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a b s t r a c t

In this paper, a simple but efficient framework is proposed to achieve finite-time decentralized
formation tracking of multiple autonomous vehicles with the introduction of decentralized sliding mode
estimators. First, we propose and study both first-order and second-order decentralized sliding mode
estimators. In particular, we show that the proposed first-order decentralized sliding mode estimator
can guarantee accurate position estimation in finite time and the proposed second-order decentralized
sliding mode estimator can guarantee accurate position and velocity estimation in finite time. Then
the decentralized sliding mode estimators are employed to achieve decentralized formation tracking
of multiple autonomous vehicles. In particular, it is shown that formation tracking can be achieved
for systems with both single-integrator kinematics and double-integrator dynamics in finite time. By
using the decentralized sliding mode estimators, many formation tracking/flying scenarios can be easily
decoupled into two subtasks, that is, decentralized sliding mode estimation and vehicle desired state
tracking, without imposing a stringent condition on the information flow. Finally, several simulation
results are presented as a proof of concept.

© 2010 Elsevier B.V. All rights reserved.
1. Introduction

Recently, decentralized multi-vehicle cooperative control, in-
cluding consensus [1–7], formation control [8–12], and flock-
ing [13–16], has drawn significant research attention in the control
society. Different from the traditional centralized control where a
central station is employed to control all vehicles, no central sta-
tion is required for decentralized cooperative control. Therefore, a
number of benefits, for example, scalability, robustness, and easy
maintenance, can be obtained by employing decentralized cooper-
ative control.
A crucial task for decentralized cooperative control is to

achieve a global group behavior through only local interaction.
As a fundamental problem in decentralized cooperative control,
consensus has been studied extensively. The main idea of
consensus is for a group of vehicles to reach an agreement on
some common features, e.g., positions, phases, and attitudes, by
negotiating with their local (time-varying) neighbors. Consensus
algorithms have been studied for systems with different dynamics
under various scenarios. For systems with single-integrator
kinematics, the authors in [1–4] studied synchronous consensus
while the authors in [5–7] studied asynchronous consensus when
the network topology is modeled in a deterministic setting. When
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the network topology is modeled in a stochastic setting, the
authors in [17–20] studied consensus in probability and derived
corresponding convergence conditions. For systems with double-
integrator dynamics, the authors in [21–24] studied consensus
algorithms in both continuous-time and discrete-time settings.
Consensus for systems with general linear dynamics was studied
in [25,26]. In these references, consensus was studied in the
absence of a virtual leader (or a group reference state).
Although consensus without a virtual leader is interesting, it is

sometimes more meaningful and interesting to study consensus
in the presence of a virtual leader when the virtual leader’s
state may represent the state of interest for the group. Here
consensus in the presence of a virtual leader is also called consensus
tracking. In [27,28], a proportional and derivative like consensus
tracking algorithmwas proposed and studied for single-integrator
kinematics in the presence of a dynamic virtual leader in both
continuous-time and discrete-time settings. In particular, [27]
requires the availability of the velocitymeasurements of the virtual
leader and [28] requires a small sampling period. In [29,30],
consensus tracking algorithms were studied for double-integrator
dynamics in the presence of a dynamic virtual leader. In
particular, [29] requires the availability of the leader’s acceleration
to all followers and [30] requires the design of distributed
observers. The authors in [31] studied a consensus tracking
algorithm in the presence of time-varying delays. In particular, an
estimator was designed to estimate the leader’s velocity. Although
these references only studied consensus tracking scenarios, the
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proposed approaches can be extended to the formation tracking
scenarios where a group of vehicles tracks the virtual leader while
maintaining a certain desired geometric formation simultaneously.
In this paper, we propose a simple but efficient framework

