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a b s t r a c t

This paper studies a distributed discrete-time coordinated tracking problem where a team of vehicles
communicating with their local neighbors at discrete-time instants tracks a time-varying reference
state available to only a subset of the team members. We propose a PD-like discrete-time consensus
algorithm to address the problem under a fixed communication graph. We then study the condition on
the communication graph, the sampling period, and the control gain to ensure stability and give the
quantitative bound of the tracking errors. It is shown that the ultimate bound of the tracking errors
is proportional to the sampling period. The benefit of the proposed PD-like discrete-time consensus
algorithm is also demonstrated through comparison with an existing P-like discrete-time consensus
algorithm. Simulation results are presented as a proof of concept.

© 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Distributed multi-vehicle cooperative control, including con-
sensus (Jadbabaie, Lin, &Morse, 2003;Olfati-Saber&Murray, 2004;
Ren & Beard, 2005; Xiao & Boyd, 2004), rendezvous (Dimarogonas
& Kyriakopoulos, 2007; Lin, Morse, & Anderson, 2003), and forma-
tion control (Fax &Murray, 2004; Lafferriere,Williams, Caughman,
& Veerman, 2005), has become an active research direction in the
control community due to its potential applications in both civil-
ian and military sectors. By having a group of locally communicat-
ing vehicles working cooperatively, many benefits can be achieved
such as high adaptation, simple design and maintenance, and low
cost and complexity.
As an important approach in distributed multi-vehicle coop-

erative control, consensus has been studied extensively, see Ren,
Beard, and Atkins (2007) and references therein. The basic idea
of consensus is the agreement of all vehicles on some common
features by negotiating with their local (time-varying) neighbors.
Examples of the features include positions, phases, velocities,
and attitudes. Inspired by Jadbabaie et al. (2003) and Vicsek,
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Czirok, Jacob, Cohen, and Schochet (1995) shows that consen-
sus can be achieved if the undirected communication graph is
jointly connected. Fang and Antsaklis (2005), Olfati-Saber and
Murray (2004) and Ren and Beard (2005) take into account the
fact that the communication graphmay be unidirectional/directed.
In particular, Olfati-Saber and Murray (2004) shows that av-
erage consensus is achieved if the communication graph is
strongly connected and balanced at each time, while Ren and
Beard (2005) shows that consensus can be achieved if the com-
munication graph has a directed spanning tree jointly. In all
these references, the consensus algorithms studied are propor-
tional like (P-like) control strategies that employ only the states
from local neighbors. It is shown in Ren (2007) that these P-
like control strategies cannot be used to track a time-varying
reference state that is available to only a subset of the team mem-
bers. Instead, proportional and derivative like (PD-like) continuous-
time consensus algorithms are proposed in Ren (2007) to track a
time-varying reference state that is available to only a subset of
the team members. These PD-like continuous-time consensus al-
gorithms employ both the local neighbors’ states and their deriva-
tives. However, the requirement for instantaneous measurements
of the derivatives of the local neighbors’ states may not be realis-
tic in applications. It will be more meaningful to derive and study
the PD-like consensus algorithms in a discrete-time formulation
where the requirement for instantaneous measurements of state
derivatives is removed.
In this paper, we study a distributed discrete-time coordinated

tracking problem where a team of vehicles communicating
with their local neighbors at discrete-time instants tracks a
time-varying reference state available to only a subset of the
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team members by expanding on our preliminary work reported
in Cao, Ren, and Li (2008). We address the problem under a
fixed communication graph by proposing a PD-like discrete-time
consensus algorithm. When the sampling period is small, it is
shown that the tracking errors are ultimately bounded if the
changing rate of the reference state is bounded, the virtual leader
whose state is the reference state has a directed path to all team
members, and the sampling period and control gain satisfy certain
conditions. In particular, it is shown that the ultimate bound of the
tracking errors is proportional to the sampling period.
In contrast to the PD-like continuous-time consensus algo-

