
AIAA-2003-6559

AUTONOMOUS VEHICLE TECHNOLOGIES

FOR SMALL FIXED WING UAVS

Derek Kingston1, ∗Randal Beard1, Timothy McLain2, Michael Larsen3, Wei Ren1

1Electrical and Computer Engineering
2Mechanical Engineering

Brigham Young University,

Provo, UT 84602

3Information Systems Laboratory, Inc.

San Diego, CA 92121

Abstract

Autonomous unmanned air vehicle flight con-
trol systems require robust path generation to ac-
count for terrain obstructions, weather, and moving
threats such as radar, jammers, and unfriendly air-
craft. In this paper, we outline a feasible, hierarchal
approach for real-time motion planning of small au-
tonomous fixed-wing UAVs. The approach divides
the trajectory generation into four tasks: waypoint
path planning, dynamic trajectory smoothing, tra-
jectory tracking, and low-level autopilot compensa-
tion. The waypoint path planner determines the ve-
hicle’s route without regard for the dynamic con-
straints of the vehicle. This results in a signifi-
cant reduction in the path search space, enabling
the generation of complicated paths that account for
pop-up and dynamically moving threats. Kinematic
constraints are satisfied using a trajectory smoother
which has the same kinematic structure as the phys-
ical vehicle. The third step of the approach uses a
novel tracking algorithm to generate a feasible state
trajectory that can be followed by a standard autopi-
lot. Monte-Carlo simulations were done to analyze
the performance and feasibility of the approach and
determine real-time computation requirements. A
planar version of the algorithm has also been im-
plemented and tested in a low-cost micro-controller.
The paper describes a custom UAV built to test the
algorithms.

1 Introduction

The increasing power of computational resources
makes possible the development of autonomous

∗Corresponding author, email:beard@ee.byu.edu

flight control systems which are capable of dealing
with the complex task of path planning in dynamic
and uncertain environments. Unmanned aerial ve-
hicles (UAVs) require robust, real-time path gener-
ation to account for terrain obstructions, weather,
and moving threats such as radar, jammers, and un-
friendly aircraft. Such path planning algorithms and
route navigation aids are needed to accomplish en-
visioned future UAV missions.1

There are two general approaches to trajectory
generation: interpolation of a trajectory database
and formulation of the trajectory as the solution to
an optimal control problem. Methods which query
and interpolate trajectory databases fall into several
categories: probabilistic roadmaps,2 lazy probabilis-
tic roadmaps,3 and rapidly-exploring trees.4,5 Prob-
abilistic roadmaps are path-planning algorithms
which consist of off-line building of a graph of
uniformly spaced randomly selected configurations
called milestones. A recent extension6 of the prob-
abilistic roadmap approach uses Lyapunov function
scheduling to deal with system dynamics in an envi-
ronment with moving obstacles. For aerospace sys-
tems with complex high-dimensional dynamics, this
motion planning approach is based on a quantiza-
tion of system dynamics into a library of feasible
trajectory primitives.7

Trajectory generation via numerical solution of
optimal control problems8–11 is computationally in-
tensive and requires recently developed techniques
from geometric nonlinear control theory for feasible
implementation. These techniques are based on find-
ing a differentially flat output for the system.12–14

From such an output and its derivatives, the com-
plete differential behavior of the system can by re-
constructed. In Ref. 15, 16, a flat output is used
to find a lower dimensional space in which trajec-

Copyright c©2003 American Institute of Aeronautics

and Astronautics, Inc. All rights reserved.

1



tory curves are generated using B-splines and se-
quential quadratic programming. In a similar vein,
Refs. 17, 18 transform the nonlinear optimization
problem to a linear one using feedback lineariza-
tion, which requires finding a flat output, making it
possible to convert constrained dynamic optimiza-
tion problems into unconstrained ones. In Ref. 19,
the differential flatness property was used to develop
an iterative approach to finding a feasible solution
which satisfies terminal path constraints using an
H∞ estimator.