to solve the finite-time formation tracking problem with the
aid of decentralized sliding mode estimators by expanding on
our preliminary work reported in [32]. Compared with the
consensus tracking algorithms in [27–31], the proposed algorithms
demonstrate the following advantages: (1) simple, (2) finite-
time convergence, (3) reduced information measurements, and
(4) mild requirement on the information flow. We first propose
and study both first-order and second-order decentralized sliding
mode estimators under a directed switching network topology. In
particular, we show that the first-order decentralized slidingmode
estimator can guarantee accurate position estimation and the
second-order decentralized sliding mode estimator can guarantee
accurate position and velocity estimation in finite time. Then we
propose finite-time formation tracking algorithms based on the
decentralized sliding mode estimators. Note that although finite-
time consensus was solved in [33–35], the algorithms proposed
in [33–35] cannot be applied to the case when there exists a
dynamic virtual leader in the absence of velocity or acceleration
measurements. Note also that a Lyapunov-based approach was
used in [36] to show finite-time consensus. However, [36] focused
on undirected fixed or switching network topologies. Furthermore,
because accurate estimation can be achieved in finite time
when employing the decentralized sliding mode estimators, many
formation tracking/flying problems can be easily decoupled into
two subtasks, namely, decentralized sliding mode estimation
and vehicle desired state tracking, without imposing a stringent
condition on the information flow.

2. Graph theory notions

For a group of n vehicles, the interaction for these vehicles
can be modeled by a directed graph G = (V,W), where V =
{v1, v2, . . . , vn} and W ⊆ V2 represent, respectively, the vehicle
set and the edge set. Each edge denoted as (vi, vj) means that
vehicle j can access the state information of vehicle i, but not
necessarily vice versa. Accordingly, vehicle i is a neighbor of vehicle
j. We use Nj to denote the neighbor set of vehicle j. A directed
path is a sequence of edges in a directed graph of the form
(v1, v2), (v2, v3), . . . , where vi ∈ V . A directed graph has a
directed spanning tree if there exists at least one vehicle that has
directed paths to all other vehicles.
Two matrices are frequently used to represent the interaction

graph: the adjacency matrix A = [aij] ∈ Rn×n with aij > 0
if (vj, vi) ∈ W and aij = 0 otherwise, and the (nonsymmetric)
Laplacian matrixL = [`ij] ∈ Rn×n with `ii =

∑n
j=1,j6=i aij and `ij =

−aij, i 6= j.

3. First-order decentralized sliding mode estimator

In this section, we propose and study a first-order decentralized
sliding mode estimator. Here, we assume that all vehicles are
in a one-dimensional space for the simplicity of presentation.
However, all results are still valid for the high-dimensional space
by the introduction of the Kronecker product.
Assume that there exist n estimators each ofwhich is embedded

in an individual vehicle. Assume also that there exists a virtual
leader with a (time-varying) position given by r0(t) ∈ R available
to only a subset of the n vehicles. The objective of this section
is to construct a first-order decentralized estimator such that an
accurate estimate of the virtual leader’s position can be achieved
in finite time. It is assumed that r0(t) satisfies the following two
conditions:
1. r0(t) is differentiable.
2. supt |ṙ0(t)| ≤ γ , i.e., the velocity of the virtual leader is
bounded.
Inspired by [37], we propose the following first-order decentral-
ized sliding mode estimator as

˙̂r i(t) = −α
n∑
j=0

aij(t)[r̂i(t)− r̂j(t)]

−β sgn

{
n∑
j=0

aij(t)[r̂i(t)− r̂j(t)]

}
, i = 1, . . . , n, (1)

where r̂i(t) ∈ R is the ith vehicle’s estimate of r0(t), α is a
nonnegative constant, β is a positive constant, aij(t) is the (i, j)th
entry of the adjacency matrix A at time t, ai0(t) > 0 if r0(t) is
available to the ith vehicle at time t and ai0(t) = 0 otherwise,
sgn(·) is the signum function, and r̂0(t)

4
= r0(t). The objective of (1)

is to guarantee that r̂i(t)→ r0(t) in finite time.

Theorem 3.1. Assume that the virtual leader has directed paths to
every other vehicle at each time instant. When β > γ , r̂i(t) = r0(t)
for every t ≥ T f , where T f =

maxi{|r̂i(0)−r0(0)|}
β−γ

.

Proof. Define r̃i(t)
4
= r̂i(t)−r0(t). It follows that (1) can bewritten

as

˙̃r i(t) = −α
n∑
j=0

aij(t)[r̃i(t)− r̃j(t)]

−β sgn

{
n∑
j=0

aij(t)[r̃i(t)− r̃j(t)]

}
− ṙ0(t),

i = 1, . . . , n. (2)

Define r̃+(t)
4
= maxi r̃i(t) and r̃−(t)

