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Abstract

In this paper we study `th-order (` >= 3) consensus algorithms, which generalize the existing

first-order and second-order consensus algorithms in the literature. We show necessary and suffi-

cient conditions under which each information variable and their higher-order derivatives converge

to common values. We also present the idea of higher-order consensus with a leader and introduce

the concept of an `th-order model-reference consensus problem, where each information variable

and their high-order derivatives not only reach consensus but also converge to the solution of a pre-

scribed dynamic model. The effectiveness of these algorithms is demonstrated through simulations

and a multi-vehicle cooperative control application which mimics a flocking behavior in birds.
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I. INTRODUCTION

Cooperative control for multi-vehicle systems has been applied both to formation control

problems, with applications to mobile robots, unmanned air vehicles (UAVs), autonomous

underwater vehicles (AUVs), satellites, aircraft, spacecraft, and automated highway sys-

tems1–6,20, and to non-formation cooperative control problems such as task assignment,

payload transport, role assignment, air traffic control, timing, search, and adaptive schedul-

ing7–10. For cooperative control strategies to be successful, numerous issues must be ad-

dressed, including the definition and management of shared information among a group of

vehicles. The cooperation of a multi-vehicle team is often facilitated if the team members

can form a consistent view of the shared information.

In plain language, when several entities or vehicles agree on a common value of a variable

of interest they are said to have come to consensus. For a group of networked mobile vehicles

with a common mission or task, information consensus can play a pivotal role, particularly

when the communication capability for each vehicle is limited and/or purposely constrained.

For example, when the dynamic environment changes, the vehicles in a team must be in

agreement as to what changes have taken place, even when every vehicle cannot talk directly

to every other vehicle. To achieve consensus, there must be a shared variable of interest as

well as appropriate algorithmic methods for negotiating to reach consensus on the value of

that variable (called a consensus algorithm or protocol). Consensus algorithms have a his-

torical perspective in Refs. 11–14, to name a few. Recently, consensus algorithms have been

studied extensively in the field of cooperative control using algebraic graph theory15–19 and

nonlinear mathematical tools21–23. Some results in consensus algorithms can be understood

in the context of connective stability24. Optimality issues in consensus algorithms are also

considered in the literature25. In addition, information consensus is studied in the context

of random networks26, flocking27,28, and asynchronous communication29.

Notice that in the literature, most consensus algorithms focus on the case where the com-

municating/cooperating vehicles come to consensus about the value of the consensus variable

(e.g., Refs. 16,17,19,21). Although the consensus variable may be a vector, such algorithms

are effectively first-order, as the typical consensus algorithm adapts the first derivative of

the consensus variable on each node based on the value of the consensus variable of its neigh-

bors. The idea of a second-order consensus algorithm under directed information exchange
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has been suggested in Ref. 30, where each vehicle adapts the second-order derivative of its

local consensus variable based on both zero-order and first-order derivatives of the consensus

variables of their nearest neighbors. In the current paper we generalize the first-order and

second-order consensus algorithms in the literature. Expanding on our earlier work reported

in Ref. 31, we show necessary and sufficient conditions under which the consensus informa-

tion variable and its higher-order derivatives converge to common values. We also extend

these ideas to include setpoint tracking in higher-order derivatives of the consensus variable

(higher-order consensus with a leader) and we consider an `th-order model-reference con-

sensus problem, where each information variable and their high-order derivatives not only

reach consensus but also converge to the solution of a prescribed dynamic model.

When considering the problem of consensus among a group of cooperating entities, a

natural question is: “consensus on what?.” A similar question “formation to what form or

shape?” has been asked in a general way32 within the context of mobile actuator and sensor

networks33. However, in most work on information consensus the answer is application-

dependent. Likewise, in our case, with the question “consensus on what” in mind, our

motivation for studying higher-order consensus comes from observing the behavior of flocks

of birds. It is often noted that such flocks fly somewhat in formation, maintaining a nominal

separation from each other, but each traveling with the same velocity vector. In Ref. 34 it

is shown how second-order consensus algorithms can produce the behavior of a separation

and common velocity under directed information exchange. However, sometimes a bird flock

abruptly changes direction, perhaps when one of them suddenly perceives a source of danger

or food. Clearly the birds in this setting need to build consensus on not only their relative

position and their velocity, but also on acceleration. This motivates the idea of higher-order

consensus. Higher-order consensus also makes sense in swarm-on-swarm scenarios, where a

cooperative team of “friendly” UAVs confront another team of “hostile” UAVs, necessitating

abrupt collective motions of the team. Finally, again driven by the question “consensus on

what” we are also motivated to consider what we call the `th-order model-reference consensus

problem, where each information variable and their high-order derivatives not only reach

consensus but also converge to the solution of a prescribed dynamic model. Convergence

not to something arbitrary as defined by initial conditions, but to the solution of a pre-

scribed problem, as defined by the reference model, is important in applications where the

team of vehicles has a global task to achieve but does not have centralized communication.
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We introduce this model-reference consensus problem and establish sufficient conditions for

consensus convergence for the case where all or some of the team members have complete

knowledge of the reference model.

The remainder of the paper is organized as follows. Section II presents some background

materials and some mathematical preliminaries for our later development. Higher-order

consensus algorithms are given in Section III, including the standard, unforced case and the

case of setpoint tracking, which leads to the idea of higher-order consensus with a leader,

and model-reference consensus. The effectiveness of the proposed algorithms is illustrated

throughout the paper by simulations, including an example of flocking behavior in Sec-

tion IV. Section V concludes the paper.

II. BACKGROUND AND PRELIMINARIES

It is natural to model information exchange among vehicles by directed/undirected

graphs. A digraph (directed graph) consists of a pair (N , E), where N is a finite nonempty

set of nodes and E ∈ N 2 is a set of ordered pairs of nodes, called edges. As a comparison,

the pairs of nodes in an undirected graph are unordered. If there is a directed edge from

node vi to node vj, then vi is defined as the parent node and vj is defined as the child node.

