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Decentralized Scheme for Spacecraft Formation Flying
via the Virtual Structure Approach

Wei Ren and Randal W. Beard
Brigham Young University, Provo, Utah 84602

Built on the combined strength of decentralized control and the recently introduced virtual structure approach, a
decentralized formation scheme for spacecraft formation flying is presented. Following a decentralized coordination
architecture via the virtual structure approach, decentralized formation control strategies are introduced, which are
appropriate when a large number of spacecraft are involved and/or stringent interspacecraft communication limi-
tations are exerted. The effectiveness of the proposed control strategies is demonstrated through simulation results.

I. Introduction

T HE concept of formation control has been studied extensively
in the literature with application to the coordination of mul-

tiple robots,1−10 unmanned air vehicles,11 autonomous underwater
vehicles,12 satellites,13,14 aircraft,15 and spacecraft.16−20 There are
several advantages to using formations of multiple vehicles. These
include increased feasibility, accuracy, robustness, flexibility, cost,
energy efficiency, and probability of success. For example, some-
times large awkward objects cannot be moved efficiently by a sin-
gle robot so that multiple robots must be used. Also the probability
of success will be improved if multiple vehicles are used to carry
out a mission, for example, multiple UAVs are assigned to a cer-
tain target21 or multiple AUVs are used to search an underwater
object.12 In spacecraft formation-flying applications using multiple
microspacecraft instead of a monolithic spacecraft can reduce the
mission cost and improve system robustness and accuracy.17

Various strategies and approaches have been proposed for for-
mation control. These approaches can be roughly categorized as
leader-following, behavioral, and virtual structure approaches, to
name a few. In the leader-following approach some agents are des-
ignated as leaders, whereas others are designated as followers. The
leaders track predefined trajectories, and the followers track trans-
formed versions of the states of their nearest neighbors according to
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given schemes. In the behavioral approach the control action for each
agent is defined by a weighted average of the control correspond-
ing to each desired behavior for the agent. In the virtual structure
approach the entire formation is treated as a single rigid body. The
virtual structure can evolve as a whole in a given direction with some
given orientation and maintain a rigid geometric relationship among
multiple agents. Similar ideas to the virtual structure approach in-
clude the perceptive reference frame proposed in Ref. 13 and the
virtual leader proposed in Ref. 22.

There are numerous studies on the leader-following approach.
In Ref. 1 nearest neighbor tracking strategies are used to control a
fleet of autonomous mobile robots moving in formation. In Ref. 16
various schemes and explicit control laws for formation keeping
and relative attitude alignment are derived for the coordination and
control of multiple microspacecraft. Although the leader-following
approach is easy to understand and implement, there are limitations.
For example, the leader is a single point of failure for the forma-
tion. In addition, there is no explicit feedback from the followers
to the leader: if the follower is perturbed by some disturbances, the
formation cannot be maintained.

As an alternative to leader-following, the virtual structure ap-
proach was proposed in Ref. 3 to acquire high-precision formation
control for mobile robots. In Ref. 23 the virtual structure approach is
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applied to the spacecraft interferometry problem, where formation
maneuvers are easily prescribed, but no formation feedback is in-
cluded from spacecraft to the virtual structure. In Ref. 10 a Lyapunov
formation function is used to define a formation error, and formation
feedback is incorporated to the virtual leaders through parameter-
ized trajectories. In Ref. 24 the virtual structure approach is used to
perform elementary formation maneuvers for mobile robots, where
group feedback is incorporated from the followers to the virtual
structure to improve group stability and robustness. Also in Ref. 25,
following the idea of Ref. 24, formation feedback is applied to space-
craft formation-flying scenario via the virtual structure approach.
One advantage of the virtual structure approach is that it is easy
to prescribe the behavior for the group. Another advantage is that
the virtual structure can maintain tight formation during maneuvers.
The main disadvantage of the current virtual structure implementa-
tion is that it is centralized, which results in a single point of failure
for the whole system.

The behavioral approach is a decentralized implementation and
can achieve more flexibility, reliability, and robustness than central-
ized implementations. In Ref. 2 the behavioral approach is applied
to formation keeping for mobile robots, where control strategies
are derived by averaging several competing behaviors. In Ref. 26
several behavioral strategies are presented for formation maneu-
vers of groups of mobile robots, where a bidirectional ring topol-
ogy is used to reduce the communication overhead for the whole
system, and formation patterns are also defined to achieve a se-
quence of maneuvers. In Ref. 27 the behavioral approach is used
to maintain attitude alignment among a group of spacecraft. An ad-
vantage of the behavioral approach is that explicit formation feed-
back is included through the communication between neighbors.
Unfortunately, the behavioral approach is hard to analyze math-
ematically. Based on the way the formation patterns are defined
in Ref. 26, the behavioral approach has limited application in di-
recting rotational maneuvers for the group. In addition, the be-
havioral approach has limited ability for precise formation keep-
ing, that is, the group cannot maintain formation very well during
maneuvers.

Motivated by the advantages and disadvantages of each approach
just discussed, a framework that is precise, reliable, and easy to
implement needs to be constructed to achieve the following char-
acteristics. First, the framework should be decentralized when a
large number of agents are involved in the formation and/or there
are stringent limitations on intervehicle communications. Second,
formation feedback should be included in the framework to im-
prove group robustness. Third, the group maneuvers should be easy
to prescribe and direct in the framework. Finally, the framework
should guarantee high precision for maintaining the formation dur-
ing maneuvers. The purpose of this paper is to propose a solution
that can achieve the benefits of each approach just discussed while
overcoming their limitations. The main contribution of this paper
is to apply the virtual structure approach in a decentralized scheme
so that both the benefits of the virtual structure approach and the
decentralized scheme can be achieved simultaneously. In this paper
each spacecraft in the formation instantiates a local copy of the coor-
dination vector in the virtual structure framework. The local instan-
tiation of the coordination vector in each spacecraft is then synchro-
nized by communication with its neighbors using a bidirectional ring
topology.

The paper is organized as follows. In Sec. II, we introduce prelim-
inary notation and definitions for spacecraft formation control. In
Sec. III, we propose a new decentralized architecture via the virtual
structure approach based on previous work on centralized architec-
tures and decentralized control. In Sec. IV, we propose decentralized
formation control strategies for each virtual structure instantiation
and each spacecraft. In Sec. V, we demonstrate the effectiveness of
our approach via a simulation study. Finally, in Sec. VI we offer
some concluding remarks.

II. Problem Statement
In this section we introduce some preliminary notation and prop-

erties for spacecraft formation flying including reference frames,

unit quaternions, desired states for each spacecraft, and spacecraft
dynamics.

A. Reference Frames
Three coordinate frames are used in this paper. Reference frame

F0 is used as an inertial frame. Reference frame FF is fixed at the
virtual center of the formation, that is, the virtual structure, as a
formation frame. Reference frame Fi is embedded at the center of
mass of each spacecraft as a body frame, which rotates with the
spacecraft and represents its orientation. Given any vector p, the
representation of p in terms of its components in F0, FF , and Fi are
represented by [p]0, [p]F , and [p]i , respectively.