4
= mini r̃i(t). Then the

convergence time can be obtained by studying the following three
cases:
Case (i) r̃+(0) ≤ 0 and r̃−(0) ≤ 0. When r̃+(0) = r̃−(0) = 0. It
is trivial to show that r̃+(t) = r̃−(t) = 0 for any t > 0. We next
study the case when r̃+(0) ≤ 0 and r̃−(0) < 0. It follows from (2)
that r̃+(t) ≤ 0 for any t > 0 because ˙̃r

+

(t) ≤ −(β − ṙ0) ≤
−(β− γ ) < 0 if r̃+(t) > 0. By following a similar analysis, we can
also get that r̃−(t) is nondecreasing. Note that when r̃−(t) < 0,
either ˙̃r

−

(t) = −ṙ0(t) or ˙̃r
−

(t) > β − γ` > 0. We next show that
when r̃−(T ) < 0 for some T > 0, ˙̃r

−

(t) = −ṙ0(t) only happens at
isolated time instants when t ≤ T . We prove this by contradiction.
Assume that ˙̃r

−

(t) = −ṙ0(t) for t ∈ [t1, t2] where t1 < t2 ≤ T .
Then there exists some vehicle, labeled as j, with the state r̃−(t)
satisfying ˙̃r j(t) = −ṙ0(t) for t ∈ [t1, t3], where t1 < t3 ≤ t2.
Note that ˙̃r j(t) = −ṙ0(t) implies that

∑n
i=0 aji[r̃j(t) − r̃i(t)] = 0

for t ∈ [t1, t3] from (2). Because r̂j(t) = r̃−(t), it follows that
˙̃r j(t) = −ṙ0(t) for t ∈ [t1, t3] implies that r̂i(t) = r̃−(t), ∀i ∈ Nj,
for t ∈ [t1, t3]. By following a similar analysis, it follows that
r̂i(t) = r̃−(t), ∀i = 0, . . . , n, for t ∈ [t1, t3] if the virtual leader has
directed paths to every other vehicle at each time instant, which
results in a contradiction because r̃−(t) < 0 for t ≤ T . Therefore,
when r̃−(T ) < 0, r̃−(t)will keep increasing at a speed larger than
β−γ when t ≤ T except for some isolated time instants. It follows
that the maximal convergence time is given by |r̃

−(0)|
β−γ

. Note that
this bound also applies to the case when r̃−(0) = 0.
Case (ii) r̃+(0) ≥ 0 and r̃−(0) ≥ 0. By following a similar analysis to
that of Case (i), it can be computed that the maximal convergence
time is given by |r̃

+(0)|
β−γ

.

Case (iii). r̃+(0) ≥ 0 and r̃−(0) ≤ 0. By combining Cases (i) and (ii),
it can be computed that the maximal convergence time is given by
max{|r̃+(0)|,|r̃−(0)|}

β−γ
.

Combining the previous three cases completes the proof. �
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Remark 3.2. From the proof of Theorem 3.1, both α and β in (1)
can be chosen differently for different vehicle i. Assume that the
control gains for the ith estimator are αi and βi. When αi ≥ 0 and
βi > γ , the convergence time becomes T f =

maxi{|r̂i(0)−r0(0)}|
mini{βi}−γ

.

Remark 3.3. Note that ˙̂r i(t) given in (1) is discontinuous, which
is different from ṙ0(t) by noting that ṙ0(t) might be continuous.
However,

∫ t2
t1
˙̂r i(t)dt =

∫ t2
t1
ṙ0(t)dt, i = 1, . . . , n for any t2 > t1 ≥

T f . Therefore, when t ≥ T f , ˙̂r i(t) can be used to replace ṙ0(t) in
integration related applications for t ≥ T f . Here, the replacement
of ˙̂r i(t) for ṙ0(t) can also be interpreted as follows. Note that ˙̂r i(t)
can be written as

˙̂r i(t) = ṙ0(t)+ f (t), (3)

where f (t) is a switching signal satisfying
∫ t2
t1
f (t)dt = 0 for any

t2 > t1 ≥ T f and the frequency of f (t) is infinitely large. Note
also that an integration-based system can be considered an ideal
low-pass filter. Therefore, f (t) will be filtered out with the low-
pass filter.

Remark 3.4. Inspired by the analysis in Theorem 3.1, we next
study a finite-time leaderless consensus algorithm for single-
integrator kinematics. Consider a group of n agents with single-
integrator kinematics given by

ṙi(t) = ui(t), i = 1, . . . , n, (4)

where ri(t) is the position of ith vehicle and ui(t) is the
corresponding control input at time t . Leaderless consensus is
achieved in finite time if there exists a positive t such that ri(t) =
rj(t) for t > t . Define

g(t) =
{
1, G(t) has a directed spanning tree,
0, otherwise.

