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Abstract: In this study, the authors co-ordinated collective motion patterns for a group of autonomous vehicles
with Cartesian co-ordinate coupling in a discrete-time setting and present experimental results to validate the
theoretical results. The collective motion patterns include rendezvous, circular patterns and logarithmic spiral
patterns. The authors first study the collective motion patterns for a group of autonomous vehicles with
single-integrator kinematics in a discrete-time setting when there exists time delay. The conditions on the
network topology, the sampling period, the time delay and the Euler angle are presented such that different
collective motion patterns can be achieved. The collective motion patterns for a group of autonomous
vehicles with double-integrator dynamics in a discrete-time setting in the presence of relative damping are
studied. The conditions on the network topology, the sampling period, the damping factor and the Euler angle
are presented such that different collective patterns can be achieved. Finally, the theoretical results are
experimentally validated on a multi-robot platform.
i

1 Introduction
The development of robot technologies has made it possible
to use a group of cheap and reliable robots to finish numerous
tasks in a co-operative fashion instead of using a single
complicated, expensive and unreliable robot. In order to
have a group of robots work cooperatively, it is important
and fundamental to study the consensus problem.

Consensus means the agreement of a group of vehicles on a
common state by negotiating with their local (time-varying)
neighbours. Consensus has been studied extensively for
single-integrator kinematics [?, 1–7], double-integrator
dynamics [8–13] and rigid body attitude dynamics [14].
Traditional consensus algorithms can be simplified to a
one-dimensional case by using decoupling techniques
because there is no coupling among different dimensions.
Detailed information about the recent study of consensus
algorithms can be found in [15, 16].

Different from the traditional consensus algorithms, [17]
proposed a cyclic-pursuit-based strategy in 2D in which
each vehicle pursues one other vehicle along the line of
sight rotated by a common offset angle. Given different
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offset angles, the vehicles can achieve different symmetric
evenly spaced formations, namely, convergence to a single
point, a circle or a logarithmic spiral pattern. Incited by
[17], Ren [18, 19] introduced Cartesian co-ordinate
coupling to existing consensus algorithms in 3D for,
respectively, single-integrator kinematics and double-
integrator dynamics under a general network topology for
generating possible non-evenly spaced circular and
logarithmic spiral patterns on concentric orbits with
possibly non-identical radii. It was shown in [18, 19] that
different collective motions, namely, converge to a single
point, circular patterns with concentric orbits and
logarithmic spiral curves lying in a plane perpendicular to
the Euler axis, can be obtained by changing the Euler
angle. The algorithms in [18, 19] are continuous-time
algorithms. Noting that in reality the control inputs for
physical systems are generally sampled rather than being
continuous, it is useful and meaningful to study the
discrete-time case of the algorithms proposed in [18, 19]
and implement these algorithms on an experimental testbed.

In this paper, we study the discrete-time algorithms to
achieve co-ordinated collective motions for a group of
vehicles and experimentally validate the theoretical results
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on a multi-robot platform. We first study the collective
motion patterns for a group of vehicles with single-
integrator kinematics in a discrete-time setting when there
exists time delay. The conditions on the network topology,
the sampling period, the time delay and the Euler angle are
presented such that different motions can be achieved.
Then we study the collective motion patterns for a group of
vehicles with double-integrator kinematics in a discrete-
time setting in the presence of relative damping. The
conditions on the network topology, the sampling period,
the damping factor and the Euler angle are presented such
that different motions can be achieved. Both the Euler
angle and the sampling period can be used to control the
collective motion patterns. Finally, we provide both
simulation and experimental results to validate the
theoretical results. Different from the discussion in [18,
19], the sampling period also plays an important role in the
discussion of this paper. In addition, the second algorithm
studied in this paper considers relative damping, whereas
the algorithm in [19] is based on absolute damping. As a
result, the second algorithm in this paper can achieve other
interesting motions. It is worth mentioning that although
consensus-type algorithms have been studied extensively,
few of them have been experimentally validated on an
physical platform. We provide experimental results for the
proposed discrete-time algorithms.

The reminder of this paper is organised as follows. In
Section 2, the notations and graph theory notions are
introduced as a basis. Sections 3 and 4 are the main part of
this paper focusing on the study of the co-ordinated
collective motion patterns for, respectively, single-integrator
kinematics and double-integrator dynamics in a discrete-
time setting. Simulation and experimental results are
presented in Section 5. A short conclusion is given in
Section 6.

2 Preliminaries and notations
2.1 Notations

The notation used in this paper is fairly standard. We use R and
C to denote, respectively, the real and complex number set,
In [ Rn×n to denote the identity matrix, and 0p×q [ Rp×q to
denote an all-zero matrix. In particular, we let 0p [ Rp and
1p [ Rp represent, respectively, an all-zero column vector and
an all-one column vector. We also use Re(.) and Im(.) to
denote, respectively, the real and imaginary part of a complex
number, �· to denote the complex conjugate of a complex
number, arg(.) to denote the phase of a complex number, ⊗
to denote the Kronecker product of two matrices and i to
denote the imaginary unit.

2.2 Graph theory notions

For a team of n vehicles, the interaction among these vehicles
can be modelled by a weighted directed graph G consisting of
a node set V = {1, . . . , n}, an edge set E # V × V, and a
0
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weighted adjacency matrix A = [aij] [ Rn×n. An edge (i, j)
in a weighted directed graph denotes that vehicle j can
obtain information from vehicle i, but not necessarily vice
versa. The weighted adjacency matrix A of a weighted
directed graph is defined such that aij is a positive weight if
(j, i) [ E and aij = 0 otherwise.