A directed path is a sequence of ordered edges of the form (vi1 , vi2), (vi2 , vi3), · · · , where

vij ∈ N , in a digraph. An undirected path in an undirected graph is defined accordingly.

In a digraph, a cycle is a path that starts and ends at the same node. A digraph is called

strongly connected if there is a directed path from every node to every other node. An

undirected graph is called connected if there is a path between any distinct pair of nodes.

A directed tree is a digraph, where every node has exactly one parent except for one node,

called root, which has no parent, and the root has a directed path to every other node.

Note that in a directed tree, each edge has a natural orientation away from the root, and no

cycle exists. In the case of undirected graphs, a tree is a graph in which every pair of nodes

is connected by exactly one path. A directed spanning tree of a digraph is a directed tree

formed by graph edges that connect all the nodes of the graph. A graph has (or contains) a

directed spanning tree if there exists a directed spanning tree being a subset of the graph.

Note that the condition that a digraph has a directed spanning tree is equivalent to the case

that there exists at least one node having a directed path to all the other nodes. In the case
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of undirected graphs, having an undirected spanning tree is equivalent to being connected.

However, in the case of digraphs, having a directed spanning tree is a weaker condition than

being strongly connected.

The adjacency matrix A = [aij] ∈ IRn×n of a weighted digraph is defined as aii = 0 and

aij > 0 if (j, i) ∈ E where i 6= j. The adjacency matrix of a weighted undirected graph is

defined accordingly except that aij = aji, ∀i 6= j, since (j, i) ∈ E implies (i, j) ∈ E . Let

matrix L = [`ij] be defined as `ii =
∑

j 6=i aij and `ij = −aij, where i 6= j. The matrix L

satisfies the following conditions:

`ij ≤ 0, i 6= j
n∑

j=1

`ij = 0, i = 1, . . . , n. (1)

For an undirected graph, L is called the Laplacian matrix35, which has the property that it

is symmetric positive semi-definite. However, L for a digraph does not have this property.

In both cases of undirected graphs and digraphs, 0 is an eigenvalue of L with an associated

eigenvector 1, where 1
4
= [1, . . . , 1]T is an n × 1 column vector of all ones, since all of the

row sums of L are 0. In the case of undirected graphs, all of the nonzero eigenvalues of L

are positive. In the case of digraphs, all of the nonzero eigenvalues of L have positive real

parts following Gershgorin’s disc theorem37. In the case of undirected graphs, 0 is a simple

eigenvalue of L if and only if the undirected graph is connected36. In the case of digraphs,

0 is a simple eigenvalue of L if and only if the digraph has a directed spanning tree38.

Let 0 denote the n×1 column vector of all zeros. Let In denote the n×n identity matrix

and 0n denote the n×n zero matrix. Let Mn(IR) represent the set of all n×n real matrices.

Given a matrix A = [aij] ∈ Mn(IR), the digraph of A, denoted by Γ(A), is the digraph on

n nodes vi, i ∈ I, such that there is a directed edge in Γ(A) from vj to vi if and only if

aij 6= 037.

III. HIGHER-ORDER CONSENSUS ALGORITHMS

We begin by presenting the general `th-order extension to the standard consensus algo-

rithm, followed by two extensions: (1) setpoint tracking and higher-order consensus with a

leader, and (2) model-reference consensus.

5



A. `th-order consensus

Consider information variables with `th-order dynamics given by

ξ̇
(0)
i = ξ

(1)
i

...

ξ̇
(`−2)
i = ξ

(`−1)
i (2)

ξ̇
(`−1)
i = ui i ∈ {1, . . . , n},

where ξ
(k)
i ∈ IRm, k = 0, 1, . . . , ` − 1, are the states, ui ∈ IRm is the control input, and ξ

(k)
i

denotes the kth derivative of ξi with ξ
(0)
i = ξi, i = 1, . . . , n. Consensus is said to be reached

among the n vehicles if ξ
(k)
i → ξ

(k)
j , k = 0, 1, . . . , ` − 1, ∀i 6= j. The goal of a consensus

algorithm is to derive a control law ui such that consensus is reached among the vehicles.

In the case of ` = 1, a consensus algorithm is proposed in Refs. 15–18,38 as

ui = −
n∑

j=1

gijkij(ξi − ξj), i ∈ {1, . . . , n}, (3)

where kij > 0, gii
4
= 0, and gij is 1 if information flows from vehicle j to vehicle i and 0

otherwise. The motivation behind (3) is to drive the information variable of each vehicle

toward the information variables of its neighbors.

Motivated by (3), we propose the following higher-order consensus algorithm:

ui = −
n∑

j=1

gijkij[
`−1∑

k=0

γk(ξ
(k)
i − ξ

(k)
j )], i ∈ {1, . . . , n}, (4)

where kij > 0, γk > 0, and gij is defined in Eq. (3). The motivation behind (4) is to

drive each vehicle’s information variable and its high-order derivatives toward the states of

its neighbors. Note that the linear consensus strategies reported in the literature can be

considered special cases of (4) when l = 1 or l = 2.

Let ξ(k) be an mn × 1 column vector with components ξ
(k)
i , i = 1, . . . , n, where ξ

(k)
i is

defined in Eq. (2). By applying (4), Eq. (2) can be written in matrix form as



ξ̇(0)

ξ̇(1)

...

ξ̇(`−1)




= (Γ⊗ Im)




ξ(0)

ξ(1)

...

ξ(`−1)




, (5)
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where ⊗ denotes the Kronecker product, and

Γ =




0n In 0n · · · 0n

0n 0n In · · · 0n

...
...

...
...

...

0n 0n 0n · · · In

−γ0L −γ1L −γ2L · · · −γ`−1L




,

where L = [`ij] ∈ Mn(IR) with `ii =
∑

j 6=i gijkij and `ij = −gijkij, ∀i 6= j. Note that L

satisfies the property (1).