By using

ui = −α
n∑
j=1

aij(t)(ri − rj)− β sgn

[
n∑
j=1

aij(t)(ri − rj)

]
, (5)

where α is a nonnegative constant and β is a positive constant
for (4), ri(t) = rj(t), i, j ∈ {1, . . . , n}, holds for every t > σ

(i.e., leaderless consensus is achieved in finite time), if
∫ σ
0 g(t)dt >

maxi ri(0)−mini ri(0)
2β . The proof is similar to that of Theorem 3.1 by

showing that over a time interval [t1, t2] the maximal position will
decrease and the minimal position will increase with a minimum
speed β before leaderless consensus is achieved except for some
isolated time instants if G(t) has a directed spanning tree over
[t1, t2]. In addition, if G(t) does not have a directed spanning tree
over a time interval, themaximal positionwill not increase and the
minimal positionwill not decrease over the time interval. Different
from the traditional linear leaderless consensus algorithm ui =
−α

∑n
j=1 aij(t)[ri(t) − rj(t)] [i.e., β = 0 in (5)] under which

leaderless consensus can be achieved if the network topology has
a directed spanning tree jointly [3], using (5) for (4), leaderless
consensusmight not be achievedwhen the network topology has a
directed spanning jointly because maxi ri(t)−mini ri(t)might not
decrease over time in this case. For example, suppose that there
exist three agents in a team. At each time instant, there is only
one agent who is a neighbor of another agent. Initially, agent 1 is a
neighbor of agent 2 for a period of time that guarantees that agent
2’s state will become equal to that of agent 1 due to finite-time
convergence. Then agent 3 is a neighbor of agent 1 for a period
of time that guarantees that agent 1’s state will become equal to
that of agent 3 due to finite-time convergence. Then agent 2 is
a neighbor of agent 3 for a period of time that guarantees that
agent 3’s state will become equal to that of agent 2 due to finite-
time convergence. Then the previous sequence repeats. Note that
the directed graph has a directed spanning tree jointly. However,
consensus cannot be achieved.

Remark 3.5. For (4), there exist two other leaderless finite-time
consensus algorithms

ui = −
n∑
j=1

aij(t)sgn(ri − rj)|ri − rj|γ , γ ∈ (0, 1) (6)

which is proposed in [35,33] and

ui = −sgn

[
n∑
j=1

aij(ri − rj)

] ∣∣∣∣∣ n∑
j=1

aij(ri − rj)

∣∣∣∣∣
γ

, γ ∈ (0, 1) (7)

which is proposed in [34]. Using (6) for (4), finite-time leaderless
consensus was shown to be achieved under a fixed/switching
undirected network topology in [35,33]. Using (7) for (4), finite-
time leaderless consensus was shown to be achieved under a
fixed directed network topology in [34]. Both (6) and (7) can only
solve the finite-time leaderless consensus problem rather than
the finite-time consensus tracking problem with a dynamic leader
in the absence of velocity measurements.1 That is, if ṙ0(t) is not
known, (6) and (7) cannot solve the finite-time consensus tracking
problem. Note also that the author in [36] used a Lyapunov-based
approach to show that leaderless consensus can be achieved in
finite time by using (5) with α = 0 under an undirected network
topology. We have shown that (5) can guarantee finite-time
leaderless consensus for directed switching network topologies by
analyzing how the maximal and minimal positions evolve.

4. Second-order sliding mode estimator

In this section, we propose and study a second-order decentral-
ized slidingmode estimator.We also assume that all vehicles are in
a one-dimensional space for the simplicity of presentation. How-
ever, all results are still valid for high-dimensional space by the
introduction of the Kronecker product.
Assume also that there exist n estimators each of which is

embedded in an individual vehicle. Assume that there also exists
a virtual leader, whose position is given by r0(t) and velocity
is given by v0(t) available to only a subset of the n vehicles.
The objective here is to construct a second-order decentralized
estimator such that accurate estimation of the virtual leader’s
position and velocity can be achieved in finite time. It is assumed
that v0(t) satisfies the following two conditions:

1. v0(t) is differentiable.
2. supt |v̇0(t)| ≤ ξ ,i.e., the acceleration of the virtual leader is
bounded.