Let the direction cosine matrix Cab denote the orientation of the
frame Fa with respect to Fb, then [p]a = Cab[p]b, where [p]a and
[p]b are the coordinate representations of vector p in Fa and Fb,
respectively.

B. Unit Quaternions
Unit quaternions (see Ref. 28) are used to represent the atti-

tude of rigid bodies in this paper. A unit quaternion is defined as
q = [q̂T , q̄]T , where q̂ = a · sin(φ/2) and q̄ = cos(φ/2). In this no-
tation a is a unit vector in the direction of rotation with a coordinate
representation [a1, a2, a3]T , called the eigenaxis, and φ is the ro-
tation angle about a, called the Euler angle. By definition, a unit
quaternion is subject to the constraint that qT q = 1. A unit quater-
nion is not unique because q and −q represent the same attitude.
However, uniqueness can be achieved by restricting φ to the range
0 ≤ φ ≤ π so that q̄ ≥ 0 (Ref. 29). In the remainder of the paper, we
assume that q̄ ≥ 0.

The product of two unit quaternions p and q is defined by

qp =
[

q̄p̂ + p̄q̂ + q̂ × p̂

q̄ p̄ − q̂T p̂

]

which is also a unit quaternion. The conjugate of the unit quater-
nion q is defined by q∗ = [−q̂T , q̄]T . The conjugate of qp is given
by (qp)∗ = p∗q∗. The multiplicative identity quaternion is denoted
by 1 = [0, 0, 0, 1]T , where qq∗ = q∗q = 1 and q1 = 1q = q. Suppose
that qd and q represent the desired and actual attitude respectively,
then the attitude error is given by qe = qd∗q = [q̂T

e , q̄e]T , which rep-
resents the attitude of the actual reference frame F with respect to
the desired reference frame Fd .

The relationship between the rotation matrix Cab and the unit
quaternion q is given by

Cab = (2q̄2 − 1)I + 2q̂q̂T − 2q̄q̂×

where q represents the attitude of Fa with respect to Fb (Ref. 28).
Given a vector v with coordinate representation [v1, v2, v3]T , the

cross-product operator is denoted by30

v× =


 0 −v3 v2

v3 0 −v1

−v2 v1 0




which represents the fact that v × w = v×w. Also �(v) is defined as

�(v) =
[−v× v

−vT 0

]

C. Desired States for Each Spacecraft
In the virtual structure approach the desired formation is treated

as a single structure called the virtual structure with formation frame
FF located at its virtual center of mass to represent its configuration.
The virtual structure then has position rF , velocity vF , attitude qF ,
and angular velocity ωF relative to F0.

Let ri , vi , qi , and ωi represent the position, velocity, attitude, and
angular velocity of the i th spacecraft relative to the inertial frame
F0. Similarly, let riF, viF, qiF, andωiF represent the position, velocity,
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attitude, and angular velocity of the i th spacecraft relative to the for-
mation frameFF . A superscript d is also used to represent the corre-
sponding desired state of each spacecraft relative to either F0 or FF .

Conceptually, we can think that place holders corresponding to
each spacecraft are embedded in the virtual structure to represent
the desired position and attitude for each spacecraft. As the virtual
structure as a whole evolves in time, the place holders trace out
trajectories for each corresponding spacecraft to track. As a result,
the actual states of the i th place holder represent the desired states
of the i th spacecraft. With FF as a reference frame, these states can
be denoted by rd

iF, qd
iF, vd

iF, and ωd
iF.

Generally, rd
iF, qd

iF, vd
iF, and ωd

iF can vary with time, which means
the desired formation shape is time varying. However, if we are con-
cerned with formation maneuvers that preserve the overall forma-
tion shape, that is, each place holder needs to preserve fixed relative
position and orientation in the virtual structure, rd

iF and qd
iF should

be constant and vd
iF and ωd

iF should be zero. This requirement can be
loosened to make the formation shape more flexible by allowing the
place holders to expand or contract while still keeping fixed relative
orientation. We will focus on this scenario. Of course, the approach
here can be readily extended to the general case.

Let λF = [λ1, λ2, λ3], where the components represent the
expansion/contraction rates of the virtual structure along each
FF axis. The state of the virtual structure can be defined as
ξ= [rT

F , vT
F , qT

F ,ωT
F ,λT

F , λ̇
T
F ]T . If each spacecraft has knowledge

of ξ, and its own desired position and orientation with respect to
the virtual structure, then formation keeping is transformed into an
individual tracking problem. Therefore, the vector ξ represents the
minimum amount of information needed by each spacecraft to co-
ordinate its motion with the group. Motivated by this reasoning, we
will call ξ the coordination vector.

Given ξ, the desired states for the i th spacecraft are given by[
rd

i

]
0

= [rF ]0 + C0F�
[
rd

iF

]
F[

vd
i

]
0

= [vF ]0 + C0F�̇
[
rd

iF

]
F

+ [ωF ]0 ×
(

C0F�
[
rd

iF

]
F

)
[
qd

i

]
0

= [qF ]0

[
qd

iF

]
F
,

[
ωd

i

]
0

= [ωF ]0 (1)

where C0F (qF ) is the rotation matrix of the frame F0 with respect to
FF and � = diag(λF ). Note that unlike the constant desired states
rd

iF, vd
iF, qd

iF, and ωd
iF relative to FF , the desired states rd

i , vd
i , qd

i , and
ωd

i relative to F0 are time varying because ξ is time varying. The
evolution equations of the desired states are given by[
ṙd

i

]
0

= [
vd

i

]
0[

v̇d
i

]
0

= [v̇F ]0 + 2[ωF ]0 ×
(

C0F�̇
[
rd

iF

]
F

)

+ C0F�̈
[
rd

iF

]
F

+ [ω̇F ]0 ×
(

C0F�
[
rd

iF

]
F

)
[
q̇d

i

]
0

= [q̇F ]0

[
qd

iF

]
F
,

[
ω̇d

i

]
0

= [ω̇F ]0 (2)

D. Spacecraft Dynamics
The translational dynamics of each spacecraft relative to F0 are

dri

dt0
= vi , mi

dvi

dt0
= fi (3)

where mi and fi are the mass and control force associated with the
i th spacecraft, respectively.

The rotational dynamics of each spacecraft relative toF0 (Ref. 16)
are

dq̂i

dt0
= −1

2
ωi × q̂i + 1

2
q̄iωi ,

dq̄i

dt0
= −1

2
ωi · q̂i

Ji
dωi

dt0
= −ωi × (Jiωi ) + τ i (4)

where Ji and τ i are inertia tensor and control torque associated with
the i th spacecraft, respectively.

III. Decentralized Architecture via the Virtual
Structure Approach

In this section we propose a decentralized architecture for space-
craft formation flying via the virtual structure approach. To demon-
strate the salient features of our decentralized scheme, we first in-
troduce previous work on centralized architectures via the virtual
structure approach and previous work on general decentralized con-
trol architectures.

