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a b s t r a c t

In this paper, two surrounding control problems are proposed, where a team of followers is used to
surround a team of leaders. The problems are solved under a decentralized estimation-and-control
framework. Using tools from algebraic graph theory and dynamical systems theory, it is shown that
the two teams, involving a team of leaders and a team of followers, preserve some desired convergence
properties, even if the geometric center of the leaders can only be obtained from estimators. A simulation
example is presented to verify the validity of the derived results.

© 2010 Elsevier B.V. All rights reserved.
1. Introduction

The explosion in computation and communication capabilities
has made it possible to coordinate large numbers of autonomous
vehicles communicating through a network to perform a variety
of challenging tasks, which are beyond the ability of a single
vehicle. This gives rise to a new research arena, cooperative
control of multiagent systems. Recent years have witnessed an
intensive and growing interest in this area. In particular, consensus
[1–5], formation control [6], swarming [7], flocking problems [8],
and synchronization [9] have received significant attention. For a
multiagent system, regardless of the cooperative task it performs,
a graph is a natural choice to describe the information flows
of the system, and graph connectivity is reported to be critical
to ensure system stability. The combination of algebraic graph
theory and dynamical systems theory has revived a broad
interest in the analysis of multiagent systems. In particular,
some elegant results on the distribution of the eigenvalues of
Laplacian matrices have been derived, and have been used in
related areas, like synchronization of chaotic oscillators [10,11].
In this paper, motivated by the previous research on multiagent
coordination, we propose a new cooperative control problem. We
start describing this problem by an example.
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Suppose a team of unmanned ground vehicles (UGVs) is sent
to detect and establish a corridor through a hostile terrain.1 To
protect the UGVs from potential threats, another team of armed
robotic vehicles (ARVs) is dispatched to provide ground coverage
for the UGVs. That is, ARVs must surround the UGVs. What kind of
algorithms can the ARVs use to achieve this purpose? Can they still
be decentralized?

In this paper, this problem, referred to as a surrounding control
problem, is formulated under a leader–follower framework, where
a team of followers is used to surround a team of leaders. To design
controllers for the followers, the geometric center of the leaders
should be known. Generally, this piece of information cannot be
obtained directly since each follower might have access to only
a subset of the leaders. Therefore, a decentralized estimator is
constructed at each follower to estimate the geometric center of
the leaders. Then, the estimated center is used to design controllers
for the followers, which results in a system with coupled
estimation and control. The framework of multiagent coordination
by simultaneous decentralized estimation and control is proposed
in [13]. In this paper, we first assume that each follower has the
knowledge of the geometric center of the leaders, and propose
a control law to achieve some desired convergence properties.
We then construct a distributed estimator and show that when
using the estimated information, the resulting system still has
the desired convergence properties if the control parameters are
chosen appropriately.

1 This example is motivated by [12].
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The surrounding control problem can be considered an inverse
containment control problem, where a group of agents are
driven to be contained in a particular area specified by another
group during their transportation. The containment control
problem was proposed and studied in [14] under an undirected
network topology and was extended to a directed network
topology in [15] and to incorporate swarming behavior in [16].
As shown in [14,15], a decentralized consensus-like protocol can
be used to solve the containment control problem. However, for
the surrounding control problem, the situation is quite different.
To solve this problem, some global information, e.g., the geometric
center of the leaders, needs to be known. To keep the decentralized
nature of the controller, an estimator is used in the controller,
which brings some difficulties in stability analysis of the resulting
system.

The surrounding control problem is also closely related to
the target enclosing problem [17,18], where there is only one
leader involved. In [17], the task of capturing a moving object
is divided into two problems: the enclosure problem and the
grasping problem. It is assumed that each robot can recognize up
to two robots as its neighbors and the neighborhood is defined
by the angles of the robots. A similar problem is investigated
in [18] by using the cyclic pursuit strategy. Simple feedback control
laws are designed to achieve the desired global behavior. It is
assumed that the position information of the leader is available
to all the agents. The problem of steering a group of unicycles to
form a collective uniform circular motion around a fixed target
with equal angular distances is studied in [19]. The problem is
divided into two subproblems. One is to achieve a coordinated
motion if the agents are close to the target, while the other is to
navigate the agents closer to the target if they are far away from
the target. In [20], the authors study a model of self-propelled
particles that move at a constant speed on the surface of a sphere.
Lie group representation is used to identify circular formations.
Shape control laws are proposed to isolate the circular formations
of the particles arranged in symmetric patterns. Note that in
the surrounding control problem, multiple leaders need to be
surrounded, which is more difficult than the single leader case,
especially when only local information can be used. In addition,
we consider more general communication topologies, rather than
a special topology such as the cyclic pursuit topology. Finally,wedo
not assume that the position information of the leaders is available
to all the followers.

The rest of the paper is organized as follows: in Section 2,
the notation and terminology used throughout this paper are
introduced. The surrounding control problem and the balanced
surrounding control problem are formulated in Section 3. They
are solved in Sections 4 and 5, respectively. A simulation example
is given in Section 6. Finally, Section 7 summarizes the main
conclusions.