rithms in Ren (2007), all factors, namely, the communication
graph, the sampling period, and the control gain play an impor-
tant role in the stability of the PD-like discrete-time consensus al-
gorithm. To demonstrate the benefit of the PD-like discrete-time
consensus algorithm, we also compare the algorithm with an ex-
isting P-like discrete-time consensus algorithm. It is shown that
the tracking errors using the PD-like discrete-time consensus algo-
rithm with a time-varying reference state that is available to only
a subset of the team members will go to zero if the sampling pe-
riod tends to zero. However, under the same condition, the track-
ing errors using the P-like discrete-time consensus algorithmwith
a time-varying reference state that is available to only a subset of
the teammembers are not guaranteed to go to zero even if the sam-
pling period tends to zero.

2. Background and preliminaries

2.1. Graph theory notions

For a system with n vehicles, the communication graph among
these vehicles is modeled by a directed graph G = (V,W), where
V = {1, 2, . . . , n} andW ⊆ V2 represent, respectively, the vehicle
set and the edge set. An edge denoted as (i, j) means that the jth
vehicle can access the information of the ith vehicle. If (i, j) ∈ W ,
the ith vehicle is a neighbor of the jth vehicle. If (i, j) ∈ W , then
vehicle i is the parent node andvehicle j is the child node. Adirected
path is a sequence of edges in a directed graph in the form of
(i1, i2), (i2, i3), . . ., where ik ∈ V . A directed graph has a directed
spanning tree if there exists at least one vehicle that has a directed
path to all other vehicles.
The communication graph for an n-vehicle system can be

mathematically represented by two types of matrices: the
adjacency matrix A = [aij] ∈ Rn×n where aij > 0 if (j, i) ∈ W
and aij = 0 otherwise, and the (nonsymmetric) Laplacian matrix
L = [`ij] ∈ Rn×n where `ii =

∑n
j=1,j6=i aij and `ij = −aij for i 6= j.

We assume that aii = 0, i = 1, . . . , n. It is straightforward to verify
that zero is an eigenvalue of L with a corresponding eigenvector
1n, where 1n ∈ Rn is an all-one column vector.

2.2. PD-like continuous-time consensus algorithm with a time-
varying reference state

Consider vehicles with single-integrator kinematics given by

ξ̇i(t) = ui(t), i = 1, . . . , n (1)
where ξi(t) ∈ R and ui(t) ∈ R represent, respectively, the state
and the control input of the ith vehicle. Suppose that there exists
a virtual leader, labeled as vehicle n + 1, whose state is ξ r(t). A
PD-like continuous-time consensus algorithmwith a time-varying
reference state is proposed in Ren (2007) as

ui(t) =
1

n+1∑
j=1
aij

n∑
j=1

aij
{
ξ̇j(t)− γ [ξi(t)− ξj(t)]

}

+
ai(n+1)
n+1∑
j=1
aij

{
ξ̇ r(t)− γ [ξi(t)− ξ r(t)]

}
, (2)
where aij is the (i, j)th entry of the adjacency matrix A, i, j =
1, 2, . . . , n, γ is a positive gain, ξ r(t) ∈ R is the time-varying
reference state, and ai(n+1) > 0 if the ith vehicle can access the
virtual leader’s state1 and ai(n+1) = 0 otherwise. The objective
of (2) is to guarantee that ξi(t)→ ξ r(t), i = 1, . . . , n, as t →∞.

2.3. PD-like discrete-time consensus algorithm with a time-varying
reference state

Note that (2) requires each vehicle to obtain instantaneous
measurements of the derivatives of its local neighbors’ states
and the derivative of the reference state if the virtual leader
is a neighbor of the vehicle. This requirement may not be
realistic in real applications. We next propose a PD-like discrete-
time consensus algorithm with a time-varying reference state. In
discrete-time formulation, the single-integrator kinematics (1) can
be approximated by