A. Previous Work on Centralized Architectures
Reference 23 introduced the general centralized coordination ar-

chitecture shown in Fig. 1, which is based on the virtual structure
approach.

The system G is a discrete event supervisor, which evolves a se-
ries of formation patterns by outputting its current formation pattern
yG . The system F is the formation control module, which produces
and broadcasts the coordination vector ξ. The system Ki is the local
spacecraft controller for the i th spacecraft, which receives the co-
ordination vector ξ from the formation control module, converts ξ
to the desired states for the i th spacecraft, and then controls the ac-
tual state for the i th spacecraft to track its desired state. The system
Si is the i th spacecraft, with control input ui representing control
force and torque and output yi representing the measurable outputs
from the i th spacecraft. In this centralized scheme G and F are im-
plemented at a centralized location (e.g., spacecraft #1), and then
the coordination vector ξ is broadcast to the local controllers of
the other spacecraft. There is formation feedback from each local
spacecraft controller to the formation control module F through the
performance measure zi . Also there is formation feedback from F
to G through the performance measure zF (Ref. 23).

The strength of this centralized scheme is that formation algo-
rithms are fairly easy to realize. The weakness is that heavy commu-
nication and computation burden is concentrated on the centralized
location, which may degrade the overall system performance. Also
the centralized location results in a single point of failure for the
whole system.

B. Previous Work on Decentralized Control
In Ref. 14 a decentralized architecture is proposed for autonomous

establishment and maintenance of satellite formations, where each
satellite only processes local measurement information and trans-
mission vectors from the other nodes so that a local Kalman filter
can be implemented to obtain a local control. It is also shown that the
decentralized framework generates a neighboring optimal control if
the planned maneuvers and trajectories are themselves optimal.

In Ref. 26 a decentralized control is implemented using a bi-
directional ring topology, where each robot only needs position in-
formation of its two neighbors. A formation pattern is defined to be
a set composed of the desired locations for each robot, that is,

P = {
hd

1 , . . . , hd
N

}

Fig. 1 Centralized architecture based on the virtual structure
approach.
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where N is the number of mobile robots in the formation. Two com-
peting objectives are considered. The first objective is to move the
robots to their final destinations. The second objective is to maintain
formation during the transition. The goal of the control law for each
robot is to drive the total tracking error and formation error of the
group to zero. Similarly, in Ref. 27 three objectives are considered
for the synchronized multiple-spacecraft rotation problem. The first
objective is to rotate each spacecraft to zero attitude error. The sec-
ond objective is to maintain formation throughout the maneuver.
The third objective is to rotate the spacecraft about a defined axis of
rotation.

C. Decentralized Architecture
In this paper, instead of using a set of desired locations for each

agent as a formation pattern, we take advantage of the virtual struc-
ture approach to define the formation pattern by P = ξd , where
ξd = [rdT

F , vdT

F , qdT

F ,ωdT

F ,λdT

F , λ̇F
dT

]T is the desired constant coor-
dination vector representing the desired states of the virtual struc-
ture. We will assume piecewise rigid formations, which implies
that vd

F =ωd
F = λ̇F

d ≡ 0. By specifying the formation pattern for
the group, the movements of each spacecraft can be completely
defined. Through a sequence of formation patterns P (k) = ξd(k),
k = 1, . . . , K , the group can achieve a class of formation maneu-
ver goals. In Ref. 26 the formation pattern is defined in such a
way that each vehicle only knows its final location in the forma-
tion although its trajectory throughout the maneuver is not spec-
ified. Here the formation pattern is defined such that each space-
craft will track a trajectory specified by the state of the virtual
structure while preserving a certain formation shape. From this
point of view, collision avoidance is handled more efficiently than
in Ref. 26.

In our decentralized architecture each spacecraft in the forma-
tion instantiates a local copy of the coordination vector. We use
ξi = [rT

Fi, vT
Fi, qT

Fi,ω
T
Fi,λ

T
Fi, λ̇Fi

T ]T to represent the coordination vector
instantiated in the i th spacecraft corresponding to the coordination
vector ξ defined in Sec. II.C. A bidirectional ring topology is used
to communicate the coordination vector instantiation instead of the
position or attitude information among each spacecraft. A decen-
tralized architecture via the virtual structure approach is shown in
Fig. 2.

In this case, instead of implementing the discrete event super-
visor and formation control module at a centralized location, each
spacecraft has a local copy of the discrete event supervisor G and for-
mation control module F, denoted by Gi and Fi for the i th spacecraft
respectively. As in Fig. 1, Ki and Si represent the i th local spacecraft
controller and the i th spacecraft, respectively.

Before the group maneuver starts, a sequence of formation pat-
terns has been preset in each discrete event supervisor Gi . The goal
of Gi is to transition through the sequence of formation patterns so
that a class of group maneuver goals can be accomplished sequen-
tially. Certain mechanisms need to be applied to coordinate and syn-
chronize the group starting time, for example, simple semaphores.

Fig. 2 Decentralized architecture via the virtual structure approach.

When the group maneuver starts, each discrete event supervisor Gi

outputs the current formation pattern yGi = ξd(1), to the formation
control module Fi . Each formation control module Fi implements a
coordination vector instantiation ξi . The goal of Fi is to evolve ξi to
its current desired formation pattern ξd(k) and synchronize ξi with
coordination vector instantiations implemented on other spacecraft.
Here we use a bidirectional ring topology, which means that the
coordination vector ξi instantiated in the i th spacecraft is synchro-
nized with its two neighbors, that is, instantiations ξi − 1 and ξi + 1
implemented in the (i − 1)th and the (i + 1)th spacecraft, respec-
tively. Communications between the i th spacecraft and the (i − 1)th
and (i + 1)th spacecraft need to be established to transmit and re-
ceive the coordination vector instantiations. The formation control
module Fi then sends its coordination vector instantiation ξi to
the local spacecraft controller Ki . Based on ξi , the local controller
Ki can derive the desired states and the corresponding derivatives
for the i th spacecraft from Eqs. (1) and (2). A local controller Ki

is designed to guarantee that the i th spacecraft tracks its desired
states asymptotically. Formation feedback is also included from the
i th spacecraft controller Ki to the i th formation control module Fi

through the performance measure zi , indicating the i th spacecraft’s
tracking performance. Accordingly, as we will see in Sec. IV, the
control law for ξi implemented in Fi depends on the performance
measure zi , the current desired formation pattern yGi = ξd(k), and
the corresponding coordination vector instantiations ξi − 1 and ξi + 1
from the i th spacecraft’s neighbors. Of course, formation feedback
can also be included from other spacecraft to the i th formation con-
trol module Fi at the cost of additional communication. Formation
feedback from the i th formation control module Fi to the i th dis-
crete event supervisor Gi is also included through the performance
measure zFi, which indicates how far the i th instantiation ξi is from
its current maneuver goal ξd(k) and synchronization performance be-
tween ξi and its neighbors. Like the coordination and synchroniza-
tion of the first group maneuver starting time, similar mechanisms
can be applied to indicate the accomplishment of the current forma-
tion pattern and coordinate and synchronize the starting time for the
next formation pattern among spacecraft. Then the same procedure
just described repeats so that a sequence of formation patterns can
be achieved.