2. Mathematical preliminaries

Let Rd denote the d-dimensional Euclidean space. The identity
matrix is denoted by I, 0 is the vector with all zeros, and 1 is
the vector with all ones. Unless otherwise stated, the norm used
throughout this paper is the Euclidean norm. For a set S, |S| denotes
the number of elements in S. For x ∈ Rd and S ⊆ Rd, define
‖x − S‖ , inf

y∈S
‖x − y‖.

An undirected graph of order n is denoted by G , (V , E)
comprising a set V , {1, 2, . . . , n} of nodes and a set E , {(i, j)|i ∼

j} of edges. If there is an edge from node i to node j, then node i
and node j are neighbors of each other. The set of all neighbors of
node i is denoted by Ni , {j ∈ V |i ∼ j}. A path in a graph G is a
sequence of nodes such that from each of its nodes there is an edge
to the next node in the sequence. A graph is called connected if
every pair of distinct nodes in the graph can be connected through
some path. For a graph G = (V , E), let A = [aij] be the adjacency
matrix where aij = 1 if (i, j) ∈ E and aij = 0 otherwise. In
addition, let D , diag(d1, d2, . . . , dn) be the degree matrix with
di =

∑
j∈Ni

aij, where di is called the degree of node i. The Laplacian
matrix of the graph G is given by L , D − A. Here L is symmetric
positive semi-definite, and L has a simple zero eigenvalue if and
only if the graph G is connected [21]. In this paper, the eigenvalues
of a Laplacian matrix L is renumbered in the following way:

0 = λmin(L) , λ1(L) ≤ λ2(L) ≤ · · · ≤ λn(L) , λmax(L).

3. Problem description

Suppose that there are a number of agents which behave either
as leaders or followers. The set of the leaders is denoted by VL,
while the set of the followers is denoted by VF . Both VL and VF are
assumed to be nonempty. In particular, letN > 0 be the number of
the leaders, and n > 0 be the number of the followers. Let xi ∈ Rd

denote the position of agent i that moves in Rd. In this paper, the
leaders are assumed to be stationary. In addition, assume that the
followers obey to the single-integrator dynamics, i.e.,

ẋi = ui, i ∈ VF . (1)

If the control input ui makes the followers surround the leaders
eventually, i.e.,

lim
t→∞

‖xj(t) − co(VF )‖ = 0 (2)

for all j ∈ VL, where co(VF ) denotes the convex hull formed
by the positions of the followers, then we say that a surrounding
control problem is solved. If an additional condition that the final
configuration of all the followers forms a regular polytope centered
at the geometric center of the leaders is imposed, we say that
a balanced surrounding control problem is solved. Of course, a
balanced surrounding control problem is more difficult than a
surrounding control problem because it requires an additional
condition on the final configuration of the followers.

We assume that each follower is equipped with a sensing
device and a communication device. Let the sensing radius of each
follower be r . An undirected graph Gs , (VF , Es) is used to describe
the sensing relationships between the followers, where

Es , {(i, j)|‖xi − xj‖ < r}.

Let N s
i , {j ∈ VF |(i, j) ∈ Es}, which is the set of all followers who

are within the sensing radius of follower i. An undirected graph
Gc , (VF , Ec) is used to describe the communication relationships
between the followers, where

Ec , {(i, j)| followers i, j can communicate with each other}.

In addition, let Nc
i , {j ∈ VF |(i, j) ∈ Ec}, which is the set of all the

followers who can communicate with follower i.
The position information exchange between the leaders and

the followers is achieved via communication. An undirected graph
Ḡ , (VL ∪VF , Ē) is used to describe the information flows between
the leaders and the followers, where (i, j) ∈ Ē for i ∈ VL and j ∈ VF
if and only if position information can be communicated between
leader i and follower j. For leader i, let N̄F

i denote the set of the
followers who can communicate with leader i. For follower i, let N̄L

i
denote the set of the leaderswho can communicatewith follower i.

Before designing the controllers, four assumptions are in order.

Assumption 1. The number of the followers satisfies n ≥ d + 1,
where d is the dimension of the moving space.

Remark 1. It can be verified that Assumption 1 is also necessary
for the purpose of surrounding control. For example, when d = 1,
if n = d, then there is only one follower, which cannot surround
multiple leaders.
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Assumption 2. Initially, there are no d followerswith positions xpi ,
i = 1, . . . , d, pi ∈ VF , such that

xi =

d−
j=1

ajxpj

for all i ∈ VF where aj ≥ 0 and
∑d

j=1 aj = 1.

Remark 2. When d = 1, Assumption 2 means that the set of the
initial positions of all the followers should not be a singleton.When
d = 2, Assumption 2means that, initially, the followers should not
be on a line.

Assumption 3. Initially, the followers are placed within a circle
with radius r

2 .

Assumption 4. • The graph Gc is assumed to be fixed and
connected.

• In the graph Ḡ, a leader can communicate with at least one
follower initially.

4. Surrounding control problem

In this section, the surrounding control problem is studied. In
the following, we first focus on the one-dimensional case (d = 1),
and then extend the results to thehigher-dimensional case (d > 1).