In the following, we assume m = 1 for simplicity. However, all the results hereafter

remain valid for m > 1. In addition, we only consider the case when ` = 3. Similar analyses

are applicable to the case when ` > 3.

Before stating our main results, we need the following lemma.

Lemma III.1 In the case of ` = 3, Γ has at least three zero eigenvalues. It has exactly

three zero eigenvalues if and only if −L has a simple zero eigenvalue. Moreover, if −L has

a simple zero eigenvalue, the zero eigenvalue of Γ has geometrical multiplicity equal to one.

Proof: Let λ be an eigenvalue of Γ and q = [pT , rT , sT ]T be its associated eigenvector, where

p, r, and s are n× 1 column vectors. Note that

Γq =




0n In 0n

0n 0n In

−γ0L −γ1L −γ2L







p

r

s


 = λ




p

r

s


 ,

which implies that

r = λp

s = λr

− γ0Lp− γ1Lr − γ2Ls = λs.

Thus it follows that q = [pT , λpT , λ2pT ]T . It also follows that −γ0Lp−γ1Lλp−γ2Lλ2p = λ3p,

which can be written as

−Lp =
λ3

γ0 + γ1λ + γ2λ2
p.
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Thus it follows that λ3

γ0+γ1λ+γ2λ2 is an eigenvalue of −L with an associated eigenvector p.

Let µ = λ3

γ0+γ1λ+γ2λ2 , where µ is an eigenvalue of −L with p being its associated eigenvector.

Therefore, it follows that

λ3 − γ2µλ2 − γ1µλ− γ0µ = 0, (6)

which implies that there are three roots for λ corresponding to each µ. That is, each

eigenvalue of −L corresponds to three eigenvalues of Γ.

Let µi, i = 1, . . . , n, be the ith eigenvalue of−L. Also let λ3i−2, λ3i−1, and λ3i, i = 1, . . . , n,

be the eigenvalues of Γ corresponding to µi. From Eq. (6), we can see that µj = 0 implies

that λ3j−2 = λ3j−1 = λ3j = 0. It is straightforward to see that −L has at least one zero

eigenvalue with an associated eigenvector 1 since all of its row sums are equal to zero.

Therefore, we know that Γ has at least three zero eigenvalues.

From Eq. (6) we can also see that −L has a simple zero eigenvalue if and only if Γ has

exactly three zero eigenvalues. In addition, if −L has a simple zero eigenvalue, denoted as

µ1 = 0 without loss of generality, then there is only one linearly independent eigenvector p

for −L associated with the eigenvalue zero. Note that µ1 = 0 implies that λ1 = λ2 = λ3 = 0,

which in turn implies that q = [pT ,0T ,0T ]T . Therefore, there is only one linearly independent

eigenvector q for Γ associated with eigenvalue zero. That is, the zero eigenvalue of Γ has

geometric multiplicity equal to one if −L has a simple zero eigenvalue.

Using this lemma we can prove the following result.

Theorem III.1 In the case of ` = 3, the algorithm (4) achieves consensus exponentially if

and only if Γ has exactly three zero eigenvalues and all of the other eigenvalues have negative

real parts.

Proof: (Sufficiency.) If Γ has exactly three zero eigenvalues, we know that the eigenvalue

zero has geometric multiplicity equal to one from Lemma III.1. As a result, it follows that

Γ can be written in Jordan canonical form as

Γ = [w1, . . . , w3n]︸ ︷︷ ︸
P




0 1 0 01×(3n−3)

0 0 1 01×(3n−3)

0 0 0 01×(3n−3)

0(3n−3)×1 0(3n−3)×1 0(3n−3)×1 J ′




︸ ︷︷ ︸
J




νT
1

...

νT
3n




︸ ︷︷ ︸
P−1

, (7)
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where wj ∈ IR3n, j = 1, . . . , 3n, can be chosen to be the right eigenvectors or generalized

eigenvectors of Γ, νj ∈ IR3n, j = 1, . . . , 3n, can be chosen to be the left eigenvectors or

generalized eigenvectors of Γ, and J ′ is the Jordan upper diagonal block matrix corresponding

to 3n− 3 non-zero eigenvalues of Γ.

Without loss of generality, we choose w1 = [1T ,0T ,0T ]T , w2 = [0T ,1T ,0T ]T , and w3 =

[0T ,0T ,1T ]T , where it can be verified that w1, w2, and w3 are an eigenvector and two

generalized eigenvectors of Γ associated with the eigenvalue 0 respectively. Noting that Γ

has exactly three zero eigenvalues, denoted as λ1 = λ2 = λ3 = 0 without loss of generality,

we know that −L has a simple zero eigenvalue, which in turn implies that there exists a

nonnegative n × 1 vector p such that pT L = 0 and pT1 = 1 as shown in Ref. 38. It can be

verified that ν1 = [pT ,0T ,0T ]T , ν2 = [0T , pT ,0T ]T , and ν3 = [0T ,0T , pT ]T are two generalized

left eigenvectors and a left eigenvector of Γ associated with eigenvalue 0 respectively, where

νT
j wj = 1, j = 1, 2, 3. Note that

eΓt = [w1, . . . , w3n]︸ ︷︷ ︸
P




1 t 1
2
t2 01×(3n−3)

0 1 t 01×(3n−3)

0 0 1 01×(3n−3)

0(3n−3)×1 0(3n−3)×1 0(3n−3)×1 eJ ′t




︸ ︷︷ ︸
eJt




νT
1

...

νT
3n




︸ ︷︷ ︸
P−1

.