A directed path is a sequence of edges in a directed graph
of the form (i1, i2), (i2, i3), . . . , where ij [ V. A directed
graph has a directed spanning tree if there exists at least
one node having a directed path to all other nodes.

Let the (non-symmetric) Laplacian matrix [20]
L = [ℓij] [ Rn×n associated with A be defined as ℓii =∑n

j=1,j=i aij and ℓij = −aij , i = j. From the definition of
L, it can be noted that 0 is an eigenvalue of L with the
associated eigenvector 1n.

3 Co-ordinated collective motion
patterns for single-integrator
kinematics in a discrete-time
setting with time delay
Consider vehicles with discrete-time single-integrator
kinematics given by

ri[k + 1] − ri[k]

T
= ui[k] (1)

where T is the sampling period, k is the discrete-time index,
ri[k] = [xi[k], yi[k], zi[k]]T [ R3 and ui[k] = [uxi[k], uyi[k],
uzi[k]]T [ R3 are, respectively, the state and control input for
the ith vehicle at t ¼ kT. When there exists sample-induced
time delay, we propose the following discrete-time consensus
algorithm with Cartesian co-ordinate coupling as

ui[k] = −
∑n

j=1

aijR(ri[k − 1] − rj[k − 1]), kT ≤ t , kT + h

ui[k] = −
∑n

j=1

aijR(ri[k] − rj[k]), kT + h ≤ t , (k + 1)T

(2)

for i = 1, . . . , n, where aij is the (i, j)th entry of the
adjacency matrix A, h is the sample-induced time delay and
R [ R3×3 is a rotational matrix.

We assume that h is fixed and 0 ≤ h , T. Then (2) can be
written in matrix form as

u[k] = − h

T
(L⊗ R)r[k − 1] − T − h

T
(L ⊗ R)r[k] (3)

where r[k] = [r1[k], . . . , rn[k]]T, u[k] = [u1[k], . . . , un

[k]]T, and L is the (non-symmetric) Laplacian matrix
associated with A. Essentially, (3) represents the average of
the control input at kT ≤ t , kT + h and the control input
IET Control Theory Appl., 2010, Vol. 4, Iss. 11, pp. 2579–2591
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at kT + h ≤ t , (k + 1)T at sample k. Equation (3) is
equivalent to (2) in terms of the average effect at each sample.

Using (3), (1) can then be written in matrix form as

r[k+1]
r[k]

[ ]
= I3n − (T − h)(L⊗R) −h(L⊗R)

I3n 03n×3n

[ ]
︸���������������������︷︷���������������������︸

F

r[k]
r[k−1]

[ ]

(4)

Before moving on, we need the following definition and
lemmas. In addition, some existing lemmas are stated in
the appendix.

Definition 1: Let mi, i = 1, . . . , n, be the ith eigenvalue of
−L with associated right and left eigenvectors wi and ni .
Also let arg(mi) = 0 for mi = 0 and arg(mi) [ (p/2, 3p/2)
for all mi = 0. Without loss of generality, suppose that mi

is labelled such that arg(m1) ≤ arg(m2) ≤ · · · ≤ arg(mn)
(it follows from Lemma 7 that m1 = 0, w1 = 1n and
n1 = p). Let li, i = 1, . . . , 3n, be the ith eigenvalue of
−L⊗ R. Without loss of generality, let l3i−2 = mi ,
l3i−1 = mie

ui, and l3i = mie
−ui.

Lemma 1: Let gi be the ith eigenvalue of A [ Rn×n with
associated right and left eigenvectors qi and si, respectively.

Also let B = In + bA aA
In 0n×n

[ ]
, where a and b are two

positive scalars. Then the eigenvalues of B are given by

@2i−1 = 1 + bgi +
��������������������
(1 + bgi)

2 + 4agi

√
/2 with associated

right and left eigenvectors
@2i−1qi

qi

[ ]
and

(@2i−1/a)si

si

[ ]
,

respectively, and @2i = 1 + bgi −
��������������������
(1 + bgi)

2 + 4agi

√
/2,

with associated right and left eigenvectors given by
@2iqi

qi

[ ]

and
(@2i/a)si

si

[ ]
, respectively.

Proof: Suppose that @ is an eigenvalue of B with a

corresponding eigenvector
f
g

[ ]
, where f , g [ C

n. Then

we have
In + bA aA

In 0n×n

[ ]
f
g

[ ]
= @

f
g

[ ]
, which implies

that f + bAf + aAg ¼ @f and f ¼ @g. It thus follows that
Ag = ((@2 − @)/(a+ b@))g. Noting that Aqi = giqi , we let
g = qi and (@2 − @)/(a+ b@) = gi. Therefore each gi

corresponds to two eigenvalues of B, denoted as @2i−1,2i =

1 + bgi +
��������������������
(1 + bgi)

2 + 4agi

√
/2. Therefore the right

eigenvectors associated with @2i−1 and @2i are, respectively,

@2i−1qi

qi

[ ]
and

@2iqi

qi

[ ]
. By following a similar analysis, we

can obtain that the left eigenvectors associated with @2i−1

and @2i are, respectively,
(@2i−1/a)si

si

[ ]
and

(@2i/a)si

si

[ ]
. A
Control Theory Appl., 2010, Vol. 4, Iss. 11, pp. 2579–2591
: 10.1049/iet-cta.2009.0338
Theorem 1: Suppose that the weighted directed graph G has
a directed spanning tree. Let the control algorithm for (1) be
given by (2). Let mi , wi, ni, li and arg(mi) be defined in
Definition 1, p be defined in Lemma 7, and
a = [a1, a2, a3]T, 6k, and 4k be defined in Lemma 8.