4.1. x̄ is available

In this subsection, it is assumed that x̄ , 1
n

∑
j∈VL

xj is available
to all the followers. This assumption holdswhen the positions of all
the leaders can be obtained by any follower. If x̄ is available to all
the followers, then the control law is designed for each follower as

ui = κ1

−
j∈Ns

i

(xi − xj)

+ κ2

x̄ + ξsgn

 −
j∈Ns

i (0)

[xi(0) − xj(0)]

− xi

 (3)

where κ1, κ2, and ξ are positive constants, and sgn(·) is the signum
function.

Remark 3. In the control input, the first term is a repulsive force
between follower i and its neighbors. This term is used to enlarge
the convex hull co(VF ) formed by the followers. The second term
is an attractive force, which is used to drive the followers to x̄ +

ξsgn
∑

j∈Ns
i (0)

[xi(0) − xj(0)]

.

It is first shown that the algorithm (3) has the ability of collision
avoidance.

Lemma 1. Suppose that Assumptions1–3hold for the system (1)with
the control input (3). If xi(0) > xj(0), i, j ∈ VF , then xi(t) > xj(t) for
all t ≥ 0.
Proof. For notational convenience, define ξi , ξsgn{

∑
j∈Ns

i
[xi(0)−

xj(0)]}. Because Assumption 1 holds, the number of the followers
satisfies n ≥ 2. From Assumption 3, we know that the sensing
graph Gs(0) is a complete graph initially. In addition, due to
Assumption 2, we know that if xi(0) > xj(0), then ξi > ξj. Suppose
that, at time t1, xj is still less than but sufficiently close to xi such
that N s

i \ {j} = N s
j \ {i} and xi − xj < mini,j∈VF ,ξi≠ξj |ξi − ξj|. Then,

in the following period of time whose length is supposed to be T ,
one has

ẋi(t) − ẋj(t) = κ1

−
k∈Ns

i

(xi − xk) + κ2(x̄ + ξi − xi)

− κ1

−
k∈Ns

j

(xj − xk) − κ2(x̄ + ξj − xj).
Because N s
i \ {j} = N s

j \ {i} and xi > xj, one knows that

ẋi(t) − ẋj(t) ≥ κ2((ξi − ξj) − (xi − xj)).

Since ξi − ξj ≥ mink,l∈VF ,ξk≠ξl |ξk − ξl| and xi − xj <
mink,l∈VF ,ξk≠ξl |ξk − ξl|, one has ẋi(t)− ẋj(t) > 0. Therefore, at time
t1 + T ,

xi(t1 + T ) − xj(t1 + T ) = xi(t1) − xj(t1)

+

∫ t1+T

t1
(ẋi(τ ) − ẋj(τ ))dτ

> xi(t1) − xj(t1),

which indicates that the distance between xi and xj will become
larger. Thus xj will never catch up with xi, i.e. xj(t) < xi(t) for all
t ≥ 0. �

Remark 4. This lemma indicates that if there is no collision
initially, then collision avoidance between followers is guaranteed
in the following time interval.

Remark 5. It can be drawn from this lemma that if xq(0) =

maxj∈VF xj(0) and xp(0) = minj∈VF xj(0), then xq(t) = maxj∈VF xj(t)
and xp(t) = minj∈VF xj(t) for all t ≥ 0.

In the following, the equilibrium points of the system (1) is
analyzed.

Lemma 2. Suppose that Assumptions 1–3 hold. If the right hand side
of (3) equals to 0 for all i ∈ VF , then [x̄ − ξ, x̄ + ξ ] ⊆ [minj∈VF
xj,maxj∈VF xj].

Proof. If [x̄ − ξ, x̄ + ξ ] ⊆ [minj∈VF xj,maxj∈VF xj] does not hold,
then either x̄ − ξ < minj∈VF xj or x̄ + ξ > maxj∈VF xj.

Suppose x̄− ξ < minj∈VF xj. Due to Lemma 1, the setM , {i|i ∈

VF , xi = minj∈VF xj} is nonempty andM ⊂ VF . For p ∈ M , one has

ẋp = κ1

−
j∈Ns

p

(xp − xj) + κ2


x̄ + ξsgn

×

 −
k∈Ns

p(0)

[xp(0) − xk(0)]


− xp


. (4)

Since xp = minj∈VF xj, one knows that−
j∈Ns

p

(xp − xj) ≤ 0. (5)

Because ξsgn
∑

k∈Ns
p(0)

(xp(0) − xk(0))


= −ξ , one knows that

x̄ + ξsgn

 −
k∈Ns

p(0)

[xp(0) − xk(0)]

− xp = x̄ − ξ − xp < 0. (6)

Then, (4)–(6) yield ẋp < 0, which is a contradiction.
Similarly, it can be proved that x̄+ ξ > maxj∈VF xj will also lead

to a contradiction. �

The next lemma shows that ui = 0 will be achieved asymptot-
ically.

