simple eigenvalue of L and all other
eigenvalues have positive real parts. Let U ∈ RN×N be such a
unitary matrix that UTLU = Λ =


0 0
0 ∆


, where the diagonal

entries of ∆ are the nonzero eigenvalues of L. Since the right and
left eigenvectors corresponding to the zero eigenvalue of L are,

respectively, 1 and rT , we can choose U =

[
1

√
N

Y1

]
,UT

=
rT

Y2


, with Y1 ∈ RN×(N−1), Y2 ∈ R(N−1)×N . Let ζ , [ζ T

1 , . . . , ζ
T
N ]

T
=

(UT
⊗ I2n−q)ξ . Then, (7) can be rewritten as

ζ̇ = (IN ⊗ M + cΛ⊗ R)ζ . (8)

By the definition of ξ , it is easy to see that ζ1 = (rT ⊗ I2n−q)ξ = 0.
Note that the state matrix of (8) is block uppertriangular. Hence,
ζi, i = 2, . . . ,N , converge asymptotically to zero, if and only if the
N − 1 subsystems

ζ̇i = (M + cλiR)ζi, i = 2, . . . ,N, (9)

are asymptotically stable. Multiplying the left and right sides of the
matrix M + cλiR by Q =


I 0

−T I


and Q−1, respectively, and in

virtue of (3), we get

Q (M + cλiR)Q−1
=

[
A + cλiBK cλiBKQ2

0 F

]
. (10)

By steps (3) and (4) in Algorithm3.1,we can obtain that there exists
a P > 0 satisfying

(A + cλiBK)P + P(A + cλiBK)H

= AP + PAT
− 2cRe(λi)BBT

≤ AP + PAT
− 2BBT < 0, i = 2, . . . ,N.

That is, A+ cλiBK , i = 2, . . . ,N , are Hurwitz. Therefore, the N − 1
systems in (9) are asymptotically stable, implying that system (7)
is asymptotically stable, i.e., the consensus problem is solved.

Next, the solution of (4) can be obtained as

z(t) = e(IN⊗M+cL⊗R)tz(0)
= (U ⊗ I)e(IN⊗M+cΛ⊗R)t(UT

⊗ I)z(0)

= (U ⊗ I)
[
eMt 0
0 e(IN−1⊗M+c∆⊗R)t

]
(UT

⊗ I)z(0). (11)

It has been shown above that IN−1 ⊗M+ c∆⊗R is Hurwitz. Thus,

z(t) → (1 ⊗ I)eMt(rT ⊗ I)z(0)
= (1rT )⊗ eMtz(0), as t → ∞,

implying that

zi(t) → rT ⊗ eMtz(0), as t → ∞. (12)

Since F is Hurwitz, (12) directly leads to (6). �

Remark 3.4. The consensus protocol (2) can be regarded as
an extension of the traditional reduced-order observer-based
controller for a single system to the one for multi-agent
systems. The separation principle of the traditional observer-based
controllers still holds in the multi-agent setting, as shown in (10).
Some observations on the final consensus value in (6) can be
concluded as follows: If A in (1) has eigenvalues located in the
open right-half plane, then the consensus value ϖ(t) reached by
the agents will tend to infinity exponentially. If A is Hurwitz, then
ϖ(t) → 0, as t → ∞. On the other hand, if A has eigenvalues
in the closed left-half plane, then the agents in (1) may reach
consensus nontrivially. That is, some states of each agent might
approach a common nonzero value. Typical examples belonging
to the last case include the commonly-studied first-, second-, and
high-order integrators.

Remark 3.5. Algorithm 3.1 has a favorable decoupling feature.
Specifically, the first three steps deal with only the agent dynamics
and the feedback gain matrices of (2), while the last step tackles
the communication topology. Therefore, the consensus protocol
(2) constructed via Algorithm 3.1 for a given communication
graph can be directly used for any other communication graph
containing a directed spanning tree, with the only additional task
of appropriately adjusting the coupling strength c.
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Fig. 1. The communication topology.

Algorithm 3.1 constructs a protocol to achieve consensus. In the
following, the protocol (2) will be redesigned to achieve consensus
with a given convergence rate. From the proof of Theorem 3.3, it is
easy to see that the convergence rate of theN agents in (1) reaching
consensus under the protocol (2) is equal to theminimal decay rate
of the N − 1 systems in (9). The decay rate of the system ẋ = Ax is
defined as the maximum of negative real parts of the eigenvalues
of A [29]. Thus, by noticing (10), the convergence rate of agents (1)
reaching consensus can be manipulated by properly assigning the
eigenvalues of A + cλiBK , i = 2, . . . ,N , and F .

