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Distributed attitude alignment in spacecraft formation flying
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SUMMARY

In this paper, we consider a distributed attitude alignment problem for a team of deep space formation
flying spacecraft through local information exchange. We propose control laws for three different cases. In
the first case, multiple spacecraft converge to their (possibly time-varying) desired attitudes while
maintaining the same attitude or given relative attitudes during formation maneuvers under an undirected
communication graph. In the second case, multiple spacecraft converge to the same rotation rate while
aligning their attitudes during formation maneuvers under an undirected communication graph. In the
third case, attitude alignment under a directed information exchange graph is addressed. Simulation results
for attitude alignment among six spacecraft demonstrate the effectiveness of our approach. Copyright #
2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Autonomous vehicle systems are expected to find potential applications in military operations,
search and rescue, environment monitoring, commercial cleaning, material handling, and
homeland security. While single vehicles performing solo missions will yield some benefits,
greater benefits will come from the cooperation of teams of vehicles. One motivation for multi-
vehicle systems is to achieve the same gains for mechanically controlled systems as has been
gained in distributed computation. Rather than having a single monolithic (and therefore
expensive and complicated) machine do everything, the hope is that many inexpensive, simple
machines, can achieve the same or enhanced functionality, through cooperation.

Advances in networking and distributed computing make possible numerous applications
for multi-vehicle systems. One example is space-based interferometry, where a formation
of networked spacecraft could be used to synthesize a space-based interferometer with
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base-lines reaching tens to hundreds of kilometers as an alternative to traditional mono-
lithic spacecraft. The research of spacecraft formation flying has received significant
attention in the literature. Recent results have been reported in References [1–8], to name
a few.

In interferometry applications, it is essential that spacecraft maintain relative or the
same attitudes during formation maneuvers. In the following we use the term attitude alignment
to refer to the case that multiple spacecraft maintain the same relative attitudes to their
reference frames, respectively. Leader–follower and behavioural approaches are two techniques
to tackle the attitude alignment problem. In the leader–follower approach [1, 2] each follower in
the team simply tracks the attitude of a designated leader. This approach has the advantage that
the formation flying problem reduces to well-studied tracking problems. However, no
information feedback is introduced from the followers to the leader and the leader becomes a
single point of failure. As a comparison, in the behavioural approach [7, 8], the control torque
for each spacecraft is a function of the attitudes and angular velocities of two adjacent
neighbours. As a result, group feedback is introduced in the team through coupled dynamics
between spacecraft.

Related to the behavioural approach [7, 8] are the consensus type problems in cooperative
control of mobile autonomous agents, where each agent in a team updates its information state
based on the information states of its local neighbours in such a way that the final information
state of each agent converges to a common value. The research on consensus algorithms has
been reported in References [9–13], to name a few. Those algorithms take the form of
single integrator dynamics. Extensions to double integrator dynamics are discussed in
References [14–18].

The main contribution of this paper is to extend the previous synchronized spacecraft
rotation results reported in References [7, 8] to a more general scenario. Rather than requiring
a restricted bidirectional ring communication graph, we show that under certain
conditions multiple networked spacecraft can approach their (possibly time-varying) desired
attitudes while maintaining the same attitude or given relative attitudes during
formation maneuvers as long as the undirected communication graph is connected (Theorem
3.1, Corollaries 3.2, 3.3). As a result, there is no need for each spacecraft to explicitly identify
its two adjacent neighbours in the team to form a bidirectional ring communication graph.
In addition, we generalize the synchronized rotation results in References [7, 8] to the case that
attitude is aligned with non-zero final angular velocities (Theorem 3.4). This may be
appropriate for applications where multiple spacecraft are required to rotate at the same
rate and maintain the same attitude simultaneously. Furthermore, attitude alignment
with a unidirectional information exchange graph is also discussed (Theorem 3.5). It is
worthwhile to mention that although we use PD-like control laws for attitude alignment,
existing formation control results developed for double integrator dynamics are not directly
applicable to spacecraft attitude dynamics due to the inherent non-linearity in quaternion
kinematics. The extension from double integrator dynamics to spacecraft attitude dynamics is
non-trivial.

The remainder of this paper is organized as follows. In Section 2 we introduce background
information and preliminary notations. In Section 3 we propose distributed control laws for
attitude alignment among multiple networked spacecraft. In Section 4 we show simulation
results for attitude alignment among six spacecraft using the control laws proposed in Section 3.
Section 5 contains our conclusion.
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2. BACKGROUND AND PRELIMINARIES

2.1. Matrix theory

Let 1 denote the n� 1 column vector of all ones. Let In denote the n� n identity matrix. Given a
real scalar g; we use g > 0 to denote that g is positive. Given an n� n real matrix P; we use P > 0
to denote that matrix P is symmetric positive definite. In the following, a lower case symbol
denotes a scalar or vector while an upper case symbol denotes a matrix.