ξi[k+ 1] − ξi[k]
T

= ui[k], (3)

where k is the discrete-time index, T is the sampling period, and
ξi[k] and ui[k] represent, respectively, the state and the control
input of the ith vehicle at t = kT . We sample (2) to obtain

ui[k] =
1

n+1∑
j=1
aij

n∑
j=1

aij

(
ξj[k] − ξj[k− 1]

T
− γ {ξi[k] − ξj[k]}

)

+
ai(n+1)
n+1∑
j=1
aij

(
ξ r [k] − ξ r [k− 1]

T
− γ {ξi[k] − ξ r [k]}

)
, (4)

where ξ r [k] represents the reference state at t = kT , and
ξj[k]−ξj[k−1]

T and ξ r [k]−ξ r [k−1]
T are used to approximate, respectively,

ξ̇j(t) and ξ̇ r(t) in (2) because ξj[k + 1] and ξ r [k + 1] cannot be
accessed at t = kT . Using (4) for (3), we get the PD-like discrete-
time consensus algorithm with a time-varying reference state as

ξi[k+ 1] = ξi[k]

+
T

n+1∑
j=1
aij

n∑
j=1

aij

(
ξj[k] − ξj[k− 1]

T
− γ {ξi[k] − ξj[k]}

)

+
Tai(n+1)
n+1∑
j=1
aij

(
ξ r [k] − ξ r [k− 1]

T
− γ {ξi[k] − ξ r [k]}

)
. (5)

Note that using algorithm (5), each vehicle essentially updates its
next state based on its current state and its neighbors’ current and
previous states as well as the virtual leader’s current and previous
states if the virtual leader is a neighbor of the vehicle. As a result, (5)
can be easily implemented in practice.

3. Convergence analysis of the PD-like discrete-time consensus
algorithm with a time-varying reference state

In this section, we analyze algorithm (5). Before moving on, we
let In denote the n × n identity matrix and 0n×n ∈ Rn×n be the
all-zero matrix. Also let diag{c1, . . . , cn} denote a diagonal matrix
with diagonal entries ci. A matrix is nonnegative if all of its entries
are nonnegative.

1 That is, the virtual leader is a neighbor of vehicle i.
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Define the tracking error for vehicle i as δi[k] , ξi[k] − ξ r [k]. It
follows that (5) can be written as

δi[k+ 1] = δi[k]

+
T

n+1∑
j=1
aij

n∑
j=1

aij

(
δj[k] − δj[k− 1]

T
− γ {δi[k] − δj[k]}

)

+
Tai(n+1)
n+1∑
j=1
aij

{
ξ r [k] − ξ r [k− 1]

T
− γ δi[k]

}

−{ξ r [k+ 1] − ξ r [k]} +
1

n+1∑
j=1
aij

n∑
j=1

aij{ξ r [k] − ξ r [k− 1]},

which can then be written in matrix form as

∆[k+ 1] = [(1− Tγ )In + (1+ Tγ )D−1A]∆[k]

−D−1A∆[k− 1] + X r [k], (6)

where D = diag{
∑n+1
j=1 a1j, . . . ,

∑n+1
j=1 anj}, ∆[k] = [δ1[k], . . . ,

δn[k]]T, A is the adjacency matrix, and X r [k] = {2ξ r [k] − ξ r [k −
1] − ξ r [k + 1]}1n. By defining Y [k + 1]

4
=

[
∆[k+ 1]
∆[k]

]
, it follows

from (6) that

Y [k+ 1] = ÃY [k] + B̃X r [k], (7)

where

Ã =
[
(1− Tγ )In + (1+ Tγ )D−1A −D−1A

In 0n×n

]
(8)

and B̃ =
[
In

0n×n

]
. It follows that the solution of (7) is

Y [k] = ÃkY [0] +
k∑
i=1

Ãk−iB̃X r [i− 1]. (9)

Note that the eigenvalues of Ã play an important role in
determining the value of Y [k] as k→∞. In the following, we will
study the eigenvalues of Ã. Before moving on, we first study the
eigenvalues of D−1A.