Compared with the architecture in Ref. 14, which is based on
a fully interconnected network, the architecture proposed here im-
poses fewer communication requirements. Even if the compres-
sion of data transmission is realized in Ref. 14, each vehicle still
needs extensive data transmitted from all the other vehicles, which
causes additional intervehicle communications especially when a
large number of vehicles are involved. The architecture proposed
here only requires communication between adjacent neighbors dur-
ing the maneuver.

The communication requirement for each spacecraft during the
maneuver can be estimated as follows. We know that rFi, vFi, ωFi,
λFi, and λ̇Fi all have three components and qFi has four compo-
nents. Thus the coordination vector ξi has 19 components. Assume
that each component is encoded as B bits and the sample rate of
the system is given by L Hz. By communicating with its two ad-
jacent neighbors, the required bandwidth for each spacecraft can
be estimated as 38BL bits/s. Note that this is the case when group
translation, group rotation, and group expansion/contraction are all
involved. If only one group maneuver is involved, the bandwidth can
be further reduced to almost one-third of the preceding bandwidth
estimate.

Compared to its centralized alternative, there is no master in
the loop, and each spacecraft evolves in a parallel manner so that
a single point of failure existing in any centralized implementa-
tion can be eliminated, and the total system performance will not
degrade catastrophically under failure. As a result, the decentral-
ized implementation offers more flexibility, reliability, and robust-
ness than the corresponding centralized alternative. The weakness
is that each local instantiation must be synchronized, which ac-
counts for additional complexity and intervehicle communications.
Because of the ring topology and the implementation of the co-
ordination vector, information exchange among spacecraft can be



REN AND BEARD 77

reduced in the preceding decentralized architecture. Therefore, this
weakness can be somewhat mitigated although the disadvantage
of increased intervehicle communication requirements is a typical
concern for decentralized systems. Of course, there might exist dis-
crepancies between the starting time of each instantiation of the
coordination vector dynamics. This starting time discrepancy can
be mitigated through the control law for each coordination vec-
tor, which will synchronize neighboring coordination vector in-
stantiations. Also, there might exist a time delay when neighbor-
ing spacecraft exchange information. This issue is not modeled in
the preceding decentralized architecture and needs to be addressed
in future work.

IV. Decentralized Formation Control Strategies
Two major tasks need to be carried out in the decentralized

formation control scheme via the virtual structure approach. One
is to propose suitable control laws for each spacecraft to track
its desired states defined by the virtual structure. The other is
to control and synchronize each virtual structure instantiation to
achieve the desired formation patterns in a decentralized manner.
In Secs. IV.A and IV.B, we present control strategies for each
spacecraft and each virtual structure instantiation, respectively. In
Sec. IV.C, we provide convergence analysis for the system composed
of the coupled dynamics of N spacecraft and N coordination vector
instantiations.

A. Formation Control Strategies for Each Spacecraft
For the i th spacecraft, define Xi = [rT

i , vT
i , qT

i ,ωT
i ]T and

Xd
i = [rdT

i , vdT

i , qdT

i ,ωdT

i ]T as the actual state and desired state,
respectively. Define X̃i = Xi − Xd

i = [r̃T
i , ṽT

i , q̃T
i , ω̃T

i ]T as the error
state for i th spacecraft.

We know that the desired states for each spacecraft also satisfy
the translational and rotational dynamics (3) and (4) respectively,
that is,

drd
i

dt0
= vd

i , mi
dvd

i

dt0
= f d

i ,
dq̂d

i

dt0
= −1

2
ωd

i × q̂d
i + 1

2
q̄d

i ω
d
i

dq̄d
i

dt0
= −1

2
ωd

i · q̂d
i , Ji

dωd
i

dt0
= −ωd

i × (
Jiω

d
i

) + τ d
i (5)

This is valid because the desired states for each spacecraft are the
same as the actual states for each corresponding place holder, which
satisfies the translational and rotational dynamics.

The proposed control force for the i th spacecraft is given by

fi = mi

[
v̇d

i − Kri

(
ri − rd

i

) − Kvi

(
vi − vd

i

)]
(6)

where mi is the mass of the i th spacecraft and Kri and Kvi are
symmetric positive definite matrices.

The proposed control torque for the i th spacecraft is given by

τ i = Ji ω̇
d
i + 1

2ωi × Ji

(
ωi +ωd

i

)− kqiq̂d∗
i qi − Kωi

(
ωi −ωd

i

)
(7)

where Ji is the moment of inertia of the i th spacecraft, kqi is a
positive scalar, Kωi is a symmetric positive definite matrix, and q̂
represents the vector part of the quaternion.

Equations (6) and (7) require both Xd
i and Ẋd

i , which are obtained
from ξi and ξ̇i using Eqs. (1) and (2).

B. Formation Control Strategies for Each Virtual
Structure Instantiation

As in Sec. III.C, ξi is the i th coordination vector instantiation and
ξd(k) is the current desired constant goal for the coordination vector
instantiations, that is, the current formation pattern. For notation
simplicity we hereafter use ξd instead of ξd(k) to represent a certain
formation pattern to be achieved. Define

ξ̃i = ξi − ξd = [
r̃T

Fi, ṽT
Fi, q̃T

Fi, ω̃
T
Fi, λ̃

T

Fi,
˙̃λ

T

Fi

]T

as the error state for the i th coordination vector instantiation. There
are two objectives for the instantiation of the coordination vector im-
plemented in each spacecraft. The first objective is to its desired con-
stant goal ξd defined by the formation pattern. The second objective
is to synchronize each instantiation, that is,ξ1 = ξ2 = · · · = ξN . Fol-
lowing the idea introduced in Refs. 26 and 27, where behavior-based
strategies are used to realize goal seeking and formation keeping for
each agent, we apply behavior-based strategies to synchronize the
coordination vector instantiations during the maneuver as well as
evolve it to its desired goal at the end of the maneuver.

Define EG as the goal seeking error to represent the total error
between the current instantiation ξi and the desired goal ξd :

EG(t) =
N∑

i = 1

∥∥ξi − ξd
∥∥2

Also define ES as the synchronization error to represent the total
synchronization error between neighboring instantiations:

ES(t) =
N∑

i = 1

‖ξi − ξi + 1‖2

where the summation index i is defined modulo N , that is,
ξN + 1 = ξ1 and ξ0 = ξN . Defining E(t) = EG(t) + ES(t), then the
control objective is to drive E(t) to zero asymptotically.