2.2. Spacecraft attitude dynamics

We use unit quaternions to represent spacecraft attitudes in this paper. A unit quaternion is
defined as q ¼ ½#qT; %q�T 2 R4; where #q ¼ a � sinðf=2Þ 2 R3 denotes the vector part and %q ¼
cosðf=2Þ 2 R denotes the scalar part of the unit quaternion. In this notation, a 2 R3 is a unit
vector, known as the Euler axis, and f 2 R is the rotation angle about a; called the Euler angle.
Note that qTq ¼ 1 by definition. A unit quaternion is not unique since q and �q represent the
same attitude. However, uniqueness can be achieved by restricting f to the range 04f4p so
that %q50 [19].

The product of two unit quaternions p and q is defined by

qp ¼
%q#pþ %p#qþ #q� #p

%q%p� #qT #p

" #
which is also a unit quaternion. The conjugate of the unit quaternion q is defined by qn ¼
½�#qT; %q�T: The conjugate of qp is given by ðqpÞn ¼ pnqn: The multiplicative identity quaternion is
denoted by qI ¼ ½0; 0; 0; 1�

T; where qqn ¼ qnq ¼ qI and qqI ¼ qI q ¼ q [19].
Spacecraft attitude dynamics are given by

’bqi ¼ � 1
2
oi � bqi þ 1

2
qioi; ’qi ¼ �1

2
oi � bqi

Ji ’oi ¼ � oi � ðJioiÞ þ ti; i ¼ 1; . . . ; n ð1Þ

where n is the total number of spacecraft in the team, bqi 2 R3 and qi 2 R are vector and scalar
parts of the unit quaternion of the ith spacecraft, oi 2 R3 is the angular velocity, and Ji 2 R3�3

and ti 2 R3 are inertia tensor and control torque [19].

2.3. Graph theory

It is natural to model information exchange between spacecraft by directed/undirected graphs.
A digraph (directed graph) consists of a pair ðN;EÞ; where N is a finite non-empty set of nodes
and E 2N2 is a set of ordered pairs of nodes, called edges. As a comparison, the pairs of nodes
in an undirected graph are unordered. If there is a directed edge from node vi to node vj ; then vi
is defined as the parent node and vj is defined as the child node. A directed path is a sequence of
ordered edges of the form ðvi1 ; vi2 Þ; ðvi2 ; vi3Þ; . . . ; where vij 2N; in a digraph. An undirected path
in an undirected graph is defined accordingly. A digraph is called strongly connected if there is a
directed path from every node to every other node. An undirected graph is called connected if
there is a path between any distinct pair of nodes. A directed tree is a digraph, where every node,
except the root, has exactly one parent. A directed spanning tree of a digraph is a directed tree
formed by graph edges that connect all the nodes of the graph. We say that a digraph has (or
contains) a directed spanning tree if there exists a directed spanning tree being a subset of the
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graph. In the case of undirected graphs, a tree is a graph in which any two nodes are connected
by exactly one path. Note that the condition that a digraph has a directed spanning tree is
equivalent to the case that there exists at least one node having a directed path to all the other
nodes. In the case of undirected graphs, having an undirected spanning tree is equivalent to
being connected. However, in the case of directed graphs, having a directed spanning tree is a
weaker condition than being strongly connected.

The adjacency matrix G ¼ ½gij � 2 Rn�n of a graph is defined as gii ¼ 0 and gij ¼ 1 if ðj; iÞ 2 E
where i=j: For a weighted graph, G is defined as gii ¼ 0 and gij > 0 if ðj; iÞ 2 E where i=j: Note
that the adjacency matrix of an undirected graph is symmetric since ðj; iÞ 2 E implies ði; jÞ 2 E:
However, the adjacency matrix of a digraph does not have this property. Let matrix L ¼ ½‘ij� 2
Rn�n be defined as ‘ii ¼

P
j=i gij and ‘ij ¼ �gij where i=j: Matrix L satisfies the following

conditions:

‘ij4 0; i=jXn
j¼1

‘ij ¼ 0; i ¼ 1; . . . ; n

For an undirected graph, L is called the Laplacian matrix [20], which is symmetric positive semi-
definite. However, matrix L for a digraph does not have this property.z