Lemma 3.1. Suppose that the virtual leader has a directed path
to all vehicles 1 to n. Then D−1A satisfies

∥∥(D−1A)n∥∥
∞

< 1,
where D is defined right after (6) and A is the adjacency matrix. If∥∥(D−1A)n∥∥

∞
< 1, D−1A has all eigenvalues within the unit circle.

Proof. For the first statement, denote ī1 as the set of vehicles that
are the children of the virtual leader, and īj, j = 2, 3, . . . ,m, as the
set of vehicles that are the children of īj−1 that are not in the set
īr , r = 1, . . . , j− 1. Because the virtual leader has a directed path
to all vehicles 1 to n, there are at most n edges from the virtual
leader to all vehicles 1 to n, which implies m ≤ n. Let pi and qTi
denote, respectively, the ith column and row of D−1A. When the
virtual leader has a directed path to all vehicles 1 to n, without loss
of generality, assume that the kth vehicle is a child of the virtual
leader, i.e., ak(n+1) > 0. It follows that qk1n = 1−

ak(n+1)∑n+1
j=1 akj

< 1. The

same property also applies to other elements in set ī1. Similarly,
assume that the lth vehicle (one node in set ī2) is a child of the kth
vehicle (one node in set ī1), which implies alk > 0. It follows that
the sum of the lth row of (D−1A)2 can be written as qTl

∑n
i=1 pi ≤

qTl 1n = 1 −
alk∑n+1
j=1 alj

< 1. Meanwhile, the sum of the kth row of

(D−1A)2 is also less than 1. By following a similar analysis, every
row of (D−1A)m has a sum less than one when the virtual leader
has a directed path to all vehicles 1 to n. Becausem ≤ n and D−1A
is nonnegative,

∥∥(D−1A)n∥∥
∞
< 1 holds.

For the second statement, when
∥∥(D−1A)n∥∥

∞
< 1,

lims→∞
∥∥[(D−1A)n]s∥∥

∞
≤ lims→∞

∥∥(D−1A)n∥∥s
∞
= 0, which

implies that lims→∞
∥∥[(D−1A)n]s∥∥

∞
= 0. Assume that some

eigenvalues of D−1A are not within the unit circle. By writing
D−1A in a Jordan canonical form, it can be computed that
lims→∞[(D−1A)n]s 6= 0n×n, which results in a contradiction.
Therefore, D−1A has all eigenvalues within the unit circle. �

It can be noted from Lemma 3.1 that all eigenvalues of D−1A are
within the unit circle if the virtual leader has a directed path to
all vehicles 1 to n. We next study the conditions under which all
eigenvalues of Ã are within the unit circle. Before moving on, we
need the following Schur’s formula.

Lemma 3.2 (Schur’s Formula). Let A11, A12, A21, A22 ∈ Rn×n and
M =

[
A11 A12
A21 A22

]
. Then det(M) = det(A11A22−A12A21), where det(·)

denotes the determinant of amatrix, if A11, A12, A21, and A22 commute
pairwise.

Lemma 3.3. Assume that the virtual leader has a directed path to all
vehicles 1 to n. Let λi be the ith eigenvalue of D−1A, whereD is defined
right after (6) and A is the adjacency matrix. Then τi > 0 holds,
where τi

4
=

2|1−λi|2{2[1−Re(λi)]−|1−λi|2}
|1−λi|4+4[Im(λi)]2

, and Re(·) and Im(·) denote,
respectively, the real and imaginary parts of a number. If positive
scalars T and γ satisfy

Tγ < min{1, min
i=1,...,n

τi}, (10)

then Ã, defined in (8), has all eigenvalues within the unit circle.

