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Abstract— This paper considers the problem of information
consensus among multiple agents in the presence of limited
and unreliable information exchange with dynamically changing
interaction topologies. Both discrete and continuous update
schemes are proposed for consensus of information. That the
union of a collection of interaction graphs across some time
intervals has a spanning tree frequently enough as the system
evolves is shown to be a necessary and sufficient condition for
information consensus under dynamically changing interaction
topologies. Simulation results show the effectiveness of our
results.

I. INTRODUCTION

The study of information flow and interaction among
multiple agents in a group plays an important role in
understanding the coordinated movements of these agents.
Research efforts toward this direction are reported in [1], [2],
[3], [4], [5], to name a few. Some applications of coordinated
control require information to be shared among multiple
agents in a group (c.f. [6], [4], [7], [8], [9], [10]), which in
turn requires information consensus. In this paper, we extend
some of the results of [4] to the case of directed graphs and
show a necessary and sufficient condition for consensus of
information under dynamically changing interaction topolo-
gies. Our work relies on two infrastructures including graph
theory and nonnegative matrices.

Graph theory has been used to effectively model the
interaction between agents (c.f. [11], [12], [1], [2], [3], [4],
[13]). In [12], using graph theory, a team of nonholonomic
mobile robots is controlled to navigate in a terrain with ob-
stacles while maintaining a desired formation and changing
formations when required. Ref. [1] studies information ex-
change techniques to improve stability margins and formation
performance for vehicle formations. In [3], formation control
graphs are used to analyze the input-to-state stability for
leader-follower formations.

Nonnegative matrices (c.f. [14], [15]) have been studied
extensively in the mathematics community. The well-known
Perron-Frobenius theory for nonnegative matrices provides a
useful tool in analyzing the properties of the graph Lapla-
cian (c.f. [16]). The classical result in [17] demonstrates
the property of the infinite products of certain categories
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of nonnegative matrices, which is proved to be useful in
studying certain switched linear systems (c.f. [4]).

In this paper, directed graphs will be used to represent the
interaction (information exchange) topology among multiple
agents, where information can be exchanged between agents
via communication or sensing. A preliminary result for infor-
mation consensus is addressed in [10], where a linear update
scheme is proposed but no complete answers are given for
the issue of whether the linear update scheme achieves global
consensus asymptotically when accounting for all known
communication links. In [18], we provide a complete answer
to the above issue under a time-invariant communication
topology and propose strategies for consensus and evolution
of the group level information in a distributed multi-vehicle
coordinated control context.

In real applications, the interaction topology between
agents may change dynamically. For example, in the case
of interaction via communications, the communication links
between vehicles may be unreliable due to disturbances
and/or subject to communication range limit. In the case of
interaction via sensing, the agents that can be sensed by a
certain agent may change over time. In the ground breaking
work by Jadbabaie et al. [4], a theoretical explanation is
provided for the observed behavior of Vicsek model [6].
Ref. [4] explicitly takes into account possible changes of
each agent’s nearest neighbors over time, which can be
thought of as an example of information consensus under
dynamically changing interaction topologies. Ref. [4] proved
that information (the heading of each agent in their context)
can reach consensus provided that the union of a collection
of graphs for all agents is connected frequently enough as the
system evolves. However, the approaches in [4] are based on
undirected graphs, which assume bidirectional information
exchanges. It might be the case that information exchange
is unidirectional, that is, consensus may need to be achieved
in the presence of limited information exchanges, which will
make information consensus more challenging. Also, certain
constraints are set for the weighting factors in the update
schemes in [4], which may be extended to more general
cases. For example, it may be desirable to weigh the informa-
tion from different agents differently to represent the relative
confidence of each agent’s information or relative reliabilities
of different communication or sensing links between agents.