We propose the following second-order sliding mode estimator as

˙̂r i(t) = v̂i(t)− α sgn

{
n∑
j=0

aij(t)[r̂i(t)− r̂j(t)]

}
(8a)

˙̂vi(t) = −β sgn

{
n∑
j=0

aij(t)[v̂i(t)− v̂j(t)]

}
, i = 1, . . . , n, (8b)

1 The proposed algorithm (1) can be used to solve the finite-time consensus
tracking problem with a dynamic leader in the absence of velocity measurements.
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where r̂i(t) and v̂i(t) are the ith vehicle’s estimates of, respectively,
the position and velocity of the virtual leader, α and β are positive

constants, aij(t) is defined the same as in (1), and v̂0(t)
4
= v0(t).

The objective of (8) is to guarantee that r̂i(t)→ r0(t) and v̂i(t)→
v0(t) in finite time.

Theorem 4.1. Assume that the virtual leader has directed paths to
every other vehicle at each time instant. When β > ξ, r̂i(t) = r0(t)
and v̂i(t) = v0(t) for every

t ≥ T s, (9)

where T s = 2t1 +
(ξ+β)t21
2α +

(|r̂i(0)−r0(0)|+|v̂i(0)−v0(0)|)t1
α

and

t1 =
max
i
{|v̂i(0)− v0(0)|}

β − ξ
. (10)

Proof. It follows from (8b) and Theorem 3.1 that v̂i(t) = v0(t)
when t ≥ t1, where t1 is given by (10). Similarly, suppose that
the initial time of (8a) is t = t1. Note that v̂i(t) = v0(t) for
t ≥ t1. By replacing v̂i(t) with v0(t) for t ≥ t1 and defining
r̃i(t)

4
= r̂i(t) − r0(t), it follows that (8a) can be written as ˙̃r i(t) =

−αsgn{
∑n
j=0 aij(t)[r̃i(t)− r̃j(t)]} for t ≥ t1. Note also that r̃0(t) =

0. It then follows from the proof of Theorem 3.1 that r̃i(t) = 0, i.e.,
r̂i(t) = r0(t) for any t > t1 +

maxi{|r̂i(t1)−r0(t1)|}
α

.

We next study maxi{|r̂i(t1) − r0(t1)|}. Define ṽi(t)
4
= v̂i(t) −

v0(t). It follows from (8) that

˙̃r i(t) = ṽi(t)− α sgn

{
n∑
j=0

aij(t)[r̃i(t)− r̃j(t)]

}
(11)

˙̃vi(t) = −v̇0(t)− β sgn

{
n∑
j=0

aij(t)[ṽi(t)− ṽj(t)]

}
. (12)

Note that supt{v̇0(t)} ≤ ξ . We have that | ˙̃vi(t)| ≤ ξ +β . It follows
from (12) that

|ṽi(t)| ≤ |ṽi(0)| + (ξ + β)t

for 0 < t < t1. It then follows from (11) that

|r̃i(t1)| ≤ |r̃i(0)| + (|ṽi(0)| + α)t1 +
(ξ + β)t21
2

.

Combining the previous arguments shows that r̂i(t) = r0(t) and
v̂i(t) = v0(t) for any t satisfying (9). �

Remark 4.2. In Theorem 4.1, the estimation of the position and
velocity can be decoupled into two independent problems because
the decentralized sliding estimator (8b) can guarantee accurate
estimation of the virtual leader’s velocity in finite time. It is
worthwhile to mention that the adjacency matrix in (8a) could
be different from that in (8b). Accurate estimation can still be
achieved in finite time if the corresponding graphs associated with
the adjacency matrices in (8a) and (8b) satisfy that the virtual
leader has directed paths to every other vehicle at each time
instant.

Remark 4.3. Similar to the analysis in Remark 3.3, although ˙̂r i
(respectively, ˙̂vi) is not equal to v̂i (respectively, v̇0) at each time
instant, the integration of ˙̂r i (respectively, ˙̂vi) over t ∈ (t1, t2) is
equal to the integration of v̂i over t ∈ (t1, t2) (respectively, v̇0)
if t2 > t1 > T s, where T s is defined in Theorem 4.1. Therefore,
for (14), v̂i (respectively, ˙̂vi) can be used to replace ˙̂r i (respectively,
v̇0), and vice versa.
Remark 4.4. In Theorems 3.1 and 4.1, it is assumed that either the
velocity of the virtual leader (cf. Theorem 3.1) or the acceleration
of the virtual leader (cf. Theorem 4.1) is bounded and the bound
is known beforehand. When the bound of the velocity or the
acceleration of the virtual leader is unknown beforehand, β might
be chosen as a nondecreasing switching signal and β increases if
the estimation errors do not decrease.