Proof. For the first statement, when the virtual leader has a
directed path to all vehicles 1 to n, it follows from the second
statement in Lemma 3.1 that |λi| < 1. It then follows that |1 −
λi|
2 > 0 and |1 − λi|2 = 1 − 2 Re(λi) + [Re(λi)]2 + [Im(λi)]2 <

2[1− Re(λi)], which implies τi > 0.
For the second statement, note that the characteristic polyno-

mial of Ã is given by

det(sI2n − Ã)

= det
([
sIn − [(1− Tγ )In + (1+ Tγ )D−1A] D−1A

−In sIn

])
= det

(
[sIn − (1− Tγ )In − (1+ Tγ )D−1A]sIn + D−1A

)
= det

(
[s2 + (Tγ − 1)s]In + [1− (1+ Tγ )s]D−1A

)
,

where we have used Lemma 3.2 to obtain the second to the last
equality because sIn − [(1 − Tγ )In + (1 + Tγ )D−1A], D−1A, −In
and sIn commute pairwise. Noting that λi is the ith eigenvalue of
D−1A, we can get det(sIn + D−1A) =

∏n
i=1(s+ λi). It thus follows

that det(sI2n − Ã) =
∏n
i=1{s

2
+ (Tγ − 1)s + [1 − (1 + Tγ )s]λi}.

Therefore, the roots of det(sI2n − Ã) = 0 satisfy

s2 + [Tγ − 1− (1+ Tγ )λi]s+ λi = 0. (11)

It can be noted that each eigenvalue of D−1A, λi, corresponds
to two eigenvalues of Ã. Instead of computing the roots of (11)
directly, we apply the bilinear transformation s = z+1

z−1 to (11) to
get

Tγ (1− λi)z2 + 2(1− λi)z + (2+ Tγ )λi + 2− Tγ = 0. (12)

Because the bilinear transformation maps the left half of the
complex s-plane to the interior of the unit circle in the z-plane,
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it follows that (11) has all roots within the unit circle if and only
if (12) has all roots in the open left half plane (LHP).
In the following, we will study the condition on T and γ under

which (12) has all roots in the open LHP. Letting z1 and z2 denote
the roots of (12), it follows from (12) that

z1 + z2 = −
2
Tγ

(13)

z1z2 =
(2+ Tγ )λi + 2− Tγ

Tγ (1− λi)
. (14)

Noting that (13) implies that Im(z1) + Im(z2) = 0, we define
z1 = a1 + jb and z2 = a2 − jb, where j is the imaginary unit. It
can be noted that z1 and z2 have negative real parts if and only if
a1a2 > 0 and a1 + a2 < 0. Note that (13) implies a1 + a2 < 0
because Tγ > 0. We next show the sufficient condition on T and
γ such that a1a2 > 0 holds. By substituting the definitions of z1
and z2 into (14), we have a1a2+b2+ j(a2− a1)b = (2+Tγ )λi+2−Tγ

Tγ (1−λi)
,

which implies

a1a2 + b2 = −
2+ Tγ
Tγ

+
4[1− Re(λi)]
Tγ |1− λi|2

(15)

(a2 − a1)b =
4 Im(λi)
Tγ |1− λi|2

. (16)

It follows from (16) that b = 4 Im(λi)
Tγ (a2−a1)|1−λi|2

. Considering also the

fact that (a2 − a1)2 = (a1 + a2)2 − 4a1a2 = 4
T2γ 2
− 4a1a2. After

some manipulation, (15) can be written as

K1(a1a2)2 + K2a1a2 + K3 = 0, (17)

where K1 = T 2γ 2|1 − λi|4, K2 = −|1 − λi|4 + (2 + Tγ )Tγ |1 −
λi|
4
− 4[1 − Re(λi)]Tγ |1 − λi|2 and K3 = 1

Tγ {4[1 − Re(λi)]|1 −
λi|
2
− (2 + Tγ )|1 − λi|4} − 4[Im(λi)]2. It can be computed that