The path planner described in this paper uses
a modified Voronoi diagram20 to generate possi-
ble paths. The Voronoi diagram is then searched
via Eppstein’s k-best paths algorithm.21 Simi-
lar path planners have been previously reported in
Refs. 22–24. The basic idea is to plan a polygo-
nal path through a set of threats using a Voronoi
algorithm in connection with an A* or Dijkstra al-
gorithm. The polygonal paths are then made flyable
by a trajectory smoother that dynamically smooths
through the corners of the paths such that the cur-
vature of the smoothed path is flyable by the UAV.
The described algorithm works well when the mini-
mum turning radius is small compared to the path
links.

An overview of the system architecture is set forth
in Section 2. Sections 3 describes the small UAVs
used at BYU and the associated on-board comput-
ing and sensor hardware. Sections 4 and 5 explain
our approach to the autopilot design, and the asso-
ciated ground station. The trajectory tracker, tra-
jectory smoother, and path planner are described in
Sections 6, 7, and 8, respectively.

2 System Architecture

The architecture set forth in this paper is built
around a systematic division of the problem into five
distinct hierarchical layers: path planning, trajec-
tory smoothing, trajectory tracking, autopilot, and
the UAV. In this paper, paths refer to a series of way-
points which are not time-stamped, while trajecto-
ries will refer to time-stamped curves which specify
the desired inertial location of the UAV at a specified
time. Figure 1 shows a schematic of the architecture.
At the top level is a path planner (PP). It is assumed
that the PP knows the location of the UAV, the tar-
get, and the location of a set of threats. The PP
generates a path

P = {v, {w1,w2, . . . ,wN}} ,

Human
I nt e r f ac e

P at h  P l anne r

T r aj e c t o r y  S mo o t h e r

T r aj e c t o r y  T r ac k e r

A ut o p i l o t

U A V

List of waypoints

D esired
Position &  Heading

Sensors

Serv o
Loop
E rror

Tracking
E rror

Heading
Position

Figure 1: Proposed system architecture.

where v ∈ [vmin, vmax] is a feasible velocity and {wi}
is a series of waypoints which define straight-line seg-
ments along which the UAV attempts to fly. Note
that at the PP level, the path is compactly rep-
resented by P. Higher level decision making algo-
rithms reason and make decisions according to the
data represented in P.

The Trajectory Smoother (TS) transforms, in
real-time, the waypoint trajectory into a time pa-
rameterized curve which defines the desired iner-
tial position of the UAV at each time instant. The
output of the TS is the desired trajectory zd(t) =
(zdx(t), z

d
y(t))

T at time t.

The Trajectory Tracker (TT) transforms zd(t)
into desired velocity command V d, altitude com-
mand hd, and heading command ψd. The autopilot
receives these commands and controls the elevator,
δe, and aileron, δa, deflections and the throttle set-
ting δt.

Recognizing that it will be useful for human op-
erators to interact with the UAV at different au-
tonomy levels, careful attention has been given to
the human interface. As shown in Figure 1, the
human can interact with the UAV at the stick-
and-throttle level, the autopilot command level, the
time-parameterized trajectory level, or at the way-
point path planning level.

3 UAV Hardware

The BYU MAGICC lab currently operates a fleet
of four small, low cost, fixed-wing UAVs, one of
which is shown in Figure 2. Specifications for two
of the airframes are given in Table 3. Our UAVs
are constructed from EPP foam and are extremely
durable, having survived multiple crashes. The air-
frame is an in-house design patterned after ZAGI
gliders, which are popular dogfight planes in the RC
hobby community.25 The UAVs are powered by an

2



Figure 2: BYU UAV MAGICC II.

electric motor in a push propeller configuration and
are hand launched and belly landed. The plane is
actuated by two elevons. Fixed wing tips provide
vertical stabilization.

MAGICC I MAGICC II
Wingspan 60 in. 38 in.
Payload 32 oz. 8 oz.
Flight time 15 min. 30 min.
Cruise Speed 30 mph 35 mph
Max Speed 45 mph 65 mph
Min Speed 15 mph 15 mph

Table 1: Specifications for BYU UAVs.

In addition to the airframe, we have designed the
autopilot board shown in Figure 3. The CPU on
the autopilot is a 29 MHz Rabbit microcontroller
with 512K Flash and 512K RAM. The autopilot has
four servo channels, two 16 channel, 12 bit analog-
to-digital converters, four serial ports, and five ana-
log inputs. On-board sensors include three-axis rate
gyros with a range of 300 degrees per second, three
axis accelerometers with range of two g’s, an abso-
lute pressure sensor capable of measuring altitude
to within two feet, a differential pressure sensor ca-
pable of measuring airspeed to within 0.36 feet per
second, and a standard GPS receiver. The autopilot
package weighs 2.25 ounces including the GPS an-
tenna. The size of the autopilot is roughly 3.5 inches
by 2 inches.