Lemma 3. For the system (1) with the control input (3), if κ2
κ1

>

2(n − 1), then limt→∞ ui = 0 for all i ∈ VF .

Proof. Let x , [x1, . . . , xn]T . Define a Lyapunov function candidate

V =
1
2
ẋT ẋ. (7)
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Because

ẍi = u̇i = κ1

−
j∈Ns

i

(ẋi − ẋj) − κ2ẋi,

one has

ẍ = κ1Ls(t)ẋ − κ2ẋ, (8)

with Ls(t) the Laplacian matrix of the graph Gs at time t , which
yields

V̇ = ẋT ẍ
= ẋT (κ1Ls(t)ẋ − κ2ẋ)
= ẋT (κ1Ls(t) − κ2I)ẋ
≤ {κ1λmax[Ls(t)] − κ2} ‖ẋ‖2.

FromGershgorin Disc Theorem, it can be proved that λmax(Ls(t)) ≤

2(n − 1). If κ2
κ1

> 2(n − 1), then V̇ < 0 for ẋ ≠ 0, which leads to
the result that limt→∞ ẋi(t) = 0 for all i ∈ VF . �

Remark 6. The condition κ2
κ1

> 2(n − 1) can be replaced with
λmax(Ls(t)) <

κ2
κ1
. Because λmax(Ls(t)) is determined by the topol-

ogy of the graph Gs, an interesting problem is to investigate the
relationships between the topology of Gs and the dynamics of the
system (1)with the control input (3)when κ1 and κ2 are both fixed.
This problem becomes even more interesting when the graph Gs
is generated by some complex network models, e.g., small-world
model [22] or scale-free model [23]. The control of complex net-
works has received intensive attention from various disciplines,
see, for example, [24] and [25].

By using Lemmas 2 and 3, one can prove the following result.

Theorem 1. Suppose that Assumptions 1–3 hold for the sys-
tem (1) with the control input (3). If κ2

κ1
> 2(n − 1) and ξ ≥

maxi∈VL ‖xi − x̄‖, then the surrounding control problem is solved
asymptotically.

Proof. From Lemma 3, one knows that limt→∞ ui = 0 for all
i ∈ VF . Because Assumptions 1–3 hold, we know that Lemma 2
holds. Then, by Lemma 2, one has

[x̄ − ξ, x̄ + ξ ] ⊆ [min
j∈VF

xj,max
j∈VF

xj]

as t → ∞. Because ξ ≥ maxi∈VL ‖xi − x̄‖, one knows that

xi ∈ [x̄ − ξ, x̄ + ξ ] ⊆ [min
j∈VF

xj,max
j∈VF

xj]

for all i ∈ VL as t → ∞, which indicates

lim
t→∞

‖xi − co(VF )‖ = 0

for all i ∈ VL. �

4.2. x̄ is not available

In this subsection, it is not assumed that x̄ is available to all
the followers. Therefore, a decentralized estimator needs to be
constructed at each follower to estimate x̄. The followers exchange
their estimates via the communication graph Gc . The estimator is
given as follows:

ẏi = κ
−
j∈Nc

i

(yj − yi), (9)

where yi is follower i’s estimate of x̄, κ > 0 is a constant, and the
initial condition of yi satisfies

yi(0) =
n
N

−
j∈N̄L

i (0)

1
|N̄F

j (0)|
xj(0) (10)
for all i ∈ VF . Recall from Section 3 that for leader j, N̄F
j denotes the

set of the followers who can communicate with leader j, while for
follower i, N̄L

i denotes the set of the leaders who can communicate
with follower i.

Remark 7. Note that to implement the estimator, the absolute
positions of the leaders at the initial time are required.

The next lemma shows that the estimator (9) is globally
asymptotically stable.

Lemma 4. Suppose that Assumption 4 holds. Using the estima-
tor (9) with the initial conditions (10), one has limt→∞ ‖yi − x̄‖ =

0, ∀i ∈ VF .

Proof. Define ei , yi − x̄, then

ėi = ẏi = κ
−
j∈Nc

i

(ej − ei).

Let

e , [e1, . . . , en]T (11)

and V (e) , 1
2 e

T e. Then one has

V̇ = eT ė = κeT (−Lce). (12)

Due to Assumption 4, we know that initially, a leader can
communicate with at least a follower. Therefore, it can be verified
that e1 = 0, which yields that

V̇ ≤ −κλ2(Lc)‖e‖2. (13)

Since the graph Gc is fixed and connected, one has λ2(Lc) > 0 [21],
which leads to V̇ < 0 for ‖e‖ ≠ 0. �

Then, one can design the following new control law

ui = yi + ξsgn

 −
k∈Ns

i (0)

[xi(0) − xk(0)]

− xi, (14)

where yi is given by (9) and (10).
Although the estimator is globally asymptotically stable, when

x̄ is replaced with the estimator (9) with the initial conditions (10),
it is not clear whether the resulting system of (1) using (14) is still
stable. Therefore, stability analysis is needed. Before that, a lemma
is in order.