The main purpose of this paper is to extend the work of
Jadbabaie et al. [4] to the case of directed graphs and explore
the minimum requirements to reach global consensus. As a
comparison, Ref. [5] solves the average-consensus problems
with directed graphs, which requires the graph to be strongly
connected and balanced. We show that under certain assump-
tions consensus1 can be achieved globally asymptotically
under dynamically changing interaction topologies if and
only if the union of a collection of graphs across some
time intervals has a spanning tree frequently enough as the
system evolves. Having a spanning tree for a union graph
is a much milder condition than being connected and is
therefore more suitable for practical applications. We also
allow the weighting factors in our discrete and continuous
update schemes to be dynamically changing, which provides
additional flexibility. As a result, the convergence conditions
and update schemes in [4] are proved to be a special case
of a more general result. Also a byproduct of this paper
is that we prove that a nonnegative matrix with the same
positive row sums has its spectral radius (its row sum in this
case) as a simple eigenvalue if and only if the directed graph
of this matrix has a spanning tree while Perron-Frobenius
theorem for nonnegative matrices only deals with irreducible
matrices, that is, matrices with strongly connected graphs.
Besides having a spanning tree, if this matrix also has
positive diagonal entries, we show that its row sum is the
unique eigenvalue of maximum modulus.

The remainder of the paper is organized as follows.
In Section II, we associate directed graphs with dynami-
cally changing interaction topologies and propose discrete
and continuous update schemes accounting for dynamically
changing interaction topologies and weighting factors. In
Section III, we prove necessary and sufficient conditions for
consensus of information under dynamically changing inter-
action topologies using both the discrete update scheme and
continuous update scheme. Simulation results are presented
in Section IV and Section V offers our conclusion.

II. PROBLEM STATEMENT

In this paper, we let A = {Ai|i ∈ I} be a set of
n agents in the group whose information needs to reach
consensus, where I = {1, 2, · · · , n}. A directed graph G
will be used to model the interaction topology among these
agents. In G, the ith vertex represents the ith agent Ai and
a directed arc from Ai to Aj denoted as (Ai, Aj) represents
a unidirectional information exchange link from Ai to Aj ,
that is, agent j can receive or obtain information from agent
i, (i, j) ∈ I. Throughout the paper, we always assume that
there is a link from one vertex to itself. With regard to the
fact that the interaction topology among these agents may
be dynamically changing, we use Ḡ = {G1,G2, · · · ,GM}
to denote the set of all possible simple interaction graphs

1may not be average-consensus

defined for these n agents. In actual applications, the possible
interaction topologies may only be a subset of Ḡ. It is obvious
to see that set Ḡ has finite elements. The union of a group
of simple graphs {Gi1 ,Gi2 , · · · ,Gim} ⊂ Ḡ is a simple graph
with vertices given by Ai, i ∈ I and arc set given by the
union of the arc sets of Gij , j = 1, · · · ,m.

A directed path in graph G is a sequence of arcs
(Ai1 , Ai2), (Ai2 , Ai3), (Ai3 , Ai4), · · · in that graph. Graph G
is called strongly connected if there is a directed path from
Ai to Aj and Aj to Ai between any pair of distinct vertices
Ai and Aj , ∀(i, j) ∈ I. A directed tree is a directed graph,
where every node, except the root, has exactly one parent. A
spanning tree of a directed graph is a tree formed by graph
arcs that connect all the vertices of the graph (c.f. [16]). Let
Mn(IR) represent the set of all n×n real matrices. Given a
matrix A = [aij ] ∈Mn(IR), the directed graph of A, denoted
by Γ(A), is the directed graph on n vertices Vi, i ∈ I, such
that there is a directed arc in Γ(A) from Vj to Vi if and only
if aij 6= 0 (c.f. [19]).

Let ξi ∈ IR, i ∈ I, represent the ith information variable
associated with the ith agent. The set of agents A is said to
achieve global consensus asymptotically if for any ξi(0), i ∈
I, ‖ξi(t)− ξj(t)‖ → 0 as t→∞ for each (i, j) ∈ I [10].

Given T as the sampling period, a discrete time consensus
scheme is given by

ξi(k + 1) =
1∑n

j=1 αij(k)Gij(k)

n∑

j=1

αij(k)Gij(k)ξj(k),

(1)
where k ∈ {0, 1, 2, · · · } is the discrete time index, (i, j) ∈ I,

αij(k) > 0 is a weighting factor, Gii(k)
4
= 1, and Gij(k),

∀j 6= i, is 1 if there is an information exchange link from
Aj to Ai at time t = kT and 0 otherwise.