Communication between the airplane and the
ground station is accomplished via a low-cost
900 MHz wireless modem.

Figure 3: BYU autopilot hardware.

4 Autopilot Design

In this section we briefly describe the autopilot
design as well as the design of a three state Kalman
filter to produce an attitude estimate. Following
standard procedures,26–28 we have assumed that the
longitudinal and lateral dynamics of the UAV are de-
coupled and have designed longitudinal and lateral
autopilots independently. As shown in Figure 4, the
inputs to the longitudinal autopilot are commanded
altitude, hc and commanded velocity, V c. The out-
puts are the elevator deflection, δe, and the throttle
command, δt. The Altitude Hold autopilot converts
altitude error into a commanded pitch angle θc. The
Pitch Attitude Hold autopilot converts pitch atti-
tude error into a commanded pitch rate qc. The
Pitch Rate Hold autopilot converts pitch rate error
to elevator command. The Velocity Hold autopilot
converts velocity error to throttle command.

Velocity
h old

Velocity
h old UAVUAV

P itch  R a te
H old

P itch  R a te
H old UAVUAV

P itch  A ttitu d e
H old

P itch  A ttitu d e
H old

A ltitu d e
H old

A ltitu d e
H old

Figure 4: Autopilot for longitudinal motion.

The lateral autopilot is shown in Figure 5. The
input command to the lateral autopilot is the com-
manded heading, ψc. The output is the aileron
command δa. The Heading Hold autopilot converts
heading error to roll attitude command, φc. The
Roll Attitude Hold autopilot converts roll angle er-
ror to roll rate command, pc. The Roll Rate Hold
autopilot converts the roll rate error to aileron com-

3



mand, δa. Each autopilot mode is realized with a
PID controller augmented with output saturation
and integrator anti-windup.

Roll Rate
H old

Roll Rate
H old UAVUAV

Roll A tti tu d e
H old

Roll A tti tu d e
H old

H ead i n g
H old

H ead i n g
H old

Figure 5: Autopilot for lateral motion.

Unfortunately, roll and pitch angles are not di-
rectly measurable with low-cost sensors. In addi-
tion, heading angle is measured with GPS at very
low data rates. To compensate, the autopilot has
been augmented with an Extended Kalman Filter
(EKF) to estimate roll, pitch, and heading angle.
The EKF uses rate gyro information to do the time
update and the accelerometers in combination with
the airspeed sensor to do the measurement update.

The EKF time update equations are as follows:

φ̇ = p+ q sinφ tan θ + r cosφ tan θ (1)

θ̇ = q cosφ− r sinφ (2)

ψ̇ = q sinφ sec θ + r cosφ sec θ (3)

where p, q, and r are roll, pitch, and yaw rates as
measured by on-board rate gyros. A simple Euler
approximation is used to convert to a discrete update
equation.

Part of the complication of estimating roll and
pitch angles is the lack of a good sensor to measure
them directly. However, roll and pitch angles can
be approximated using accelerometer measurements.
The basic idea is to use an estimate of the direction
of the gravity vector to extract roll and pitch angles.
This can be done from the following set of equations:

u̇ = −g sin θ +Ax + vr − wq (4)

v̇ = g sinφ cos θ +Ay − wr + wp (5)

ẇ = g cosφ cos θ +Az + uq − vp (6)

where A∗ are the accelerometer measurements, and
u, v, w are the body velocities of the UAV. Because
u, v, and w are not measured, some simplifying as-
sumptions need to be made. First, we assume that
u̇, v̇, and ẇ are zero. This is true over short periods
of time as well as in steady-state flight. The next
assumption is to notice that in steady-state flight
(coordinated turn or level flight) w ≈ 0. The last
assumption is that u and v are some unknown fac-
tor of airspeed (Vp). Through analysis of flight data
on our UAVs the following have been determined to

be decent measurements of roll and pitch:

θm = sin−1

(

Ax − 0.2Vpq

g

)

, (7)

φm = sin−1

(

−Ay + 0.4Vpr

g cos θm

)

. (8)

These measurements, along with a GPS heading
measurement, are used to do the EKF measurement
update. Figure 6 shows the filter output (blue) ver-
sus the measured values (green). This was generated
from real data gathered from the airplane.