1. If |u| , uc
s where uc

s W 3p/2 − arg(mn), h , minli=0

{T , −Re(li)/|li|2}, and T , �T with

�T = min
li=0

�T i , where �T i

= 2(1 − h2|li|2)(−Re(li) − h|li|2)

Im(li)
2 + (−Re(li) − h|li|2)2

(5)

then F has exactly three eigenvalues equal to one and all
other eigenvalues are within the unit circle. All vehicles will
eventually rendezvous at the position

1

1 + h
pTx[0] + h

1 + h
pTx[−1],

1

1 + h
pTy[0]

(

+ h

1 + h
pTy[−1],

1

1 + h
pTz[0] + h

1 + h
pTz[−1]

)
(6)

where x = [x1, . . . , xn]T, y = [y1, . . . , yn]T, z = [z1, . . . ,
zn]T, and x[0], x[21], y[0], y[21], z[0] and z[21] are the
initial states.

2. If |u| , uc
s , h , minli=0 {T , −Re(li)/|li|2}, T = �T ,

and there exists a unique lj corresponding to mk such that
�T j = �T , then F has exactly three eigenvalues equal to one,
two eigenvalues on the unit circle, and all other eigenvalues
are within the unit circle. All vehicles will eventually move
on circular orbits with the centre given by (6) and the
period p/|c|, where c = |arctan(−Im(lj)/h|lj |−Re(lj))|.
The radius of the orbit for vehicle i is given

by 2|wk(i)(n
T
k /n

T
k wk ⊗4T

2 /4
T
2 62)r(0)|

��������
a2

2 + a2
3

√
sin2(u/2),

where wk(i) is the ith component of wk. The relative radius

of the orbits is equal to the relative magnitude of wk(i). The

relative phase of the vehicles on their orbits is equal to the
relative phase of wk(i). The circular orbits are on a plane
perpendicular to the Euler axis a.

3. If |u| , uc
s , h , minli=0 {T , −Re(li)/|li|2}, T . �T ,

and there exists a unique lj associated with mk such that
�T j , T and �T i . T for any i = j, then F has exactly
three eigenvalues equal to one, two eigenvalues, denoted as
m1e+m2i (here m1 and m2 are positive constants), outside
the unit circle, and all other eigenvalues are within the unit
circle. All vehicles will eventually move along logarithmic
spiral curves with the centre given by (6), the growing rate
m1 cos(m2 + |u|), and the period 2p/m2. The radius of the

logarithmic spiral curve for vehicle i is given by 2|wk(i)(n
T
k /

nT
k wk ⊗ 4T

2 /4T
2 62)r(0)|e[m1 cos(m2+|u|)]t

��������
a2

2 + a2
3

√
sin2(u/2).

The relative radius of the logarithmic spiral curves is equal to
the relative magnitude of wk(i). The relative phase of the
2581
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vehicles on their curves is equal to the relative phase of wk(i).
The logarithmic spiral curves are on a plane perpendicular to
the Euler axis a.

Proof: From Lemma 1, the eigenvalues of F are given by

@ = 1 − (T − h)li +
��������������������������
(1 − (T − h)li)

2 − 4hli

√
/2. It

follows that the eigenvalues of F satisfy

s[s − 1 − (T − h)li] − hli = 0 (7)

When li = 0, it follows that the two roots of (7) are 1 and 0.
When li = 0, applying bilinear transformation to (7) gives

−Tlit
2 + 2(1 + hli)t + 2 + (T − 2h)li = 0 (8)

From Lemma 5, the roots of (7) are within the unit circle if and
only if the roots of (8) are in the open left half-plane. Let the
two roots of (8) be t1 and t2. It follows from (8) that

t1 + t2 = 2(1 + hli)

Tli

= 2
(�li/|li|2) + h

T
(9)

To guarantee that both t1 and t2 are in the open left half plane,
the right side of (9) should have a negative real part, that is,
h , −Re(li)/|li|2. Meanwhile, the bound of T is the
critical value of T under which one root of (9) is on the
imaginary axis. Without loss of generality, assume t1 = xi,
where x is a real number. Substituting t1 = xi into (9) gives

x2T [Re(li) + Im(li)i] + 2[1 + h(Re(li) + Im(li)i)]xi

+ 2 + (T − 2h)[Re(li) + Im(li)i] = 0

which can be written as two equations by separating,
respectively, the real and imaginary parts. After some
manipulations, we can obtain that T = �T i, where �T i defined
in (5). To guarantee that �T i . 0, we need the following two
inequalities

1 − h2|li|2 . 0, −Re(li) − h|li|2 . 0

After some simplifications, we have that �T i . 0 if h , −Re
(li)/|li|2.