Because the coordination vector represents the states of the virtual
structure, we suppose that the i th coordination vector instantiation
satisfies the following rigid-body dynamics:




ṙFi

m F v̇Fi

q̇Fi

JF ω̇Fi

λ̇Fi

λ̈Fi




=




vFi

fFi

1
2 �(ωFi)qFi

−ωFi × JFωFi + τ Fi

λ̇Fi

νFi




(8)

where m F and JF are the virtual mass and virtual inertia of the
virtual structure, fFi and τ Fi are the virtual force and virtual torque
exerted on the i th implementation of the virtual structure, and νFi is
the virtual control effort used to expand or contract the formation.

The tracking performance for the i th spacecraft is defined as
eTi = ‖X̃i‖2. Define �Gi = DG + KF eTi to incorporate formation
feedback from the i th spacecraft to the i th coordination vector im-
plementation, where DG and KF are symmetric positive definite
matrices. Obviously, �Gi is also a positive definite matrix. If we let
KF = 0, there is no formation feedback. The proposed control force
fFi is given by

fFi = m F

{−KG

(
rFi − rd

F

) − �GivFi − KS

[
rFi − rF(i + 1)

]
− DS

[
vFi − vF(i + 1)

] − KS

[
rFi − rF(i − 1)

]
− DS

[
vFi − vF(i − 1)

]}
(9)

where KG is a symmetric positive definite matrix and KS and DS

are symmetric positive semidefinite matrices.
The proposed control torque τ Fi is given by

τ Fi = −kGq̂d∗
F qFi − �GiωFi − kS q̂∗

F(i + 1)qFi − DS

[
ωFi − ωF(i + 1)

]
− kS q̂∗

F(i − 1)qFi − DS

[
ωFi − ωF(i − 1)

]
(10)

where kG > 0 and kS ≥ 0 are scalars, �Gi follows the same definition
as just stated, DS is a symmetric positive semidefinite matrix, and
q̂ represents the vector part of the quaternion.
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Similar to Eq. (9), the proposed control effort νFi is given by

νFi = −KG

(
λFi − λd

F

) − �Giλ̇Fi − KS

[
λFi − λF(i + 1)

]
− DS

[
λ̇Fi − λ̇F(i + 1)

] − KS

[
λFi − λF(i − 1)

]
− DS

[
λ̇Fi − λ̇F(i − 1)

]
(11)

where KG is a symmetric positive definite matrix, �Gi follows the
same definition as just stated, and KS and DS are symmetric positive
semidefinite matrices.

Note that the matrices in Eqs. (9–11) can be chosen differently
based on specific requirements. In Eqs. (9–11), the first two terms
are used to drive EG → 0, the third and fourth terms are used to
synchronize the i th and (i + 1)th coordination vector instantiations,
and the fifth and sixth terms are used to synchronize the i th and
(i − 1)th coordination vector instantiations. The second term, that is,
the formation feedback term, is also used to slow down the i th virtual
structure implementation when the i th spacecraft has a large tracking
error. This strategy needs each spacecraft to know its neighboring
coordination vector instantiations, which can be accomplished by
nearest neighbor communication. From Eqs. (9–11), we can also
see that besides ξi − 1, ξi , and ξi + 1 the control laws for the i th
coordination vector instantiation also require the current constant
formation pattern ξd and X̃i through the formation feedback gain
matrix �Gi.

C. Convergence Analysis
The following lemmas will be used to prove our main result.
Lemma 1: If both the unit quaternion and angular velocity

pairs (qs,ωs) and (qp,ω p) satisfy the rotational dynamics (4)
with moment of inertia J and with control torque τ s and τ p ,
respectively, δω=ωs −ω p and δq = qs − qp with δq̂ = q̂s − q̂p

and δq̄ = q̄s − q̄p , and V1 = δq̄2 + δq̂ · δq̂ and V2 = 1
2 δω · Jδω, then

V̇1 = δω · q̂∗
pqs and V̇2 = δω · [τ s − τ p − 1

2 (ωs × Jδω)].
Proof: Identical to the proof for attitude control in Ref. 16

by replacing qi with qp , ωi with ω p , qd
i with qs , and ωd

i with
ωs . �

For a vector x we use xT x or ‖x‖2 to represent the vector dot
product x · x hereafter.

Lemma 2: If A ∈ R
k × k and B ∈ R

l × l are symmetric positive
semidefinite matrices, then A ⊗ B is positive semidefinite, where
⊗ denotes the Kronecker product. Moreover, if both A and B are
symmetric positive definite, then so is A ⊗ B.

Proof: See Ref. 31. �
Lemma 3: If C is a circulant matrix with the first row given by

[2, −1, 0, . . . , 0, −1] ∈ R
N , then C ∈ R

N × N is symmetric positive
semidefinite. Let P ∈ R

p × p and Z = [zT
1 , . . . , zT

N ]T , where zi ∈ R
p .

If the terms P(zi − zi − 1) + P(zi − zi + 1) are stacked in a column
vector, the resulting vector can be written as (C ⊗ P)Z.

Proof: See Ref. 26. �
From Eqs. (3), (4), (6), and (7), the dynamics for the i th space-

craft can be represented by ˙̃Xi = f (X̃i , ξi ), where f (·, ·) can be
determined from those equations. From Eqs. (8–11), the dynamics
for the i th coordination vector instantiation can be represented by
ξ̇i = g(ξi − 1, ξi , ξi + 1, X̃i ), where g(·, ·, ·, ·) can also be determined
from those equations. Therefore, the coupled dynamics of the whole
system composed of N spacecraft and N coordination vector in-
stantiations are time invariant with states X̃i and ξi , i = 1, . . . , N .
LaSalle’s invariance principle will be used to prove the main theo-
rem for convergence of the whole system.

Theorem 1: If the control laws for each spacecraft are given by
Eqs. (6) and (7) and the control laws for each coordination vector
instantiation are given by Eqs. (9–11), then

N∑
i = 1

eTi + E(t) → 0

asymptotically.
Proof:
For the whole system consisting of N spacecraft and N co-

ordination vector instantiations, consider the Lyapunov function

candidate:

V = Vsp + VFt + VFr + VFe (12)

where

Vsp =
N∑

i = 1

(
1

2
r̃T

i Krir̃i + 1

2
ṽT

i ṽi + kqiq̃T
i q̃i + 1

2
ω̃T

i Ji ω̃i

)

VFt = 1

2

N∑
i = 1

[
rFi − rF(i + 1)

]T
KS

[
rFi − rF(i + 1)

]

+ 1

2

N∑
i = 1

(
r̃T

Fi KG r̃Fi + vT
FivFi

)

VFr =
N∑

i = 1

kS

[
qFi − qF(i + 1)

]T [
qFi − qF(i + 1)

]

+
N∑

i = 1

(
kG q̃T

Fiq̃Fi + 1

2
ωT

Fi JFωFi

)

VFe = 1

2

N∑
i = 1

[
λFi −λF(i + 1)

]T
KS

[
λFi −λF(i + 1)

]

+ 1

2

N∑
i = 1

(
λ̃

T

Fi KGλ̃Fi + λ̇
T
Fiλ̇Fi

)
With the proposed control force (6) for each spacecraft, the second

equation in the translational dynamics (3) for the i th spacecraft
can be rewritten as ˙̃vi = −Krir̃i − Kviṽi . Applying Lemma 1, the
derivative of Vsp is

