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Abstract—This paper reviews some main results and progress
in distributed multi-agent coordination, focusing on papers pub-
lished in major control systems and robotics journals since 2006.
Distributed coordination of multiple vehicles, including unmanned
aerial vehicles, unmanned ground vehicles, and unmanned under-
water vehicles, has been a very active research subject studied ex-
tensively by the systems and control community. The recent re-
sults in this area are categorized into several directions, such as
consensus, formation control, optimization, and estimation. After
the review, a short discussion section is included to summarize the
existing research and to propose several promising research direc-
tions along with some open problems that are deemed important
for further investigations.

Index Terms—Distributed coordination, formation control,
multi-agent system, sensor network.

I. INTRODUCTION

C ONTROL theory and practice may date back to the be-
ginning of the last century when the Wright Brothers at-

tempted their first test flight in 1903. Since then, control theory
has gradually gained popularity, receiving more and wider at-
tention especially during the World War II when it was devel-
oped and applied to fire-control systems, missile navigation and
guidance, as well as various electronic automation devices. In
the past several decades, modern control theory was further ad-
vanced due to the booming of aerospace technology based on
large-scale engineering systems.
During the rapid and sustained development of the modern

control theory, technology for controlling a single vehicle, al-
beit higher dimensional and complex, has become relativelyma-
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ture and has produced many effective tools such as PID con-
trol, adaptive control, nonlinear control, intelligent control, and
robust control methodologies. In the past two decades in par-
ticular, control of multiple vehicles has received increasing de-
mands spurred by the fact that many benefits can be obtained
when a single complicated vehicle is equivalently replaced by
multiple yet simpler vehicles. In this endeavor, two approaches
are commonly adopted for controlling multiple vehicles: a cen-
tralized approach and a distributed approach. The centralized
approach is based on the assumption that a central station is
available and sufficiently powerful to control a whole group of
vehicles. Essentially, the centralized approach is a direct exten-
sion of the traditional single-vehicle-based control philosophy
and strategy. On the contrary, the distributed approach does not
require a central station for control, at the cost of becoming far
more complex in structure and organization. Although both ap-
proaches are considered to be practical depending on the sit-
uations and conditions of the real applications, the distributed
approach is believed more promising due to many inevitable
physical constraints such as limited resources and energy, short
wireless communication ranges, narrow bandwidths, and large
sizes of vehicles to manage and control. Therefore, the focus of
this overview is placed on the distributed approach.
In distributed control of a group of autonomous vehicles, the

main objective typically is to have the whole group of vehicles
working in a cooperative fashion throughout a distributed pro-
tocol. Here, cooperative refers to a close relationship among
all vehicles in the group where information sharing plays a
central role. The distributed approach has many advantages in
achieving cooperative group performances, especially with low
operational costs, less system requirements, high robustness,
strong adaptivity, and flexible scalability, therefore has been
widely recognized and appreciated.
The study of distributed control of multiple vehicles was per-

haps first motivated by the work in distributed computing [1],
management science [2], and statistical physics [3]. In the con-
trol systems society, some pioneering works are generally re-
ferred to [4], [5], where an asynchronous agreement problem
was studied for distributed decision-making problems. There-
after, some consensus algorithms were studied under various in-
formation-flow constraints [6]–[10]. There are several journal
special issues on the related topics published after 2006, in-
cluding [11]–[15]. In addition, there are some recent reviews
and progress reports given in the surveys [16]–[20] and the
books [21]–[28], among others.
This paper reviews some main results and recent progress in

distributed multi-agent coordination, published in major control
systems and robotics journals since 2006. Due to space limita-
tions, we refer the readers to [29] for a more complete version

1551-3203/$31.00 © 2012 IEEE



428 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 9, NO. 1, FEBRUARY 2013

of the same overview. For results before 2006, the readers are
referred to [16]–[19].
Specifically, this paper reviews the recent research results in

the following directions, which are not independent but actually
may have overlapping to some extent.
1) Consensus and the like (synchronization, rendezvous):
consensus refers to the group behavior that all of the agents
asymptotically reach a certain common agreement through
a local distributed protocol, with or without predefined
common speed and orientation.

2) Distributed formation and the like (flocking): distributed
formation refers to the group behavior that all of the
agents form a predesigned geometrical configuration
through local interactions with or without a common
reference.

3) Distributed optimization: this refers to algorithmic devel-
opments for the analysis and optimization of large-scale
distributed systems.

4) Distributed estimation and control: this refers to distributed
control design based on local estimation about the needed
global information.

The remainder of this paper is organized as follows. In
Section II, basic notations of graph theory and stochastic
matrices are introduced. Sections III–VI describe the recent
research results and progress in consensus, formation control,
optimization, and estimation. Finally, we conclude the paper
with a short discussion on future perspectives.

II. PRELIMINARIES

A. Graph Theory

For a system of connected agents, its network topology can
be modeled as a directed graph denoted by , where

and are, respectively, the
set of agents and the set of edges which directionally connect
the agents together. Specifically, the directed edge denoted by
an ordered pair means that agent can access the state
information of agent . Accordingly, agent is a neighbor of
agent . A directed path is a sequence of directed edges in the
form of , with all . A directed graph
has a directed spanning tree if there exists at least one agent that
has a directed path to every other agent. The union of a set of
directed graphs with the same set of agents, , is a
directed graph with the same set of agents and its set of edges is
given by the union of the edge sets of all the directed graphs ,

. A complete directed graph is a directed graph in
which each pair of distinct agents is bidirectionally connected
by an edge, thus there is a directed path from any agent to any
other agent in the network.
Two matrices are used to represent the network topology: the

adjacency matrix with if
and otherwise, and the Laplacian matrix
with and , , which is

generally asymmetric for directed graphs.