Lemma 5. Suppose that Assumptions1–3hold for the system (1)with
the control input (14). Define M , {i ∈ VF |xi = minj∈VF xj(0)} and
M̄ , {i ∈ VF |xi = maxj∈VF xj(0)}. Let p ∈ M and q ∈ M̄. If ui = 0
for all i ∈ VF , then

[yp − ξ, yq + ξ ] ⊆ [min
j∈VF

xj,max
j∈VF

xj].

Proof. The proof is similar to that of Lemma 2, and hence omitted
here. �

Theorem 2. Suppose that Assumptions 1–4 hold for the sys-
tem (1)with the control input (14). If κ < 2, and ξ ≥ maxi∈VL ‖xi −
x̄‖, then the surrounding control problem is solved asymptotically.

Proof. Define

V ,
1
2
ẋT ẋ +

1
2
aeT e (15)

where e is defined in (11) and a >
2(maxi∈VF dci )

2

λ2(Lc )
with dci being the

degree of node i in Gc . It can be obtained that

ẍi = u̇i = κ
−
j∈Nc

i

(yj − yi) − ẋi,
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which can be rewritten in a matrix form as

ẍ = κ(−Lcy) − ẋ.

Then one has

V̇ = ẋT ẍ + aeT ė = −ẋT ẋ + κ ẋT (−Lcy) + aeT ė. (16)

Byusing the fact that Lc1 = 0,weknow that Lcy = Lc(e+x̄1) = Lce,
which yields that

κ ẋT (−Lcy) = κ ẋT (−Lce).

According to Cauchy Schwartz inequality, one has

−ẋT Lce ≤ |ẋT Lce|
≤ ‖ẋ‖ ‖Lce‖

≤
1
2
(ẋT ẋ + (Lce)T (Lce))

=
1
2
(ẋT ẋ + eT L2c e).

By using the Gershgorin Disc Theorem, λmax(Lc) < 2maxi∈VF di.
Because an eigenvalue λ of Lc corresponds to an eigenvalue λ2 of
L2c , one knows that

λmax(L2c ) ≤ 4(max
i∈VF

di)2,

which yields

− ẋT Lce ≤
1
2
ẋT ẋ + 2(max

i∈VF
di)2eT e. (17)

Using (13) and (17), (16) can be further reduced to

V̇ ≤ −ẋT ẋ +
1
2
κ ẋT ẋ + 2κ(max

i∈VF
dci )

2eT e − aκλ2(Lc)‖e‖2

≤ ẋT

−1 +

κ

2


ẋ +


2κ(max

i∈VF
dci )

2
− aκλ2(Lc)


‖e‖2. (18)

Because κ < 2 and a >
2(maxi∈VF dci )

2

λ2(Lc )
, one has V̇ < 0 whenever

‖ẋ‖ ≠ 0 or ‖e‖ ≠ 0, which yields

lim
t→∞

ẋ = 0.

By using Assumptions 1–3, we know that Lemma 5 holds, which
yields

[yp − ξ, yq + ξ ] ⊆ [min
j∈VF

xj,max
j∈VF

xj],

as t → ∞. In addition, by using Assumption 4, we know Lemma 4
hold. Then one can conclude

[x̄ − ξ, x̄ + ξ ] ⊆ [min
j∈VF

xj,max
j∈VF

xj], (19)

as t → ∞. Because ξ ≥ maxi∈VL ‖xi − x̄‖, one knows that

xi ∈ [x̄ − ξ, x̄ + ξ ] ⊆ [min
j∈VF

xj,max
j∈VF

xj]

for all i ∈ VL as t → ∞, which indicates

lim
t→∞

‖xi − co(VF )‖ = 0

for all i ∈ VL. �

Remark 8. When x̄ is not available, we cannot guarantee collision
avoidance due to the fact that the followers have different
estimates of x̄. However, the followers can be equipped with local
collision avoidance capabilities and mechanisms. For example,
sonars or infrared sensors can be installed on the followers such
that collision avoidance is guaranteedwhen the followers are close
to each other or close to a leader.
Remark 9. To solve the surrounding control problem, we need
some global information, i.e., x̄, maxi∈VL |xi − x̄|, and n. The
geometric center of the leaders x̄ is obtained by using a
decentralized estimator. Therefore, maxi∈VL |xi − x̄| can also be
calculated in a decentralized way. Moreover, the number of
the followers n can be obtained by using some decentralized
communication protocols in computer science. In other words, the
control laws that we designed are decentralized.

The results in Theorem2 can be generalized to the case of higher
dimensions, provided that some initial conditions are met.

Theorem 3. For the case of higher dimensions, i.e., d > 1, suppose
that Assumptions 1–4 hold for the system (1) with the control
input (14), and initially co(VF ) is a hyperrectangle, which is the
generalization of a rectangle for higher dimensions. If κ < 2 and
ξ ≥ maxi∈VL ‖xi − x̄‖, then the surrounding control problem is solved
asymptotically.