Eq. (1) can be written in matrix form as

ξ(k + 1) = D(k)ξ(k), (2)

where ξ = [ξ1, · · · , ξn]
T , D = [dij ], (i, j) ∈ I, with dij =

αij(k)Gij(k)∑
n
j=1

αij(k)Gij(k)
.

We will consider the continuous consensus scheme given
by

ξ̇i(t) = −
N∑

j=1

σij(t)Gij(t)(ξi(t)− ξj(t)), (3)

where (i, j) ∈ I, σij(t) > 0 is a weighting factor, Gii(t)
4
=

1, and Gij(t), ∀j 6= i, is 1 if there is an information exchange
link from Aj to Ai at time t and 0 otherwise.

Eq. (3) can also be written in matrix form as

ξ̇(t) = C(t)ξ(t), (4)

where C = [cij ], (i, j) ∈ I, with cii =
−

∑
j 6=i(σij(t)Gij(t)) and cij = σij(t)Gij(t), j 6= i.

Note that the interaction topology G may be dynamically
changing over time due to unreliable transmission or limited



communication/sensing range, which implies that Gij(k) in
Eq. (1) and Gij(t) in Eq. (3) may be time-varying. We
use G(k) and G(t) to denote the dynamically changing
interaction topologies corresponding to Eq. (1) and Eq. (3)
respectively. We also allow the weighting factors αij(k) in
Eq. (1) and σij(t) in Eq. (3) to be dynamically changing
to represent possibly time-varying relative confidence of
each agent’s information variable or relative reliabilities of
different information exchange links between agents. As a
result, both matrix D(k) in Eq. (1) and matrix C(t) in Eq. (3)
are dynamically changing over time.

Compared to the models in [4], we do not set constraints
for weighting factors αij(k) in Eq. (1) as long as they are
positive, which provides more flexibility for some applica-
tions. The Vicsek model and simplified Vicsek model used
in [4] can be thought of as special cases of our discrete

time consensus scheme. If we let αij(k)
4
= 1 in Eq. (1),

we obtain the Vicsek model. Also the simplified Vicsek

model can be acquired if we let αij(k)
4
= 1

g
, ∀j 6= i,

and αii(k)
4
= 1 −

∑
j 6=i

1
g
Gij(k), where g > n is a

constant. Compared to [10], where the interaction graph is
assumed to be time-invariant and weighting factors σij are
specified a priori to be constant and equal to each other, we
study continuous time consensus scheme with dynamically
changing interaction topoligies and weighting factors. The
continuous update rule in [4] can also be regarded as a special

case of our continuous update scheme by letting σij
4
= 1

n
.

III. CONSENSUS OF INFORMATION UNDER

DYNAMICALLY CHANGING INTERACTION TOPOLOGIES

Let 1 denote an n× 1 column vector with all the entries
equal to 1. Also let In denote the n × n identity matrix.
A matrix A = [aij ] ∈ Mn(IR) is nonnegative, denoted as
A ≥ 0, if all its entries are nonnegative. Furthermore, if
all its row sums are +1, A is said to be a (row) stochastic
matrix [19]. A stochastic matrix P is called indecomposable
and aperiodic (SIA) if limn→∞ Pn = 1yT , where y is
some column vector [17]. For nonnegative matrices, A ≥ B

implies that A − B is a nonnegative matrix. It is easy to
verify that if A ≥ ρB, ∀ρ > 0, and the directed graph of
B has a spanning tree, then the directed graph of A has a
spanning tree.

We need the following two lemmas. The first lemma is
from [4] and the second lemma is originally from [17] and
restated in [4].

Lemma 3.1: [4] Let m ≥ 2 be a positive integer and let
P1, P2, · · · , Pm be nonnegative n×n matrices with positive
diagonal elements, then

P1P2 · · ·Pm ≥ γ(P1 + P2 + · · ·+ Pm),

where γ > 0 can be specified from matrices Pi, i =
1, · · · ,m.

Lemma 3.2: [17] Let S1, S2, · · · , Sk be a finite set of
SIA matrices with the property that for each sequence
Si1 , Si2 , · · · , Sij of positive length, the matrix product
SijSij−1

· · ·Si1 is SIA. Then for each infinite sequence
Si1 , Si2 , · · · there exists a column vector y such that

lim
j→∞

SijSij−1
· · ·Si1 = 1yT .