B. Stochastic Matrices

A nonnegative square matrix is called (row) stochastic ma-
trix if its every row is summed up to one. The product of two
stochastic matrices is still a stochastic matrix. A row stochastic

matrix is called indecomposable and aperiodic if
for some [30], where is a vector

with all elements being 1.

III. CONSENSUS

Consider a group of agents, each with single-integrator
kinematics described by

(1)

where and are, respectively, the state and the control
input of the th agent. A typical consensus control algorithm is
designed as

(2)

where is the th entry of the corresponding adjacency
matrix at time . The main idea behind (2) is that each agent
moves towards the weighted average of the states of its neigh-
bors. Given the switching network pattern due to the continuous
motions of the dynamic agents, coupling coefficients in
(2), hence the graph topologies, are generally time varying. It
is shown in [9], [10] that consensus is achieved if the under-
lying directed graph has a directed spanning tree in some jointly
fashion in terms of a union of its time-varying graph topologies.
The idea behind consensus serves as a fundamental prin-

ciple for the design of distributed multi-agent coordination
algorithms. Therefore, investigating consensus has been a
main research direction in the study of distributed multi-agent
coordination. To bridge the gap between the study of consensus
algorithms and many physical properties inherited in practical
systems, it is necessary and meaningful to study consensus by
considering many practical factors, such as actuation, control,
communication, computation, and vehicle dynamics, which
characterize some important features of practical systems. This
is the main motivation to study consensus. In Section III-A, an
overview of the research progress in the study of consensus is
given, regarding stochastic network topologies and dynamics,
complex dynamical systems, delay effects, and quantization,
mainly after 2006. Several milestone results prior to 2006 can
be found in [2], [4]–[6], [8]–[10], and [31].

A. Stochastic Network Topologies and Dynamics

In multi-agent systems, the network topology among all ve-
hicles plays a crucial role in determining consensus. The ob-
jective here is to explicitly identify necessary and/or sufficient
conditions on the network topology such that consensus can be
achieved under properly designed algorithms.
It is often reasonable to consider the case when the network

topology is deterministic under ideal communication chan-
nels. Accordingly, main research on the consensus problem
was conducted under a deterministic fixed/switching network
topology. That is, the adjacency matrix is deterministic.
Some other times, when considering random communication
failures, random packet drops, and communication channel
instabilities inherited in physical communication channels, it
is necessary and important to study consensus problem in the
stochastic setting where a network topology evolves according
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to some random distributions, that is, the adjacency matrix
is stochastically evolving.

In the deterministic setting, consensus is said to be achieved
if all agents eventually reach agreement on a common state.
In the stochastic setting, consensus is said to be achieved al-
most surely (respectively, in mean-square or in probability) if
all agents reach agreement on a common state almost surely (re-
spectively, in mean-square or with probability one). Note that
the problem studied in the stochastic setting is slightly different
from that studied in the deterministic setting due to the dif-
ferent assumptions in terms of the network topology. Consensus
over a stochastic network topology was perhaps first studied in
[32], where some sufficient conditions on the network topology
were given to guarantee consensus with probability one for sys-
tems with single-integrator kinematics equation (1), where the
rate of convergence was also studied. Further results for con-
sensus under a stochastic network topology were reported in
[33]–[35], where research effort was conducted for systemswith
single-integrator kinematics [33], [34] or double-integrator dy-
namics [35]. Consensus for single-integrator kinematics under
stochastic network topology has been extensively studied in par-
ticular, where some general conditions for almost-surely con-
sensus was derived [34]. Loosely speaking, an almost sure con-
sensus for single-integrator kinematics can be achieved, i.e.,

almost surely, if and only if the expectation
of the network topology, namely, the network topology associ-
ated with expectation , has a directed spanning tree. It is
worth noting that the conditions are analogous to that in [9] and
[10], but in the stochastic setting. In view of the special structure
of the closed-loop systems concerning consensus for single-in-
tegrator kinematics, basic properties of the stochastic matrices
play a crucial role in the convergence analysis of the associated
control algorithms. Consensus for double-integrator dynamics
was studied in [35], where the switching network topology is
assumed to be driven by a Bernoulli process, and it was shown
that consensus can be achieved if the union of all the graphs has
a directed spanning tree. Apparently, the requirement on the net-
work topology for double-integrator dynamics is a special case
of that for single-integrator kinematics due to the difference na-
ture of the final states (constant final states for single-integrator
kinematics and possible dynamic final states for double-inte-
grator dynamics) caused by the substantial dynamical differ-
ence. It is still an open question as if some general conditions
(corresponding to some specific algorithms) can be found for
consensus with double-integrator dynamics.
In addition to analyzing the conditions on the network

topology such that consensus can be achieved, a special type
of consensus algorithm, the so-called gossip algorithm [36],
[37], has been used to achieve consensus in the stochastic
setting. The gossip algorithm can always guarantee consensus
almost surely if the available pairwise communication channels
satisfy certain conditions (such as a connected graph). The way
of network topology switching does not play any role in the
consideration of consensus.
The current study on consensus over stochastic network

topologies has shown some interesting results regarding: 1)
consensus algorithm design for various multi-agent systems;
2) conditions of the network topologies on consensus; and 3)
effects of the stochastic network topologies on the convergence