In the case of an undirected interaction graph, matrix L has a simple zero eigenvalue with an
associated eigenvector 1 if and only if the graph is connected [20]. In the case of a directed
interaction graph, matrix L has a simple zero eigenvalue with an associated eigenvector 1 if and
only if the digraph has a directed spanning tree [21]. Let x ¼ ½x1; . . . ;xn�T; where xj 2 R; j ¼
1; . . . ; n; and y ¼ ½yT1 ; . . . ; y

T
n �

T; where yj 2 Rm; j ¼ 1; . . . ; n: Under the conditions of both cases,
Lx ¼ 0 implies that x ¼ a1 (i.e. x1 ¼ � � � ¼ xn), where a 2 R; and ðL� ImÞy ¼ 0; where� is the
Kronecker product, implies that y ¼ 1� b (i.e. y1 ¼ � � � ¼ yn), where b 2 Rm:

The digraph of an n� n real matrix S ¼ ½sij�; denoted by GðSÞ; is the digraph on n nodes such
that there is a directed edge in GðSÞ from vj to vi if and only if sij=0 (c.f. Reference [22]).

3. ATTITUDE ALIGNMENT IN SPACECRAFT FORMATION FLYING

In this section, we propose distributed control laws for attitude alignment among n networked
spacecraft. All proposed control laws are distributed in the sense that each spacecraft in the
team only exchanges information with its local neighbours. In the following we assume that all
the vectors in each control law have been appropriately transformed and represented in the
same co-ordinate frame.

We will consider three cases. In Case 1, multiple spacecraft converge to their (possibly time-
varying) desired attitudes while maintaining the same attitude or given relative attitudes during
formation maneuvers under an undirected communication graph. In Case 2, multiple spacecraft
converge to the same rotation rate while aligning their attitudes during formation maneuvers
under an undirected communication graph. In Case 3, attitude alignment under a directed
information exchange graph is addressed.

Before moving on, we need the following lemma for our main results.

zFor a digraph, matrix L is sometimes called the digraph Laplacian or non-symmetric Laplacian in the literature.
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Lemma 3.1
If the unit quaternion and angular velocity pairs ðqk;okÞ and ðq‘;o‘Þ satisfy the quaternion
kinematics defined by the first two equations in Equation (1), then the unit quaternion and
angular velocity pair ðqn‘qk;ok � o‘Þ also satisfies the quaternion kinematics. In addition, if
Vq ¼ jjqn‘qk � qI jj

2; then ’Vq ¼ ðok � o‘Þ
Tdqn‘qk; where #p denotes the vector part of quaternion p:

Proof
See Reference [23]. &

3.1. Case 1

We first show the basic results of attitude alignment with zero final angular velocities and then
extend these results to other scenarios.

3.1.1. Basic results. In this section, we consider the case that multiple spacecraft align their
attitudes during formation maneuvers and their angular velocities approach zero under an
undirected communication graph. The control torque to the ith spacecraft is proposed as

ti ¼ �kG dqd * qi �DGioi �
Xn
j¼1

gij½aijdqnj qi þ bijðoi � ojÞ� ð2Þ

where kG 2 R50; DGi 2 R3�3 > 0; qd 2 R4 denotes the desired constant attitude for each
spacecraft, aij ¼ aji 2 R > 0; bij ¼ bji 2 R > 0; gii¼

4
0; and gij is 1 if spacecraft i receives

information from spacecraft j and 0 otherwise. In Equation (2), kG; DGi; aij ; and bij are control
gains while gij is an entry of the adjacency matrix denoting the information flow between
spacecraft. Note that control law (2) is model independent (i.e. no Ji). Also note that although
certain torque feedback can be chosen to linearize the last equation in Equation (1), the
quaternion kinematics represented by the first two equations in Equation (1) are inherently non-
linear. This feature makes the spacecraft attitude alignment problem more complicated than
formation control problems for systems modelled by single or double integrator dynamics.

Compared to the control law in Reference [8], where a bidirectional ring graph is assumed,
control law (2) does not require each spacecraft in the team to identify its two adjacent
neighbours. Each spacecraft simply communicates with all the other spacecraft that are in its
communication range.

We have the following theorem for attitude alignment among multiple networked spacecraft
with control torque (2).