We also need the following propositions and lemmas for
our main results.

Proposition 3.1: Given matrix A = [aij ] ∈ Mn(IR),
where aii ≤ 0, aij ≥ 0, ∀i 6= j, and

∑n

j=1 aij = 0, then A

has at least one zero eigenvalue and all the other non-zero
eigenvalues are on the open left half plane. Furthermore, A

has exactly one zero eigenvalue if and only if the directed
graph associated with A has a spanning tree.
Proof: see Corollary 1 in [18].

Lemma 3.3: If a nonnegative matrix A = [aij ] ∈Mn(IR)
has the same positive constant row sums given by µ > 0, then
µ is an eigenvalue of A with an associated eigenvector 1 and
ρ(A) = µ, where ρ(·) denotes the spectral radius of a matrix.
Also the eigenvalue µ of A has algebraic multiplicity 1 if
and only if the graph associated with A has a spanning tree.
Furthermore, if the graph associated with A has a spanning
tree and aii > 0, then µ is the unique eigenvalue of maximum
modulus.
Proof: The first part of the lemma directly follows the
properties of nonnegative matrices (c.f. [19]).

For the second part of the lemma, we need to show both
the sufficient part and necessary part.

(Sufficiency.) If the graph associated with A has a spanning
tree, then the graph associated with B = A−µIn also has a
spanning tree. We know that λi(A) = λi(B)+µ, where i =
1, · · · , n, and λi(·) represents the ith eigenvalue of a matrix.
Noting that B satisfies the conditions in Proposition 3.1,
we know that zero is an eigenvalue of B with algebraic
multiplicity 1, which then implies that A has algebraic
multiplicity 1 for its eigenvalue µ.

(Necessity.) If the graph associated with A does not have
a spanning tree, we know that B has more than one zero
eigenvalue from Proposition 3.1, which in turn implies that
A has more than one eigenvalue equal to µ.

For the third part of the lemma, from Gersgorin disc
theorem, all the eigenvalues of A are located in the union
of n discs given by

n⋃

i=1

{z ∈ C : |z − aii| ≤
∑

j 6=i

|aij |}.

It is easy to see that this union is included in the circle
given by {z ∈ C : |z| ≤ µ} with only one intersection at
z = µ. Thus we know that |λ| < µ for every eigenvalue
of A satisfying λ 6= µ. Combining the second part of the
lemma, we know that µ is the unique eigenvalue of maximum
modulus.



Corollary 3.2: A stochastic matrix has algebraic multi-
plicity 1 for its eigenvalue λ = 1 if and only if the graph
associated with this matrix has a spanning tree. Furthermore,
a stochastic matrix with positive diagonal elements has the
property that |λ| < 1 for every eigenvalue satisfying λ 6= 1.

Proposition 3.3: If A ∈ Mn and A ≥ 0, then ρ(A) is an
eigenvalue of A and there is a nonnegative vector x ≥ 0,
x 6= 0, such that Ax = ρ(A)x.
Proof: see Theorem 8.3.1 in [19].

Lemma 3.4: Let A = [aij ] ∈ Mn(IR) be a stochastic
matrix. If A has eigenvalue 1 with algebraic multiplicity 1
and all the other eigenvalues satisfy |λ| < 1, then A is SIA,
that is, limm→∞Am → 1νT , where ν satisfies AT ν = ν and
1
T ν = 1. Furthermore, each element of ν is nonnegative.

Proof: The first part of the lemma follows Lemma 8.2.7
in [19]. For the second part, it is obvious that AT is also
nonnegative and has ρ(AT ) = 1 as an eigenvalue with alge-
braic multiplicity 1. Thus the eigenspace of AT associated
with eigenvalue 1 is given by cx, where c ∈ C, c 6= 0, and
x is a nonnegative eigenvector associated with eigenvalue 1
from Proposition 3.3. Since ν is also an eigenvector of AT

associated with eigenvalue 1 and satisfies 1
T ν = 1, it can

be verified that each element of ν must be nonnegative.