Algorithm 3.6. Given that (A, B, C) is stabilizable and detectable,
the protocol (2) can be constructed as follows:

(1) Choose thematrix F whose eigenvalues lie in the left-half plane
of x = −α. Select G such that (F ,G) is stablizable.

(2) Step 2 in Algorithm 3.1.
(3) Solve the following LMI:

AQ + QAT
− 2BBT

+ 2αQ < 0, (13)

to get one solution Q > 0. Then, choose the matrix K =

−BTQ−1.
(4) Step 4 in Algorithm 3.1.

Theorem 3.7. For the multi-agent network (4) with G contain-
ing a directed spanning tree, the protocol (2) constructed by Algo-
rithm 3.6 solves the consensus problemwith a convergence rate larger
than α. The final consensus values are the same as in (6).

Proof. It can be shown by following similar steps to those in
Theorem 3.3, and by further noting the fact: The decay rate of the
system ẋ = Ax is larger than α > 0, if and only if there exists a
matrix Q > 0 such that AQ + QAT

+ 2αQ < 0 [29]. �

Example 3.8. Consider a network of second-order integrators,
i.e., the agent dynamics in (1) are given by

A =

[
0 1
0 0

]
, B =

[
0
1

]
, C =


1 0


.

A first-order dynamic protocol based only on the relative positions
is in the form of (2).

Take F = −2 and G = −1. Using the function lyap in Matlab
to solve the Sylvester Eq. (3) gives T =


−0.5 0.25


, which

obviously satisfies that

C
T


is nonsingular. Then, the matrices Q1

and Q2 can be obtained as Q1 =


0
4


and Q2 =


1
2


. Solving

the LMI (5) by using the Sedumi toolbox [30], we have K =
−0.8543 −2.5628


. Assume that the communication graph is
given by Fig. 1. The corresponding Laplacian matrix is

L =


3 0 0 −1 −1 −1

−1 1 0 0 0 0
−1 −1 2 0 0 0
−1 0 0 1 0 0
0 0 0 −1 1 0
0 0 0 0 −1 1

 ,
whose nonzero eigenvalues are 1, 1.3376± 0.5623j, 2, 3.3247. By
Algorithm 3.1 and Theorem 3.3, the protocol (2) with feedback
gain matrices given as above solves the consensus problem for the
communication graph in Fig. 1, if the coupling strength c ≥ 1.

Algorithm 3.6 can be utilized to construct a protocol achieving
consensus with a prescribed convergence rate, e.g., larger than
1. The matrices in (2) except K remain the same. Solving the
LMI (13) with α = 1 gives K =


−5.0141 −3.7372


. For

the communication graph in Fig. 1, select c = 1 for simplicity.
The states of the network (4) with the protocol (2) given by
Algorithm 3.6 as above are depicted in Fig. 2. The convergence rate
of the agents reaching consensus can be obtained as 1.5301.

4. Discrete-time multi-agent systems

This section focuses on the discrete-time counterpart of the
last section. Consider a network of N identical discrete-time linear
agents, with the dynamics of the i-th agent described by

x+

i = Axi + Bui,

yi = Cxi, i = 1, . . . ,N,
(14)

where xi = xi(k) ∈ Rn×n is the state, x+

i = xi(k + 1) is the state at
the next time instant, ui ∈ Rp is the control input, and yi ∈ Rq is
the measured output. It is assumed that C is of full row rank.

Similar to the continuous-time case, the following reduced-
order observer-based consensus protocol is proposed

v̂+

i = F v̂i + Gyi + TBui,

ui = KQ1

N−
j=1

dij(yi − yj)+ KQ2

N−
j=1

dij(v̂i − v̂j),

i = 1, . . . ,N,

(15)

where v̂i ∈ Rn−q is the protocol state, F ∈ R(n−q)×(n−q) is Schur
stable and has no eigenvalues in common with those of A, G ∈

R(n−q)×q, T ∈ R(n−q)×n is the unique solution to (3), satisfying that
C
T


is nonsingular,


Q1 Q2


=


C
T

−1
, K ∈ Rp×n is the feedback

gain matrix to be designed, and dij is the (i, j)-th entry of the row-
stochastic matrix D associated with the graph G.