K 22−4K1K3 = {|1−λi|
4
+(2+Tγ )Tγ |1−λi|4−4[1−Re(λi)]Tγ |1−

λi|
2
}
2
+16T 2γ 2|1−λi|4[Im(λi)]2 ≥ 0, which implies that (17) has

two real roots. Because |λi| < 1, it is straightforward to show that
K1 > 0. Therefore, a sufficient condition for a1a2 > 0 is that K2 < 0
and K3 > 0. When 0 < Tγ ≤ 1, because |1− λi|2 < 2[1− Re(λi)]
as shown in the proof of the first statement, it follows that K2 <
−|1 − λi|4 + (2 + Tγ )Tγ |1 − λi|4 − 2|1 − λi|2Tγ |1 − λi|2 =
|1−λi|4[−1+(Tγ )2] ≤ 0. Similarly, when 0 < Tγ < τi, it follows
that K3 > 0. Therefore, if positive scalars γ and T satisfy (10), all
eigenvalues of Ã are within the unit circle. �

In the following, we apply Lemma 3.3 to derive our main result.

Theorem 3.1. Assume that the reference state ξ r [k] satisfies
|
ξ r [k]−ξ r [k−1]

T | ≤ ξ̄ (i.e., the changing rate of ξ r [k] is bounded), and
the virtual leader has a directed path to all vehicles 1 to n. When
positive scalars γ and T satisfy (10), using algorithm (5), the max-
imum tracking error among the n vehicles is ultimately bounded by
2T ξ̄

∥∥∥(I2n − Ã)−1∥∥∥
∞

, where Ã is defined in (8).

Proof. It follows from (9) that

‖Y [k]‖∞ ≤
∥∥∥ÃkY [0]∥∥∥

∞

+

∥∥∥∥∥ k∑
i=1

Ãk−iB̃X r [i− 1]

∥∥∥∥∥
∞

≤

∥∥∥Ãk∥∥∥
∞

‖Y [0]‖∞ + 2T ξ̄

∥∥∥∥∥ k−1∑
i=0

Ãi
∥∥∥∥∥
∞

∥∥∥B̃∥∥∥
∞

,

where we have used the fact that∥∥X r [i]∥∥
∞
=
∥∥{2ξ r [i] − ξ r [i− 1] − ξ r [i+ 1]}1n∥∥∞ ≤ 2T ξ̄
Fig. 1. Directed graph for four vehicles. A solid arrow from j to i denotes that vehicle
i can receive information from vehicle j. A dashed arrow from r to l denotes that
vehicle l can receive information from the virtual leader.

for all i because | ξ
r
[k]−ξ r [k−1]

T | ≤ ξ̄ . When the virtual leader has a
directed path to all vehicles 1 to n, it follows from Lemma 3.3 that
Ã has all eigenvalues within the unit circle if positive scalars T and
γ satisfy (10). Therefore, limk→∞ Ãk = 02n×2n. It thus follows that
limk→∞ ‖Y [k]‖∞ ≤ limk→∞ 2T ξ̄

∥∥∥∑k−1
i=0 Ã

i
∥∥∥
∞

∥∥∥B̃∥∥∥
∞

. Because all

eigenvalues of Ã are within the unit circle, it follows from Lemma
5.6.10 in Horn and Johnson (1985) that there exists a matrix norm
||| · ||| such that |||Ã||| < 1. It then follows from Theorem 4.3 in Moon
and Stirling (2000) that limk→∞

∥∥∥∑k−1
i=0 Ã

i
∥∥∥
∞

≤

∥∥∥(I2n − Ã)−1∥∥∥
∞

.

Also note that
∥∥∥B̃∥∥∥

∞

= 1. The theorem follows directly by noting
that ‖Y [k]‖∞ denotes the maximum tracking error among the n
vehicles. �

Remark 3.2. From Theorem 3.1, it can be noted that the ultimate
bound of the tracking errors using PD-like discrete-time consensus
algorithm (5) with a time-varying reference state is proportional
to the sampling period T . As T → 0, the tracking errors will go
to zero ultimately when the changing rate of the reference state is
bounded and the virtual leader has a directed path to all vehicles 1
to n.