A. Consensus Using Discrete Time Update Scheme

Before moving to the general case, we first propose a nec-
essary and sufficient condition for consensus of information
using discrete time update scheme (1) with a time-invariant
interaction topology and constant weighting factors, that is,
constant matrix D.

Theorem 3.4: With a time-invariant interaction topology
and constant weighting factors, the discrete time update
scheme (1) achieves global consensus asymptotically for A if
and only if the associated interaction graph G has a spanning
tree.
Proof: (Sufficiency.) To show that ξi can achieve global
consensus asymptotically, it is equivalent to show that Dk →
1cT , where c is some column vector, which implies that
ξi(k)→ cT ξ(0), ∀i ∈ I, as k →∞.

Obviously D is a stochastic matrix with positive diagonal
entries. The fact that graph G has a spanning tree also implies
that the directed graph of D has a spanning tree. Combining
Corollary 3.2 and Lemma 3.4, we know that limk→∞Dk →
1νT , where ν satisfies the properties defined in Lemma 3.4.

(Necessity.) If G does not have a spanning tree, neither
does the directed graph of D, which implies that the algebraic
multiplicity of eigenvalue 1 of D is greater than 1. As a
result, the rank of limk→∞Dk is greater than 1, which
implies that A cannot reach global consensus asymptotically.

Next, we will show that under certain conditions having a
spanning tree is also a necessary and sufficient condition for
consensus under dynamically changing interaction topologies

using the discrete update scheme. We need the following
lemma.

Lemma 3.5: If the union of a set of simple graphs
{Gi1 ,Gi2 , · · · ,Gim} ⊂ Ḡ has a spanning tree, then the
matrix product Dim · · ·Di2Di1 is SIA, where Dij is a matrix
corresponding to each simple graph Gij in Eq. (2), j =
1, · · · ,m.
Proof: From Lemma 3.1, we know that Dim · · ·Di2Di1 ≥
γ

∑m

j=1Dij for some γ > 0.
Since the union of {Gi1 ,Gi2 , · · · ,Gim} has a spanning

tree, we know that the directed graph of matrix
∑m

j=1Dij

has spanning tree, which in turn implies that the directed
graph of the matrix product Dim · · ·Di2Di1 has a spanning
tree. Also the matrix product Dim · · ·Di2Di1 is a stochastic
matrix with positive diagonal entries since stochastic matri-
ces with positive diagonal entries are closed under matrix
multiplication.

Combining Corollary 3.2 and Lemma 3.4, we know that
the matrix product Di1Di2 · · ·Dim is SIA.

The following theorem extends the discrete time conver-
gence result in [4].

Theorem 3.5: Let G(k) ∈ Ḡ be a switching interaction
graph at time t = kT . Also let αij(k) ∈ ᾱ, where ᾱ is a
finite set of arbitrary positive numbers. The discrete update
scheme (1) achieves global consensus asymptotically for A
if and only there exists an infinite sequence of bounded, non-
overlapping time intervals [kjT, (kj + lj)T ), j = 1, 2, · · · ,
starting at k1 = 0, with the property that each interval [(kj+
lj)T, kj+1T ) is bounded and the union of the graphs across
each such interval has a spanning tree.
Proof: Let D̄ denote the set of all possible matrices D(k) un-
der dynamically changing interaction topologies and weight-
ing factors. We know that D̄ is a finite set since both set Ḡ
and set ᾱ are finite.

(Sufficiency.) Consider the jth time interval [kjT, kj+1T ),
which includes the time interval [kjT, (kj + lj)T ) and
must be bounded since both [kjT, (kj + lj)T ) and [(kj +
lj)T, kj+1T ) are bounded. Also the sequence of time inter-
vals [kjT, kj+1T ), j = 1, 2, · · · , are contiguous.

The union of the graphs across [kjT, kj+1T ), denoted
as Ḡ(kj), has a spanning tree since the union of the
graphs across [kjT, (kj + lj)T ) has a spanning tree. Let
{D(kj), D(kj + 1), · · · , D(kj+1 − 1)} be a set of matrices
corresponding to each graph in the union Ḡij . Following
Lemma 3.5, the matrix product D(kj+1 − 1) · · ·D(kj +
1)D(kj), j = 1, 2, · · · , is SIA. Then by applying Lemma 3.2
and mimicking a similar proof for Theorem 2 in [4], the
sufficient part can be proved.

