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Abstract— This paper considers the problem of constrained
nonlinear tracking control for small fixed-wing unmanned
air vehicles equipped with longitudinal and lateral autopilots.
Four different controllers based on SDRE, Sontag’s formula,
geometric parameterization, and saturation are proposed and
compared to show their strength and weakness under differ-
ent application scenarios. Issues of measurement noise and
input uncertainties are also addressed under the input-to-state
stability framework. The effectiveness of the approaches are
demonstrated through detailed simulation studies.

I. INTRODUCTION

Controller design for systems subject to input constraints
offers both practical significance and theoretical challenges
to the control community. Although significant progress has
been made for constrained linear systems (see [1], [2]), much
fewer results are available for constrained nonlinear systems,
especially those systems with nonholonomic constraints.

Two effective approaches for the design of nonlinear
controllers are control Lyapunov functions (CLFs) [3], [4]
and receding horizon control (RHC), also named as model
predictive control (MPC), [5], [6], [7]. Both approaches
can be extended to find control laws for nonlinear systems
subject to certain input constraints. In [8] and [9], constrained
CLFs are applied to construct stabilizing universal formulas
respectively for systems with control inputs bounded in a
2-norm sense and systems with a scalar control input that
is positive and/or bounded. Input constraints can also be
incorporated into the MPC framework, which is known as the
constrained MPC (c.f. [6]). The issues existing in the RHC
approach are its computation intensity and stability concerns,
which motivates the technique involving a combination of the
CLF approach and RHC approach [10], [11].

In this paper, we consider the problem of constrained
nonlinear tracking control for small fixed-wing unmanned
air vehicles (UAVs). The inherent properties of the fixed-
wing UAVs impose the input constraints of positive miminum
velocity, bounded maximum velocity, and saturated heading
rate. Equipping the UAVs with standard longitudinal and lat-
eral autopilots, their dynamics can be modeled by kinematic
equations of motion that are similar to those of nonholonomic
mobile robots. However, the saturated tracking control laws
for mobile robots [12], [13] are not directly applicable to
our problem since negative velocities are allowed in their
approaches.

*Corresponding author.

In [14], a constrained tracking CLF is constructed and a
simple saturation controller based on this CLF is proposed
for the UAV tracking control problem, where issues like input
uncertainties and measurement noise are not considered. In
this paper, we extend the results in [14]. We propose four
different tracking controllers and compare them with each
other to show relative strength and weakness under different
situations. Among them, the first one is based on the state
dependent Riccati equation (SDRE) approach [15], [16], the
second one is based on Sontag’s formula, the third one is
based on a geometric approach, and the last one follows the
saturation controller in [14] but explicitly accounts for input
uncertainties under the input-to-state (ISS) framework [17].
Although our approach is designed specifically for certain
system dynamics, the design strategy can be applied to gen-
eral systems. That is, if a constrained CLF can be found for a
system with input constraints, the feasible set that defines all
the stabilizing controls with respect to the CLF satisfying the
input constraints can be specified accordingly (see [18] for
a complete parameterization of the unconstrained stabilizing
controls with respect to a certain CLF). Then any existing
approach that may not account for input constraints such
as universal formulas, min-norm formulas, backstepping,
sliding mode, SDRE, LQR, and so on can be projected
to the feasible set in a certain way. Different projection
strategies can be chosen based on different applications, for
example, find the closest elememt in the set. The resulting
control law not only guarantees stability but also satisfies
input constraints. In addition, direct parameterization of the
feasible set, for example, geometric approach, can also be
applied. Of course, the above design methodology requires
finding a constrained CLF, which may be challenging for
general nonlinear systems.

The remainder of the paper is organized as follows. In
Section II, we state the UAV control system architecture and
the constrained tracking control problem. In Section III, we
propose nonlinear tracking controllers based on the SDRE
approach and Sontag’s formula. In Section IV, a constrained
tracking controller based on a geometric approach is pre-
sented and input uncertainties are considered for a saturation
controller. Section V offers detailed simulation results for
these four controller and Section VI contains our conclusion.



II. PROBLEM STATEMENT

The overall system architecture considered in this paper
consists of five layers [19]: Waypoint Path Planner (WPP),
Dynamic Trajectory Smoother (DTS), Trajectory Tracker
(TT), Longitudinal and Lateral Autopilots, and the UAV as
shown in Figure 1.
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Fig. 1. System Architecture.