V̇sp =
N∑

i = 1

(−ṽT
i Kviṽi

)+
N∑

i = 1

ω̃T
i

·
[

kqiq̂d∗
i qi + τ i − τ d

i − 1

2
(ωi × Ji ω̃i )

]
From Eq. (5) τ d

i = Ji ω̇
d
i +ωd

i × (Jiω
d
i ). With the proposed con-

trol torque (7) for each spacecraft, after some manipulation we know
that

V̇sp =
N∑

i = 1

(−ṽT
i Kviṽi − ω̃T

i Kωi ω̃i

) ≤ 0 (13)

Differentiating VFt, we can get

V̇Ft =
N∑

i = 1

vT
Fi

{
KS

[
rFi − rF(i + 1)

]+ KS

[
rFi − rF(i − 1)

]

+ KG r̃Fi + fFi

m F

}
With the proposed control force (9) for each coordination vector

instantiation,

V̇Ft = −
N∑

i = 1

{
vT

Fi�GivFi +
[
vFi − vF(i + 1)

]T
DS

[
vFi − vF(i + 1)

]} ≤ 0

(14)

Applying Lemma 1, the derivative of VFr is

V̇Fr =
N∑

i = 1

[
ωFi − ωF(i + 1)

]T
kS q̂∗

F(i + 1)qFi

+
N∑

i = 1

ωT
Fi

(
kGq̂d∗

F qFi + τ Fi − 1

2
ωFi × JFωFi

)
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After some manipulation

V̇Fr =
N∑

i = 1

ωT
Fi

[
kS q̂∗

F(i + 1)qFi − kS q̂∗
FiqF(i − 1) + kGq̂d∗

F qFi + τ Fi

]
With the proposed control torque (10) for each coordination vector
instantiation,

V̇Fr = −
N∑

i = 1

{
ωT

Fi�GiωFi +
[
ωFi −ωF(i + 1)

]T

· DS

[
ωFi −ωF(i + 1)

]} ≤ 0 (15)

Similar to V̇Ft, with the proposed control effort (11) for each
coordination vector instantiation, the derivative of VFe is

V̇Fe = −
N∑

i = 1

{
λ̇

T
Fi�Giλ̇Fi +

[
λ̇Fi − λ̇F(i + 1)

]T

· DS

[
λ̇Fi − λ̇F(i + 1)

]} ≤ 0 (16)

From Eqs. (13–16), it is obvious that V̇ = V̇sp + V̇Ft + V̇Fr + V̇Fe ≤
0. Let 	 = {(X̃1, . . . , X̃N , ξ̃1, . . . , ξ̃N )|V̇ = 0}, and let 	̄ be the
largest invariant set in 	. On 	̄, V̇ ≡ 0, that is, V̇sp = V̇Ft = V̇Fr =
V̇Fe ≡ 0, which implies that ṽi ≡ 0, ω̃i ≡ 0, vFi ≡ 0, ωFi ≡ 0, λ̇Fi ≡
0, i = 1, . . . , N .

Because ṽi ≡ 0, we know that r̃i = 0 from Eqs. (3) and (6). Be-
cause ω̃i ≡ 0, we also know that q̂d∗

i qi = 0 from Eqs. (4) and (7),
which then implies that qi = qd

i , that is, q̃i = 0.
Then following vFi ≡ 0, from Eq. (9) and the second equation

in Eq. (8), it can be seen that

KG r̃Fi + KS

[
rFi − rF(i + 1)

]+ KS

[
rFi − rF(i − 1)

]= 0

i = 1, . . . , N

which is equivalent to

KG r̃Fi + KS

[
r̃Fi − r̃F(i + 1)

]+ KS

[
r̃Fi − r̃F(i − 1)

]= 0

i = 1, . . . , N (17)

From lemma 3, Eq. (17) can also be written as (IN ⊗ KG + C ⊗
KS)r̃F = 0, where r̃F = [r̃T

F1, . . . , r̃T
FN]T , IN is an N × N identity

matrix, and C is the circulant matrix defined in lemma 3. Based on
lemmas 2 and 3, IN ⊗ KG is positive definite and C ⊗ KS is positive
semidefinite. Thus we know that r̃F = 0.

Following a similar procedure as just stated, we can also show
that λ̃Fi = 0 because λ̇Fi ≡ 0.

Also following ωFi ≡ 0, from Eq. (10) and the fourth equation in
Eq. (8), we know that

kGq̂d∗
F qFi + kS q̂∗

F(i + 1)qFi + kS q̂∗
F(i − 1)qFi = 0, i = 1, . . . , N

(18)

Because the quaternion multiplication is associative, we know that

q∗
F(i + 1)qFi = q∗

F(i + 1)1qFi = q∗
F(i + 1)

(
qd

F qd∗
F

)
qFi

= [
q∗

F(i + 1)q
d
F

](
qd∗

F qFi

)
where 1 is the multiplicative identity quaternion defined in Sec. II.B.
Therefore, Eq. (18) is equivalent to

kGq̂d∗
F qFi + kŜ

[
q∗

F(i + 1)q
d
F

](
qd∗

F qFi

)+ kŜ
[
q∗

F(i − 1)q
d
F

](
qd∗

F qFi

)= 0

i = 1, . . . , N (19)

Following Ref. 27 and applying the property of the unit
quaternion, Eq. (19) can be written as p∗

i (q̂
d∗
F qFi) = 0, where

pi = kG1 + kS[qd∗
F qF(i + 1)] + kS[qd∗

F qF(i − 1)].
Compared with Eq. (7) in Ref. 27, Eq. (19) has the same form

when we treat qi as qd∗
F qFi and kF as kS and delete keq̂iR term in

Eq. (7) in Ref. 27. It can be verified that their proof for q̂i = 0 is still

valid when keq̂iR term is omitted, which is only used to guarantee
the rotation of the spacecraft about a defined axis.

Then following the result q̂i = 0 in Ref. 27, we can show that
q̂d∗

F qFi = 0, which implies that qFi = qd
F , that is, q̃Fi = 0.

Therefore, by LaSalle’s invariance principle ‖X̃i‖ → 0, ‖ξ̃i‖ → 0,
and ‖ξi − ξi + 1‖ → 0, i = 1, . . . , N . Accordingly,

N∑
i = 1

eTi + E(t) → 0

asymptotically. �
From theorem 1 we can see that each virtual structure instantiation

will achieve its final goal asymptotically, and each spacecraft will
also track its desired state specified by the virtual structure asymp-
totically during the maneuver. Therefore, the formation maneuver
can be achieved asymptotically.