(Necessity.) If the sufficient condition of this theorem is
not satified, which implies that the union of the graphs does
not have a spanning tree after some finite time t̂. Therefore,
during the infinite time interval [t̂,∞), there exist at least
two agents such that there is no path in the union of the
graphs that contains these two agents, which then implies



that information of these two agents cannot reach consensus.

B. Consensus Using Continuous Time Update Scheme

It has been shown in [18] that having a spanning tree is
also a necessary and sufficient condition for consensus of
information using continuous time update scheme (3) with
a time-invariant interaction topology and constant weighting
factors, that is, constant matrix C.

Here we will show that like the discrete time case, under
certain conditions having a spanning tree is also a necessary
and sufficient condition for consensus under dynamically
changing interaction topologies using the continuous time
update scheme. We need the following lemma.

Lemma 3.6: If the union of the simple graphs
{Gt1 ,Gt2 , · · · ,Gtm

} ⊂ Ḡ has a spanning tree, then the
matrix product eCtm∆tm · · · eCt2

∆t2eCt1
∆t1 is SIA, where

∆ti > 0 is bounded and Cti
is a matrix corresponding to

each simple graph Gti
in Eq. (4), i = 1, · · · ,m.

Proof: From Eq. (4), each matrix Cti
satisfies the properties

defined in Proposition 3.1. Thus each Cti
can be written as

the sum of a nonnegative matrix Mti
and −ηti

In, where ηti

is the maximum absolute value of the diagonal entries of Cti
,

i = 1, · · · ,m.
From Lemma 1 in [18], we know that eCti

∆ti =
e−ηti

∆tieMti
∆ti ≥ ρiMti

for some ρi > 0. Since the union
of the simple graphs {Gt1 ,Gt2 , · · · ,Gtm

} has a spanning tree,
we know that the union of the directed graphs of Mti

has
a spanning tree, which in turn implies that the union of
the directed graphs of eCti

∆ti has a spanning tree. From
Lemma 3.1, we know that eCtm∆tm · · · eCt2

∆t2eCt1
∆t1 ≥

γ
∑m

i=1 e
Cti
∆ti for some γ > 0, which implies that the above

matrix product also has a spanning tree.
It can also be verified that each matrix eCti

∆ti is a stochas-
tic matrix with positive diagonal entries, which implies that
the above matrix product is also stochastic with positive
diagonal entries.

Combining Corollary 3.2 and Lemma 3.4, we know that
the above matrix product is SIA.

In this paper, we also apply dwell time (c.f. [20], [4]) to
the continuous time update scheme (4), which implies that
the interaction graph and weighting factors are constrained
to change only at discrete times, that is, matrix C(t) is
piecewise constant in this case.

Eq. (4) can be rewritten as

ξ̇(t) = C(ti)ξ(t), t ∈ [ti, ti + τi) (5)

where t0 is the initial time and t1, t2, · · · is an infinite time
sequence at which the interaction graph or weighting factors
change, that is, matrix C(t) changes.

Let τi = ti+1 − ti be the dwell time, i = 0, 1, · · · .
Note that the solution to Eq. (5) is given by ξ(t) =
eC(tk)(t−tk)eC(tk−1)τk−1 · · · eC(t1)τ1eC(t0)τ0ξ(0), where k is
the largest nonnegative integer satisfying tk ≤ t. Let τ̄ be a

finite set of arbitrary positive numbers. Let Υ be an infinite
set generated from set τ̄ , which is closed under additions
of its elements and multiplications by positive integers. We
assume that τi ∈ Υ, i = 0, 1, · · · . By choosing set τ̄ properly,
dwell time can be chosen from an infinite set Υ, which
somewhat simulates the case when the interaction graph G
changes dynamically over time.

The following theorem extends the continuous time con-
vergence result in [4].