rate. Future research on this topic includes, but not limited to,
the following two directions. 1) When the network topology
itself is stochastic, how to determine the probability of reaching
consensus almost surely? (2) Compared with the deterministic
network topology, what are the advantages and disadvantages
of the stochastic network topology, regarding such as robust-
ness and convergence rate?
As is well known, disturbances and uncertainties often exist

in networked systems, for example, channel noise, communi-
cation noise, and uncertainties in network parameters. In ad-
dition to the stochastic network topologies discussed above,
the effect of stochastic disturbances [38], [39] and uncertainties
[40] on the consensus problem also needs investigation. Study
has been mainly devoted to analyzing the performance of con-
sensus algorithms subject to disturbances and to presenting con-
ditions on the uncertainties such that consensus can be achieved.
In addition, another interesting direction in dealing with dis-
turbances and uncertainties is to design distributed local fil-
tering algorithms so as to save energy and improve computa-
tional efficiency. Distributed local filtering algorithms play an
important role and are more effective than traditional central-
ized filtering algorithms for multi-agent systems. For example,
in [41]–[43], some distributed Kalman filters are designed to
implement data fusion. In [44], by analyzing consensus and
pinning control in synchronization of complex networks, dis-
tributed consensus filtering in sensor networks is addressed. Re-
cently, Kalman filtering over a packet-dropping network is de-
signed through a probabilistic approach [45]. Today, it remains a
challenging problem to incorporate both dynamics of consensus
and probabilistic (Kalman) filtering into a unified framework.

B. Complex Dynamical Systems

Since consensus is concerned with the behavior of a group
of vehicles, it is natural to consider the system dynamics for
practical vehicles in the study of the consensus problem. Al-
though the study of consensus under various system dynamics is
due to the existence of complex dynamics in practical systems,
it is also interesting to observe that system dynamics play an
important role in determining the final consensus state. For in-
stance, the well-studied consensus of multi-agent systems with
single-integrator kinematics often converges to a constant final
value instead. However, consensus for double-integrator dy-
namics might admit a dynamic final value (i.e., a time function).
These important issues motivate the study of consensus under
various system dynamics.
As a direct extension of the study of the consensus problem

for systems with simple dynamics, for example, with single-in-
tegrator kinematics or double-integrator dynamics, consensus
with general linear dynamics was also studied recently
[46]–[48], where research is mainly devoted to finding feed-
back control laws such that consensus (in terms of the output
states) can be achieved for general linear systems

(3)

where , , and are constant matrices with compatible sizes.
Apparently, the well-studied single-integrator kinematics and
double-integrator dynamics are special cases of (3) for properly
choosing , , and .
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As a further extension, consensus for complex systems has
also been extensively studied. Here, the term consensus for
complex systems is used for the study of consensus problem
when the system dynamics are nonlinear [49]–[53] or with
nonlinear consensus algorithms [54], [55]. Examples of the
nonlinear system dynamics include the following.
• Nonlinear oscillators [50]: the dynamics are often assumed
to be governed by the Kuramoto equation

, , where and
are, respectively, the phase and natural frequency of the

th oscillator, is the number of oscillators, and is the
control gain. Generally, the control gain plays a crucial
role in determining the synchronizability of the network.

• Complex networks [53]: the dynamics are typically repre-
sented as

(4)

where is the state vector
of the th node, is a nonlinear vector func-
tion, is the overall coupling strength, is
the outer coupling matrix with if node and
node are connected at time but otherwise ,
with (degree of node ), and is a general inner
coupling matrix describing the inner interactions between
different state components of agents. It is easy to see that
model (1) with control input (2) is a special case of (4) with

.
• Nonholonomic mobile robots [56]: the dynamics are de-
scribed by

(5)
where denotes the location of the

th agent, and and denote, respectively, its translational
and rotational velocity. Note that there are three states and
two control inputs. Therefore, the dynamics for nonholo-
nomic mobile robots are underactuated. This poses sub-
stantial difficulties in designing proper consensus algo-
rithms with corresponding stability analysis.

• Rigid bodies and the like [51], [52]. One typical (but not
unique) description of the dynamics is

(6)

where is the vector of generalized coordinates,
is the symmetric positive-definite inertia

matrix, is the vector of Coriolis and
centrifugal torques, is the vector of gravitational
torques, and is the vector of torques produced
by the actuators associated with the th agent. In practice,
the dynamics of many mechanical systems are similar to
(6). A notable property regarding the dynamics of rigid
bodies is that is skew-symmetric (i.e.,

for all ), which plays
a crucial role in finding Lyapunov functions and the subse-
quent stability analysis.

Although the aforementioned system dynamics are dif-
ferent from the well-studied single-integrator kinematics and

double-integrator dynamics, the main research problem is
the same, namely, to drive all agents to some common states
through local interactions among agents. Similarly to the con-
sensus algorithms proposed for systems with simple dynamics,
the consensus algorithms used for these complex models are
also based on a weighted average of the state differences, with
some additional terms if necessary. Main research work has
been conducted to design proper control algorithms and derive
necessary and/or sufficient conditions such that consensus can
be achieved ultimately.
Note that although the objective is same, i.e., to guarantee

reaching agreement on some final states, the problem is more
complicated due to the nonlinearity of the closed-loop systems.
In addition, most properties of stochastic matrices cannot
be directly applied to their convergence analysis. The main
techniques used in their stability analysis include dissipativity
theory [49], nonsmooth analysis [55], [56], and especially
Lyapunov functions [50]–[52], [56].
The current research on consensus with complex systems

focuses on fully actuated systems although consensus for non-
holonomic mobile robots [56], which are typical underactuated
systems. Note that many mechanical devices are described
by systems with underactuation. Therefore, it is important to
develop appropriate consensus algorithms for underactuated
systems.