Because PD-like control laws are used for each spacecraft
and each coordination vector instantiation, the transient specifi-
cations for each spacecraft and each coordination vector instan-
tiation can be satisfied by designing corresponding gain matri-
ces in the control laws following the design procedure for the
coefficients of a second-order system. Moreover, for each space-
craft, if we define a translational tracking error for the i th space-
craft as Eti = 1

2 r̃T
i Krir̃i + 1

2 ‖ṽi‖2, Eti decreases during the ma-
neuver and r̃T

i Krir̃i is bounded by 2Eti(0) − ‖ṽi‖2 following the
proof for V̇sp. Similarly, if we define a rotational tracking error as
Eri = kqi‖q̃i‖2 + 1

2 ω̃i Ji ω̃i , Eri decreases during the maneuver, and
‖q̃i‖2 is bounded by (1/kqi)[Eri(0) − 1

2 ω̃i Ji ω̃i ]. For each coordina-
tion vector instantiation, following the proof for V̇Ft, V̇Fr, and V̇Fe,
we know that VFt, VFr, and VFe are bounded by VFt(0), VFr(0), and
VFe(0), respectively. Therefore,

N∑
i = 1

[
rFi − rF(i + 1)

]T
KS

[
rFi − rF(i + 1)

] ≤ 2VFt(0)

N∑
i = 1

r̃T
Fi KG r̃Fi ≤ 2VFt(0),

N∑
i = 1

‖qFi − qF(i + 1)‖2 ≤ 1

kS
VFr(0)

N∑
i = 1

‖q̃Fi‖2 ≤ 1

kG
VFr(0)

N∑
i = 1

[
λFi − λF(i + 1)

]T
KS

[
λFi − λF(i + 1)

] ≤ 2VFe(0)

N∑
i = 1

λ̃
T

Fi KGλ̃Fi ≤ 2VFe(0)

V. Simulation Results
In this section we consider a scenario with nine spacecraft. In

the scenario a mothership spacecraft with mass equal to 1500 kg
is located 1 km away from a plane where eight daughter space-
craft each with mass 150 kg are distributed equally along a cir-
cle with a diameter 1 km in the plane. The configuration of the
nine spacecraft is shown in Fig. 3. We assume that the nine
spacecraft evolves like a rigid structure, that is, the formation
shape is preserved and each spacecraft preserves a fixed rela-
tive orientation within the formation throughout the formation
maneuvers.

We simulate a scenario when the nine spacecraft start from rest
with some initial position and attitude errors and then perform a
group rotation of 45 deg about the inertial z axis. Here we assume
that each place holder in the formation has the same orientation, that
is, qd

iF is the same for each spacecraft. In simulation, we instantiate
a local copy of the coordination vector ξ in each spacecraft and syn-
chronize them using the control strategy introduced in Sec. IV.B. To
show the robustness of the control strategy, we start the coordination
vector implementation in each spacecraft at a different time instance



80 REN AND BEARD

Fig. 3 Geometric configuration of nine spacecraft.

Fig. 4 Average coordination error of the coordination vector
instantiations.

Fig. 5 Absolute position and attitude tracking errors.

and introduce a different sample time varying from 0.4 to 0.6 s for
each coordination vector instantiation. Various communication de-
lays are also added among spacecraft. Three cases will be compared
in this section. These include cases without actuator saturation and
formation feedback (case 1), with actuator saturation but without
formation feedback (case 2), with both actuator saturation and for-
mation feedback (case 3). In fact, there is another case without actu-
ator saturation but with formation feedback (case 4). Because there
is little difference between this case and case 1, we will not include
this case in this section. Here we assume that the control force and
control torque for spacecraft 1 are saturated at | fx |, | fy |, | fz | = 2 N
and |τx |, |τy |, |τz | = 0.0006 Nm, respectively, and the control
force and control torque for all of the other spacecraft are sat-
urated at | fx |, | fy |, | fz | = 1 N and |τx |, |τy |, |τz | = 0.0003 Nm,
respectively.

In this section the average coordination error is defined as

1

N

N∑
i = 1

‖ξi − ξ̄‖

where

ξ̄= 1

N

N∑
i = 1

ξi

The average coordination error in these three cases is plotted in
Fig. 4. We can see that each instantiation of the coordination vector
is synchronized asymptotically in all cases. Also, the average coor-
dination error is large during the initial time interval because each
local instantiation starts at a different time instance. Cases 1 and
2 are identical because the actuator saturation for each spacecraft
does not affect the dynamics of the virtual structure when there is no
formation feedback from each spacecraft to its coordination vector
instantiation. The maximum average coordination error in case 3 is
larger than that in the other two cases because formation feedback
is introduced for each coordination vector instantiation, which can
add some dissimilarities between different instantiations.

In Fig. 5 we plot the absolute position and attitude tracking errors
for spacecraft 1, 4, and 7 in these three cases. The position track-
ing error is defined as ‖ri − rd

i ‖, and the attitude tracking error is
defined as ‖qi − qd

i ‖. We can see the tracking errors in each case
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will decrease to zero asymptotically by using the control law given
in Sec. IV.A. The absolute position and attitude tracking errors in
case 2 are much larger than those in the other two cases because
of the actuator saturation. In case 3, with formation feedback, the
absolute position and attitude tracking errors are similar to those in
case 1 even if there is actuator saturation. When we increase the
entries in the gain matrix KF to increase formation feedback, the
absolute tracking errors can be decreased further, but the system
convergence time will become correspondingly longer.

In Fig. 6 we plot the relative position and attitude errors between
some spacecraft in these three cases. Based on the configuration, the
desired relative distance between spacecraft 1 and 2 and the desired
relative distance between spacecraft 1 and 6 should be equal. The
desired relative distance between spacecraft 3 and 7 and the desired
relative distance between spacecraft 5 and 9 should also be equal. We

Fig. 6 Relative position and attitude errors.

Fig. 7 Control effort for spacecraft 1.

plot |‖r1 − r2‖ − ‖r1 − r6‖| and |‖r3 − r7‖ − ‖r5 − r9‖| in subplot a.
as examples to see how well the formation shape is preserved. The
desired relative attitude between each spacecraft should be equal
based on our preceding assumption. We plot ‖q1 − q4‖, ‖q4 − q7‖,
and ‖q7 − q1‖ in subplot b as examples to see how well the relative
orientation relationships between these spacecraft are preserved.
Similarly, the relative position tracking errors in case 2 are larger
than those in the other two cases because of the control force satura-
tion. In case 3, with formation feedback, the relative position errors
are smaller than those in case 2. The relative attitude errors in case 3
are even smaller than those in the other two cases because of the
formation feedback.

In Fig. 7 we plot the control effort for spacecraft 1 in these three
cases. We can see that both the control force and control torque
approach zero asymptotically. We can also see that τz saturates in
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case 2 during the initial time period while this saturation is mitigated
with formation feedback introduced in case 3.

VI. Conclusions
In this paper we proposed a decentralized scheme for spacecraft

formation control using the virtual structure approach. Through
low-bandwidth communication between neighboring spacecraft, the
instantiation of the coordination vector in each spacecraft can be syn-
chronized and then used to define the desired states for each space-
craft. Decentralized formation control strategies were presented for
each spacecraft to synchronize the coordination vector instantia-
tion and track its desired states. The effectiveness of the proposed
strategies was demonstrated through a simulation example.