The WPP generates waypoint paths (straight-line seg-
ments) that change in accordance with the dynamic envi-
ronment consisting of the location of the UAV, the targets,
and the dynamically changing threats. The DTS smoothes
through these waypoints and produces a feasible time-
parameterized desired trajectory, that is, the desired position
(xr(t), yr(t)), heading ψr(t), and altitude hr(t). The TT
outputs the desired velocity command vc, heading command
ωc, and altitude command hc to the autopilots based on the
desired trajectory. The autopilots then use these commands
to control the elevator, δe, aileron, δa, deflections and the
throttle setting δt of the UAV.

With the UAV equipped with standard autopilots [20], the
resulting UAV/autopilot models are assumed to be first order
for heading and Mach hold, and second order for altitude
hold [21]. Letting (x, y), ψ, v, and h denote the inertial
position, heading angle, velocity, and altitude of the UAV
respectively, the kinematic equations of motion are given by

ẋ = v cos(ψ)

ẏ = v sin(ψ)

ψ̇ = αψ(ψc − ψ) (1)

v̇ = αv(v
c − v),

ḧ = −αḣḣ+ αh(h
c − h),

where ψc, vc, and hc are the commanded heading angle,
velocity, and altitude to the autopilots, and α∗ are positive
constants [20].

Following [21], let the altitude controller be given by

hc = h+
1

αh
[ḧr + αḣḣ− kḣ(ḣ− ḣr) − kh(h− hr)],

where hr is the desired altitude, and kh and kḣ are positive
constants.

Next we will focus on the design of the velocity and
heading controller. We assume that the velocity-heading
dynamics are adequately modeled by

ẋ = vc cos(ψ)

ẏ = vc sin(ψ) (2)

ψ̇ = ωc,

where ωc = αψ(ψc − ψ) [14]. The dynamics of the UAV
impose the following input constraints

U1 = {vc, ωc|0 < vmin ≤ vc ≤ vmax,

−ωmax ≤ ωc ≤ ωmax}. (3)

The desired trajectory (xr, yr, ψr, vr, ωr) generated by the
trajectory generator also satisfies Eq. (2) under the constraints
that vr and ωr are piecewise continuous and satisfy the
constraints

vmin + εv ≤vr ≤ vmax − εv

−ωmax + εω ≤ωr ≤ ωmax − εω, (4)

where εv and εω are positive control parameters.
By transforming the tracking errors expressed in the

inertial frame as (xr − x, yr − y, ψr − ψ) into the UVA
body frame denoted as (xe, ye, ψe) and introducing variable
changes [13], we obtain

ẋ0 = u0

ẋ1 = (ωr − u0)x2 + vr sin(x0) (5)

ẋ2 = −(ωr − u0)x1 + u1,

where
(x0, x1, x2) = (ψe, ye,−xe) (6)

and u0
4
= ωr − ωc and u1

4
= vc − vr cos(x0).

The input constraints under the transformation become

U2 = {u0, u1|ω ≤ u0 ≤ ω̄, v ≤ u1 ≤ v̄}, (7)

where v
4
= vmin − vr cos(x0), v̄

4
= vmax − vr cos(x0), ω

4
=

ωr − ωmax, and ω̄
4
= ωr + ωmax.

Note from Eq. (5) that x1 is not directly controlled by u0

and u1. To avoid this situation we introduce another change
of variables.

Let x̄0
4
= mx0 + x1

π1

, where m > 0 and π1
4
=

√

x2
1 + x2

2 + 1. Accordingly, x0
4
= x̄0

m
− x1

mπ1

. Obviously,
(x̄0, x1, x2) = (0, 0, 0) is equivalent to (x0, x1, x2) =
(0, 0, 0) and (xe, ye, ψe) = (0, 0, 0). The original tracking
control objective, that is, find vc and ωc such that |xr −
x| + |yr − y| + |ψr − ψ| → 0 as t → ∞, is converted to a
stabilization objective, that is, find control inputs u0 and u1



to stabilize (x0, x1, x2) or (x̄0, x1, x2). With the same input
constraints (7), Eq. (5) can be rewritten as

˙̄x0 = (m− x2

π1
)u0 +

x2

π1
ωr

+
1 + x2

2

π3
1

vr sin

(

x̄0

m
− x1

mπ1

)

− x1x2

π3
1

u1

ẋ1 = (ωr − u0)x2 + vr sin

(

x̄0

m
− x1

mπ1

)

(8)

ẋ2 = −(ωr − u0)x1 + u1.