Proof. The proof is similar to that of Theorem 2. �

5. Balanced surrounding control problem

In this section, the balanced surrounding control problem is
considered. That is, (2) holds and all followers converge to a
configuration that forms a regular polytope with a geometric
center at x̄. Here, we assume that the geometric center of the
leaders is available to all the followers. If it is not available,
the estimator presented in the last section can be used, and the
stability analysis can be done under the estimation-and-control
framework as presented in the last section. We hence assume
that all agents share a common coordinate system centered at
x̄. In this section, we only consider the two-dimensional case,
but the derived results can be extended to the case of a higher
dimension. To simplify the analysis, the polar coordinate system
is used, where ri and θi are, respectively, the radius and angle of
follower i. Suppose that

ṙi = ηi (20)

θ̇i = ωi. (21)

In the new coordinate system, we design ηi and ωi. Note that, once
ηi andωi are designed, the controllers ui for the original system (1)
can be specified as follows:

ui =

[
ηi cos θi − riωi sin θi
ηi sin θi + riωi cos θi

]
.

We first design ωi. Define

θij , min{(θi − θj) mod 2π, (θj − θi) mod 2π},

which measures the distance between θi and θj. If θij < 2π
n , there

are two possible cases: either 0 ≤ |θi − θj| < 2π
n or 2π −

2π
n <

|θi − θj| ≤ 2π . We use an undirected graph Gθ , (VF , Eθ )
to denote the angle relationships between the followers, where
Eθ , {(i, j)|θij < 2π

n }. The set of the neighbors of follower i in Gθ is
denoted by Nθ

i .
The requirement that the followers form a regular polytope

indicates that the angles of the followers should distribute in a
balanced way, which is defined as follows.

Definition 1 (Balanced Distribution). The angle vector θ ,
[θ1, . . . , θn]

T is said to be a balanced distribution if and only if
θij mod 2π

n = 0 and θi ≠ θj for all i ≠ j, i ∈ VF , and j ∈ VF .
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rij ,



1
a1(θi − θj)2 + a2(θi − θj)4

, 0 ≤ |θi − θj| <
2π
n

,

1

a1
 2π

n

2
+ a2

 2π
n

4 ,
2π
n

≤ |θi − θj| ≤ 2π −
2π
n

,

1
a3((2π)2 − (θi − θj)2) + a4((2π)2 − (θi − θj)2)2

,

2π −
2π
n

< |θi − θj| ≤ 2π,

where a1 = −2a2( 2π
n )2, a2 =

((2π)2−(2π−
2π
n )2)2

( 2π
n )4

a4, a3 = −2a4((2π)2 − (2π −
2π
n )2), and a4 < 0.

Box I.
To design ωi, we first define a potential function rij. Then ωi is
designed such that the angles of the followers change along the
negative gradient of

∑
j∈Nθ

i
rij. The function rij should have the fol-

lowing properties: (i) it is a repulsive forcewhen 0 ≤ |θi−θj| < 2π
n ,

and (ii) it becomes an attractive force when 2π −
2π
n < |θi − θj| ≤

2π . In this way, a balanced distributionwill be achieved (see Box I).

Lemma 6. The following properties hold for the function rij:

1. rij ≥ 0,
2. ∂rij

∂(θi−θj)2
< 0 for 0 < |θi − θj| < 2π

n and ∂rij
∂(θi−θj)2

> 0 for

2π −
2π
n < |θi − θj| < 2π ,

3. rij is continuously differentiable.

Proof. This can be shown by some simple calculations, and is
hence omitted. �

Then, the control law ωi is defined as

ωi = −

−
j∈Nθ

i

∂rij
∂θi

, ∀i ∈ VF . (22)

To implement (22), we need the following assumption.

Assumption 5. The edge set of Gθ is a subset of the edge set of the
communication graph Gc , i.e., Eθ ⊆ Ec .

This assumption can be achieved by choosing appropriate initial
values of θ(0). For example, we can choose θ(0) such that Gθ (0)
is a subgraph of a linear cyclic pursuit graph [26]. Then let Ec be
the linear pursuit graph, we can have Eθ (t) ⊆ Ec for all t ≥ 0.
Therefore, the followers can exchange their information through
the communication graph Gc . Because of Assumptions 1 and 5, we
know that the controller (22) can be implemented.

Lemma 7. Suppose that Assumptions 1 and 5 hold. The set Θ ,
{θ |0 < |θi − θj| < 2π} is positively invariant for the system
(21) using (22).

Proof. Define

V ,
1
2

−
i∈VF ,j∈VF ,i≠j

rij. (23)

It can be verified that (21) using (22) becomes

θ̇i = −
∂V
∂θi

which yields V̇ ≤ 0. By noting that |θi − θj| = 0 or |θi − θj| = 2π
lead to V = ∞ and

V (t) ≤ V (0) < ∞, (24)

one can conclude that Θ is positively invariant. �
Theorem 4. Suppose that Assumptions 1 and 5 hold. For the
system (21) using (22) with θ(0) ∈ Θ , θ will achieve a balanced
distribution asymptotically.