Also note that limt→∞ eJ ′t → 03n−3 exponentially since the eigenvalues λ3i−2, λ3i−1, and λ3i,

i = 2, . . . , n, have negative real parts. Therefore, it follows by computation that for large t,

the dominant terms in eΓt are 


1pT t1pT 1
2
t21pT

0n 1pT t1pT

0n 0n 1pT


 ,

where the rows (kn + 1) to (k + 1)n, k = 0, 1, 2, are identical. Noting that




ξ(0)(t)

ξ(1)(t)

ξ(2)(t)


 = eΓt




ξ(0)(0)

ξ(1)(0)

ξ(2)(0)


 ,

where ξ(k) = [ξ
(k)
1 , . . . , ξ

(k)
n ]T , we know that ξ

(k)
i (t) → ξ

(k)
j (t) exponentially, ∀i 6= j, k = 0, 1, 2,

as t →∞.
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(Necessity.) Suppose that the sufficient condition that Γ has exactly three zero eigenvalues

and all the other eigenvalues have negative real parts does not hold. Noting that Γ has at

least three zero eigenvalues, the fact that the sufficient condition does not hold implies that

Γ has either more than three zero eigenvalues or it has three zero eigenvalues but has at

least another eigenvalue having positive real part. In either case, we know that limt→∞ eJt

has a rank larger than three, which implies that limt→∞ eΓt has a rank larger than three.

Note that consensus is reached asymptotically if and only if limt→∞ eΓt →




1qT

1rT

1sT


, where q,

r, and s are 3n × 1 vectors. As a result, the rank of limt→∞ eΓt cannot exceed three. This

results in a contradiction.

In the case of ` = 3, let λk, k = 1, . . . , 3n, be the eigenvalues of Γ. Note that consensus

is reached exponentially if and only if Γ has exactly three zero eigenvalues and all of the

other eigenvalues have negative real parts. The convergence speed of the algorithm (4)

is related to the nonzero eigenvalues of Γ. Let λj be the nonzero eigenvalue such that

|Re(λj)| = min |Re(λk)|, ∀λk 6= 0, where Re(·) represents the real part of a number. In

particular, for ` = 3, eλjt is the dominant term when eΓt converges to a matrix of the form


1qT

1rT

1sT


, where q, r, and s are 3n× 1 vectors.

Note that L has a simple zero eigenvalue and all of the other eigenvalues have positive

real parts if and only if the information-exchange topology has a directed spanning tree38. In

the case of ` = 3, if (4) achieves consensus exponentially, we know that Γ has exactly three

zero eigenvalues following Theorem III.1. Thus we see that −L has a simple zero eigenvalue,

which in turn implies that the information-exchange topology has a directed spanning tree.

Therefore, in the case of ` = 3, having a directed spanning tree is a necessary condition for

consensus seeking. However, similar to the case of l = 230, having a directed spanning tree

is not a sufficient condition for consensus seeking. Both the information-exchange topology

and values of γk, k = 0, 1, 2, will affect the convergence of the `th-order consensus algorithm

with l ≥ 3. In contrast, in the case of ` = 1, having a directed spanning tree is a necessary

and sufficient condition for consensus seeking38.

From Eq. (6) we can see that γk, k = 0, 1, 2, plays an important role in the eigenvalues
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of Γ. In the case of ` = 2, we know that if −L has a simple zero eigenvalue and all of the

other eigenvalues are real and therefore negative (e.g., an undirected connected information-

exchange topology or a leader-follower information-exchange topology), then (4) achieves

consensus for arbitrary γk > 0, k = 0, 130. In contrast, this argument is no longer valid for

the case of ` = 3. In the case that the digraph of −L is itself a directed spanning tree (i.e.,

a leader-follower information-exchange topology), −L has a simple zero eigenvalue and all

of the other eigenvalues are real and therefore negative38. As a result, all of the coefficients

of the polynomial (6) are positive real numbers when µ 6= 0, where µ is the eigenvalue of

−L. From Routh criterion, there always exist γk, k = 0, 1, 2, such that all of the roots of (6)

have negative real parts when µ 6= 0. It is straightforward to see that when a graph has a

directed spanning tree, the graph can be constructed by adding information-exchange links

to a graph that is itself a directed spanning tree. Noting that µ is continuously dependent on

the entries of −L (i.e., the digraph of −L) and the roots of (6) are continuously dependent

on its coefficients, we know that for each −L whose graph has a directed spanning tree,

there always exist γk, k = 0, 1, 2, such that all of the roots of (6) have negative real parts

when µ 6= 0. The parameters γk, k = 0, 1, 2, can be chosen according to Routh-Hurwitz

theorem. As a result, the conditions of Theorem III.1 are satisfied.

To illustrate these points, consider the following simulation example. Let L be given by

L0 =




0 0 0 0

−1 1 0 0

0 −1 1 0

0 0 −1 1




. (8)

Note that the digraph of L has a directed spanning tree. In fact, the graph of L is itself

a directed spanning tree in this case. Also note that µj = −1, where µj is the nonzero

eigenvalue of −L. In Case 1, we choose γ0 = 2, γ1 = 1, and γ2 = 2. Then from Eq. (6) we see

that λ3j−2 = −2, λ3j−1 = i, and λ3j = −i, where λ∗ is the eigenvalue of Γ corresponds to µj.

As a result, consensus cannot be achieved. However, if we choose γ0 = 1, γ1 = 2, and γ2 = 3

in Case 2, then λ3j−2 = −2.3247, λ3j−1 = −0.3376 + 0.5623i, and λ3j = −0.3376− 0.5623i.

As a result, consensus can be reached. Fig. 1 shows the plots of ξ
(2)
i , i = 1, . . . , 4, for Cases

1 and 2 with different γj, j = 0, 1, 2, values. Note that although the digraph of L has a

directed spanning tree in both cases, the consensus system is not stable in Case 1, whereas

it is stable in Case 2. Thus, the gains γk must be chosen properly to ensure that consensus
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is achieved.
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FIG. 1: Plots of ξ
(k)
i , k = 2, for Cases 1 and 2 with different γj , j = 0, 1, 2, values.