Theorem 3.1
Assume that the control torque is given by Equation (2) and the undirected communication
graph is connected. Let E denote the edge set of unordered pairs of spacecraft, where an edge
ðk; ‘Þ 2 E implies that gk‘ ¼ g‘k ¼ 1:} Also let jEj denote the cardinality of E: If kG > 2

Pn
j¼1 gijaij ;

then qi ! qj ! qd and oi ! oj ! 0 asymptotically, 8i=j: If kG ¼ 0 and jEj4n; then qi ! qj
and oi ! oj ! 0 asymptotically, 8i=j:

}Note that ðk; ‘Þ and ð‘; kÞ denote the same element in E in the case of undirected graphs. In the following we assume that
k5‘ without loss of generality.
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Proof
Consider a Lyapunov function candidate:

V ¼ kG
Xn
i¼1

jjqd * qi � qI jj
2 þ

1

2

Xn
i¼1

Xn
j¼1

gijaij jjqnj qi � qI jj
2 þ

1

2

Xn
i¼1

ðoT
i JioiÞ

Applying Lemma 3.1, the derivative of V is

’V ¼ kG
Xn
i¼1

oT
i
dqd * qi þ 1

2

Xn
i¼1

Xn
j¼1

gijaijðoi � ojÞ
Tdqnj qi

þ
Xn
i¼1

oT
i ðti � oi � JioiÞ ð3Þ

Note that oT
i ðoi � JioiÞ ¼ 0 and

1

2

Xn
i¼1

Xn
j¼1

gijaijðoi � ojÞ
Tdqnj qi

¼
1

2

Xn
i¼1

oT
i

Xn
j¼1

gijaijdqnj qi
 !

�
1

2

Xn
i¼1

Xn
j¼1

gijaijoT
j
dqnj qi

¼
1

2

Xn
i¼1

oT
i

Xn
j¼1

gijaijdqnj qi
 !

�
1

2

Xn
i¼1

Xn
j¼1

gjiajioT
j
dqnj qi

¼
1

2

Xn
i¼1

oT
i

Xn
j¼1

gijaijdqnj qi
 !

þ
1

2

Xn
j¼1

Xn
i¼1

gjiajioT
j
dqni qj

¼
1

2

Xn
i¼1

oT
i

Xn
j¼1

gijaijdqnj qi
 !

þ
1

2

Xn
j¼1

oT
j

Xn
i¼1

gjiajidqni qj
 !

¼
Xn
i¼1

oT
i

Xn
j¼1

gijaijdqnj qi
 !

where we have used the fact that gij ¼ gji and aij ¼ aji to obtain the second equality, and we have
switched the order of the summation signs and have used the fact that dqnj qi ¼ �dqni qj to obtain
the third equality.

As a result, Equation (3) becomes

’V ¼
Xn
i¼1

oT
i kG

dqd * qi þXn
j¼1

gijaijdqnj qi þ ti

 !
With control law (2), the derivative of V becomes

’V ¼ �
Xn
i¼1

ðoT
i DGioiÞ �

1

2

Xn
i¼1

Xn
j¼1

gijbij jjoi � oj jj240
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where we have used the fact thatXn
i¼1

oT
i

Xn
j¼1

gijbijðoi � ojÞ ¼
1

2

Xn
i¼1

Xn
j¼1

gijbij jjoi � oj jj
2

We consider the following two subcases:

Case A: kG > 2
Pn

j¼1 gijaij and DGi > 0:
Let O ¼ fqd * qi � qI ;oi j ’V ¼ 0g: Also let %O be the largest invariant set in O: On %O; ’V � 0;

which implies that oi � 0; i ¼ 1; . . . ; n: Because oi � 0; we know that

kG
dqd * qi þXn

j¼1

gijaijdqnj qi ¼ 0; i ¼ 1; . . . ; n ð4Þ

from Equations (1) and (2).
Noting that qnj qi ¼ qnj ðq

dqd * Þqi ¼ ðqnj q
dÞðqd * qiÞ; we rewrite Equation (4) asdpni qi ¼ 0 ð5Þ

where

pi ¼ kGqI þ
Xn
j¼1

gijaijq
d * qj ð6Þ

Also note that Equation (5) is equivalent to

�qd * qibpi þ pi
dqd * qi þ dqd * qi � bpi ¼ 0 ð7Þ

Motivated by Reference [7], we multiply Equation (7) by ðdqd * qi � bpiÞT and get

jjdqd * qi � bpi jj2 ¼ 0 ð8Þ

Combining Equations (7) and (8), gives

�qd * qibpi þ pi
dqd * qi ¼ 0 ð9Þ

Using Equation (6), we rewrite Equation (9) as

� qd * qi
Xn
j¼1

gijaij
dqd * qj

þ kG þ
Xn
j¼1

gijaijq
d * qj

 ! dqd * qi ¼ 0; i ¼ 1; . . . ; n ð10Þ

Note that Equation (10) can be written in matrix form as

ðPðtÞ � I3Þbqs ¼ 0

where � is the Kronecker product, I3 is the 3� 3 identity matrix, bqs 2 R3n is a column vector

stack composed of dqd * q‘; ‘ ¼ 1; . . . ; n; and PðtÞ ¼ ½pijðtÞ� 2 Rn�n is given by piiðtÞ ¼ kG þPn
j¼1 gijaijq

d * qj and pijðtÞ ¼ �gijaijqd * qi:
Noting that jqd * qj j41; j ¼ 1; . . . ; n; and kG > 2