5. Finite-time decentralized formation tracking

In this section, we study a finite-time decentralized formation
tracking problem for both single-integrator kinematics and
double-integrator dynamics by using the decentralized sliding
mode estimators. Assume that there exists a (time-varying) virtual
leader whose position is given by r0(t) and velocity is given by
v0(t) available to only a subset of a group of n vehicles. The
objective is to design a decentralized control law such that all
followers track the virtual leader while maintaining a certain
desired geometric formation with only local interaction. For the
simplicity of presentation, we also assume that all vehicles are in a
one-dimensional space.

5.1. Single-integrator kinematics

In this case, we assume that supt |v0(t)| < γ . Consider a group
of n vehicles with single-integrator kinematics given by (4).
Inspired by the first-order sliding mode estimator in Section 3, we
propose the following formation tracking algorithm as

ui(t) = −α
n∑
j=0

aij(t)[ri(t)− δi − rj(t)+ δj]

−β sgn

{
n∑
j=0

aij(t)[ri(t)− δi − rj(t)+ δj]

}
,

i = 1, . . . , n, (13)

where aij(t) is the (i, j)th entry of the adjacency matrix, δi is
constant at time t , α is a nonnegative constant, and β is a positive

constant. Define∆ij
4
= δi − δj. The objective of (13) is to guarantee

that ri(t)− rj(t)→ ∆ij in finite time.

Theorem 5.1. Assume that the virtual leader has directed paths to all
vehicles 1 to n at each time instant. When β > γ , ri(t)− rj(t)→ ∆ij
in finite time.

Proof. Define r̃i
4
= ri− δi. By following the proof of Theorem 3.1, it

is straightforward to show that r̃i → r̃j in finite time,which implies
that ri(t)− rj(t)→ ∆ij in finite time. �

Remark 5.2. Another simple formation tracking algorithm for (4)
is given by

ui(t) = β sgn[r̂i(t)− ri(t)+ δi],

where β > γ and r̂i(t) is the ith vehicle’s estimate of the virtual
leader’s position when using the decentralized sliding mode
estimator given by (1).

5.2. Double-integrator dynamics

In this case, we assume that supt |v̇0(t)| < ξ . For a group of n
vehicles with double-integrator dynamics given by

ṙi(t) = vi(t)
v̇i(t) = ui(t), i = 1, . . . , n (14)
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(a) Graph 1. (b) Graph 2.

Fig. 1. Network topology for a group of six vehicles with a virtual leader. Here L denotes the virtual leader while Vi, i = 1, . . . , 6, denote the vehicles.
where ri(t) and vi(t) represent, respectively, the position and
velocity of the ith vehicle, and ui(t) is the control input for the
ith vehicle at time t . Inspired by [38], we propose the following
formation tracking algorithm as

ui(t) = ˙̂vi(t)− sgn[vi(t)− v̂i(t)]
∣∣vi(t)− v̂i(t)∣∣γ

− sgn(φ) |φ|
γ
2−γ , (15)

where r̂i(t) and v̂i(t) are the ith vehicle’s estimates of, respec-
tively, the virtual leader’s position and velocity when using the de-
centralized sliding mode estimator given by (8), γ ∈ (0, 1) and
φ = ri(t) − δi − r̂i(t) + 1

2−γ sgn[vi(t) − v̂i(t)]
∣∣vi(t)− v̂i(t)∣∣2−γ .

The objective of (15) is to guarantee that ri(t) − rj(t) → ∆ij and
vi(t) → v0(t) in finite time. Before moving on, we need the fol-
lowing lemma.

Lemma 5.1 ([38]). For double-integrator dynamics

ẋ = y, ẏ = u,

the origin is a global finite-time-stable equilibrium under the feedback
control law

u = −sgn(y) |y|γ − sgn(φ) |φ|
γ
2−γ

where γ ∈ (0, 1) and φ = x+ 1
2−γ sgn(y)|y|

2−γ .