C. Delay Effects

Time delay appears in almost all practical systems due to sev-
eral reasons: 1) limited communication speed when information
transmission exists; 2) extra time required by the sensor to get
the measurement information; 3) computation time required for
generating the control inputs; and 4) execution time required
for the inputs being acted. In general, time delay reflects an im-
portant property inherited in practical systems due to actuation,
control, communication, and computation.
Knowing that time delay might degrade the system perfor-

mance or even destroy the system stability, studies have been
conducted to investigate its effect on system performance and
stability. A well-studied consensus algorithm for (1) is given in
(2), where it is now assumed that time delay exists. Two types
of time delays, communication delay and input delay, have been
considered in the literature. Communication delay accounts for
the time for transmitting information from origin to destination.
More precisely, if it takes time for agent to receive infor-
mation from agent , the closed-loop system of (1) using (2)
under a fixed network topology becomes

(7)

An interpretation of (7) is that at time , agent receives infor-
mation from agent and uses data instead of
due to the time delay. Note that agent can get its own infor-
mation instantly, therefore, input delay can be considered as the
summation of computation time and execution time. More pre-
cisely, if the input delay for agent is given by , then the
closed-loop system of (1) using (2) becomes

(8)
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Clearly, (7) refers to the case when only communication delay
is considered while (8) refers to the case when only input delay
is considered. It should be emphasized that both communication
delay and input delay might be time-varying and they might
coexist at the same time.
In addition to time delay, it is also important to consider

packet drops in exchanging state information. Fortunately, con-
sensus with packet drops can be considered as a special case
of consensus with time delay, because re-sending packets after
they were dropped can be easily done but just having time delay
in the data transmission channels.
Thus, the main problem involved in consensus with time

delay is to study the effects of time delay on the convergence
and performance of consensus, referred to as consensusability
[57].
Because time delay might affect the system stability, it is

important to study under what conditions consensus can still
be guaranteed even if time delay exists. In other words, can
one find conditions on the time delay such that consensus can
be achieved? For this purpose, the effect of time delay on the
consensusability of (1) using (2) was investigated. When there
exists only (constant) input delay, a sufficient condition on the
time delay to guarantee consensus under a fixed undirected
interaction graph is presented in [8]. Specifically, an upper
bound for the time delay is derived under which consensus can
be achieved. This is a well-expected result because time delay
normally degrades the system performance gradually but will
not destroy the system stability unless the time delay is above
a certain threshold. Further studies can be found in, e.g., [58],
[59], which demonstrate that for (1) using (2), the communi-
cation delay does not affect the consensusability but the input
delay does. In a similar manner, consensus with time delay
was studied for systems with different dynamics, where the
dynamics (1) are replaced by other more complex ones, such as
double-integrator dynamics [60], [61], complex networks [62],
[63], rigid bodies [64], [65], and general nonlinear dynamics
[66].
In summary, the existing study of consensus with time delay

mainly focuses on analyzing the stability of consensus algo-
rithms with time delay for various types of system dynamics,
including linear and nonlinear dynamics. Generally speaking,
consensus with time delay for systems with nonlinear dynamics
is more challenging. For most consensus algorithms with time
delays, the main research question is to determine an upper
bound of the time delay under which time delay does not affect
the consensusability. For communication delay, it is possible to
achieve consensus under a relatively large time-delay threshold.
A notable phenomenon in this case is that the final consensus
state is constant. Considering both linear and nonlinear system
dynamics in consensus, the main tools for stability analysis of
the closed-loop systems include matrix theory [58], Lyapunov
functions [62], frequency-domain approach [59], passivity [63],
and the contraction principle [67].
Although consensus with time delay has been studied ex-

tensively, it is often assumed that time delay is either constant
or random. However, time delay itself might obey its own
dynamics, which possibly depend on the communication dis-
tance, total computation load, and computation capability.
Therefore, it is more suitable to represent the time delay as

another system variable to be considered in the study of the
consensus problem. In addition, it is also important to consider
time delay and other physical constraints simultaneously in the
study of the consensus problem.

D. Quantization

Quantized consensus has been studied recently with motiva-
tion from digital signal processing. Here, quantized consensus
refers to consensus when the measurements are digital rather
than analog therefore the information received by each agent
is not continuous and might have been truncated due to dig-
ital finite precision constraints. Roughly speaking, for an analog
signal , a typical quantizer with an accuracy parameter , also
referred to as quantization step size, is described by

, where is the quantized signal and is the as-
sociated quantization function. For instance [68], a quantizer
rounding a signal to its nearest integer can be expressed as