Define

W (x) = γ0

(

x̄0

π2

)2

+ γ1k1 (vmin + εv)
x1

π1
sin

(

x1

mπ1

)

+γ2

(

k1 −
1

2

)(

x2

π1

)2 (

(vmin + εv) cos

(

x1

mπ1

)

− vmin

)

,

(9)

where π2
4
=

√

x̄2
0 + 1, k1 >

1
2 , γ0 > 0, 0 < γ1 < 1, and

0 < γ2 < 1.
It has been shown in [14] that for m > κ, where κ is a

positive constant made precise in [14],

V (x) =
√

x̄2
0 + 1 + k1

√

x2
1 + x2

2 + 1 − (1 + k1) (10)

is a constrained CLF for system (8) with input constraints (7)
such that

inf
u∈U2

V̇ ≤ −W (x),

where W (x) is a continuous positive-definite function given
by Eq. (9).

III. NONLINEAR TRACKING CONTROL FOR UAVS

In this section, we propose two nonlinear tracking con-
trollers for UAVs. They have the property that input con-
straints are not explicitly considered. One controller follows
the SDRE approach and the other is based on Sontag’s
formula.

A. SDRE Tracking Controller

The SDRE nonlinear regulator is derived to minimize the
performance index

J =
1

2

∫ ∞

0

xTQ(x)x+ uTR(x)udt

for the affine nonlinear system

ẋ = f(x) + g(x)u, (11)

where x ∈ IRn, u ∈ IRm, Q(x) > 0, R(x) > 0, ∀x, f(x) ∈
C1, and f(0) = 0.

Motivated by the LQR approach (c.f. [22]) for LTI sys-
tems, Eq. (11) can be represented as

ẋ = A(x)x+B(x)u, (12)

where A(x)x = f(x) and B(x) = g(x).

Under the condition that the pair (A(x), B(x)) is point-
wise stabilizable, the nonlinear state feedback control law
can be constructed as

uSDRE = −R−1(x)BT (x)P (x)x, (13)

where P (x) > 0 is obtained by solving the state-dependent
Riccati equation

ATP + PA− PBR−1BTP +Q = 0

pointwise at each state x.
It has been shown that the SDRE regulator is locally

asymptotically stable and suboptimal [16].
To this end, system (5) can be rewritten as

ẋ = A(t, x)x+B(x)u,

where x = [x0, x1, x2]
T , u = [u0, u1]

T ,

A(t, x) =





0 0 0

vr(t)
sin(x0)
x0

0 ωr(t)

0 −ωr(t) 0





and

B(x) =





1 0
−x2 0
x1 1



 .

The pointwise controllability matrix is given by C(t, x) =
[B(x), A(t, x)B(x), A(t, x)2B(x)]. It can be verified that
C(t, x) has full rank when ωr(t) 6= 0. When ωr(t) = 0
at some time t = t∗, it can be seen that C(t, x) still has
full rank if and only if x0 6= kπ, k ∈ Z \ 0. As a result,
(A(t, x), B(x)) is pointwise stabilizable as long as x0 6= kπ,
k ∈ Z \ 0.

Note that unlike the standard SDRE regulation problem,
matrix A(t, x) factorized from Eq. (11) is also an explicit
function of time since the reference velocity vr(t) and
referece heading rate ωr(t) are time-varying. The SDRE
tracking controller will be obtained by following Eq. (13)
except that the pointwise solution to the SDRE, denoted as
P (t, x), is also an explicit function of time in this case. This
results from the fact that the state is regulated to a time-
varying trajectory instead of a constant reference state. Also
note that the SDRE controller is designed according to the
original system (5) rather than the system (8) with variable
changes, which may be superior to the controllers designed
according to system (8) under some situations.

Define a saturation function as

sat(α, β, γ) =











β, α < β

α, β ≤ α ≤ γ

γ, α > γ

.

Note that the control uSDRE = [ua, ub]
T may not satisfy the

input constraints (7). The actual control will be saturated to
satisfy (7) according to a simple projection as follows:

u0 = sat(ua, ω, ω̄)

u1 = sat(ub, v, v̄). (14)



B. Tracking Controller Based on Sontag’s Formula

For system (11), a globally asymptotically stabilizing
control law known as Sontag’s formula [23], [24] is given
by

us =







−LfV+
√

(LfV )2+(LgV (LgV )T )2

LgV (LgV )T (LgV )T , LgV 6= 0

0, LgV = 0
(15)

where V (x) is a CLF for system (11).
Note that Eq. (8) can be rewritten as

ẋ = f1(t, x) + g1(t, x)u, (16)

where

f1(t, x) =









x2

π1

ωr +
1+x2

2

π3

1

vr sin
(

x̄0

m
− x1

mπ1

)

−x2ωr + vr sin
(

x̄0

m
− x1

mπ1

)

−ωrx1









and

g1(t, x) =





m− x2

π1

−x1x2

π3

1

−x2 0
x1 1



 .