4. Comparison between P-like and PD-like discrete-time con-
sensus algorithms with a time-varying reference state

A P-like continuous-time consensus algorithm without a
reference state is studied for (1) in Jadbabaie et al. (2003),
Olfati-Saber and Murray (2004) and Ren and Beard (2005) as
ui(t) = −

∑n
j=1 aij[ξi(t)−ξj(t)]. When there exists a virtual leader

whose state is the reference state ξ r(t), a P-like continuous-time
consensus algorithm is given as

ui(t) = −
n∑
j=1

aij[ξi(t)− ξj(t)] − ai(n+1)[ξi(t)− ξ r(t)], (18)

where aij and ai(n+1) are defined as in (2). By sampling (18) and
using the sampled algorithm for (3), we get the P-like discrete-time
consensus algorithm with a time-varying reference state as

ξi[k+ 1] = ξi[k] − T
n∑
j=1

aij(ξi[k] − ξj[k])

− Tai(n+1)(ξi[k] − ξ r [k]). (19)

Letting δi be defined as in Section 3, we rewrite (19) as δi[k+ 1] =
δi[k]−T

∑n
j=1 aij(δi[k]−δj[k])−Tai(n+1)δi[k]−(ξ

r
[k+1]−ξ r [k]),

which can then be written in matrix form as

∆[k+ 1] = Q∆[k] − (ξ r [k+ 1] − ξ r [k])1n, (20)

where ∆[k] = [δ1[k], . . . , δn[k]]T and Q = In − TL −
Tdiag{a1(n+1), . . . , an(n+1)} with L being the (nonsymmetric)
Laplacian matrix. It follows that Q is nonnegative when T <

mini=1,...,n 1∑n+1
j=1 aij

.
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(a) States (T = 0.3 s and γ = 1). (b) Tracking errors (T = 0.3 s and γ = 1).

(c) States (T = 0.1 s and γ = 3). (d) Tracking errors (T = 0.1 s and γ = 3).

(e) States (T = 0.25 s and γ = 3). (f) Tracking errors (T = 0.25 s and γ = 3).

Fig. 2. Distributed discrete-time coordinated tracking using PD-like discrete-time consensus algorithm (5) under different T and γ .
Lemma 4.1. Assume that the virtual leader has a directed path to all
vehicles 1 to n. When T < mini=1,...,n 1∑n+1

j=1 aij
, Q satisfies ‖Q n‖∞ <

1, where Q is defined right after (20). Furthermore, if ‖Q n‖∞ < 1, Q
has all eigenvalues within the unit circle.

Proof. The proof is similar to that of Lemma 3.1 and is omitted
here. �
Theorem 4.1. Assume that the reference state ξ r [k] satisfies
|
ξ r [k]−ξ r [k−1]

T | ≤ ξ̄ , and the virtual leader has a directed path to all ve-
hicles 1 to n. When T < mini=1,...,n 1∑n+1

j=1 aij
, using algorithm (19), the

maximum tracking error among the n vehicles is ultimately bounded
by ξ̄

∥∥(L+ diag{a1(n+1), . . . , an(n+1)})−1∥∥∞, where Q is defined
after (20).
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(a) States (T = 0.1 s and γ = 3). (b) Tracking errors (T = 0.1 s and γ = 3).

Fig. 3. Distributed discrete-time coordinated tracking using P-like discrete-time consensus algorithm (19).
Proof. The solution of (20) is

∆[k] = Q k∆[0] −
k∑
i=1

Q k−i(ξ r [k] − ξ r [k− 1])1n. (21)

The proof then follows a similar line to that of Theorem 3.1 by
noting that ‖∆[k]‖∞ denotes the maximum tracking error among
the n vehicles. �

Remark 4.2. In contrast to the results in Theorem 3.1, the
ultimate bound of the tracking errors using P-like discrete-time
consensus algorithm (19) with a time-varying reference state is
not proportional to the sampling period T . In fact, as shown
in Ren (2007), even when T → 0, the tracking errors using (19)
are not guaranteed to go to zero ultimately. As a special case,
when the reference state is constant (i.e., ξ̄ = 0), it follows
from Theorems 3.1 and 4.1 that the tracking error will go to zero
ultimately for both the P-like and PD-like discrete-time consensus
algorithms.