B. Setpoint tracking and higher-order consensus with a leader

In Ref. 39 the idea of a leader-node is introduced, whereby a single node is chosen that

ignores all the other nodes, but continues to broadcast, and the controllability properties

of the resulting graph are explored. In Ref. 40 it was shown how to modify the first-order

consensus algorithm to introduce setpoint tracking, but with a less stringent requirement

than full state controllability (and not requiring that the leader ignore all the other nodes,

though this is effectively what happens). The algorithm in Ref. 40 caused all the nodes to

converge to the leader’s setpoint. This is called consensus with a leader.

Though Ref. 40 considered only first-order consensus, in the same way for higher-order

consensus we can modify Eq. (4) as follows:

ui = −
n∑

j=1

gijkij[
`−1∑

k=0

γk(ξ
(k)
i − ξ

(k)
j )]− αi(ξ

(`−1)
i − ξ

(`−1)∗
i ), i ∈ {1, . . . , n}, (9)

where α > 0, and ξ
(`−1)∗
i is the local setpoint on node i. Using Eq. (9) we claim that if

12



αi = 0 for all but node k, with αk = 1, (i.e., higher-order consensus with a leader), and

node k has a directed path to all the other nodes, then ξ
(l−1)
i → ξ

(`−1)∗
k , ∀i ∈ {1, . . . , n}

by following a similar argument in Ref. 40. Note that this assertion requires ξ
(`−1)∗
k to be

piecewise constant. However, in the next subsection we generalize these ideas further by

extending them to include setpoints for all the derivatives, where the setpoints come from a

reference model.

To illustrate, we choose ξ
(2)∗
1 = 0.5, α1 = 1, and αi = 0, ∀i 6= 1. Fig. 2 shows the plots of

ξ
(2)
i , where L = L0 is given by Eq. (8). Note that each ξ

(2)
i converges to the setpoint.
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ξ(2)*

FIG. 2: Plots of ξ
(k)
i , k = 2, with ξ

(2)∗
1 = 0.5.

C. Model-reference consensus

Consider a prescribed reference dynamic model given by

ξ̇(0)
r = ξ(1)

r

...

ξ̇(`−2)
r = ξ(`−1)

r

ξ̇(`−1)
r = ur (10)

13



where ξ
(k)
r ∈ IRm, k = 0, 1, . . . , `− 1, are the reference states, and ur ∈ IRm is the reference

control input.

A model reference consensus problem is said to be solved if ξ
(k)
i → ξ

(k)
r , k = 0, . . . , `− 1,

asymptotically and ξ
(k)
i → ξ

(k)
j , ∀i 6= j, during the transition.

1. Full Access to the Reference Model

In the case that the reference model is available to each vehicle in the team, we propose

the following model-reference consensus algorithm:

ui = −
n∑

j=1

gijkij[
`−1∑

k=0

γk(ξ
(k)
i − ξ

(k)
j )]

− η

`−1∑

k=0

γk(ξ
(k)
i − ξ(k)

r ) + ur i ∈ {1, . . . , n} (11)

where η > 0.

Let ξ̃
(k)
i = ξ

(k)
i − ξ

(k)
r , k = 0, . . . , `, and ξ̃(k) be an mn× 1 column vector with components

ξ̃
(k)
i , i = 1, . . . , n. By applying (11), Eq. (2) can be written in matrix form as




˙̃ξ(0)

˙̃ξ(1)

...

˙̃ξ(`−1)




= (Σ⊗ Im)




ξ̃(0)

ξ̃(1)

...

ξ̃(`−1)




, (12)

where

Σ =




0n In 0n · · · 0n

0n 0n In · · · 0n

...
...

...
...

...

0n 0n 0n · · · In

−γ0M −γ1M −γ2M · · · −γ`−1M




,

with M = L + ηIn.

Letting µi and ρi be the ith eigenvalue of −L and −M respectively, then we see that

ρi = µi − η. Following the argument of Theorem III.1, we know that each eigenvalue of

−M corresponds to three eigenvalues of Σ. Letting ς3i−j, j = 1, 2, 3, be the eigenvalue of Σ

corresponding to ρi, then they are related by the following equation:

ς3 − γ2ρς2 − γ1ρς − γ0ρ = 0. (13)
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Note that if Re(ςi) < 0, i = 1, . . . , 3n, that is, Σ is a stable matrix, then ξ̃
(k)
i → 0

asymptotically, k = 0, . . . , `− 1, which in turn implies that ξ
(k)
i → ξ

(k)
r asymptotically.

It is straightforward to see that Re(ρi) < 0, i = 1, . . . , 3n, due to the fact that Re(µi) ≤ 0

as shown in Section II and η > 0. Similar to Eq. (6), γk, k = 0, 1, 2, plays an important role

in the eigenvalues of Σ in Eq. (13). Note that even if the information-exchange topology does

not have a directed spanning tree (e.g., the worse case of no information exchange among

vehicles, that is, L = 0n), it is still possible to choose γk, k = 0, 1, 2, according to Routh-

Hurwitz theorem such that all of the eigenvalues of Σ have negative real parts. However,

having a directed spanning tree guarantees that ξ
(k)
i → ξ

(k)
j , k = 0, . . . , `− 1, ∀i 6= j during

the transition when ξ
(k)
i → ξ

(k)
r .

To give a simulation example of model-reference consensus, let ur = sin(t) and ξ
(k)
r (0) = 0,

k = 0, 1, 2. Also let η = 0.3, γ0 = 1, γ1 = 2, and γ2 = 3. Fig. 3 shows the plots of ξ
(2)
i ,

i = 1, . . . , 4, for Case 1, where L = L0 is given by Eq. (8), and Case 2, where L = 0n. Note

that although ξ
(2)
i approaches ξ

(2)
r asymptotically in both Cases 1 and 2, we can see that

maxi6=j |ξ(2)
i − ξ

(2)
j | during the transition in Case 1 is smaller than that in Case 2.
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FIG. 3: Plots of ξ
(k)
i , k = 2, for Cases 1 and 2 with different information exchange topologies.