Pn
j¼1 gijaij ; we see that PðtÞ is strictly

diagonally dominant and therefore has full rank, which in turn implies that bqs ¼ 0: Thus, we see

that dqd * qi ¼ 0; i ¼ 1; . . . ; n; which implies that qi ¼ qd :
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Therefore, by LaSalle’s invariance principle qd * qi � qI ! 0 and oi ! oj ! 0 asymptotically.
Equivalently, we know that qi ! qj ! qd ; 8i=j; and oi ! oj ! 0; i ¼ 1; . . . ; n:

Case B: kG ¼ 0; DGi > 0; and jEj4n:
In this subcase, let O ¼ fðqnj qi � qI ;oi j ’V ¼ 0g: Also let %O be the largest invariant set in O: On

%O; ’V � 0; which implies that oi � 0; i ¼ 1; . . . ; n: Because oi � 0; we know thatXn
j¼1

gijaijdqnj qi ¼ 0; i ¼ 1; . . . ; n ð11Þ

from Equations (1) and (2).

Let dqnj qi be a variable associated with an edge ði; jÞ 2 E; where i5j: Noting that the undirected
communication graph is connected and jEj4n; we know that jEj ¼ n� 1 or jEj ¼ n; which
implies that there are n� 1 or n variables associated with edge set E: Let bqu be a column vector
stack composed of all dqnj qi; 8ði; jÞ 2 E; where i5j: By noting that dqni qj ¼ �dqnj qi; Equation (11)
can be rewritten as

ðQ� I3Þ bqu ¼ 0 ð12Þ

where Q 2 Rn�n�1 and bqu 2 R3ðn�1Þ if jEj ¼ n� 1; and Q 2 Rn�n and bqu 2 R3n if jEj ¼ n:
Consider a system given by Q *x ¼ 0; where *x is a column vector stack composed of xij ¼

xi � xj ; 8ði; jÞ 2 E; where i5j and xk 2 R; k ¼ 1; . . . ; n: Note that Q *x ¼ 0 can be written as
Lx ¼ 0; where x ¼ ½x1; . . . ;xn�T and L is the graph Laplacian matrix. Noting that the undirected
communication graph is connected, we know that x1 ¼ � � � ¼ xn; which in turn implies that
*x ¼ 0: As a result, we know that Q can be transformed to a row echelon form to show that
Q *x ¼ 0 implies that xij ¼ 0; 8ði; jÞ 2 E; where i5j: The same transformation procedure can be
used to Equation (12) to show that ðQ� I3Þ bqu ¼ 0 implies that dqnj qi ¼ 0; 8ði; jÞ 2 E; where i5j:
Thus, we see that qnj qi ¼ qI ; 8i=j:

Therefore, by LaSalle’s invariance principle qnj qi � qI ! 0 and oi ! 0 asymptotically.
Equivalently, we know that qi ! qj ; 8i=j; and oi ! oj ! 0; i ¼ 1; . . . ; n: &

3.1.2. Extensions. As an extension to Theorem 3.1, if it is required that the spacecraft maintain
given relative attitudes during formation maneuvers, we propose the control torque to the ith
spacecraft as

ti ¼ �kG dqd * qiqdi �DGioi �
Xn
j¼1

gij ½aij dðqjqdj Þ
nqiqdi þ bijðoi � ojÞ� ð13Þ

where qd‘ 2 R4; ‘ ¼ 1; . . . ; n; are constant quaternions defining the relative attitudes between the
‘th spacecraft and the desired attitude, and kG; DGi; aij ; bij ; gij are defined as in Equation (2).