, if , , where
denotes the integer set. Note that the types of quantizers might
be different for different systems, hence may differ for
different systems. Due to the truncation of the signals received,
consensus is now considered achieved if the maximal state dif-
ference is not larger than the accuracy level associated with the
whole system. A notable feature for consensus with quantiza-
tion is that the time to reach consensus is usually finite, that is,
it often takes a finite period of time for all agents’ states to con-
verge to an accuracy interval. Accordingly, the main research
is to investigate the convergence time associated with the pro-
posed consensus algorithm.
Quantized consensus was probably first studied in [68], where

a quantized gossip algorithm was proposed and its convergence
was analyzed. In particular, the bound of the convergence time
for a complete graph was shown to be polynomial in the net-
work size. In [69], coding/decoding strategies were introduced
to the quantized consensus algorithms, where it was shown that
the convergence rate depends on the accuracy of the quantiza-
tion but not the coding/decoding schemes. In [70], quantized
consensus was studied via the gossip algorithm, with both lower
and upper bounds of the expected convergence time in the worst
case derived in terms of the principle submatrices of the Lapla-
cian matrix. Further results regarding quantized consensus were
reported in [71]–[73], where the main research was also on the
convergence time for various proposed quantized consensus al-
gorithms as well as the quantization effects on the convergence
time. It is intuitively reasonable that the convergence time de-
pends on both the quantization level and the network topology.
It is then natural to ask if and how the quantization methods af-
fect the convergence time. This is an important measure of the
robustness of a quantized consensus algorithm (with respect to
the quantization method).
Note that it is interesting but also more challenging to study

consensus for general linear/nonlinear systems with quantiza-
tion. Because the difference between the truncated signal and
the original signal is bounded, consensus with quantization can
be considered as a special case of onewithout quantization when
there exist bounded disturbances. Therefore, if consensus can be
achieved for a group of vehicles in the absence of quantization,
it might be intuitively correct to say that the differences among



432 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 9, NO. 1, FEBRUARY 2013

the states of all vehicles will be bounded if the quantization pre-
cision is small enough. However, it is still an open question to
rigorously describe the quantization effects on consensus with
general linear/nonlinear systems.

E. Remarks

In summary, the existing research on the consensus problem
has covered a number of physical properties for practical sys-
tems and control performance analysis. However, the study of
the consensus problem covering multiple physical properties
and/or control performance analysis has been largely ignored.
In other words, two or more problems discussed in the above
subsections might need to be taken into consideration simul-
taneously when studying the consensus problem. In addition,
consensus algorithms normally guarantee the agreement of a
team of agents on some common states without taking group
formation into consideration. To reflect many practical appli-
cations where a group of agents are normally required to form
some preferred geometric structure, it is desirable to consider
a task-oriented formation control problem for a group of mo-
bile agents, which motivates the study of formation control pre-
sented in Section IV.

IV. FORMATION CONTROL

Compared with the consensus problem where the final states
of all agents typically reach a singleton, the final states of all
agents can be more diversified under the formation control
scenario. Indeed, formation control is more desirable in many
practical applications such as formation flying, cooperative
transportation, sensor networks, as well as combat intelligence,
surveillance, and reconnaissance. In addition, the performance
of a team of agents working cooperatively often exceeds the
simple integration of the performances of all individual agents.
For its broad applications and advantages, formation control
has been a very active research subject in the control systems
community, where a certain geometric pattern is aimed to form
with or without a group reference. More precisely, the main
objective of formation control is to coordinate a group of agents
such that they can achieve some desired formation so that some
tasks can be finished by the collaboration of the agents. Gener-
ally speaking, formation control can be categorized according
to the group reference. Formation control without a group
reference, called formation producing, refers to the algorithm
design for a group of agents to reach some pre-desired geo-
metric pattern in the absence of a group reference, which can
also be considered as the control objective. Formation control
with a group reference, called formation tracking, refers to the
same task but following the predesignated group reference.
Due to the existence of the group reference, formation tracking
is usually much more challenging than formation producing
and control algorithms for the latter might not be useful for
the former. As of today, there are still many open questions in
solving the formation tracking problem.
The following part of the section reviews and discusses recent

research results and progress in formation control, including for-
mation producing and formation tracking, mainly accomplished
after 2006. Several milestone results prior to 2006 can be found
in [74]–[76].

A. Formation Producing

The existing work in formation control aims at analyzing the
formation behavior under certain control laws, along with sta-
bility analysis.
1) Matrix Theory Approach: Due to the nature of multi-agent

systems, matrix theory has been frequently used in the stability
analysis of their distributed coordination.
Note that consensus input to each agent [see, e.g., (2)] is

essentially a weighted average of the differences between the
states of the agent’s neighbors and its own. As an extension of
the consensus algorithms, some coupling matrices were intro-
duced here to offset the corresponding control inputs by some
angles [77], [78]. For example, given (1), the control input (2)
is revised as , where
is a coupling matrix with compatible size. If , then
can be viewed as the 3-D rotational matrix. The main idea be-
hind the revised algorithm is that the original control input for
reaching consensus is now rotated by some angles. The closed-
loop system can be expressed in a vector form, whose stability
can be determined by studying the distribution of the eigen-
values of a certain transfer matrix. Main research work was
conducted in [77], [78] to analyze the collective motions for
systems with single-integrator kinematics and double-integrator
dynamics, where the network topology, the damping gain, and
were shown to affect the collective motions. Analogously, the

collective motions for a team of nonlinear self-propelling agents
were shown to be affected by the coupling strength among the
agents, the time delay, the noise, and the initial states [79].
Note that the collective motions for nonholonomic mobile

robots were also studied recently in, e.g., [80], [81]. Although
the study in [77], [78] is different from that in [80] and [81],
similarities exist in the sense that all agents will not move to
the weighted average of the states of neighboring agents, but to
some offsetted state. Noticeably, the offsetted state in [77], [78]
is properly designed, yet the one in [80], [81] is induced by some
special nonlinear system dynamics.
In the study of formation producing with linear closed-loop