Theorem 3.6: Let t1, t2, · · · be an infinite time sequence
at which the interaction graph or weighting factors switch
and τi = ti+1 − ti ∈ Υ, i = 0, 1, · · · . Let G(ti) ∈ Ḡ be a
switching interaction graph at time t = ti and σij(ti) ∈
σ̄, where σ̄ is a finite set of arbitrary positive numbers.
The continuous time update scheme (3) achieves global
consensus asymptotically for A if and only there exists an
infinite sequence of bounded, non-overlapping time intervals
[tij , tij+lj ), j = 1, 2, · · · , starting at ti1 = t0, with the
property that each interval [tij+lj , tij+1

) is bounded and the
union of the graphs across each such interval has a spanning
tree.
Proof: The set of all possible matrices eC(ti)τi , where τi ∈
Υ, under dynamically changing interaction topologies and
weighting factors can be chosen or constructed by matrix
multiplications from a matrix set Ē = {eC(ti)τi , τi ∈ τ̄}. It
is easy to see that set Ē is finite since set Ḡ, σ̄, and τ̄ are
all finite.

(Sufficiency.) Consider the jth time interval [tij , tij+1
),

which includes the time interval [tij , tij+lj ) and must
be bounded since both [tij , tij+lj ) and [tij+lj , tij+1

) are
bounded. Also the sequence of time intervals [tij , tij+1

),
j = 1, 2, · · · , are contiguous.

The union of the graphs across [tij , tij+1
), denoted

as Ḡ(tij ), has a spanning tree since the union
of graphs across [tij , tij+lj ) has a spanning tree.
Let {C(tij ), C(tij+1), · · · , C(tij+1−1)} be a set of
matrices corresponding to each graph in the union
Ḡ(tij ). Following Lemma 3.6, the matrix product
e
C(tij+1−1)τij+1−1 · · · eC(tij+1)τij+1e

C(tij
)τij , j = 1, 2, · · · ,

is SIA. Then by applying Lemma 3.2 and mimicking a
similar proof for Theorem 2 in [4], the sufficient part can
be proved.

(Necessity.) The necessary part is similar to that in Theo-
rem 3.5.

C. Discussions

Compared to the results in [4], which are based on
undirected graphs, our results are based on more general
directed graphs. Therefore, unidirectional information ex-
change is allowed instead of requiring bidirectional infor-
mation exchange all the time, which is more proper for real
applications since bidirectional interaction may not always
be guaranteed or available due to unreliable or limited
information exchange.



Ref. [4] shows that consensus of information (the heading
of each agent in their context) can be achieved if the union of
a collection of graphs is connected frequently enough. Here
we show that the same result can be achieved as long as
the union of the graphs has a spanning tree, which is a much
milder requirement than being connected and implies that one
half of the information exchange links required in [4] can be
lost without adversely affecting the convergence result. In
this sense, the results for convergence in [4] can be thought
of as a special case of a more general result. Of course, the
final achieved equilibrium points will depend on the property
of the directed graphs. For example, compared to strongly
connected graphs, graphs that are not strongly connected
will reach different final equilibrium points (see [18] for an
analysis of the final equilibrium points).

The leader following scenario in [4] can also be thought
of as a special case of a more general result in the following
sense. If there is one agent in the group which does not
have any incoming link all the time but the union of the
graphs across some time intervals has a spanning tree, then
this agent must be the root of the spanning tree, that is,
the leader in this case. If this happens frequently enough,
then all the other agents must reach consensus to this agent
from the general result. Therefore, being linked to the leader
frequently enough shown in [4] is just a special case of
having a spanning tree with the leader as the root frequently
enough.

For the continuous model used in [4], the switching times
of the interaction graph is constrained to be separated by τD
time units, where τD is a constant dwell time. Our continuous
update scheme allows the switching times to be within an
infinite set of positive numbers generated by any finite set
of positive numbers, which can achieve a better result for
simulating the random switching of interaction graphs. As
a result, the continuous scheme in [4] can be thought of a
special case of a general result by letting τ̄ = {τd} and
Υ = {kτd|k = 1, 2, · · · }.

Unlike the update schemes in [4], there are no constraints
for weighting factors in our discrete and continuous update
schemes as long as they are positive, which provides more
flexibility to take into account the relative confidence and
relative reliability for information from different agents. It
has been shown that each update scheme in [4] can be
thought of as a special case of our discrete time or continuous
time update scheme with certain constraints on the weighting
factors.