Note that the ith spacecraft defines qdi : Also note that product qdj q
n
di defines the relative

attitudes between the ith spacecraft and the jth spacecraft. As a result, relative attitudes between
the spacecraft can be achieved by appropriately choosing qdi ; i ¼ 1; . . . ; n:

Corollary 3.2
Assume that the control torque is given by Equation (13) and the undirected communication
graph is connected. Let E be defined as in Theorem 3.1. If kG > 2

Pn
j¼1 gijaij ; then qi ! qdqndi ;
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i ¼ 1; . . . ; n; and oi ! oj ! 0 asymptotically, 8i=j: If kG ¼ 0 and jEj4n; then qnj qi ! qdj q
n
di and

oi ! oj ! 0 asymptotically, 8i=j:

Proof
Replacing each qi by qiqdi in the proof of Theorem 3.1, we know that qiqdi ! qjqdj ! qd ; that is,
qi ! qdqndi ; i ¼ 1; . . . ; n; if kG > 2

Pn
j¼1 gijaij and qiqdi ! qjqdj ; that is, q

n
j qi ! qdj q

n
di ; if kG ¼ 0 and

jEj4n: &

As another extension to Theorem 3.1, if it is required that qi ! qj ! qdðtÞ and oi ! oj !
odðtÞ; 8i=j; where qdðtÞ 2 R4 and odðtÞ 2 R3 denote the desired (time-varying) attitude and
angular velocity for each spacecraft, we propose the control torque to the ith spacecraft as

ti ¼ oi � Jioi þ Ji ’od � kG
dqd * qi �DGiðoi � od Þ �

Xn
j¼1

gij½aijdqnj qi þ bijðoi � ojÞ� ð14Þ

where kG;DGi; aij ; bij ; gij are defined as in Equation (2).

Corollary 3.3
Assume that the control torque is given by Equation (14) and the undirected communication
graph is connected. Also assume that qd ðtÞ and od ðtÞ satisfy the quaternion kinematics. Let E be
defined as in Theorem 3.1. If kG > 2

Pn
j¼1 gijaij ; then qi ! qj ! qdðtÞ and oi ! oj ! od ðtÞ

asymptotically, 8i=j: If kG ¼ 0 and jEj4n; then qi ! qj and oi ! oj ! odðtÞ asymptotically,
8i=j: &

Proof
If kG > 2

Pn
j¼1 gijaij ; we let *qi ¼ qd * qi and *oi ¼ oi � od : Note that *qi and *oi also satisfy the

quaternion kinematics. With *qi; *oi; and qI playing the role of qi; oi; and qd in Equation (2), we
see from the proof of Theorem 3.1 that *qi ! *qj ! qI and *oi ! *oj ! 0; that is, qi ! qj ! qd ðtÞ
and oi ! oj ! odðtÞ asymptotically, 8i=j: If kG ¼ 0 and jEj4n; we see that *qi ! *qj and *oi !
*oj ! 0; that is, qi ! qj and oi ! oj ! odðtÞ asymptotically, 8i=j: &

3.2. Case 2

In this section, we consider the case that multiple spacecraft align their attitudes but with
(possibly) non-zero final angular velocities under an undirected communication graph. We
propose the following control torque:

ti ¼ oi � Jioi � Ji
Xn
j¼1

gij½aijdqnj qi þ bijðoi � ojÞ� ð15Þ

where aij ; bij ; gij are defined as in Equation (2). Note that control law (15) is model dependent in
the sense that Ji is required to be known.

Theorem 3.4
With control torque given by Equation (15), if the undirected communication graph is
connected and jEj4n; where E is defined as in Theorem 3.1, then qi ! qj ; and oi ! oj

asymptotically, 8i=j:
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Proof
Consider a Lyapunov function candidate:

V ¼
1

2

Xn
i¼1

Xn
j¼1

gijaij jjqnj qi � qI jj
2 þ

1

2

Xn
i¼1

oT
i oi

Following a similar procedure to that of Theorem 3.1, we obtain

’V ¼ �
1

2

Xn
i¼1

Xn
j¼1

gijbij jjoi � oj jj
240

Let O ¼ fðqnj qi � qI ;oi j ’V ¼ 0g: Also let %O be the largest invariant set in O: On %O; ’V � 0;
which implies that oi � oj ; 8i=j; since the undirected communication graph is connected.
Therefore, we see that ’oi � ’oj : As a result, we know that ’o 2 spanf1� Zg; where ’o ¼
½ ’oT

1 ; . . . ; ’o
T
n �

T and Z is some 3� 1 vector.
Because oi � oj ; 8i=j; we know that

’oi ¼ �
Xn
j¼1

gijaijdqnj qi i ¼ 1; . . . ; n ð16Þ

from Equations (1) and (15). We also know thatXn
i¼1

ZT ’oi ¼ �
Xn
i¼1

ZT
Xn
j¼1

gijaijdqnj qi
 !