Theorem 5.3. Assume that the virtual leader has directed paths to all
vehicles 1 to n at each time instant. Assume also that the conditions
on the network topology and the control gains in Theorem 4.1 are
satisfied. Using (15) for (14), ri(t)− rj(t)→ ∆ij and vi(t)→ v0(t)
in finite time.

Proof. From Theorem 4.1, the decentralized sliding mode estima-
tor can guarantee that r̂i(t) = r0(t) and v̂i(t) = v0(t) for t ≥ T s,
where T s is defined in (9). Note that ˙̂vi(t) can be replacedwith v̇0(t)
for t ≥ T s according to Remark 3.3. Define r̃i

4
= ri − δi − r̂i. For

t ≥ T s, (14) using (15) can be written as

¨̃r i(t) = −sgn[˙̃r i(t)]
∣∣∣˙̃r i(t)∣∣∣γ − sgn(φ) |φ| γ2−γ , (16)

where φ = r̃i(t) + 1
2−γ sgn[

˙̃r i(t)]|˙̃r i(t)|2−γ . It then follows from
Lemma 5.1 that r̃i(t) will go to zero in finite time, which in turn
implies that ri(t)−rj(t)→ ∆ij and vi(t)→ v0(t) in finite time. �

Remark 5.4. Because the second-order decentralized slidingmode
estimator can achieve accurate estimation in finite time, formation
tracking for double-integrator dynamics can be decoupled into two
subtasks:
1: A decentralized estimator to accurately estimate the virtual
leader’s information in finite time.
2: A local control to guarantee accurate tracking of the virtual
leader in finite time.

Remark 5.5. The main difference between decentralized control
and centralized control is whether some group information
can be obtained by each group member instantaneously. If
there exists a central station which can not only obtain the
group information but also communicate with each vehicle in
the group, centralized control techniques can then be used
to achieve various formation control scenarios. However, the
requirement of the central station poses an obvious limitation
and may not be feasible in real applications. Therefore, it is more
practical to employ decentralized control techniques. By using the
decentralized sliding mode estimators, accurate estimation of the
group information can be achieved in finite time. Accordingly,
centralized-control-like decentralized control techniques can be
easily designed and implemented. For example, the decentralized
virtual structure approach proposed in [39] can be revised by using
the decentralized slidingmode approach and the formation control
problem can be solved by employing a decentralized estimator
and a local controller. From this perspective, this paper provides
a new simple but efficient framework to solve the formation
tracking/flying problem.

Remark 5.6. In [40], a proportional and derivative (PI) based
decentralized estimation method was proposed for multi-agent
coordination. However, the proposed decentralized estimator can
guarantee only bounded tracking errors. Inspired by Theorem 3.1,
each vehicle can establish n − 1 decentralized sliding mode
estimators to estimate all other external time-varying states.
According to Theorem 3.1, each time-varying external state can be
estimated accurately by all vehicles in finite time. It then follows
that all external states can be estimated accurately by all agents
in finite time accordingly. Therefore, accurate estimation of the
average of a group of time-varying references can be achieved in
finite time accordingly. Furthermore, accurate estimation of an
arbitrary function of a group of time-varying references can be
achieved in finite time as well.

6. Simulation

In this section, we present several simulation results to validate
the theoretical results in previous sections. We consider a group of
six vehicles. The directed network topology switches from Fig. 1(a)
to (b) every 1 s and then the process repeats. We choose aij = 1 if
(vj, vi) ∈ W and aij = 0 otherwise.
For the first-order decentralized slidingmode estimator (1), the

virtual leader’s position is chosen as r0(t) = sin(t) + t
5 and the

initial states of the estimators embedded in the six vehicles are
given by r̂(0) = [−5, 2,−3, 5, 2,−4]T , where r̂(0) is a column
stack vector of r̂i(0), i = 1, . . . , 6. We choose α = 2 and β = 4.
Fig. 2(a) and (b) show, respectively, the decentralized estimates of
the virtual leader’s position and the estimation errors using (1). It
can be seen that each vehicle can obtain accurate estimation of the
virtual leader’s position in finite time under a directed switching
network topology.
For the second-order decentralized sliding mode estimator (8),

the virtual leader’s position is chosen as r0(t) = sin(t) + t
2 and

the initial states of the estimators are given by r̂(0) = [−5, 2,
−3, 5, 2,−4]T and v̂(0) = [−0.4, 1,−1.3, 0.2, 0.8,−1.4]T ,
where v̂(0) is a column stack vector of v̂i(0), i = 1, . . . , 6. We also
choose α = 2 and β = 4. Fig. 3(a) and (c) show the estimates
of, respectively, the position and the velocity of the virtual leader
using (8) Fig. 3(b) and (d) show, respectively, the position and the
velocity estimation errors using (8). It can be seen that each vehicle
can obtain accurate estimation of the virtual leader’s position
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(a) Estimation of the virtual leader’s position. (b) Estimation errors.