systems, the associated system matrix has two interesting prop-
erties: 1) the existence of at least one zero eigenvalue and (2) the
existence of at least one pair of eigenvalues on the imaginary
axis. The two properties play an important role in the formation
producing problem under a fixed network topology. However,
the two properties might not be able to solve the formation pro-
ducing problem under a switching network topology, which re-
mains a challenging problem due to the complexity in the anal-
ysis of switching systems.
2) Lyapunov Function Approach: Although matrix theory

is a relatively simple approach for stability analysis of the for-
mation producing problem, it is not applicable in many forma-
tion producing scenarios, especially with nonlinear systems. It
is then natural to consider the Lyapunov function approach.
By using the Lyapunov function approach, several typical

formation-producing scenarios have been studied, including
the inverse agreement problem [82], leaderless flocking
and stabilization [83]–[86], and circular formation alike
[80], [81], [87]–[89]. In the inverse agreement problem
[82], the objective is to force a team of agents to disperse
in space. Roughly speaking, for the single-integrator kine-
matics (1), the corresponding control input takes the form of
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, where is a
nonnegative function. Assuming that each agent can commu-
nicate with all other agents within a radius , the agents will
disperse in space with the relative distance between any two
agents being larger than .
For the case of leaderless flocking, research has been con-

ducted to stabilize a group of agents towards some desired geo-
metric formation, where the inter-agent interaction is described
directly or indirectly by some nonnegative potential function

regardless of the final group velocity. Some no-
table properties of includes: 1)
achieves its minimum when is equal to the desired
inter-agent distance between agents and ; 2)
increases as decreases from the desired distance to
zero and could approach infinity as
approaches zero; 3) increases as in-
creases from the desired distance to the maximum communi-
cation range . The basic idea behind the potential function

is to drive the inter-agent distance to the de-
sired value while avoiding possible inter-agent collision. The
corresponding control law for each agent is usually chosen to
be the same as the corresponding consensus algorithm except
that the term is replaced by here.
A fundamental limitation is that all agents will normally con-
verge to some (constant) inter-agent configuration locally in the
sense that some nonnegative potential function achieves its local
minimum. Accordingly, the inter-agent distance might not con-
verge to the desired value globally. It is an interesting future re-
search topic to study how to ensure the desired inter-agent dis-
tance be achieved globally under a properly designed control
algorithm. In addition, the network topology associated with a
team of agents is usually assumed to be undirected, which is not
applicable to many practical systems which are described by di-
rected networks.
For the case of circular formation and the like, the main re-

search in [80], [81], [87], and [90] was devoted to the collective
motion for nonhonolomic mobile robots with dynamics given
in (5). Denote , where . Then, (5) be-
comes , , . Due to the nature of
the nonlinear dynamics, a consensus-like algorithm often ren-
ders a circular-like ultimate formation where the trajectories of
all agents are circular and the relative phase difference (namely,

) is constant. The current work mainly focuses on the
case when all agents share a common unit speed. Similar cir-
cular-like formation was analyzed in [88] and [89], where the
system dynamics are different from (5) but share a similar non-
linearity. Due to the nonlinearity of the system dynamics, it is
a challenging task to incorporate time delay, disturbances, and
quantization into the existing research.

B. Formation Tracking

Although formation control without a group reference is in-
teresting in theory, it is more realistic to study formation control
in the presence of a group reference because it may represent a
control objective or a common interest of the whole group. This
scenario is now reviewed in this subsection.
1) Matrix Theory Approach: Similarly to the case of forma-

tion producing, matrix theory is often used in the study of the
formation tracking problem.

An interesting problem in formation tracking is to design a
distributed control algorithm to drive a team of agents to track
some desired state. For example, given the single-integrator
kinematics, control algorithms were designed in [91], [92],
where the algorithms are similar to those consensus algorithms
except for that an extra term is introduced here due to the exis-
tence of the group reference. If properly designed, all agents can
track the group reference accurately as reported in [91], with
bounded tracking errors analyzed in [92], where a discretized
version in [91] was considered. It is worth mentioning that the
group reference can be arbitrarily chosen as long as its deriva-
tive is bounded. In [93], [94], the synchronization of a group of
linear systems to the output of another linear exosystem was
investigated with or without parameter uncertainties. In [91]
and [92], a general group reference was discussed while, in
[93] and [94], a general system model was considered. How
to solve formation tracking for general linear systems with a
general group reference is still an open problem.
The formation tracking problem can be converted to a tradi-

tional stability problem by redefining the variables as the errors
between each agent’s state and the group reference. Then,
the formation tracking problem is solved if the corresponding
errors can be driven to zero. However, the formation producing
problem, in general, cannot be solved in this way. Therefore,
under a switching network topology, the formation tracking
problem is generally easier to manage than the formation
producing problem.
2) Lyapunov Function Approach: Due to the broad applica-

tions of the Lyapunov function approach in stability analysis,
it has become an important tool in the study of the formation
tracking problem as well.
Flocking with a dynamic group reference has been studied