The tracking controller for UAVs based on Sontag’s
formula can be defined following Eq. (15) with LfV =
∂V
∂x
f(t, x) and LgV = ∂V

∂x
g(t, x), where V (x) is the con-

strained CLF given by (10). Note that although the univer-
sal formula (15) is originally proposed for time-invariant
systems, the formula is also valid for the time-varying
system (16) due to the fact that the CLF for system (8) is not
an explicit function of time. However, there is no guarantee
that the control us(t, x) given by Eq. (15) will satisfy the
input constraints (7) since Sontag’s formula is based on the
assumption u ∈ IRm. Similar to the SDRE controller, the
actual control is a projection of us(t, x) = [uc, ud] to the
space defined by the input constraints (7) as follows

u0 = sat(uc, ω, ω̄)

u1 = sat(ud, v, v̄). (17)

IV. CONSTRAINED NONLINEAR TRACKING CONTROL

FOR UAVS

In this section, we present two other nonlinear tracking
controllers which are designed explicitly accounting for input
constraints.

A. Tracking Controller Based on Geometric Approach

Define the feasible control set as

F(t, x) = {u ∈ U2|Lf1V + Lg1V u ≤ −W (x)},
where W (x) is given by Eq. (9). Note that the fact that V
is a constrained CLF for system (16) guarantees F(t, x) is
nonempty for any t and x.

Fig. 2 and 3 show the feasible set at time t = t1 and t = t2
respectively. The line denoted by Lg1V u+ Lf1V +W = 0

u0

u1

0

LgVu+LfV+W=0

ug

-λ(LgV)T

up

Fig. 2. The feasible set F(t, x) at time t = t1.

LgVu+LfV+W=0

u0

-λ(LgV)T

0

u1

ug

up

Fig. 3. The feasible set F(t, x) at time t = t2.

separates the 2-D control space into two halves, where the
right half in Fig. 2 and the left half in Fig. 3 represent the
unconstrained stabilizing controls satisfying V̇ ≤ −W (x).
The rectangle area denotes the input constraints (7), which
is time-varying. The shaded area represents the stabilizing
controls which also satify input constraints (7), that is, the
feasible set F(t, x). In Fig. 2 and 3, ug represents the
control based on the geometric approach. Here we choose the
geometric control ug as the geometric center of the feasible
set. Obviously, such controls will stay in the feasible set at
each time.

As a comparison, we also plot the vector −λ(Lg1V )T in
both figures, where λ > 0. Note that this vector is orthogonal
to the line Lg1V u + Lf1V + W = 0. It can be verified
that the control based on Sontag’s formula in Section III-
B can be represented as us(t, x) = −χ(t, x)(Lg1V )T , where
χ(t, x) is a nonnegative scalar function of t and x. Therefore,
the control based on Sontag’s formula lies along the vector
−λ(Lg1V )T but may have a different magnitude. In Fig. 2,
we can see that the control based on Sontag’s formula may or



may not stay in the feasbile set depending on its magnitude.
However, a proper scale of the control can always bring it
back to the feasible set. With the input constraints (7), the
actual control will be a projecton of us(t, x) to the rectangle
region. As shown in Fig. 2, a projection of us(t, x), denoted
as up, is either inside the feasible set or on the boundary of
the feasible set depending on its magnitude. In either case,
the projected control based on Sontag’s formula guarantees
stability even if there are input constraints. In Fig. 3, we
can see that the control based on Sontag’s formula cannot
stay within the feasbile set even with some scaling due to
its direction. In this case, a projection of us(t, x) is not
guaranteed to stay within the feasible set. However, it is
straightforward to see that νus(t, x), where ν > 1, is still
a stabilizing control in the case of u ∈ IRm. As a result,
for a stabilizing control νus(t, x) with significantly large
magnitude, the projection of νus(t, x) to the rectangle area,
denoted as up, is guaranteed to be on the boundary of the
feasible set as shown in Fig. 3, which in turn guarantees
stability. Note that the projection of the SDRE control (14)
to the rectangle area is not guaranteed within the feasible set
since the SDRE control does not guarantee global stability
even in the case of unconstrained control inputs. That is, the
SDRE control may not even point toward the unconstrained
stabilizing area. Of course, this disadvantage can be corrected
by projecting the SDRE control to the feasible set rather than
the whole constrained input space at each time.

B. Saturation Tracking Controller Generated from the
Feasible Set

Consider the following affine nonlinear time-varying sys-
tem with control input u and exogenous input d

ẋ = f(t, x) + g(t, x)u+ gd(t, x)d, (18)

where x ∈ IRn, u ∈ IRm, d ∈ IRr, and f : IR+×IRn → IRn,
g : IR+ × IRn → IRn×m, and g : IR+ × IRn → IRn×r are
locally Lipschitz in x and piecewise continuous in t.