1. When |u| , uc
s, it follows from the proof of Theorem 1 in

[18] that all eigenvalues of −L⊗ R, that is, all li, will have
negative real parts except for three zero eigenvalues. When
h , minli=0 {T , −Re(li)/|li|2}, and T , �T , it follows
from the discussion in the previous paragraph that all
eigenvalues of F are within the unit circle except for three
eigenvalues equal to one. Note from Lemma 1 that the
right and left eigenvectors corresponding to l2ℓ−1 are

1n ⊗ 6ℓ
1n ⊗ 6ℓ

[ ]
and h/h + 1

1
h p ⊗4ℓ

p ⊗4ℓ

[ ]
, where l ¼ 1, 2, 3. By

following the proof of Case 2 of Theorem 1 in [19], we

can obtain that xi[k] � (1/(1 + h))pTx[0] + (h/(1 + h))pT
2
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x[−1], yi[k] � (1/(1 + h))pTy[0] + (h/(1 + h))pTy[−1],
zi[k] � (1/(1 + h))pTz[0] + (h/(1 + h))pTz[−1] for large k.

2. Similar to the proof of 1, when |u| , uc
s , all eigenvalues of

−L⊗ R will have negative real parts except for three zero
eigenvalues. When h , minli=0 −2Re(li)/3|li|2, T = �T ,
and there exists a unique lj corresponding mk such that
�T i = �T , all eigenvalues of F are within the unit circle
except for three eigenvalues equal to one and two other
eigenvalues on the unit circle. In addition, it can be

computed that the two eigenvalues are (−Im(lj)i+ h|lj |2−
Re(lj))/(−Im(lj)i− h|lj |2 + Re(lj)) and (−Im(lj)i−
h|lj |2 + Re(lj))/(−Im(lj)i + h|lj |2 − Re(lj)). By writing

these two eigenvalues as e+2ci, where c = arctan (−Im(lj)/

h|lj | − Re(lj)), it follows from the proof of Theorem 1

in [18] that all vehicles will move in circular orbits with
the centre given by (6) and the period p/|c|. Similarly, we
can also compute the radius of the orbit, the relative phase
and the relationship between the circular orbits and the
Euler axis a by following a similar analysis to the proof of
Theorem 1 in [18].

3. The proof is similar to that of Case 3 of Theorem 1
in [18] and is therefore omitted here. A

Remark 1: In Theorem 1, given a constant sampling period
T satisfying T , �T , where �T is defined in Theorem 1, we
can also analyse the critical value of u by following a similar
analysis. When the Euler angle u is below, equal to, or
above the critical value, different collective motions can also
be achieved. Different from the continuous-time case in
[18] where the critical value of u was given explicitly and
analytically, the critical value of u in the discrete-time case
is, in general, hard to be derived analytically. However,
given T, h and L, the critical value of u can be obtained
numerically.

Remark 2: Note that the continuous-time controller in [18]
represents the ideal case of (2) when T � 0 and h � 0.
Accordingly, the continuous-time algorithm in [18] works
better than the discrete-time algorithm (2). However, the
discrete-time algorithm (2) represents a more realistic
scenario and therefore can be directly applied in real systems.

4 Co-ordinated collective motion
patterns for double-integrator
dynamics in a discrete-time setting
with relative damping
For vehicles with discrete-time double-integrator dynamics
given by

ri[k + 1] = r[k] + Tvi[k]

vi[k + 1] = vi[k] + Tui[k], i = 1, . . . , n
(10)
IET Control Theory Appl., 2010, Vol. 4, Iss. 11, pp. 2579–2591
doi: 10.1049/iet-cta.2009.0338



IET
doi

www.ietdl.org
where T is the sampling period, k is the discrete-time index,
ri[k] = [xi[k], yi[k], zi[k]]T [ R3 and vi[k] = [vxi[k],
vyi[k], vzi[k]]T [ R3 are the position and velocity, and
ui[k] = [uxi[k], uyi[k], uzi[k]]T [ R3 is the control input
associated with the ith vehicle at t ¼ kT, we consider a
consensus algorithm with Cartesian co-ordinate coupling as

ui[k] = −
∑n

j=1

aijR[(ri[k] − rj[k]) + g(vi[k] − vj[k])],

i = 1, . . . , n (11)

where aij is the (i, j)th entry of the adjacency matrix A, g is a
positive constant and R [ R3×3 is a rotation matrix.

Using (11), (10) can be written in matrix form as

r[k + 1]
v[k + 1]

[ ]
= (I6n + TC)

r[k]
v[k]

[ ]

where r = [rT
1 , . . . , rT

n ]T, v = [vT
1 , . . . , vT

n ]T, C =
03n×3n I3n

−L⊗ R −gL ⊗ R

[ ]
and L is the (non-symmetric)

Laplacian matrix associated with A. We next study the
eigenvalues of C.

The characteristic polynomial of C is given by

det (sI6n −C) = det
sI3n −I3n

L⊗ R sI3n + gL⊗ R

[ ]( )

= det (s2I3n + (gs + 1)L ⊗ R)

where we have used Lemma 4 to derive the last equality.
Letting li , i = 1, . . . , 3n, be defined in Definition 1, it
follows that the eigenvalues of C satisfy

s2 − glis − li = 0 (12)

Note that each eigenvalue of −L⊗ R, li , corresponding to
two eigenvalues of C, denoted as m2i−1 and m2i. Before
moving on, we need the following lemmas.