recently [95]–[97], where the objective is to design distributed
control algorithms such that a team of agents move cohesively
along the group reference. Compared with leaderless flocking
where no specific final group velocity is required, the study of
flocking with a dynamic group reference is much more chal-
lenging both theoretically and technically due to the existence
of the dynamic group reference and the requirement on the cohe-
sivemovement of the agents along the dynamic group reference.
In other words, the agents not only have to maintain some de-
sired geometric formation but also need to follow the group ref-
erence as a whole. The combination of the two objectives makes
the problem much more difficult than the leaderless flocking
problem where only the first objective is involved. If enough in-
formation of the group reference is known, such as the accelera-
tion and/or velocity information of the group reference, flocking
with a dynamic group reference can be solved by employing
a gradient-based control law [95], [96]. Another approach was
proposed in [97], where a variable structure-based control law
was used to solve the problem with less information required.
Similarly to the study of the leaderless flocking problem, the
existing approaches on flocking with a dynamic group refer-
ence can only reach a local minimization of certain potential
functions because the potential function is generally unspeci-
fied but satisfies the conditions stated in Subsection IV-A. Ac-
cordingly, the inter-agent distance is not identical to the de-
sired one. However, the potential-based control can be easily
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designed to guarantee collision avoidance and maintain the ini-
tial inter-agent communication patterns. Nevertheless, it is still
an open problem to accomplish the task with global inter-agent
distance stabilization, collision avoidance, and initial commu-
nication pattern maintenance.
Formation control with a group reference was studied in both

linear systems [98], [99] and nonlinear systems [100]–[103]
when the potential function is replaced by some
known functions, generally in the form of ,
where denotes the desired distance between agents and .
Briefly, the nonlinear systems studied in this case include non-
holonomic mobile robots [see (5)] [101], [102], rigid bodies [see
(6)] [103], and linear systems with other nonlinear terms [100].
Compared with the flocking problem, the problem studied here
is relatively easier due to the known . In general,
the inter-agent distance can be driven to the desired one. As a
tradeoff, the collision avoidance and initial communication pat-
tern maintenance need to be considered separately.

C. Remarks

Current research on formation control mainly focuses on a
fixed formation where the inter-agent distance is fixed. Con-
sidering practical applications, however, it might require the
formation be adaptive with respect to the events performed by
the team of agents. In addition, it is important to consider con-
straints, such as input saturation, quantization, and power lim-
itation, in the formation control problem. Meanwhile, the ro-
bustness is another important factor that deserves considerable
attention in real applications where noise and disturbances exist.

V. OPTIMIZATION

Optimization is an important subject in the studies of con-
trol systems. The main objective of optimization is to find an
optimal strategy subject to some given constraints such as cost
functions. Recently optimization in distributed multi-agent co-
ordination has been studied concerning convergence speed and
some specific cost functions, which are respectively reviewed
below.

A. Convergence Speed

As discussed above, one important problem in consensus is
the convergence speed, which characterizes how fast consensus
can be achieved therefore is desirable to optimize. In this regard,
the convergence speed is the cost function to be maximized.
Consider a group of agents with dynamics described by the

single-integrator kinematics (1). Equipped with (2), the dynam-
ical system (1) can be written in a matrix form as

(9)

where and is the Laplacian ma-
trix. For a network with a fixed topology, is constant.
Motivated by the observation that the smallest nonzero eigen-

value of the Laplacian matrix, , determines the worst-case
convergence speed [8], research has been conducted to maxi-
mize the convergence speed [104], [105] by choosing optimal
weights associated with edges. In contrast to [104], [105], where
the systems are assumed to have single-integrator kinematics,
optimization of the convergence speed for double-integrator dy-
namics was considered in [106], where the convergence speed is

defined in a similar way to the for the case with single-in-
tegrator kinematics. It is worth mentioning that optimal conver-
gence for general linear and nonlinear systems is still an open
problem.
Other than , another commonly used measure for the

convergence speed is given by

(10)

where represents the final equilibrium given by , where
is a constant. The corresponding optimization problem is

(11)

where is a set of admissible controllers. Existing research in
[107], [108] focuses on the case when all agents converge to the
average of the initial states, i.e., .
For an arbitrary fixed or switching network topology, the op-
timization problem (11) is challenging if is unknown. But
if is chosen as , then the problem be-
comes much easier.

B. Specific Cost Functions

In addition to the fastest convergence speed requirement, var-
ious cost functions are also subject to minimization.
One interesting problem studied in this setting is distributed

multi-agent optimization, which is motivated by solving one
challenge in wireless sensor networks, namely, to estimate the
environment parameters and/or some functions of interest, such
as temperature and source location [109]. As a simple strategy,
each sensor node can send its data to an existing central loca-
tion which can then process the data if it is sufficiently pow-
ered. However, due to the limited power resources and com-
munication capabilities, this strategy is often not applicable. An
alternative approach to achieving a similar objective is to esti-
mate the environment parameters and/or some functions of in-
terest locally, which requires much less communication band-
width and power. In wireless sensor networks [109], the esti-
mation problem is usually modeled as a distributed multi-agent
optimization problem. Roughly speaking, the objective of dis-
tributed multi-agent optimization is to cooperatively minimize
the cost function , where the function
represents the cost of agent , known by this agent only, and

is a decision vector. In [109], an incremental subgra-
dient approach was used to solve the optimization problem for a
ring type of network. It should be noted that [109] does not pro-
vide much discussion on the optimization problem under other
types of network topologies.
Ref. [110] was probably the first paper studying the dis-

tributed multi-agent optimization problem under a con-
sensus-based framework. The problem considered therein is
formulated so as to minimize , where
and each is assumed to be a convex function.
Inspired by the average consensus algorithm and the standard
subgradient method, a consensus-like algorithm was proposed
as