We have the following definition for an input-to-state
stabilizing control Lyapunov function (ISS-CLF) (see [25],
[26], [24]).

Definition 1: A continuously differentiable function V :
IR+ × IRn → IR is an ISS-CLF for system (18) if it is
positive-definite, decrescent, radially unbounded in x and
there exist class K functions α(·) and ρ(·) such that

inf
u∈IRm

LfV + LgV u+ Lgd
V d+

∂V

∂t
≤ −α(‖x‖),

∀ ‖x‖ ≥ ρ(‖d‖).
Let u = [vc, ωc]T , Eq. (8) can be rewritten as

ẋ = f2(t, x) + g2(t, x)u, (19)

where

f2(t, x) =






mωr +
1+x2

2

π3

1

vr sin(x0) + x1x2

π3

1

vr cos(x0)

vr sin
(

x̄0

m

)

−vr cos(x0)







and

g2(t, x) =





−x1x2

π3

1

−(m− x2

π1

)

0 x2

1 −x1



 .

Given W (x) in Eq. (9), where x = [x̄0, x1, x2]
T , we can

always find a class K function αw such that αw(‖x‖) ≤
W (x), ∀x, following Lemma 3.5 in [25].

Lemma 2: Let µ = sup‖x‖→∞ αw(‖x‖). If ‖Lgd
V d‖ ≤

σ(‖d‖) < θµ, where σ(·) is a class K function and 0 < θ <
1, then V (x) is also an ISS-CLF with input constraints (7)
for system

ẋ = f2(t, x) + g2(t, x)u+ gd(t, x)d, (20)

where u = [vc, ωc], d is the exogenous input, and f2(t, x)
and g2(t, x) are given in Eq. (19).

Proof: It can be seen that

inf
u∈U1

Lf2V + Lg2V u+ Lgd
V d

≤ −W (x) + Lgd
V d

≤ −αw(‖x‖) + ‖Lgd
V d‖

≤ −αw(‖x‖) + σ(‖d‖)
≤ −(1 − θ)αw(‖x‖) − θαw(‖x‖) + σ(‖d‖)

≤ −(1 − θ)αw(‖x‖), ∀ ‖x‖ ≥ α−1
w

(

σ(‖d‖)
θ

)

Note that α−1
w (·) in the last inequality is also a class K

function of ‖d‖ and is well defined since σ(‖d‖)
θ

< µ.
Note that here αw(·) is a class K function instead of a class

K∞ function, which in turn imposes constraints for ‖d‖. This
can be explained from the constrained input perspective. In
the case of d = 0, the derivative of the CLF cannot approach
−∞ as the tracking errors approach ∞ even with maximum
control authority due to the saturated controls. As a result,
αw(·) can only be a class K function in this case unlike the
case when there are no input constraints.

Let

vc =











vmin, −ηvx2 < v

−ηvx2, v ≤ −ηvx2 ≤ v̄

vmax, −ηvx2 > v̄

, (21)

ωc =











ωmax, −ηωx̄0 < ω

−ηωx̄0, ω ≤ −ηωx̄0 ≤ ω̄

−ωmax, −ηωx̄0 > ω̄

. (22)

In [14] we claimed that a variation of the the above control
law globally asymptotically stabilizes system (19) with input



constraints (3) for sufficiently large ηv > 0 and ηω > 0,
which is made precise in Appendix VIII for review purpose
since there is no explicit proof provided in [14].

It is obvious that the control law (21) and (22) rely on the
state measurement x, y, and ψ. Due to measurement noise,
there exist input uncertainties for system (19). We denote the
actual control input to system (19) as u = [vc + ∆v, ωc +
∆ω]T , where vc and ωc are given by Eqs. (21) and (22) and
∆v and ∆ω represent the uncertainties. Due to saturation
constraints, we know that |∆v| ≤ vmax − vmin and |∆ω| ≤
2ωmax.

We have the following lemma considering input uncertain-
ties.

Lemma 3: Let b = [k1+
1
2 ,m+1]T and ∆u = [∆v,∆ω]T .

If ‖b‖ ‖∆u‖ < θµ, where 0 < θ < 1, then V (x) given by
Eq. (10) is an ISS-Lyapunov function for system (20) with
control input u = [vc, ωc]T given by Eqs. (26) and (27),
gd(t, x) = g2(t, x), and d = ∆u.

Proof: Noting that ∂V
∂x

= [ x̄0

π2

, k1
x1

π1

, k1
x2

π1

], we get that

Lgd
V = [− x̄0

π2

x1x2

π3
1

+ k1
x2

π1
,−(m− x2

π1
)
x̄0

π2
].