Let ẑi = [xTi , v̂
T
i ]

T and ẑ = [ẑT1 , . . . , ẑ
T
N ]

T . Then, the collective
network dynamics can be written as

ẑ+
= (IN ⊗ M + (IN − D)⊗ R)ẑ, (16)

where matrices M and R are defined in (4).
We say that the protocol (15) solves the consensus problem for

(1) if the states of (16) satisfy limk→∞ ‖xi(k)− xj(k)‖ = 0, ∀ i, j =

1, . . . ,N.
Before moving forward, we introduce the following modified

algebraic Riccati equation (MARE) [31,32]:

P = ATPA − δATPB(BTPB + I)−1BTPA + Q . (17)

For δ = 1, the MARE (17) is reduced to the commonly-used
discrete-time Riccati equation discussed in, e.g., [33].

The following lemma shows the existence of solutions for the
MARE.
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Fig. 2. The states of the network (4) under the protocol (2) constructed via Algorithm 3.6. Here xi(k) denotes the k-th component of xi .
Lemma 4.1 ([31,32]). For 0 < δ < 1, the MARE (17) has a
unique positive-definite solution P, if the matrix A has no eigenvalues
with magnitude larger than 1, (A,Q 1/2) is stablizable, and (A, C) is
detectable. Furthermore, P = limk→∞ Pk for any initial condition
P0 ≥ 0, where Pk satisfies

P(k + 1) = ATP(k)A − δATP(k)B(BTP(k)B + I)−1BTP(k)A + Q .

Next, an algorithm for the protocol (15) is presented, whichwill
be used later.

Algorithm 4.1. Given that (A, B, C) is stabilizable and detectable,
the protocol (15) can be constructed as follows:

(1) Select a Schur stable matrix F having no eigenvalues in
common with those of A, and G such that (F ,G) is stablizable.

(2) Solve (3) to get a solution T , satisfying that

C
T


is nonsingular.

Then, compute the matrices Q1 and Q2 by

Q1 Q2


=


C
T

−1
.

(3) Choose K = −(BTPB + I)−1BTPA, where P > 0 is the unique
solution of the following MARE:

P = ATPA − (1 − max
|λ̂i|<1

|λ̂i|
2)ATPB(BTPB

+ I)−1BTPA + Q , (18)

with Q > 0 and λ̂i being the i-th eigenvalue of D .

Remark 4.2. A sufficient condition for the existence of the
consensus protocol by using Algorithm 4.1 is that (A, B, C)
is stabilizable and detectable, and A has no eigenvalues with
magnitude larger than 1 which is required here to ensure the
solvability of the MARE (18).
Theorem 4.3. Assume that A has no eigenvalues with magnitude
larger than 1. For the multi-agent network (16) with G contain-
ing a directed spanning tree, the protocol (15) constructed by Algo-
rithm 4.1 solves the consensus problem. Specifically,

xi(k + 1) → ψ(k + 1) , (r̂T ⊗ Ak)

x1(0)
...

xN(0)

 ,
v̂i(k + 1) → GCψ(k + 1), i = 1, . . . ,N, as k → ∞,

(19)

where r̂ ∈ RN is nonnegative such that r̂T (IN −D) = 0 and r̂T1 = 1.

Proof. Let ξ̂ = ((IN − 1r̂T ) ⊗ I2n−q)ẑ. As demonstrated in the
proof of Theorem 3.3, the consensus problem can be reduced to
the asymptotical stability of ξ̂ , which evolves according to the
following dynamics:

ξ̂+
= (IN ⊗ M + (IN − D)⊗ R)ξ̂ . (20)

For any graph containing a directed spanning tree, it follows from
Lemma 2.2 that 0 is a simple eigenvalue of IN − D and all other
eigenvalues lie within a disk of radius 1 centered at the point 1+0j

in the complex plane. Let Û =

[
1

√
N

Ŷ1

]
, ÛT

=


r̂T

Ŷ2


, with

Ŷ1 ∈ RN×(N−1), Ŷ2 ∈ R(N−1)×N , be such unitary matrices that
ÛT (IN − D)Û = Λ̂ =


0 0
0 ∆̂


, where the diagonal entries of ∆̂

are the nonzero eigenvalues of IN − D . Let ζ̂ , [ζ̂ T
1 , . . . , ζ̂

T
N ]