Lemma 2 [21]: Suppose that Im(li) = 0 and Re(li) , 0.
Then Re(m2i−1) , 0 and Re(m2i) , 0 if and only if g . �gi,

where �gi W

�����������������������
Im(li)

2
/−Re(li)|li|2

√
.

Lemma 3: Let gi be the ith eigenvalue of A [ Rn×n with
associated right and left eigenvectors qi and si, respectively.

Also let B = 0n×n In

−A −aA

[ ]
, where a is a positive scalar.

Then the eigenvalues of B are given by @2i−1 = −agi +�������������
g2

i a
2 + 4gi

√
/2 with associated right and left eigenvectors

qi

@2i−1qi

[ ]
and

1 + a@2i−1/@2i−1si

si

[ ]
, respectively, and

@2i = agi−
�������������
g2

i a
2 + 4gi

√
/2, with associated right and left
Control Theory Appl., 2010, Vol. 4, Iss. 11, pp. 2579–2591
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eigenvectors given by
qi

@2iqi

[ ]
and

1 + (a@2i/@2i)si

si

[ ]
,

respectively.

Proof: The proof follows a similar analysis to that of
Lemma 1. A

Theorem 2: Suppose that the weighted directed graph G has
a directed spanning tree. Define �g W maxi �gi , where �gi is
defined in Lemma 2. Let the control algorithm for (10) be
given by (11). Let mi , wi , ni, li and arg(mi) be defined in
Definition 1, p be defined in Lemma 7, and a = [a1,
a2, a3]T, 6k, and 4k be defined in Lemma 8. Denote �t =
minli=0 2Re(li)/|li|2.

1. Suppose that R = I3. All vehicles will eventually
rendezvous at the position

(px[0] + kT pvx[0], py[0] + kT pvy[0], pz[0] + kT pvz[0])

(13)

for large k if and only if g . �g and T , �t, where x, y, z, vx, vy

and vz are, respectively, stack vectors of xi , yi, zi , vxi, vyi and
vzi, and x[0], y[0], z[0], vx[0], vy[0] and vz[0] are the initial
states (Note that the rendezvous position might be time
varying in contrast to a constant rendezvous position in [19].).

2. Suppose that g . �g and T , �t. Given |mi|, i = 2, . . . , n,
let uc

d be the maximal Euler angle such that the roots of (12)
are on the imaginary axis for some i and the roots of (12) are
in the left half-plane for any other i. If |u| , uc

d , then all
vehicles will eventually rendezvous at the position (13).

3. Assume that |u| , uc
d , g . �g, T = �t, and there exists a

unique lj associated with mk such that 2Re(lj)/|lj |2 = �t.
Then I6n + TM has exactly six eigenvalues equal to one and
two eigenvalues on the unit circle and all other eigenvalues
are within the unit circle. All vehicles will eventually move on
circular orbits with the centre given by (13) and the period
2p/c, where c = |arctan(1 + T Re(s6k−3)/T Im(s6k−3))|
with s6k−3 = −glj +

������������
l2

j g
2 + 4lj

√
/2. The radius of the

orbit for vehicle i is given by 2|wk(i)p
T
c [r(0)T, v(0)T]T|��������

a2
2 + a2

3

√
sin2(u/2), where wk(i) is the ith component of

wk and pc =1/(1 + gs6k−3/s6k−3 + s6k−3)nT
k wk4

T
2 62

1 + gsc/sc(nk ⊗42)
nk ⊗42

[ ]
, where sc = ic. The relative radius

of the orbits is equal to the relative magnitude of wk(i). The

relative phase of the vehicles on their orbits is equal to the
relative phase of wk(i). The circular orbits are on a plane
perpendicular to the Euler axis a.

4. Assume that |u| , uc
d , g . �g, T . �t, and there exists a

unique lj associated with mk such that 2Re(lj)/|lj |2 , T
and 2Re(li)/|li|2 . T for any i = j. Then I6n + TM has
exactly six eigenvalues equal to one, two eigenvalues,
2583

& The Institution of Engineering and Technology 2010



258

&

www.ietdl.org
denoted as m1e+m2i (Here m1 and m2 are positive constants.),
outside the unit circle, and all other eigenvalues are within the
unit circle. All vehicles will eventually move along logarithmic
spiral curves with centre given by (13), growing rate m1, and
period 2p/m2. The radius of the logarithmic spiral curve for

vehicle i is 2|wk(i)p
T
c [r(0)T, v(0)T]Tem1t

��������
a2

2 + a2
3

√
sin2(u/2),

where pc is defined in Case 3. The relative radius of the
logarithmic spiral curves is equal to the relative magnitude of
wk(i). The relative phase of the vehicles on their curves is
equal to the relative phase of wk(i). The curves are on a plane
perpendicular to the Euler axis a.

Proof:

1. When R = I3, it follows from Lemma 6 that mi is an
eigenvalue of −L⊗ R with algebraic multiplicity 3. When
G has a directed spanning tree, it follows from Lemma 7
that all the eigenvalues of −L are in the open left half-
plane except for one zero eigenvalue. Therefore −L⊗ R
has exactly three zero eigenvalues and other eigenvalues are
in the open left half-plane if G has a directed spanning
tree. When li = 0, two roots of (12) are equal to zero.
When li = 0 and Im(li) = 0, it follows from (12) that
the two roots are in the open left half-plane. When
Im(li) = 0, it follows from Lemma 2 that the two roots
are in the open left half-plane if g . �gi . Therefore if
g . �g, C has six zero eigenvalues and all other eigenvalues
are in the open left half-plane, which then implies that
I6n + TC has exactly six eigenvalues equal to one and all
other eigenvalues are within the unit circle when T , �t

and g . �g. Note also that the left and right eigenvectors
corresponding to m2i−1,2i can be derived by following
Lemma 3. The proof follows a similar analysis to that in
the proof of Theorem 1 in [19].