It can be verified that

‖Lgd
V∆u‖ ≤ ‖Lgd

V ‖ ‖∆u‖ ≤ ‖b‖ ‖∆u‖ ,
where the last inequality follows the fact that
∣

∣

∣
− x̄0

π2

x1x2

π3

1

+ k1
x2

π1

∣

∣

∣
≤ k1 + 1

2 and
∣

∣

∣
−(m− x2

π1

) x̄0

π2

∣

∣

∣
≤ m+ 1.

The result then directly follows Lemma 2.

V. SIMULATION RESULTS

In this section, we simulate several scenarios where the
four tracking controllers proposed in Section III and IV
are applied to a small fixed-wing UAV to track a time-
parameterized desired trajectory that satisfies the con-
straints (4).

The parameters used in the simulation are chosen as
αψ = 5, αv = 50, εv = 0.2 (m/s), εω = 0.2 (rad/s),
k1 = 2, γ0 = γ1 = γ2 = 0.5, ηω = ηv = 10, and m = 1.
Note that the value for m is much lower than the theoretical
lower bound defined in [14]. However, as we will see in the
following, the controllers work well using this value, which
implies the robustness of the controllers to parameter vari-
ations. We assume arbitrarily that the commanded velocity
and heading rate are saturated at vc ∈ [1.0, 1.8] (m/s) and
|ωc| ≤ 1.5 (rad/s) to test the performance of the controllers.

Fig. 4 shows the desired trajectory generated from the
DTS and the actual trajectories generated from the four
tracking controllers under small initial errors. For the SDRE
controller, the weighting matrices are chosen as Q(x) =
diag([1, 1, 1]) and R(x) = 100

(
√
x2

0
+x2

1
+x2

2
+0.2)

diag([1, 1]).

Fig. 5 shows the distance and heading tracking errors and
Fig. 6 shows the desired and actual control inputs under the
same initial conditions. We can see that all four controllers
guarantee asymptotic tracking. Although the controller based

on Sontag’s formula does not explicitly consider the input
constraints, the tracking errors using the projection of that
controller converge fastest. On the other hand, the controller
based on the geometric approach converge slowest, which is
due to the slow convergence of the heading in this case. In
addition, both the control inputs based on Sontag’s formula
and the geometric approach have chattering phenomenon
compared to the SDRE and saturation controllers. This can be
explained from the perspective that the desired heading rate
is highly switching and discontinuous (piecewise continuous
in this case) and the original Sontag’s formula is designed for
smooth functions and has no saturation considerations. As a
comparison, saturation controller is designed with respect to
the properties of the original system and accouts for the input
constraints explicitly. The SDRE controller can also achieve
good performance even if there is no explicit consideration
for input constraints in the controller design.

Fig. 7 and 8 show the desired actual trajectories and
the tracking errors respectively under large initial errors.
The weighting matrices for the SDRE controller are chosen
the same as the small inital errors case. It can be seen
that the saturation controller and the controller based on
the geometric approach are superior to the other two by
explicitly accounting for the input constraints during the
controller design procedure. In fact, the SDRE controller has
the worst performance for heading tracking due to heading
rate saturation.

Fig. 9 and 10 show a comparison between the SDRE
controller and the saturation controller under small and large
initial errors respectively. Here the weighting matrices for
the SDRE controller is chosen as Q(x) = diag([1, 1, 1])
and R(x) = diag([8, 10]). We can see that by properly
choosing the weighting matrices Q(x) and R(x), the SDRE
controller can achieve better performance than the saturation
controller under small initial errors in Fig. 9, which can be
expected since the SDRE controller is proved to be locally
asymptotically stable and suboptimal. However, using the
same weighting matrices but under large initial errors , the
SDRE controller achieves much worse performance than the
saturation controller as shown in Fig. 10 due to the input
constraints.

Fig. 11 and 12 show the performance of the SDRE
controller without and with input constraints respectively,
where Q(x) = diag([1, 1, 1]) and R(x) = diag([0.1, 0.01]).
We can see that the SDRE controller becomes unstable with
these inapproapiate weighting matrices as shown in Fig. 11.
Even if good tracking performance can be achieved without
input constraints in Fig. 12, huge control efforts are needed
in this case.