We also add some new results to the properties of a special
class of nonnegative matrices, that is, nonnegative matrices
with the same positive row sums. Perron-Frobenius theorem
says that if a nonnegative matrix A is irreducible, that is, the
directed graph of A is strongly connected, then the spectral
radius of A is a simple eigenvalue. We show that the above
condition of being irreducible is too stringent for nonnegative
matrices with the same positive row sums. We prove that for

a nonnegative matrix A with the same positive row sums,
the spectral radius of A (the row sum in this case) is a
simple eigenvalue if and only if the directed graph of A has
a spanning tree, that is, A may be reducible but still has its
spectral radius as a simple eigenvalue. Furthermore, if A has
a spanning tree and positive diagonal entries, we know that
the spectral radius of A is the unique eigenvalue of maximum
modulus.

IV. SIMULATION RESULTS

In this section, we simulate a case of information consen-
sus for five agents under dynamically changing interaction
topologies using the discrete time update scheme (2) and the
continuous time update scheme (5) respectively.

For simplicity, we constrain the possible interaction
graphs for these five agents to be within the set Gs =
{G1,G2,G3,G4,G5} as shown in Fig. 1, which is obviously a
subset of Ḡ. For discrete time update scheme, we assume
that the interaction graph switches randomly from Gs at
each time t = kT , where k = 0, 1, 2, · · · and T is 0.5
seconds. For continuous update scheme, we assume that the
interaction graph switches randomly from Gs at each random
time t = tk, k = 0, 1, 2, · · · . The weighting factors in
Eqs. (2) and (5) are chosen arbitrarily as long as αij(k) > 0
and σij(tk) > 0, (i, j) ∈ I and k = 0, 1, 2, · · · .

Note that each simple graph in Gs does not have a spanning
tree but the union of these graphs do have a spanning tree as
shown in Fig. 2, which satisfies the necessary and sufficient
condition for consensus. It is obvious to see that the union
of these graphs is by no means connected, which implies
that the conditions in [4] are not satisfied. However, we will
show next that these five agents can achieve global consensus
asymptotically using both the discrete time update scheme
and the continuous time update scheme.

A3

A1

A1

A2

A1

A3

A3

A4

A4

A5

Fig. 1. Possible interaction topologies for A = {Ai|i = 1, · · · , 5}.

We arbitrarily choose initial conditions for ξi(t) as ξi =
0.2∗i, i = 1, · · · , 5. Fig. 3 shows the consensus results using
both the discrete time update scheme and the continuous
time update scheme. Note that ξi(t), i = 1, · · · , 5, reaches



 A1 

A2 A3 

A4 

A5 

Fig. 2. The union of Gs.

consensus for both cases even under randomly switching
interaction topologies from Gs. We then assume that there
exists no information exchange link in G1, that is, each agent
is isolated in G1. We denote this new set of simple graphs as
G
′

s. As a result, there is no information exchange link from
A3 to A1 in the union of Gi, i = 1, · · · , 5. In this case,
the union of these simple graphs still has a spanning tree.
However, unlike the previous case shown in Fig. 2, there is
no incoming information exchange link to A1. Fig. 4 shows
the consensus results using both the discrete time update
scheme and the continuous time update scheme. Note that
ξi(t), i = 1, · · · , 5, achieves consensus to ξ1(0) in both
cases. This is similar to the leader following case in [4]
except that we do not need the followers to be jointly linked
to the leader, that is, the union of the simple graphs is not
necessarily connected.
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Fig. 3. Consensus with G(k) and G(tk) randomly switching from Gs.
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Fig. 4. Consensus with G(k) and G(tk) randomly switching from G
′

s.

V. CONCLUSION

This paper has considered the problem of information
consensus under dynamically changing interaction topologies
and weighting factors. We have applied directed graphs
to represent information exchanges among multiple agents,
which takes into account the general case when there exist
only unidirectional links between agents. We also proposed
discrete and continuous update schemes for information
consensus and gave necessary and sufficient conditions for
information consensus under dynamically changing interac-
tion topologies and weighting factors using these update
schemes. Simulation examples were presented to illustrate
our results.
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