2. When |u| , uc
d g . �g and T , �t, by following a similar

analysis to that in the proof of case 1), we have that the
eigenvalues of I6n +C are within the unit circle except for
six eigenvalues equal to one. The final states of the vehicles
can also be analysed by following case 1).

3. For the third statement, if u , uc
d , g . �g, T = �t, and

there exists a unique lj associated with mk such that
2Re(lj)/|lj |2 = �t, I6n + TC has exactly six eigenvalues
equal to one, two eigenvalues on the unit circle, and all
other eigenvalues are within the unit circle. Meanwhile, we
can obtain that the two eigenvalues of C associated with lj

are given by s6k−3 = −glj +
������������
l2

j g
2 + 4lj

√
/2 and s6k−3,

which implies that the two eigenvalues of I6n + TC

associated with s6k−3 and s6k−3 are given by 1 + T Re
(s6k−3) + T Im(s6k−3)i and 1 + T Re(s6k−3) − T Im
(s6k−3)i. Note from Lemma 3 that the right and left
eigenvectors associated with s6k−3 are, respectively,

wk ⊗ 62

s6k−3(wk ⊗ 62)

[ ]
and

1 + gs6k−3/s6k−3(nk ⊗42)
nk ⊗42

[ ]
.

We can choose m6k−3 = wk ⊗ 62

s6k−3(wk ⊗ 62)

[ ]
and
4
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p6k−3 = 1/(1 + gs6k−3/s6k−3 + s6k−3) nT
k wk4

T
2 62

1 + gs6k−3/s6k−3(nk ⊗42)
nk ⊗42

[ ]
. Note that pT

6k−3m6k−3 =

1. Similarly, it follows that the right and left eigenvectors
corresponding to s6k−3 are given by m6k−3 and p6k−3. The
following proof then follows from that in Theorem 1 in [19].

4. The proof is similar to that of Case 4) of Theorem 1 in
[19] and is therefore omitted here. A

Remark 3: In Theorem 2, given a constant coupling gain g

satisfying g , �g, where �g is defined in Lemma 2, we can also
analyse the critical value of u by following a similar analysis.
When the Euler angle u is below, equal to, or above the
critical value, different collective motions can also be
achieved. Note again that given T, g, and L, the critical
value of u can be obtained numerically.

Remark 4: From Theorem 2, the algorithm (11) achieves
different motions from the algorithm in [19]. In particular,
the centre of all vehicles using (11) might keep moving
ultimately whereas the centre of all vehicles using the
algorithm in [19] remains static ultimately.

5 Simulation and experimental
validation
In this section, we provide simulation and experimental
results to validate the theoretical results in Sections 3 and
4. For simulations and experiments for both single-
integrator kinematics and double-integrator dynamics, the
(non-symmetric) interaction graph is chosen as in Fig. 1
with the corresponding (non-symmetric) Laplacian matrix
chosen as

1.5 0 −1 −0.5
−1.2 1.2 0 0
−0.1 −0.9 1 0
−1 0 0 1

⎡
⎢⎢⎣

⎤
⎥⎥⎦

It can be noted that the interaction graph has a directed
spanning tree.

5.1 Matlab/simulink simulation results

For the algorithm (2), three different values of u are chosen. In
all plots hereafter, circles represent the starting positions of the
robots and squares denote the ending positions of the robots.

Figure 1 Directed graph G for four vehicles

Arrow from j to i denotes that vehicle i can receive information
from vehicle j
IET Control Theory Appl., 2010, Vol. 4, Iss. 11, pp. 2579–2591
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We let T ¼ 0.1 s and h ¼ 0.02 s. When u ¼ 0.7 rad, the
trajectories are shown in Fig. 2a. It can be noted that the four
vehicles ultimately rendezvous. When u ¼ 1.2133 rad, the
trajectories are shown in Fig. 2c where the four vehicles
ultimately move on separate circular orbits. When
u ¼ 1.35 rad, the trajectories are shown in Fig. 2e where the
four vehicles move along logarithmic spiral curves. These
simulation results validate the theoretical results in Theorem 1.

Similar to the single-integrator kinematics case, three
different values of u are chosen for the double-integrator
dynamics case. We let T ¼ 0.1 s. When u ¼ 0.7 rad, the
Control Theory Appl., 2010, Vol. 4, Iss. 11, pp. 2579–2591
: 10.1049/iet-cta.2009.0338
trajectories of the four vehicles are shown in Fig. 2b. It can
be noted that the four vehicles ultimately rendezvous while
they keep moving because of the relative damping. When
u ¼ 1.1 rad, the trajectories of the four vehicles are shown
in Fig. 3d. It can be noted that the four vehicles ultimately
move on separate circular orbits while the center of the
circular orbits keeps moving. When u ¼ 1.3 rad, the
trajectories of the four vehicles are shown in Fig. 3f. It can
be noted that the four vehicles ultimately spiral along
logarithmic curves while the centre of the spiral curves
keeps moving. The simulation results validate the
theoretical results in Theorem 2.
Figure 2 Simulation results using (2) and (11)