Fig. 13 shows the tracking errors of the four controllers
with measurement noise. Here we assume that there are
zero mean and unit variance white nosie associated with the
position measurement and zero mean and 15 degree variance
white noise associated with the heading measurement. The



weighting matrices for the SDRE controller are chosen the
same as those in Fig. 9 and 10. We can see that the saturation
controller has the smallest steady-state tracking errors. Under
the same settings, the SDRE controller is no longer superior
to the saturation controller subject to measurement noise
compared to Fig. 9.
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VI. CONCLUSION

Constrained nonlinear tracking control for unmanned air
vehicles is studied. Non-CLF based control approach and
constrained CLF based control approaches are derived to
achieve asymptotically tracking. Input uncertainties are also
addressed using input-to-state stability. Detailed simulation
results showed the advantage and disadvantage of each
approach under different situations.
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VIII. APPENDIX

Define

M3
4
= max{0, sup

0<|α|<1

|β|<1

0<c≤1

(α2 + 1)
ρ1

α2
} (23)

M4
4
= max{0, sup

0<α<1

|β|<1

(α2 + 1)
ρ2

α2
} (24)

M5
4
= max{0, sup

0<|α|<1

(α2 + 1)
ρ3

α2
}, (25)
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where

ρ1 =

(

k1β +
α√

α2 + 1
c

)

sin

(

α− β

m

)

+ k1γ1β sin

(

β

m

)

ρ2 =
|α|√
α2 + 1

(ωmax − εω)

+ (k1 −
1

2
)

[

vmin − (vmin + εv) cos

(

α− β

m

)]

+ γ2(k1 −
1

2
)

[

(vmin + εv) cos

(

β

m

)

− vmin

]

ρ3 =
|α|√
α2 + 1

(ωmax − εω) + (k1 −
1

2
)(γ2 − 1)εv,

and k1, γ1, γ2, and m are defined in Section II.
It is easy to see that M3, M4, and M5 in Eqs. (23), (24),
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under large initial errors.
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Fig. 11. The performance of SDRE controller using inappropriate weighting
matrices with input constraints.

and (25) are bounded as |α| approaches 1. Note that 1 <
(α2 + 1) < 2 since 0 < |α| < 1. For Eq. (23), two cases
will be considered with regard to β. In the case of β = 0,
(α2 + 1)ρ1/α

2 = (
√
α2 + 1)c sin( α

m
)/α, which is bounded

by 1/m as α approaches 0. In the case of β 6= 0, as |α|
approaches 0, ρ1 approaches k1(γ1 − 1)β sin( β

m
), which is

negative since 0 < γ1 < 1 and
∣

∣

∣

β
m

∣

∣

∣
< 1

m
< π

4 following m >

κ [14]. Thus M3 = 1/m as |α| approaches 0. For Eq. (24), as
|α| approaches 0, ρ2 approaches (k1−1/2)(γ2−1)[(vmin+

εv) cos
(

β
m

)

− vmin], which is also negative following m >

κ [14]. Thus M4 = 0 as |α| approaches 0. For Eq. (25), as |α|
approaches 0, ρ3 approaches (k1− 1

2 )(γ2−1)εv , which is also
negative. Thus M5 = 0 as |α| approaches 0. Therefore M3,
M4, and M5 are finite and can be found by straightforward
numerical techniques.



0 1 2 3
0

10

20

30

40

t (s)

||[
x r−

x,
y r−

y]
T
|| 2 (

m
)

0 1 2 3
−2

−1.5

−1

−0.5

0

0.5

t (s)

ψ
r−

ψ
 (

ra
d)

0 1 2 3
−100

0

100

200

300

400

t (s)

vc  (
m

/s
)

0 1 2 3
−5

−4

−3

−2

−1

0

1

2

t (s)

ω
c  (

ra
d/

s)

Fig. 12. The performance of SDRE controller using inappropriate weighting
matrices without input constraints.
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Lemma 4: If

vc =











vmin, −ηvx2 < v

−ηvx2, v ≤ −ηvx2 ≤ v̄

vmax, −ηvx2 > v̄

, (26)

ωc =











ωmax, −ηωx̄0 < ω

−ηωx̄0, ω ≤ −ηωx̄0 ≤ ω̄

−ωmax, −ηωx̄0 > ω̄

, (27)

and

ηω > max{εω,
d3

m− 1
,

d4

m− 1
} (28)

ηv >
ωmax − εω
2k1 − 1

+ γ2εv, (29)

where

d3 = M3(vmax − εv) + γ0 +
1

2
(ωmax − εω)

d4 = M3(vmax − εv) + γ0 + max{M4,M5},

then u = [vc, ωc]T globally asymptotically stabilizes sys-
tem (19).