Figure 6: EKF (blue) vs measured (green) of roll,
pitch, and heading

5 Ground Station

Figure 7: Virtual Cockpit Interface

Essential to development, debugging, and visual-
ization is the Ground Station. This software package

4



allows easy interface to everything on the UAV; from
raw analog-to-digital sensor readings to the current
PID values in the control loops. Every second, sta-
tus packets are sent to the Ground Station from
the UAV over a 900 MHz wireless link to indicate
the state of the airplane and its controllers. This
allows for real-time plotting of position (map and
waypoints), altitude, airspeed, etc. It also allows
the user to be aware of GPS status, battery voltage,
and communication link status.

The Ground Station was designed primarily to
help tune the autopilot. To this end, a user-
configurable data-logging tool was added. The Data-
logger commands the autopilot to store the state of
the airplane for a specified period of time. When
the log is completed, it is transmitted back to the
Ground Station for viewing. This is especially help-
ful to see what the UAV was planning and com-
manding during maneuvers. Essentially everything
the autopilot keeps track of can be data-logged, al-
lowing the user to reconstruct a flight as the autopi-
lot viewed it. This capability has been used to de-
bug the autopilot, build Kalman filters, and develop
waypoint navigation capability.

Figure 8: User-Configurable Data Log Interface

Because the autopilot control system is made up of
PID loops, tuning the PID values is very important
to the performance of the UAV. To facilitate this,
a real-time PID tuning and graphing utility is inte-
grated into the Ground Station. It allows the user
to request and set PID values on any loop while also
providing the capability to command steps, ramps,
and square waves to the different loops. These com-
mands are plotted next to the performance of the
UAV in real-time. Using the graphical information,
the user can easily adjust values to tune the loops to
desired specifications. This autopilot has been flown
on a number of different platforms, each requiring
the PID loops to be re-tuned. Using the Ground
Station has accelerated the tuning process, so that
the autopilot can be tuned for a new UAV less than

15 minutes.

Figure 9: Ground-station: PID Tuning.

To enable research geared toward designing ro-
bust and intuitive user interfaces, the Ground Sta-
tion allows other platforms to connect to the UAV
via a simple Application Program Interface (API).
This allows any device to become the interface to
the UAV. Our UAV has been controlled through a
voice activated headset and also through a hand-held
PDA.

6 Trajectory Tracker

This section gives a brief overview of our trajec-
tory tracker. A complete description is contained in
Refs. 29,30. We will assume that the UAV/autopilot
combination is adequately modeled by the kinematic
equations

ẋ = vc cos(ψ)

ẏ = vc sin(ψ) (9)

ψ̇ = ωc,

where (x, y) is the inertial position of the UAV, ψ is
its heading, vc is the commanded linear speed, and
ωc is the commanded heading rate. The dynamics
of the UAV impose input constraints of the form

0 < vmin ≤v
c ≤ vmax

−ωmax ≤ω
c ≤ ωmax. (10)

As we will describe in the next section, the trajec-
tory generator produces a reference trajectory that
satisfies

ẋr = vr cos(ψr)

ẏr = vr sin(ψr) (11)

ψ̇r = ωr

5



under the constraints that vr and ωr are piecewise
continuous and satisfy the constraints

vmin + εv ≤vr ≤ vmax − εv (12)

−ωmax + εω ≤ωr ≤ ωmax − εω,

where εv and εω are positive control parameters.
The trajectory tracking problem is complicated by

the nonholonomic nature of Equations (9) and the
input constraint on the commanded speed vc.

The first step in the design of the trajectory
tracker is to transform the tracking errors to the
UAV body frame as follows:





xe
ye
ψe



 =





cos(ψ) sin(ψ) 0
− sin(ψ) cos(ψ) 0

0 0 1









xr − x
yr − y
ψr − ψ



 .