(12)
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where is the step size and is the subgradient of
at . In [109], in (12) was replaced
by with . Note that the algorithm
(12) can only find suboptimal solutions, determined by the con-
stant step size . Further results on this topic can be found in
[111]–[113], where a similar distributed multi-agent optimiza-
tion problem was studied within various scenarios, under con-
straints [111], over random networks [112], and with broad-
cast-based communications in an asynchronous setting [113]. In
the existing literature, time delay and disturbances have not been
taken into consideration. Therefore, it is important to consider
time delay and disturbances in the distributed multi-agent opti-
mization problem due to their wide existence in wireless sensor
networks.
In addition to the distributed multi-agent optimization

problem, where the cost function is a sum of a series of
convex functions, distributed optimization has also been
considered for both infinite-horizon cost functions [114],
[115] given by
and finite-horizon cost functions [116], [117] given by

, where
is the state, is the control input, and is a positive
constant. It is worth mentioning that the receding horizon
control, known also as model predictive control, typically
has finite-horizon cost functions. Differing from the research
reported in [110]–[113], which is to find the optimal estimated
state, the objective here is to find the optimal control laws
subject to the minimization of certain cost functions. Due to
requirements of optimizing the cost functions when designing
the control laws, the computational complexity becomes an
important problem to study. Meanwhile, the network topology
plays a significant role in the optimization problem with certain
cost functions, therefore it is also important to optimize the
network topology subject to certain cost functions.

VI. ESTIMATION

Due to the absence of global information, used for achieving
group coordination in many cases, a distributed estimation
scheme is often needed for estimation.
The first problem is to design local distributed estimators such

that some global information can be estimated asymptotically or
in finite time. The second problem is to design local controllers
based on the local estimators such that the closed-loop system
is stable. The estimation-based distributed control is essentially
a combination of both centralized control and distributed con-
trol in such a way that distributed control is used in the estima-
tion of some global information and the centralized control idea
is used for local controllers design. The estimation-based dis-
tributed control strategy often inherits the merits of both cen-
tralized control and distributed control. However, it is worth
emphasizing that a closed-loop system with distributed estima-
tors is much more complicated to design than one without dis-
tributed estimators.
Main research on this topic has been reported in [118]–[121],

where the joint estimation and control problem was considered
subject to disturbances [118], [119] or without disturbances
[120], [121]. In [118]–[121], a joint estimation and control
problem is solved in the sense that the distributed estimator
is used in the design of proper control algorithms such that

certain global objective can be achieved. Without the aid of
distributed estimators, the control design is very hard and
even impossible. As can be noticed from [122]–[124], the
distributed estimation problem has been considered without
much discussion on specific control problems. In general, the
joint estimation and control idea has provided an important
approach in the study of distributed multi-agent coordination
where only neighbor-based information is not sufficient for
the controllers design. On the other hand, in real applications
properly designed distributed estimators might be used to
replace some expensive sensors.
In general, it remains a challenging problem to study task-ori-

ented coordination control systems where the use of distributed
estimation is either necessary or an appropriate replacement of
certain expensive measurement devices, at the costs of diffi-
cult control system design and complex system stability anal-
ysis. Moreover, physical limitations such as bounded control
input, asynchronous communication, and information quantiza-
tion, could potentially reduce the applicability of the joint esti-
mation and control scheme in various distributed multi-agent
coordination systems.

VII. DISCUSSIONS

In this paper, we have reviewed some recent research and
development in distributed multi-agent coordination. In addi-
tion to the theoretical results reviewed above, many experiments
have also been conducted to validate the theoretical designs and
analysis, as can be found in [125], [126], to name just a couple
of representative reports. Although the existing theoretical re-
search and experiments have solved a number of technical prob-
lems in distributed multi-agent coordination, there are still many
interesting, important and yet challenging research problems de-
serving further investigation. Some of them are briefly summa-
rized here.
• Intelligent coordination. Intelligent coordination refers
to the distributed coordination of a team of agents in
the presence of artificial intelligence, namely, each agent
is intelligent in the sense that they can choose the best
possible responses based on its own objective. Intelli-
gent coordination has potential applications not only in
engineering and technology but also in economics and
social studies. Although research problems, such as pur-
suer-invader problem [127], [128] and the game theory in
distributed coordination [129], [130], have been studied
recently, there are still many open questions especially
the understanding of group behaviors in the presence of
agent intelligence. One interesting problem is how to
interpret the underlying complex networks as well as to
stabilize and optimize the network in the presence of agent
intelligence.

• Competition and cooperation. Today, most research is con-
ducted based on local cooperation but not competition.
This posts an obvious limitation because competition not
only exists but also plays an positive role in group coor-
dination. For example, due to the lack of competition, the
final states of the traditional consensus algorithms are al-
ways limited to be within some region in the state space de-
termined by the initial agent states. One interesting ques-
tion is how to introduce competition into distributed co-
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ordination so as to arrive at different desired regions and
to improve the system performance by rewarding different
agents with different benefits.

• Centralization and decentralization. Although decentral-
ization shows obvious advantages over centralization, such
as scalability and robustness, decentralization also has its
own drawbacks. One shortcoming is that, under decentral-
ized protocols, some agents cannot predict the group be-
havior based only on the available local information. Con-
sequently, some group behavior cannot be controlled. As
a sensible example, current economic crisis actually illus-
trates some disadvantages of behavioral decentralization.
One interesting question, therefore, is how to balance de-
centralization and centralization so as to further improve
the overall systems performance.
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