Proof: To show that u = [vc, ωc]T globally asymp-
totically stabilizes system (19), it is equivalent to show
that ksat(t, x) = [u0, u1] globally asymptotically stabilizes
system (16), where

u0 =











ω, −ηωx̄0 < ω

−ηωx̄0, ω ≤ −ηωx̄0 ≤ ω̄

ω̄, −ηωx̄0 > ω̄

(30)

u1 =











v, −ηvx2 < v

−ηvx2, v ≤ −ηvx2 ≤ v̄

v̄, −ηvx2 > v̄

. (31)

Obviously ksat(t, x) is locally Lipschitz in x and piece-
wise continuous in t. We will show that V̇ = Lf1V +
Lg1V ksat(t, x) ≤ −W (x).

Note that

V̇ +W (x) = δ1 + δ2 + δ3 + δ4, (32)

where

δ1 = σ3 +
x̄0

π2

1 + x2
2

π3
1

vr sin

(

x̄0

m
− x1

mπ1

)

δ2 =
x̄0

π2

(

m− x2

π1

)

u0 + γ0

(

x̄0

π2

)2

δ3 =
x̄0

π2

x2

π1
ωr

δ4 = σ1u1 + σ2,

where

σ1 =

(

k1 −
x̄0x1

π2π2
1

) (

x2

π1

)

σ2 = γ2(k1 −
1

2
)

(

x2

π1

)2 [

(vmin + εv) cos

(

x1

mπ1

)

− vmin

]

σ3 = k1

(

x1

π1

)[

vr sin(
x̄0

m
− x1

mπ1
) + γ1(vmin + εv) sin

(

x1

mπ1

)]

.

Four cases will be considered as follows.
Case 1: −ηωx̄0 /∈ [ω, ω̄] and −ηvx2 /∈ [v, v̄].
In this case, the saturation functions are the same as the
discontinuous signum like functions used to prove that V is
a CLF in [14], which implies that V̇ ≤ −W (x) in this case.
Case 2: −ηωx̄0 ∈ [ω, ω̄] and −ηvx2 ∈ [v, v̄].
In this case, we can see that u0 = −ηωx̄0 and u1 = −ηvx2.
We also know that |x̄0| < 1 since ηω > εω .



Noting that

δ1 ≤M3(vmax − εv)

(

x̄0

π2

)2

(33)

δ2 ≤ [−(m− 1)ηω + γ0]

(

x̄0

π2

)2

(34)

δ3 ≤ 1

2

[

(

x̄0

π2

)2

+

(

x2

π1

)2
]

(ωmax − εω) (35)

δ4 ≤ (k1 −
1

2
)(γ2εv − ηv)

(

x2

π1

)2

, (36)

where Eq. (33) comes from Eq. (23) by letting α = x̄0,
β = x1/π1, and c = (1 + x2

2)/π
3
1 , and Eq. (35) follows

Young’s Inequality. Therefore,

V̇+W (x) ≤ [d3 − (m− 1)ηω]

(

x̄0

π2

)2

+

[

1

2
(ωmax − εω) + (k1 −

1

2
)(γ2εv − ηv)

] (

x2

π1

)2

,

which is nonpositive since ηω > d3/(m − 1) and ηv >
ωmax−εω

2k1−1 + γ2εv .
Case 3: −ηωx̄0 ∈ [ω, ω̄] and −ηvx2 /∈ [v, v̄].
In this case, |x̄0| < 1, δ1 and δ2 follow the same inequal-

ities (33) and (34), and δ3 ≤
(

|x2|
π1

) (

|x̄0|
π2

)

(ωmax − εω).
Note that v < 0 from m > κ [14] and v̄ ≤ εv . If
−ηvx2 < v, we can get that x2 > − v

ηv
> 0. Thus

(δ3 + δ4) ≤
(

|x2|
π1

)

M4

(

x̄0

π2

)2

≤ M4

(

x̄0

π2

)2

. If −ηvx2 > v̄,

we can get that x2 < − v̄
ηv

< 0. Thus (δ3 + δ4) ≤
∣

∣

∣

x2

π1

∣

∣

∣
M5

(

x̄0

π2

)2

≤ M5

(

x̄0

π2

)2

. Therefore, V̇ + W (x) ≤ 0

since ηω > d4/(m− 1).
Case 4: −ηωx̄0 /∈ [ω, ω̄] and −ηvx2 ∈ [v, v̄].
In this case, u0sign(x̄0) ≤ −εω and δ4 follows the same

inequality (36). It can be seen that (σ1u1 + σ2)
4
= δ4 ≤ 0

since ηv > γ2εv . We can see that V̇ +W (x) ≤ −εω |x̄0|
π2

(m−
x2

π1

) + σ3 + σ4. Then following the proof that V is a CLF
in [14], we know that V̇ + W (x) ≤ 0 is guaranteed based
on the choice of m.

Combining these four cases gives the desired result.
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