Proof. By using Lemma 7 and LaSalle’s invariant principle [27], we
know that the systemwill converge to the largest invariant set S ,

{θ |V̇ (θ) = 0}. Because V̇ = −
∑

i


∂V
∂θi

2
= −

∑
i θ̇

2
i , it follows

that V̇ = 0 implies that θ̇i = 0. Therefore, it is straightforward to
obtain that limt→∞ θ̇ (t) = 0. That is, the angles of all the followers
will stop changing eventually.

Renumber the followers such that

θp1 ≤ θp2 ≤ · · · ≤ θpn .

For notational convenience, define θpn+1 = θp1 and θp0 = θpn . It
can be verified that−
i∈VF

θpi,pi+1 = 2π. (25)

If θ is not a balanced distribution, one knows that the set ∆̄ ,
{i ∈ VF |θpi,pi+1 ≥

2π
n } is not empty. In addition, it can be proved

that ∆̄ ∩ ∆ is not empty where ∆ , {i ∈ VF |θpi−1,pi < 2π
n }. This

is shown by contradiction. Suppose ∆̄ ∩ ∆ is empty, then for all
pi ∈ ∆̄, one has θpi−1,pi ≥

2π
n , which indicates that pi−1 ∈ ∆̄

for all pi ∈ ∆̄. By repeating the above statements, one can obtain
∆̄ = VF , which yields θpi,pi+1 ≥

2π
n for all i ∈ VF . Because θ is not

balanced, one knows that there is at least one follower i ∈ VF such
that θpi,pi+1 > 2π

n , which leads to−
i∈VF

θpi,pi+1 > 2π. (26)

This contradicts with (25). Therefore, one can conclude that ∆̄∩∆

is not empty.
For pi ∈ ∆̄ ∩ ∆, one has

θ̇pi = −

−
j≠pi,θpi,j<

2π
n

∂rij
∂θpi

= −2
−

j≠pi,θpi,j<
2π
n

∂rij
∂(θpi − θj)2

(θpi − θj).

If j ∈ {p1, p2, . . . , pi−1}, one knows 0 < |θpi − θj| < 2π
n , which

yields ∂rij
∂(θpi−θj)2

(θpi −θj) < 0 by using Lemma 6. Similarly, it can be

proved that ∂rij
∂(θpi−θj)2

(θpi − θj) < 0 holds also for j ∉ {p1, p2, . . . ,

pi−1}. Then, one can conclude θ̇pi > 0, which contradicts with
θ̇ = 0. �
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(a) t = 0. (b) t = 0.25.

(c) t = 1.25. (d) t = 5.

Fig. 1. Surrounding control of mobile networks. The leaders are denoted by ‘‘�’’, while the followers are represented by ‘‘∗’’.
We next design ηi. The main purpose of ηi is to drive all agents
to a circle centered at x̄ and with a radius ξ . The controller for ηi is
of the following form:

ηi = −βsgn
[
ri −


ξ 2 − r̄2 sin2(θi − θ̄ ) − r̄ cos(θi − θ̄ )

]
, (27)

where β > 0 is a constant, and r̄ and θ̄ are, respectively, the radius
and angle of the geometric center of the leaders.

From Assumptions 1 and 5, we know that Theorem 4 holds.
Therefore, θ will achieve a balanced distribution asymptotically.
In the following, it is shown that θ̇i is bounded for all i ∈ VF . If
0 ≤ |θi − θj| < 2π

n , let rij(ra) = V (0), where V (0) is the value of
the function V , defined by (23), at time 0. In addition, one has that
rij(|θi − θj|) ≤ V (t) ≤ V (0) = rij(ra),
which yields that

ra ≤ |θi − θj| <
2π
n

.

It thus follows that∂rij∂θi

 ≤ 4a2


2π
n


a2r2a


2π
n

2
−2 

r2a −


2π
n

2


. (28)

If 2π −
2π
n < |θi − θj| ≤ 2π , let rij(rb) = V (0). Then one has that

2π −
2π
n < |θi − θj| ≤ rb, which yields that∂rij∂θi

 ≤ 4a24rb

(2π)2 − r2b

 
(2π)2 −


2π −

2π
n

2


×


r2b −


2π −

2π
n

2


. (29)
Define

rmax , max

4a2


2π
n


a2r2a


2π
n

2
−2 

r2a −


2π
n

2


,

× 4a24rb[(2π)2 − r2b ]


(2π)2 −


2π −

2π
n

2


×


r2b −


2π −

2π
n

2


, (30)

one has that

|θ̇i| ≤ (n − 1)rmax. (31)

Theorem 5. Suppose that Assumptions 1 and 5 hold. For the
system (21) using (22) and (20) using (27), if β > r̄(n − 1)rmax

(r̄(ξ 2
− r̄2)−

1
2 + 1), ξ > max(r̄,maxi∈VL ‖xi − x̄‖/ cos(π/n)), and

θ(0) ∈ Θ , then the balanced surrounding control problem is solved
asymptotically. Here rmax is a constant defined by (30).

Proof. Define

Vi =
1
2

[
ri −


ξ 2 − r̄2 sin2(θi − θ̄ ) − r̄ cos(θi − θ̄ )

]2
.