Also note that the value of η also has an effect on convergence. Let ur and ξ
(k)
r (0) = 0 be

15



defined the same as above. Also let L = L0 be given by Eq. (8), γ0 = 2, γ1 = 1, and γ2 = 3.

Fig. 4 shows the plots of ξ
(2)
i , i = 1, . . . , 4, for Case 1, where η = 0.3, and Case 2, where

η = 2. Note that ξ
(2)
i does not approach ξ

(2)
r in Case 1 due to small η. However, when we

increase η to 2, convergence to ξ
(r)
r is guaranteed in Case 2.
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FIG. 4: Plots of ξ
(k)
i , k = 2, for Cases 1 and 2 with different η values.

In the case of ` = 2, if L = 0n, then Re(ςi) < 0 for any γk > 0, k = 0, 1, due to the fact

that ρi = −η is real. That is, the model reference consensus problem is solved for arbitrary

γk > 0, k = 0, 1. However, in the case of ` = 3, this argument is no longer valid and the

gains γk must be chosen properly to ensure that consensus is achieved.
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2. Partial Access to the Reference Model

In the general case that the reference model is only available to a portion of the vehicles

in the team, we propose the following model-reference consensus algorithm:

ui =
1

κi

{
n∑

j=1

gijkijuj −
n∑

j=1

gijkij[
`−1∑

k=0

γk(ξ
(k)
i − ξ

(k)
j )]

+ girkir[ur −
`−1∑

k=0

γk(ξ
(k)
i − ξ(k)

r )]} i ∈ {1, . . . , n}, (14)

where gir = 1 if the reference model is available to vehicle i and 0 otherwise, and κi =

girkir +
∑n

j=1 gijkij.

Let node n + 1 be a virtual vehicle with states ξ
(k)
r . Also let ξn+1 ≡ ξr, gi(n+1) ≡ gir,

and ki(n+1) ≡ kir. With the algorithm (14) and the reference model (10), Eq. (2) can be

rewritten as

σ
(3)
i + γ2σ

(2)
i + γ1σ

(1)
i + γ0σ

(0)
i = 0, (15)

where σi =
∑n+1

j=1 gijkij(ξi − ξj).

Note that the characteristic equation of the system (15) is given by s3+γ2s
2+γ1s+γ0 = 0.

It is straightforward to choose appropriate γk > 0, k = 0, 1, 2, according to Routh criterion

such that the system (15) is stable, which in turn implies that σ
(k)
i → 0, ∀i, k = 0, 1, 2, as

t → ∞. If there exists a directed path from virtual vehicle n + 1 to all of the vehicles in

the team, then σ
(k)
i → 0, ∀i, k = 0, 1, 2, implies that ξ

(k)
i → ξ

(k)
j , ∀i, j ∈ {1, . . . , n + 1},

k = 0, 1, 238. That is, ξ
(k)
i → ξ

(k)
r , ∀i, k = 0, 1, 2, since ξn+1 ≡ ξr.

IV. MULTI-VEHICLE COORDINATION EXAMPLE

In this section we illustrate via simulation how the higher-order consensus ideas presented

above can be used in a formation control scenario for multiple vehicles, whereby a desired

separation is maintained among vehicles, each vehicle travels at a common velocity, and

a leader vehicle has access to a reference model. We assume that there are five vehicles,

17



exchanging information through a topology defined by the matrix

−L =




−2 1 0 1 0

0 −1 0 1 0

1 0 −2 0 1

0 0 0 −1 1

0 0 1 0 −1




.

The equation running on each vehicle i is given by:

q̇i = vi

v̇i = ai

ȧi =
1

κi

(
n∑

j=1

gij ȧj −
n∑

j=1

gij{γ0[(qi − qj)− (δi − δj)] + γ1(vi − vj) + γ2(ai − aj)}

+ gir[ȧr − γ0(qi − δi − qr)− γ1(vi − vr)− γ2(ai − ar)]),

where qi = [qix, qiy]
T , vi = [vix, viy]

T , and ai = [aix, aiy]
T denote the two dimensional position,

velocity, and acceleration of vehicle i respectively, qr = [qrx, qry]
T , vr = [vrx, vry]

T , and

ar = [arx, ary]
T denote the two dimensional reference position, velocity, and acceleration

respectively, and the terms δi = [δix, δiy]
T denote the desired formation separations (so that

(δi−δj) is the desired separation between vehicle i and vehicle j34), again in two dimensions.

In the simulation, we choose δix = 0 and δiy = 100∗ (i−1), i = 1, . . . , 5. Thus the desired

separation distances in x-axis and y-axis are 0 and 100 respectively. We also choose γ0 = 1

and γ1 = γ2 = 3, which, together with the fact that L defines an information-exchange

topology that contains a directed spanning tree, results in a convergent consensus process.

Further, we let vehicle 1 be the “leader” to which the reference model is available. That

is, g1r = 1 and gir = 0, ∀i 6= 1. Note that vehicle 1 has a directed path to all of the

other vehicles. In the simulation initially all of the vehicles have different starting positions,

velocities, and accelerations, in both x-axis and y-axis.

Figs. 5 and 6 show respectively the x-axis and y-axis reference position, velocity, and

acceleration available to vehicle 1. We see that the system is presented with a sinusoidal-

varying acceleration in the x-axis. Along the y-axis the system is “bumped” at 30 and 60

seconds.

The resulting positions, velocities, and accelerations of each vehicle are shown in Figs. 7, 8,

and 9 respectively. Note that the positions of each vehicle converge to the reference value
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FIG. 5: The x-axis reference states available to vehicle 1.

with the desired separations given by δi as shown in Fig. 7. Also note that the velocities and

accelerations of each vehicle converge to the reference velocity and acceleration as shown in

Figs. 8 and 9 respectively.