¼ 0

where we have used the fact that dqnj qi ¼ �dqni qj : As a result, we see that ’o is orthogonal to
spanf1� Zg: Therefore, we conclude that ’o � 0: From Equation (16), we know thatXn

j¼1

gijaijdqnj qi ¼ 0; i ¼ 1; . . . ; n

With the assumption that the undirected communication graph is connected and jEj4n; by
following the proof for Case B in Theorem 3.1, we see that qi ¼ qj ; 8i=j: By LaSalle’s invariance
principle qi ! qj and oi ! oj asymptotically, 8i=j: &

3.3. Case 3

In this section, we consider the case that multiple spacecraft align their attitudes under a directed
information flow graph.

Let Ji denote the set of spacecraft whose information is available to the ith spacecraft. Let
jJi j denote the cardinality of Ji:We assume that index i is not in set Ji: Note that j 2 Ji does
not imply i 2 Jj under the directed information flow graph.

Suppose that jJi j51: Define

qri ¼ qi
Y
j2Ji

ðqnj qiÞ

 !n

and

or
i ¼ oi �

X
j2Ji

ðoi � ojÞ
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Note that qri 2 R4 and or
i 2 R3 also satisfy the quaternion kinematics in this case. The control

torque to the ith spacecraft is defined as

ti ¼ oi � Jioi þ
1

jJij
Ji
X
j2Ji

’oj � kqi
dqr*i qi � Koiðoi � or

i Þ

" #
ð17Þ

where kqi 2 R > 0 and Koi 2 R3�3 > 0:

Theorem 3.5
With control torque (17), attitude alignment is achieved among a team of spacecraft only if the
directed information flow graph contains a directed spanning tree. If the information flow graph
contains a directed spanning tree, then cqpi ! 0; where qpi ¼

Q
j2Ji
ðqnj qiÞ; and oi ! oj

asymptotically, 8i=j:

Proof
For the first statement, if the directed information flow graph does not contain a directed
spanning tree, there exist either multiple separated groups or multiple leaders. In the former
case, there is no interaction between the separated subgroups, which implies that attitude
alignment cannot be achieved between these subgroups. In the later case, the attitudes of the
multiple leaders are not affected by any other spacecraft in the team, which imply that attitude
alignment cannot be achieved between these leaders.

For the second statement, note that with control torque (17) Equation (1) can be written as

Ji ’oi ¼ Ji ’or
i � kqi

dqr*i qi � Koiðoi � or
i Þ; which implies that dqr*i qi ! 0 and oi ! or

i ; i ¼ 1; . . . ; n;
according to Reference [2]. Noting that q

r*
i qi ¼ qpi; we know that cqpi ! 0: Also note

that oi ! or
i implies that

P
j2Ji
ðoi � ojÞ ! 0; i ¼ 1; . . . ; n; asymptotically. Note thatP

j2Ji
ðoi � ojÞ ! 0; i ¼ 1; . . . ; n; can be written in matrix form as ðLo� I3Þo! 0; where Lo

satisfies the conditions for matrix L in Section 2.3 and o ¼ ½oT
1 ; . . . ;o

T
n �

T: Therefore, if the
information flow graph contains a directed spanning tree, we know that oi ! oj ; 8i=j; from
Section 2.3. &

Corollary 3.6
With control torque (17), if the information flow graph is a unidirectional ring, then qi ! qj and
oi ! oj asymptotically, 8i=j:

Proof
If the information flow graph is a unidirectional ring, we number an arbitrary spacecraft in the
team as spacecraft S1 and number the other spacecraft consecutively as spacecraft S2 to Sn

following the order of information flow. As a result, we see that qr1 ¼ qn and qrj ¼ qj�1; where
j ¼ 2; . . . ; n:With control torque (17), we see that q1 ! qr1 ¼ qn and qj ! qrj ¼ qj�1; j ¼ 2; . . . ; n;
which implies that qi ! qj and oi ! oj ; 8i=j: &

The implication of cqpi ! 0 in the case of a general unidirectional information flow graph will
be a topic of future research.

3.4. Discussion

Note that if the undirected graph is not connected, then the conclusions in Sections 3.1 and 3.2
are still valid for each connected subgroup.
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Also note that in the proof of Theorem 3.1, we do not require that qiðtÞ > 0 or qd * ðtÞqiðtÞ50;
8t50: As a comparison, the results in Reference [7] rely on a region of attraction that ensures
that qið0Þ > 0 implies that qiðtÞ > 0; 8t50; while the results in Reference [8] rely on the

assumption that qd * ðtÞqiðtÞ50; 8t50:

4. SIMULATION RESULTS

In this section, we simulate a scenario where six spacecraft align their attitudes through local
information exchange. We will consider the three different cases discussed in Section 3. In
particular, Case 1 contains two subcases denoted as Case 1-A and Case 1-B, respectively. Cases
1 and 2 correspond to an undirected communication graph shown by Figure 1 while Case 3
corresponds to a directed information flow graph shown by Figure 2. Note that Figure 2
contains a directed spanning tree.