The comparison between Theorems 3.1 and 4.1 shows the
benefit of the PD-like discrete-time consensus algorithm over the
P-like discrete-time consensus algorithmwhen there exists a time-
varying reference state that is available to only a subset of the team
members.

5. Simulations

In this section, a simulation example is presented to illustrate
the PD-like discrete-time consensus algorithm proposed in Sec-
tion 2. To show the benefit of the PD-like discrete-time consensus
algorithm, the related simulation result obtained by applying the
P-like discrete-time consensus algorithm is also presented.
We consider a team of four vehicles with a directed communi-

cation graph given by Fig. 1 and let the third vehicle have access
to the time-varying reference state. It can be noted that the virtual
leader has a directed path to all four vehicles.We let the nonzero aij
(respectively, ai(n+1)) to be one if j (respectively, the virtual leader)
is a neighbor of vehicle i.
For both the PD-like and P-like discrete-time consensus

algorithms with a time-varying reference state, we let the
initial states of the four vehicles be [ξ1[0], ξ2[0], ξ3[0], ξ4[0]] =
[3, 1,−1,−2]. For the PD-like discrete-time consensus algorithm,
we also let [ξ1[−1], ξ2[−1], ξ3[−1], ξ4[−1]] = [0, 0, 0, 0]. The
time-varying reference state is chosen as ξ r [k] = sin(kT )+ kT .
Fig. 2(a) and (b) show, respectively, the states ξi[k] and tracking

errors ξi[k] − ξ r [k] by using PD-like discrete-time consensus
algorithm (5) with a time-varying reference state when T =
0.3 s and γ = 1. From Fig. 2(b), it can be seen that the four
vehicles track the reference state with relatively large tracking
errors. Fig. 2(c) and (d) show, respectively, the states ξi[k] and
tracking errors ξi[k] − ξ r [k] by using the same algorithm with
the same time-varying reference state when T = 0.1 s and γ =
3. From Fig. 2(d), it can be seen that the four vehicles track the
reference state with very small tracking errors ultimately. We can
see that the tracking errors will become smaller if the sampling
period becomes smaller. Fig. 2(e) and (f) show, respectively, the
states ξi[k] and tracking errors ξi[k] − ξ r [k] obtained by using PD-
like discrete-time consensus algorithm (5) with the same time-
varying reference state when T = 0.25 s and γ = 3. Note that
the product Tγ is larger than the positive upper bound derived
in Theorem 3.1. It can be noted that the tracking errors become
unbounded in this case. Fig. 3(a) and (b) show, respectively, the
states ξi[k] and tracking errors ξi[k] − ξ r [k] obtained by using P-
like discrete-time consensus algorithm (19) with the same time-
varying reference state when T = 0.1 s and γ = 3. It can
be seen from Fig. 3(a) and (b) that the tracking errors using P-
like discrete-time consensus algorithm (19) are much larger than
those using PD-like discrete-time consensus algorithm (5) under
the same condition. This shows the benefit of the PD-like discrete-
time consensus algorithm over the P-like discrete-time consensus
algorithm when there exists a time-varying reference state that is
available to only a subset of the team members.

6. Conclusion and future work

In this paper, we studied the PD-like consensus algorithm for
multi-vehicle systems in a discrete formulationwhen there exists a
time-varying reference state that is available to only a subset of the
teammembers. We analyzed the condition on the communication
graph, the sampling period, and the control gain to ensure stability
and showed the quantitative bound of the tracking errors. We also
compared the PD-like discrete-time consensus algorithm with an
existing P-like discrete-time consensus algorithm. The comparison
shows the benefit of the PD-like discrete-time consensus algorithm
over the P-like discrete-time consensus algorithm when there
exists a time-varying reference state that is available to only
a subset of the team members. Although this paper focuses
on studying the PD-like discrete-time consensus algorithm over
a directed fixed communication graph, a similar analysis may
be extended to account for the case of a directed switching
communication graph. This will be one of our future research
directions.
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