T
=

(ÛT
⊗ I2n−q)ξ̂ . Then, (20) can be rewritten as

ζ̂+
= (IN ⊗ M + (IN − Λ̂)⊗ R)ζ̂ . (21)



Z. Li et al. / Systems & Control Letters 60 (2011) 510–516 515
Clearly, ζ̂1 = (r̂T ⊗ I2n−q) ξ̂ = 0. By noting that the state matrix
of (21) is block uppertriangular, ζ̂i, i = 2, . . . ,N , converge to zero
asymptotically, if and only if the N − 1 subsystems

ζ̂+

i = (M + (1 − λ̂i)R)ζ̂i, i = 2, . . . ,N, (22)

are asymptotically stable. It is known thatM+ (1− λ̂i)R is similar
to


A + (1 − λ̂i)BK (1 − λ̂i)BKQ2

0 F


. In light of step (3) in Algorithm 4.1,

we can obtain

(A + (1 − λ̂i)BK)HP(A + (1 − λ̂i)BK)− P

= ATPA − 2Re(1 − λ̂i)ATPB(BTPB + I)−1BTPA − P

+ |1 − λ̂i|
2ATPB(BTPB + I)−1BTPB(BTPB + I)−1BTPA

= ATPA + (−2Re(1 − λ̂i)+ |1 − λ̂i|
2)AT

× PB(BTPB + I)−1BTPA − P + |1 − λ̂i|
2ATPB(BTPB + I)−1

× (−I + BTPB(BTPB + I)−1)BTPA

= ATPA + (|λ̂i|
2
− 1)ATPB(BTPB + I)−1BTPA − P

− |1 − λ̂i|
2ATPB(BTPB + I)−2BTPA

≤ ATPA − (1 − max
|λ̂i|<1

|λ̂i|
2)ATPB(BTPB + I)−1BTPA − P

= −Q < 0, (23)

where the identity −I + BTPB(BTPB + I)−1
= −(BTPB + I)−1

has been applied. Then, (23) implies that A + (1 − λ̂i)BK , i =

2, . . . ,N , are Schur stable. Therefore, the N − 1 systems in (22)
are asymptotically stable, implying that the consensus problem is
solved.

By noting that IN−1 ⊗ M + ∆̂⊗ R is Schur stable, the solution
of (16) can be obtained as

ẑ(k + 1) = (IN ⊗ M + (IN − D)⊗ R)kẑ(0)

= (Û ⊗ I)(IN ⊗ M + Λ̂⊗ R)k(ÛT
⊗ I)ẑ(0)

= (Û ⊗ I)
[
Mk 0
0 (IN−1 ⊗ M + ∆̂⊗ R)k

]
(ÛT

⊗ I)ẑ(0)

→ (1r̂T )⊗ Mkẑ(0), as k → ∞. (24)

Therefore, we have

ẑi(k + 1) → r̂T ⊗ Mkẑ(0), as k → ∞,

which directly leads to (19). �

Remark 4.4. Theorem 4.3 gives the discrete-time counterpart of
the results in Theorem 3.3. The Laplacian matrix L is used in the
last section to represent the communication graph for continuous-
time multi-agent systems. In contrast, the row-stochastic matrix
D is utilized here for the discrete-time case. By observing
Algorithms 3.1, 3.6 and 4.1, it can be concluded that the nonzero
eigenvalue with the smallest real part of the Laplacian matrix
plays a key role in continuous-time multi-agent systems, while
the non-one eigenvalue of the stochastic matrix with the largest
magnitude is critical for the discrete-time case. It can be observed
from (19) that the consensus valueψ(k+1) reached by the agents
will tend to infinity exponentially, if A in (14) has an eigenvalue
with magnitude larger than 1. Therefore, the assumption on A
in Theorem 4.3 does not involve much conservatism. Similar to
Theorem 3.3, A in (14) with eigenvalues with a unit magnitude is
critical for the agents to reach consensus nontrivially.

5. Conclusion

In this paper, the consensus problems for multi-agent systems
with continuous- and discrete-time linear dynamics and directed
communication topologies have been considered. Distributed
reduced-order consensus protocols, based on the information
of relative outputs of neighboring agents, have been proposed.
Several multi-step algorithms have been presented to construct
the consensus protocols, which solve the consensus problem for
both the continuous- and discrete-time cases. In this paper, we
did not consider the issues of time delays, switching topologies, or
random graphs. However, these issues are interesting topics that
deserve further investigation in future work.
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