Fig. 10 shows the resulting motion in the x − y plane, where the squares denote the

starting positions of each vehicle and plus signs denote the positions of each vehicle at

t = 20, 40, 60, 80 seconds. It can be seen that the vehicles maintain the desired separation

between each other. We see that the higher-order model reference consensus algorithm allows

all the vehicles to respond to the reference states received by vehicle 1, while maintaining

their formation. This behavior can be seen to be similar to that of a flock of birds moving

as a group in formation, but periodically having large changes in direction.

V. CONCLUSION

In this paper we have defined a class of `th-order (` >= 3) consensus algorithms and have

shown necessary and sufficient conditions under which each information variable and their

higher-order derivatives converge to common values. We also introduced the idea of higher-

order consensus with a leader and the concept of an `th order model-reference consensus
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FIG. 6: The y-axis reference states available to vehicle 1.

problem, where each information variable and their high-order derivatives not only reach

consensus but also converge to the solution of a prescribed dynamic model. Future research

will focus on experimental application of these ideas, including demonstration of formation

control via consensus on the Mobile Actuator and Sensor Networks (MAS-net) testbed32.

It also remains to study the practical implementation of consensus algorithms. Though

convergence is a function of the eigenvalues of Γ ⊗ Im and will not be impacted as the

number of vehicles increases, the effects of delays in the communication among vehicles as

well as the effect of time-varying communication topologies must be addressed. Finally,

we note that the model-reference consensus algorithm we introduced requires that some or

all of the vehicles have complete knowledge of the reference model. We are also studying

the problem where each vehicle has only partial knowledge of the reference model, but that

collectively the sum of their knowledge is equivalent to complete knowledge of the reference

model. We are interested in consensus algorithms whereby each node will converge to the

solution of the reference model.

20



0 10 20 30 40 50 60 70 80
0

500

1000

1500

2000

t (sec)

q ix
 (

m
)

x−axis position

i=1
i=2
i=3
i=4
i=5
q

rx

0 10 20 30 40 50 60 70 80
0

200

400

600

800

1000

t (sec)

q iy
 (

m
)

y−axis position

i=1
i=2
i=3
i=4
i=5
q

ry

FIG. 7: The positions of each vehicle together with the reference position.

Acknowledgments

Wei Ren’s work was supported in part by the Utah State University New Faculty Research

Grant (2006-2007).

21



0 10 20 30 40 50 60 70 80
−20

−10

0

10

20

30

40

t (sec)

v ix
 (

m
/s

)

x−axis velocity

i=1
i=2
i=3
i=4
i=5
v

rx

0 10 20 30 40 50 60 70 80
−20

−10

0

10

20

t (sec)

v iy
 (

m
/s

)

y−axis velocity

i=1
i=2
i=3
i=4
i=5
v

ry

FIG. 8: The velocities of each vehicle together with the reference velocity.

1 P. K. C. Wang and F. Y. Hadaegh, Coordination and Control of Multiple Microspacecraft

Moving in Formation, The Journal of the Astronautical Sciences 44, 315 (1996).

2 R. W. Beard, J. R. Lawton, and F. Y. Hadaegh, A Coordination Architecture for Spacecraft

Formation Control, IEEE Transactions on Control Systems Technology 9, 777 (2001).

3 W. Kang and H.-H. Yeh, Co-ordinated attitude control of multi-satellite systems, International

Journal of Robust and Nonlinear Control 12, 185 (2002).

4 P. Ogren, M. Egerstedt, and X. Hu, A Control Lyapunov Function Approach to Multiagent

Coordination, IEEE Transactions on Robotics and Automation 18, 847 (2002).

5 W. Ren and R. W. Beard, Decentralized Scheme for Spacecraft Formation Flying via the Virtual

Structure Approach, AIAA Journal of Guidance, Control, and Dynamics 27, 73 (2004).

6 P. Ogren, E. Fiorelli, and N. E. Leonard, Cooperative Control of Mobile Sensor Networks:

Adaptive Gradient Climbing in a Distributed Environment, IEEE Transactions on Automatic

Control 49, 1292 (2004).

7 R. Emery, K. Sikorski, and T. Balch, Protocols for Collaboration, Coordination and Dynamic

22



0 10 20 30 40 50 60 70 80
−20

−10

0

10

20

30

t (sec)

a ix
 (

m
/s

2 )

x−axis acceleration

i=1
i=2
i=3
i=4
i=5
a

rx

0 10 20 30 40 50 60 70 80
−30

−20

−10

0

10

20

t (sec)

a iy
 (

m
/s

2 )

y−axis acceleration

i=1
i=2
i=3
i=4
i=5
a

ry

FIG. 9: The accelerations of each vehicle together with the reference acceleration.

Role Assignment in a Robot Team, in Proceedings of the IEEE International Conference on

Robotics and Automation (Washington D.C., 2002), pp. 3008–3015.

8 G. Inalhan, D. M. Stipanovic, and C. J. Tomlin, Decentralized Optimization, with Application

to Multiple Aircraft Coordination, in Proceedings of the IEEE Conference on Decision and

Control (Las Vegas, NV, 2002), pp. 1147–1155.

9 T. W. McLain and R. W. Beard, Coordination Variables, Coordination Functions, and Coop-

erative Timing Missions, AIAA Journal of Guidance, Control, and Dynamics 28, 150 (2005).

10 K. L. Moore and D. Lucarelli, Decentralized Adaptive Scheduling Using Consensus Variables,

International Journal of Robust and Nonlinear Control (2006), (to appear).

11 M. H. DeGroot, Reaching a Consensus, Journal of American Statistical Association 69, 118

(1974).

12 V. Borkar and P. Varaiya, Asymptotic agreement in distributed estimation, IEEE Transactions

on Automatic Control 27, 650 (1982).

13 J. N. Tsitsiklis, D. P. Bertsekas, and M. Athans, Distributed Asynchronous Deterministic and

Stochastic Gradient Optimization Algorithms, IEEE Transactions on Automatic Control 31,

803 (1986).