References
1Wang, P. K. C., “Navigation Strategies for Multiple Autonomous Mobile

Robots Moving in Formation,” Journal of Robotic Systems, Vol. 8, No. 2,
1991, pp. 177–195.

2Balch, T., and Arkin, R. C., “Behavior-Based Formation Control for
Multirobot Teams,” IEEE Transactions on Robotics and Automation, Vol. 14,
No. 6, 1998, pp. 926–939.

3Lewis, M. A., and Tan, K.-H., “High Precision Formation Control of
Mobile Robots Using Virtual Structures,” Autonomous Robots, Vol. 4, Oct.
1997, pp. 387–403.

4Sugar, T., and Kumar, V., “Decentralized Control of Cooperating Mo-
bile Manipulators,” Proceedings of the IEEE International Conference on
Robotics and Automation, IEEE Press, Piscataway, NJ, 1998, pp. 2916–2921.

5Ogren, P., Fiorelli, E., and Leonard, N. E., “Formations with a Mis-
sion: Stable Coordination of Vehicle Group Maneuvers,” 15th Interna-
tional Symposium on Mathematical Theory of Networks and Systems,
Center for the Study of Biocomplexity, University of Notre Dame, Notre
Dame, IN, 2002.

6Tanner, H. G., Pappas, G. J., and Kumar, V., “Input-to-State Stability on
Formation Graphs,” Proceedings of the IEEE Conference on Decision and
Control, IEEE Press, Piscataway, NJ, 2002, pp. 2439–2444.

7Fierro, R., Das, A., Kumar, V., and Ostrowski, J., “Hybrid Control
of Formations of Robots,” Proceedings of the IEEE International Con-
ference on Robotics and Automation, IEEE Press, Piscataway, NJ, 2001,
pp. 157–162.

8Fax, J. A., and Murray, R. M., “Information Flow and Cooperative Con-
trol of Vehicle Formations,” IFAC World Congress, International Federation
of Automatic Control, Laxenburg, Austria, 2002.

9Eren, T., Belhumeur, P. N., and Morse, A. S., “Closing Ranks in Vehicle
Formations Based on Rigidity,” Proceedings of the IEEE Conference on
Decision and Control, IEEE Press, Piscataway, NJ, 2002, pp. 2959–2964.

10Ogren, P., Egerstedt, M., and Hu, X., “A Control Lyapunov Function
Approach to Multiagent Coordination,” IEEE Transactions on Robotics and
Automation, Vol. 18, No. 5, 2002, pp. 847–851.

11Giulietti, F., Pollini, L., and Innocenti, M., “Autonomous Forma-
tion Flight,” IEEE Control Systems Magazine, Vol. 20, No. 6, 2000,
pp. 34–44.

12Stilwell, D. J., and Bishop, B. E., “Platoons of Underwater Vehicles,”
IEEE Control Systems Magazine, Vol. 20, No. 6, 2000, pp. 45–52.

13Kang, W., and Yeh, H.-H., “Co-Ordinated Attitude Control of Multi-
Satellite Systems,” International Journal of Robust and Nonlinear Control,
No. 12, 2002, pp. 185–205.

14Carpenter, J. R., “Decentralized Control of Satellite Formations,”
International Journal of Robust and Nonlinear Control, No. 12, 2002,
pp. 141–161.

15Anderson, M. R., and Robbins, A. C., “Formation Flight as a Cooper-
ative Game,” Proceedings of the AIAA Guidance, Navigation and Control
Conference, AIAA, Reston, VA, 1998, pp. 244–251.

16Wang, P. K. C., and Hadaegh, F. Y., “Coordination and Control of Multi-
ple Microspacecraft Moving in Formation,” The Journal of the Astronautical
Sciences, Vol. 44, No. 3, 1996, pp. 315–355.

17Hadaegh, F. Y., Lu, W.-M., and Wang, P. K. C., “Adaptive Control of
Formation Flying Spacecraft for Interferometry,” IFAC, 1998.

18Robertson, A., Inalhan, G., and How, J. P., “Formation Control Strate-
gies for a Separated Spacecraft Interferometer,” Proceedings of the American
Control Conference (San Diego), American Automatic Control Council,
Evanston, IL, 1999.

19Mesbahi, M., and Hadaegh, F. Y., “Formation Flying Control of Multi-
ple Spacecraft via Graphs, Matrix Inequalities, and Switching,” Journal of
Guidance, Control, and Dynamics, Vol. 24, No. 2, 2000, pp. 369–377.

20Wie, B., Weiss, H., and Apapostathis, A., “Quaternion Feedback Reg-
ulator for Spacecraft Eigenaxis Rotations,” Journal of Guidance, Control,
and Dynamics, Vol. 12, No. 3, 1989, pp. 375–380.

21Beard, R. W., McLain, T. W., Goodrich, M., and Anderson, E. P., “Co-
ordinated Target Assignment and Intercept for Unmanned Air Vehicles,”
IEEE Transactions on Robotics and Automation, Vol. 18, No. 6, 2002,
pp. 911–922.

22Leonard, N. E., and Fiorelli, E., “Virtual Leaders, Artificial Poten-
tials and Coordinated Control of Groups,” Proceedings of the IEEE Con-
ference on Decision and Control, IEEE Press, Piscataway, NJ, 2001,
pp. 2968–2973.

23Beard, R. W., Lawton, J., and Hadaegh, F. Y., “A Coordination Ar-
chitecture for Formation Control,” IEEE Transactions on Control Systems
Technology, Vol. 9, No. 6, 2001, pp. 777–790.

24Young, B., Beard, R., and Kelsey, J., “A Control Scheme for Improving
Multi-Vehicle Formation Maneuvers,” Proceedings of the American Con-
trol Conference (Arlington, VA), American Automatic Control Council,
Evanston, IL, 2001.

25Ren, W., and Beard, R. W., “Virtual Structure Based Spacecraft For-
mation Control with Formation Feedback,” AIAA Paper 2002-4963, Aug.
2002.

26Lawton, J., Young, B., and Beard, R., “A Decentralized Approach to
Elementary Formation Maneuvers,” IEEE Transactions on Robotics and
Automation (to be published).

27Lawton, J., and Beard, R. W., “Synchronized Multiple Spacecraft
Rotations,” Automatica, Vol. 38, No. 8, 2000, pp. 1359–1364.

28Wertz, J. R. (ed.), Spacecraft Attitude Determination and Control,
Kluwer Academic, Norwell, MA, 1978.

29Hughes, P. C., Spacecraft Attitude Dynamics, Wiley, 1986.
30Wen, J. T.-Y., and Kreutz-Delgado, K., “The Attitude Control Prob-

lem,” IEEE Transactions on Automatic Control, Vol. 36, No. 10, 1991,
pp. 1148–1162.

31Graham, A., Kronecker Products and Matrix Calculus: with Applica-
tions, Halsted Press, 1981.