a Simulation results using (2) when u ¼ 0.7 rad, T ¼ 0.1 s and h ¼ 0.02 s
b Simulation results using (11) when u ¼ 1 rad and T ¼ 0.1 s
c Simulation results using (2) when u ¼ 1.2133 rad, T ¼ 0.1 s, and h ¼ 0.02 s
d Simulation results using (11) when u ¼ 1.1 rad and T ¼ 0.1 s
e Simulation results using (2) when u ¼ 1.35 rad, T ¼ 0.1 s, and h ¼ 0.02 s
f Simulation results using (11) when u ¼ 1.3 rad and T ¼ 0.1 s
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Figure 3 Experimental results using (2) and (11)

a Experimental results using (2) when u ¼ 0.7 rad
b Experimental results using (11) when u ¼ 1 rad
c Experimental results using (2) when u ¼ 1.2133 rad
d Experimental results using (11) when u ¼ 1.1 rad
e Experimental results using (2) when u ¼ 1.35 rad
f Experimental results using (11) when u ¼ 1.3 rad
5.2 Experimental validation

In this section, we provide experimental results to validate the
theoretical results in Sections 3 and 4 on a multi-robot
platform.

5.2.1 Robot platform and program
implementation: The physical robot experiments are
based on four AmigoBots as shown in Fig. 4 from
ActivMedia Robotics. All four robots are driven via
differential drive. They have high-precision wheel encoders
and eight sonar attached around the robot. An AmigoBot
6
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Figure 4 Four AmigoBots
IET Control Theory Appl., 2010, Vol. 4, Iss. 11, pp. 2579–2591
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uses encoders/decoders to calculate the distance travelled as
well as its rotational angle (i.e. the orientation of the
robot). Within each robot is a 16-bit micro-controller that
maintains support for all sensor and actuation features of
the robot. For an AmigoBot, a host computer acts as the
high-level control whereas the low-level control is
performed on board the robot with the micro-controller. A
control program is then run remotely over a WAN. The
host computer executes programs which send and receive
sensor data and control actuation to the robots on board
Control Theory Appl., 2010, Vol. 4, Iss. 11, pp. 2579–2591
: 10.1049/iet-cta.2009.0338
the micro-controller. The relative communication delay
between the host computer and each robot is 100 ms (i.e.
the sampling period T is 100 ms).

The control program platform allows for emulating
interaction between robots including the interaction
topology. The testbed program platform is set up with two
tiers. The top tier is responsible for executing the control
algorithms and sending and receiving the control
commands and sensor data to and from the robot’s micro-
Figure 5 Linear and angular velocities using (2)

a Linear velocities when u ¼ 0.7 rad
b Angular velocities when u ¼ 0.7 rad
c Linear velocities when u ¼ 1.2133 rad
d Angular velocities when u ¼ 1.2133 rad
e Linear velocities when u ¼ 1.35 rad
f Angular velocities when u ¼ 1.35 rad
2587
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controller. In this tier, the communication topology can be
set up by enabling or disabling the communication between
any pair of robots. The bottom tier is responsible for sensor
data acquisition and direct PID loop control. In this tier,
the micro-controller will collect the state information from
the sensors and tell the physical robot how to actuate based
on the received control commands. More detailed
information can be found in [22].

5.2.2 Robot modelling: The differential drive system
of the ground robot can be described by the kinematic
8
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equations as

ẋi = vi cos(ui)

ẏi = vi sin(ui)

u̇i = vi

(14)

where xi and yi are the positions of the centre of the robot, ui

is the orientation of rotation of the robot and vi and vi are
the linear and angular velocities of the robot. The robot has
a non-holonomic constraint ẋi sin(ui) − ẏi cos(ui) = 0.
Figure 6 Linear and angular velocities using (11)

a Linear velocities when u ¼ 1 rad
b Angular velocities when u ¼ 1 rad
c Linear velocities when u ¼ 1.1 rad
d Angular velocities when u ¼ 1.1 rad
e Linear velocities when u ¼ 1.3 rad
f Angular velocities when u ¼ 1.3 rad
IET Control Theory Appl., 2010, Vol. 4, Iss. 11, pp. 2579–2591
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To avoid using the non-linear model of kinematics,
we feedback linearise (14) for a fixed point off the
centre of the wheel axis denoted as (xhi, yhi), where
xhi = xi + Li cos(ui) and yhi = yi + Li sin(ui) with Li

representing the distance between this fixed point and the
centre of the wheel axis. Therefore the whole system can be
described as

ẋhi

ẏhi

[ ]
= cos(ui) −Li sin(ui)

sin(ui) Li cos(ui)

[ ]
vi

vi

[ ]

Letting

vi

vi

[ ]
= cos(ui) −Li sin(ui)

sin(ui) Li cos(ui)

[ ]−1 uxi

uyi

[ ]
(15)

we obtain

ẋhi = uxi

ẏhi = uyi

(16)

where uxi and uyi are the control variables to be designed. It
can be noted that (16) takes in the form of a single-integrator
kinematics with respect to the point (xhi, yhi). Once uxi and
uyi are designed, the linear velocity vi and angular velocity
vi can be calculated according to (15). The linear velocity
vi and angular velocity vi are the control commands to the
physical robot. Similarly, by letting u̇xi = txi and u̇yi = tyi,
a double-integrator dynamics model can be obtained by
designing the control inputs txi and tyi. To validate the
aforementioned algorithms in Sections 3 and 4, we have
chosen Li = 0.15 m in this paper.