23



0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

100

200

300

400

500

600

700

800

900

x (m)

y 
(m

)

vehicle #1
vehicle #2
vehicle #3
vehicle #4
vehicle #5

FIG. 10: Resulting x− y motion.

14 N. A. Lynch, Distributed Algorithms (Morgan Kaufmann Publishers, Inc., San Francisco, Cali-

fornia, 1996).

15 J. A. Fax and R. M. Murray, Information flow and cooperative control of vehicle formations,

IEEE Transactions on Automatic Control 49, 1465 (2004).

16 R. Olfati-Saber and R. M. Murray, Consensus problems in networks of agents with switching

topology and time delays, IEEE Transactions on Automatic Control 49, 1520 (2004).

17 A. Jadbabaie, J. Lin, and A. S. Morse, Coordination of Groups of Mobile Autonomous Agents

Using Nearest Neighbor Rules, IEEE Transactions on Automatic Control 48, 988 (2003).

18 Z. Lin, M. Broucke, and B. Francis, Local Control Strategies for Groups of Mobile Autonomous

Agents, IEEE Transactions on Automatic Control 49, 622 (2004).

19 W. Ren and R. W. Beard, Consensus Seeking in Multiagent Systems Under Dynamically Chang-

ing Interaction Topologies, IEEE Transactions on Automatic Control 50, 655 (2005).

20 W. Ren and R. W. Beard, Formation Feedback Control for Multiple Spacecraft via Virtual

Structures, IEE Proceedings - Control Theory and Applications 151, 357 (2004).

21 L. Moreau, Stability of Multi-agent Systems with Time-dependent Communication Links, IEEE

Transactions on Automatic Control 50, 169 (2005).

24



22 J.-J. E. Slotine and W. Wang, A Study of Synchronization and Group Cooperation Using

Partial Contraction Theory, in Cooperative Control: A Post-Workshop Volume 2003 Block Is-

land Workshop on Cooperative Control, edited by V. Kumar, N. E. Leonard, and A. S. Morse

(Springer-Verlag Series: Lecture Notes in Control and Information Sciences, 2004), vol. 309, pp.

207–228.

23 B. Bauso, L. Giarre, and R. Pesenti, Distributed Consensus in Networks of Dynamic Agents,

in Proceedings of the IEEE Conference on Decision and Control (Seville, Spain, 2005), pp.

7054–7059.

24 D. D. Siljak, Decentralized control of complex systems (Academic Press, 1991).

25 L. Xiao and S. Boyd, Fast Linear Iterations for Distributed Averaging, Systems and Control

Letters 53, 65 (2004).

26 Y. Hatano and M. Mesbahi, Agreement Over Random Networks, IEEE Transactions on Auto-

matic Control 50, 1867 (2005).

27 H. G. Tanner, A. Jadbabaie, and G. J. Pappas, Stable Flocking of Mobile Agents, Part I: Fixed

Topology, in Proceedings of the IEEE Conference on Decision and Control (Maui, Hawaii, 2003),

pp. 2010–2015.

28 R. Olfati-Saber and R. M. Murray, Flocking with obstacle avoidance: Cooperation with limited

communication in mobile networks, in Proceedings of the IEEE Conference on Decision and

Control (Maui, Hawaii, 2003), pp. 2022–2028.

29 L. Fang and P. J. Antsaklis, Information Consensus of Asynchronous Discrete-time Multi-agent

Systems, in Proceedings of the American Control Conference (Portland, OR, 2005), pp. 1883–

1888.

30 W. Ren and E. Atkins, Second-order Consensus Protocols in Multiple Vehicle Systems with

Local Interactions, in Proceedings of the AIAA Guidance, Navigation, and Control Conference

(San Francisco, CA, 2005), paper no. AIAA-2005-6238.

31 W. Ren, K. L. Moore, and Y. Chen, High-Order Consensus Algorithms in Cooperative Vehicle

Systems, in Proceedings of 2006 IEEE International Conference on Networking, Sensing, and

Control (Ft. Lauderdale, FL, 2006).

32 Y. Chen and Z. Wang, Formation Control: A Review and A New Consideration, in Proc. of the

IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (Edmonton, Alberta, Canada, 2005),

pp. 3664–3669.

25



33 K. L. Moore and Y. Chen, Model-Based Approach to Characterization of Diffusion Processes via

Distributed Control of Actuated Sensor Network, in The 1st IFAC Symposium on Telematics

Applications in Automation and Robotics (IFAC, Helsinki University of Technology Espoo,

Finland, 2004).

34 W. Ren, Consensus Based Formation Control Strategies for Multi-vehicle Systems, in Proceed-

ings of the American Control Conference (Minneapolis, MN, 2006), pp. 4237–4242.

35 G. Royle and C. Godsil, Algebraic Graph Theory (Springer Graduate Texts in Mathematics

#207, New York, 2001).

36 F. R. K. Chung, Spectral Graph Theory, in Regional Conference Series in Mathematics (Amer-

ican Mathematical Society, 1997).

37 R. A. Horn and C. R. Johnson, Matrix Analysis (Cambridge University Press, 1985).

38 W. Ren, R. W. Beard, and T. W. McLain, Coordination Variables and Consensus Building

in Multiple Vehicle Systems, in Cooperative Control, edited by V. Kumar, N. E. Leonard, and

A. S. Morse (Springer-Verlag Series: Lecture Notes in Control and Information Sciences, 2005),

vol. 309, pp. 171–188.

39 H. G. Tanner, On the Controllability of Nearest Neighbor Interconnections, in Proceedings of the

IEEE Conference on Decision and Control (Paradise Island, Bahamas, 2004), pp. 2467–2472.

40 K. L. Moore and D. Lucarelli, Force and constrained consensus among cooperating agents, in

2005 IEEE International Conference on Networking, Sensing, and Control (Tuscon, AZ, 2005).

26