Fig. 2. Simulation results using (1).
(a) Estimation of the virtual leader’s position. (b) Estimation errors of the virtual leader’s position.

(c) Estimation of the virtual leader’s velocity. (d) Estimation errors of the virtual leader’s velocity.

Fig. 3. Simulation results using (8).
and velocity in finite time under a directed switching network
topology.
For the formation tracking algorithms (13) and (15), we

present several simulation results in the two-dimensional space.
Here ri ∈ R2, vi ∈ R2, and δi ∈ R2. We have chosen
r(0) = −[5, 8, 7, 9, 4, 5; 8, 6, 10, 8, 8, 7]T for (13) and r(0) =
−[5, 8, 7, 9, 4, 5; 8, 6, 10, 8, 8, 7]T , v(0) = 1

10 [−3, 1, 13,−2,
−8, 4; 3,−1,−13, 2, 8,−4]T , α = 2, β = 4, and γ = 0.8 for
(15). We also choose δ1 = [2, 0]T , δ2 = [1,−1]T , δ3 = [−1,−1]T ,
δ4 = [−2, 0]T , δ5 = [−1, 1]T , and δ6 = [1, 1]T . Fig. 4(a)
shows the positions of the six vehicles and the virtual leader using
(13) when r0(t) = [10 sin( t10 ) − 5,

t
3 − 5]

T . In addition, two
snapshots are provided to show the formation of the six vehicles
and the virtual leader at t = 15 s and t = 30 s. Fig. 4(b) shows
the position differences between the six vehicles and the virtual
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(a) Positions of the six vehicles and the virtual leader. (b) Position differences between the six vehicles and the virtual
leader.

Fig. 4. Simulation results using (13). In subfigure (a), squares denote the starting positions of the six vehicles while circle denotes the starting position of the virtual leader.
(a) Positions of the six vehicles and the virtual leader. (b) Position differences between the six vehicles and the virtual
leader.

(c) Velocities of the six vehicles and the virtual leader. (d) Velocity differences between the six vehicles and the virtual
leader.

Fig. 5. Simulation results using (15). In subfigure (a), squares denote the starting positions of the six vehicles while circle denotes the starting position of the virtual leader.
leader. It can be seen that the vehicles can track the virtual leader
and maintain the desired formation in finite time under a directed
switching network topology. Fig. 5(a) and (c) show, respectively,
the positions and velocities of the six vehicles and the virtual leader
using (15) when r0(t) = [sin( t5 )+

t
2 , 2 sin(

t
5 )+

t
4 ]
T . In addition,

two snapshots are also provided to show the formation of the six
vehicles and the virtual leader at t = 15 s and t = 30 s. Fig. 5(b)
and (d) show, respectively, the position and velocity differences
between the six vehicles and the virtual leader using (15). It can be
seen that the vehicles can also track the virtual leader andmaintain
the desired formation in finite time under a directed switching
network topology.



Y. Cao et al. / Systems & Control Letters 59 (2010) 522–529 529
7. Conclusion

This paper proposed a simple but efficient framework to
achieve finite-time decentralized formation tracking of multi-
ple autonomous vehicles by introducing the decentralized sliding
mode estimators. First, we proposed and studied both first-order
and second-order decentralized sliding mode estimators. In par-
ticular, the proposed decentralized sliding mode estimators were
shown to guarantee accurate estimation in finite time. Then the
decentralized sliding mode estimators were employed to achieve
decentralized formation tracking of multiple autonomous vehicles
in finite time. Because accurate estimation can be achieved in finite
time when utilizing the proposed sliding mode estimators, many
formation tracking/flying scenarios can be decoupled into two sim-
ple subtasks, that is, decentralized slidingmode estimation and ve-
hicle desired state tracking,without imposing a stringent condition
on the information flow.
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