5.2.3 Experimentation results: The above two
controllers for the simulation were implemented in C++
code on the testbed program. The same topology was used
as before, but with a gain to make the values smaller. The
physical robots are very sensitive to gains in actuation
therefore a gain of ‘0.001’ was implemented to prevent
control inputs from saturating the motors. The robots are
also driven with both a velocity and angular velocity
command. Therefore on the controller for double-
integrator dynamics, the values obtained for control inputs
of acceleration are integrated before being sent to the robot.

1. Collective motion patterns for single-integrator kinematics:
In this case, three different values of u are chosen. When u

is set to 0.7 rad, the four robots spiral inward to rendezvous
as in Fig. 3a. Note that these data represent the actual
encoder information from the robot. Therefore when the
four robots converge, the data points do not meet because
they represent the centre of each physically spaced robot.
When u is set to 1.2133 rad, the four robots ultimately
move on separate circular orbits, as in Fig. 3c. When u is
set to 1.35 rad, the four robots spiral out as seen in Fig. 3e.
In addition, the linear and angular velocities of the robots
are shown in Fig. 5.
Control Theory Appl., 2010, Vol. 4, Iss. 11, pp. 2579–2591
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2. Collective motion patterns for double-integrator dynamics:
In this case, three different values of u are also chosen.
When u is set to 1.0 rad, the four robots spiral inward to
rendezvous as shown in Fig. 3b. Note that the four robots
will converge and then keep moving because of the relative
damping. When u is set to 1.1 rad, the four robots which
follow ultimately move on separate circular orbits as the
centre of the circular orbits keep moving as shown in
Fig. 3d. When u is set to 1.3 rad, the four robots spiral out
as the centre of the spiral curves keep moving as shown in
Fig. 3f. In addition, the linear and angular velocities of the
robots are shown in Fig. 6.

6 Conclusion
This paper focused on the study of the co-ordinated collective
motion patterns for a group of autonomous vehicles with
Cartesian co-ordinate coupling in a discrete-time setting.
We first studied conditions on the network topology, the
sampling period, the time delay and the Euler angle such
that different collective motion patterns can be achieved for
single-integrator kinematics in the presence of time delay.
Then we studied the conditions on the network topology,
the damping factor and the Euler angle such that different
collective motions patterns for double-integrator dynamics
in the presence of relative damping. Experimental results
on a multi-robot platform were employed to show the
effectiveness of the theoretical results.
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8 Appendix
Lemma 4 (Schur’s formula): Let A, B, C, D [ Rn×n. Let

M = A B
C D

[ ]
. Then det(M ) ¼ det(AD 2 BC), where

det(.) denotes the determinant of a matrix, if A, B, C and
D commute pairwise.

Lemma 5 [23]: The polynomial s2 + as + b = 0, where a,
b [ C, has all roots within the unit circle if and only if all
roots of (1 + a + b)t2 + 2(1 − b)t + b − a + 1 = 0 are in
the open left half plane (LHP).

Lemma 6 [24]: Let U [ Rp×p, V [ Rq×q, X [ Rp×p and
Y [ Rq×q. Then (U ⊗ V )(X ⊗ Y ) = UX ⊗ VY . Let
A [ Rp×p have eigenvalues bi with associated eigenvectors
fi [ C

p, i = 1, . . . , p, and let B [ Rq×q have eigenvalues
rj with associated eigenvectors gj [ Cq, j = 1, . . . , q.

Then the pq eigenvalues of A ⊗ B are birj with associated

eigenvectors fi ⊗ gj , i = 1, . . . , p, j = 1, . . . , q.

Lemma 7 [4]: Let L be the non-symmetric Laplacian
matrix associated with the weighted directed graph G. Then
L has at least one zero eigenvalue and all non-zero
eigenvalues have positive real parts. Furthermore, L has a
simple zero eigenvalue and all other eigenvalues have
positive real parts if and only if G has a directed spanning
tree. In addition, there exist 1n satisfying L1n = 0
and p [ Rn satisfying p ≥ 0, pTL = 0, and pT1 = 1 (That
is, 1n and p are, respectively, the right and left eigenvectors
of L associated with the zero eigenvalue.).

Lemma 8 (see [18, 19]): Given a rotation matrix
R [ R3×3, let a = [a1, a2, a3]T and u denote, respectively,
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the Euler axis (i.e. the unit vector in the direction of
rotation) and Euler angle (i.e. the rotation angle).
The eigenvalues of R are 1, eiu and e−iu with the associated
right eigenvectors given by, respectively, 61 = a, 62 =
Control Theory Appl., 2010, Vol. 4, Iss. 11, pp. 2579–2591
: 10.1049/iet-cta.2009.0338
[(a2
2+a2

3)sin2(u/2), −a1a2 sin2(u/2)+ ia3 sin(u/2)|sin(u/2)|,
−a1a3 sin2(u/2) − ia2 sin(u/2)|sin(u/2)|]T and 63 = 62, The
associated left eigenvectors are, respectively, 41 = 61,
42 = 62, and 43 = 63.
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