The spacecraft specifications are shown in Table I. The control parameters and control laws
used for each case are shown in Table II. In the following, we let qd ¼ ½0; 0; 0; 1�T and choose
qið0Þ 2 R4 and oið0Þ 2 R3 randomly. We also assume that the control torque of each spacecraft
satisfies jtðjÞi j41 Nm; where j ¼ 1; 2; 3 denotes each component of the control torque. In the
following, we use a superscript ðjÞ to denote the jth component of a quaternion or a vector.

Figures 3 and 4 show, respectively, the attitudes and angular velocities of spacecraft 1, 3, and
5 in Case 1-A. Note that each spacecraft converges to its desired attitude while aligning their

A1 A2 A3

A4 A5 A6

Figure 1. Communication graph for Cases 1 and 2.

Figure 2. Information flow graph for Case 3.

Table I. Spacecraft specifications.

J1 ½1 0:1 0:1; 0:1 0:1 0:1; 0:1 0:1 0:9� kgm2

J2 ½1:5 0:2 0:3; 0:2 0:9 0:4; 0:3 0:4 2:0� kgm2

J3 ½0:8 0:1 0:2; 0:1 0:7 0:3; 0:2 0:3 1:1� kgm2

J4 ½1:2 0:3 0:7; 0:3 0:9 0:2; 0:7 0:2 1:4� kgm2

J5 ½0:9 0:15 0:3; 0:15 1:2 0:4; 0:3 0:4 1:2� kgm2

J6 ½1:1 0:35 0:45; 0:35 1:0 0:5; 0:45 0:5 1:3� kgm2
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attitudes during the transition. Also note that their angular velocities converge to zero. Figure 5
shows the control torques of spacecraft 1, 3, and 5 in Case 1-A.

Figures 6 and 7 show, respectively, the attitudes and angular velocities of spacecraft 1, 3, and
5 in Case 1-B. Note that each spacecraft converges to the same attitude and the angular
velocities of each spacecraft converge to zero. Hereafter, we omit the plot for the control torques
due to space limitation.

Figures 8 and 9 show, respectively, the attitudes and angular velocities of spacecraft 1, 3, and
5 in Case 2. Note that each spacecraft converges to the same attitude and the same (possibly
non-zero) angular velocity.

In Case 3, with control torque (17), we see that cqpi ! 0; i ¼ 1; . . . ; 6; and oi ! oj ; 8i=j:With
the information flow graph given by Figure 2, it is straightforward to verify that cqpi ! 0 implies
that qi ! qj ; 8i=j: Figures 10 and 11 show, respectively, the attitudes and angular velocities of
spacecraft 1, 3, and 5 in Case 3. Note that each spacecraft converges to the same attitude and the
same angular velocity as desired.

Table II. Control parameters for different cases.

Case 1 Control law (2)
Case 1-A kG ¼ 1;DGi ¼ 2I3; aij ¼ 5; bij ¼ 10
Case 1-B kG ¼ 0;DGi ¼ 2I3; aij ¼ 5; bij ¼ 10

Case 2 Control law (15) aij ¼ 5; bij ¼ 10

Case 3 Control law (17) kqi ¼ 5;Koi ¼ 10I3
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Figure 3. Spacecraft attitudes in Case 1-A.
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Figure 4. Spacecraft angular velocities in Case 1-A.
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Figure 5. Spacecraft control torques in Case 1-A.
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Figure 6. Spacecraft attitudes in Case 1-B.
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Figure 7. Spacecraft angular velocities in Case 1-B.
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Figure 8. Spacecraft attitudes in Case 2.
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Figure 9. Spacecraft angular velocities in Case 2.
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Figure 10. Spacecraft attitudes in Case 3.
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Figure 11. Spacecraft angular velocities in Case 3.
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5. CONCLUSION AND FUTURE WORK

We have considered the distributed attitude alignment problem among a team of spacecraft. We
have proposed control laws and shown conditions under which attitudes are aligned with zero
or non-zero final angular velocities under an undirected communication graph. The case of a
directed information flow graph is also discussed. Simulation results have shown a scenario
where six spacecraft align their attitudes through local information exchange. Future work will
address attitude alignment under a general (possibly switching) directed information flow graph.
In addition, the extension of the current work to an orbital environment will also be a topic of
future research.
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