Then one has

V̇i ≤

ri −
ξ 2 − r̄2 sin2(θi − θ̄ ) − r̄ cos(θi − θ̄ )


×


r̄|θ̇i|[r̄(ξ 2

− r̄2)−
1
2 + 1] − β


.
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Fig. 2. The estimates of the geometric center of the leaders.

Because β > r̄(n − 1)rmax(r̄(ξ 2
− r̄2)−

1
2 + 1), one knows V̇i < 0.

Therefore, the system will converge to

lim
t→∞

ri(t) =


ξ 2 − r̄2 sin2(θi − θ̄ ) − r̄ cos(θi − θ̄ ). (32)

Thus, as t → ∞,

(ri − r̄ cos(θi − θ̄ ))2 → ξ 2
− r̄2 sin2(θi − θ̄ ),

which yields

r2i + r̄2 − 2ri r̄ cos(θi − θ̄ ) → ξ 2.

This further leads to r2i cos2 θi − 2ri r̄ cos θi cos θ̄ + r̄2 cos2 θ̄ +

r2i sin2 θi − 2ri r̄ sin θi sin θ̄ + r̄2 sin2 θ̄ → ξ 2. Then one has

(ri cos θi − r̄ cos θ̄ )2 + (ri sin θi − r̄ sin θ̄ )2 → ξ 2.
Therefore, C(x̄, ξ) will be the circumcircle of the regular polytope
formed by all the followers, where C(x̄, ξ) denotes the circle
centered at x̄ and with the radius ξ . Because the radius of the
incircle of the regular polytope is

rin = ξ · cos(π/n).

Since ξ ≥ maxi∈VL ‖xi − x̄‖/ cos(π/n), one knows that

xi ∈ B(x̄, rin) ⊆ co(VF ), ∀i ∈ VL, (33)

where B(x̄, rin) , {x ∈ R2
|‖x − x̄‖ ≤ rin}. �

6. Simulations

In this section, a simulation example as shown in Fig. 1 is
first presented to illustrate Theorem 3. This example includes four
leaders and four followers. The control parameters are specified as
follows: κ = 1, r = 8, and ξ = maxi∈Vf ‖xi − x̄‖. The edge set
Ec of the communication graph Gc is defined to be Ec , {(i, i +

1)|i = 1, . . . , |Vf | − 1}. Initially, each leader can communicate
with a follower, and the convex hull of the followers is set to be
a rectangle, where the convex hull is formed by the dashed lines
(Fig. 1(a)). When the followers are moving, the rectangle might
not be kept because the followers have different estimates of the
geometric center of the leaders x̄ (Fig. 1(b) and (c)). However, as
the estimates converge to x̄, the rectangle is recovered and the
followers can surround the leaders eventually (Fig. 1(d)). Fig. 2
shows the estimates of the geometric center of the leaders,which is
[0, 0] in this case. The dashed lines denote the followers’ estimates
of the x dimension of the geometric center, while the solid lines
represent the estimates of the y dimension of the geometric center.
(a) t = 0. (b) t = 5.

(c) t = 15. (d) t = 100.

Fig. 3. Balanced surrounding control of mobile networks.
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In the following, we present another example as shown in
Fig. 3 to illustrate Theorem 5. This example includes 4 leaders
and 6 followers. Initially, the angles of the followers are generated
such that 0 < |θi − θj| < 2π for all i ≠ j, i, j ∈ VF (See
Fig. 3(a)). Note that in this example, co(VF ) is not required to
be a hyperrectangle initially. The control parameters are chosen
to satisfy β > r̄(n − 1)rmax(r̄(ξ 2

− r̄2)−
1
2 + 1) and ξ >

max(r̄,maxi∈VL ‖xi− x̄‖/ cos(π/n)), and the communication graph
Gc is generated to satisfy Assumption 5. The convex hull of the
followers is indicated by dashed lines. The geometric center of
the leaders is denoted by a circle. As can be seen from Fig. 3, not
only can the followers surround the leaders, but also the final
configuration of the followers forms a regular polytope centered
at the geometric center of the leaders. It can be shown that
the distances, denoted by dotted lines, from the followers to the
geometric center are of the same values finally.

7. Conclusions

In this paper, a new cooperative control problem, surrounding
control, is proposed, and partially solved. To solve this problem,
some global information is needed, i.e., the geometric center of
the leaders. To this aim, a decentralized estimator is constructed
to estimate the geometric center, and is used in the controller.
By using tools from graph theory and dynamical systems theory,
we show that our controllers guarantee that the followers can
surround the leaders eventually.

This paper focuses on the stationary leader case and a fixed
communication graph. The model we proposed is of course very
simple, but it serves as a natural starting point for the study of
more complicated models, for instance, when the communication
graph is time varying. Another future direction is to extend the
current paper to consider moving leaders. The most challenging
part in the extension might be to design an estimator that can
track the geometric center of the moving leaders. In addition,
the stability analysis could also be more involved. As stated
in the introduction, the algorithm proposed in this paper may
ultimately find applications in real life. But before this can happen,
some compelling issues such as the effects of time delays and
disturbances should be satisfactorily addressed.
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