(13)
Accordingly, the tracking error model can be repre-
sented as

ẋe = ωcye − v
c + vr cos(ψe)

ẏe = −ω
cxe + vr sin(ψe) (14)

ψ̇ = ωr − ω
c.

Following Ref. 31, Eq. (14) can be simplified to

ẋ0 = u0

ẋ1 = (ωr − u0)x2 + vr sin(x0) (15)

ẋ2 = −(ωr − u0)x1 + u1,

where




x0
x1
x2



 =





ψe
ye
−xe



 (16)

and
[

u0
u1

]

=

[

ωr − ω
c

vc − vr cos(x0)

]

.

The input constraints under the transformation
become

−εω ≤ u0 ≤ εω

vmin − vr cos(x0) ≤ u1 ≤ vmax − vr cos(x0). (17)

Obviously, Eqs. (13) and (16) are invertible trans-
formations, which means (x0, x1, x2) = (0, 0, 0)
is equivalent to (xe, ye, ψe) = (0, 0, 0) and
(xr, yr, ψr) = (x, y, ψ). Therefore, the original track-
ing control objective is converted to a stabilization
objective, that is, our goal is to find feasible control
inputs u0 and u1 to stabilize x0, x1, and x2.

Note from Eq. (15) that when both x0 and x2 go to
zero, that x1 becomes uncontrollable. To avoid this

situation we introduce another change of variables.
Let

x̄0 = mx0 +
x1
π1
, (18)

where m > 0 and π1
4
=

√

x21 + x22 + 1. Accordingly,
x0 = x̄0

m
− x1

mπ1
. Obviously, (x̄0, x1, x2) = (0, 0, 0)

is equivalent to (x0, x1, x2) = (0, 0, 0). Therefore
it is sufficient to find control inputs u0 and u1 to
stabilize x̄0, x1, and x2. With the same input con-
straints (17), Eq. (15) can be rewritten as

˙̄x0 = (m−
x2
π1

)u0 +
x2
π1
ωr

+
1 + x22
π31

vr sin

(

x̄0
m
−

x1
mπ1

)

−
x1x2
π31

u1

ẋ1 = (ωr − u0)x2 + vr sin(
x̄0
m
−

x1
mπ1

) (19)

ẋ2 = −(ωr − u0)x1 + u1.

In Refs. 29, 30 we have shown that if

u0 =

{

−η0x̄0, |η0x̄0| ≤ εω

−sign(x̄0)εω, |η0x̄0| > εω
(20)

u1 =











v, −η1x2 < v

−η1x2, v ≤ −η1x2 ≤ v̄

v̄, −η1x2 > v̄

, (21)

where v = vmin− vr cos
(

x̄0

m
− x1

mπ1

)

and v̄ = vmax−

vr cos
(

x̄0

m
− x1

mπ1

)

, and η0 and η1 are sufficiently

large (made precise in Refs. 29,30), then the tracking
error goes to zero asymptotically.

Note the computational simplicity of Equa-
tions (20)-(21). We have found that the tracker can
be efficiently implemented on the autopilot hardware
discussed in Section 3.

Figure 10 shows a reference trajectory of the UAV
in green and the actual UAV trajectory in blue.
Figure 11 plots the tracking errors verses time and
demonstrates the asymptotically stable characteris-
tics of the trajectory tracker.

7 Trajectory Smoother

The Trajectory Smoother (TS) translates a
straight-line path into a feasible trajectory for
a UAV with velocity and heading rate con-
straints. Our particular implementation of tra-
jectory smoothing also has some nice theoretical
properties including time-optimal waypoint follow-
ing.32,33

6



Figure 10: The simulation scenario: waypoint path
(green), smoothed reference trajectory (red), and ac-
tual trajectory (blue).

0 5 10 15 20 25
−2

−1

0

1

time (s)

x r−
x 

(m
)

0 5 10 15 20 25
−1.5

−1

−0.5

0

time (s)

y r−
y 

(m
)

0 5 10 15 20 25
−1

−0.5

0

0.5

time (s)

ψ
r−

ψ
 (

ra
d)

Figure 11: The trajectory tracking errors expressed
in the inertial frame.

We start by assuming that an auto-piloted UAV
is modeled by the kinematics equations given in
Eq. (9), with the associated constraints given in
Eq. (10).

The fundamental idea behind feasible, time-
extremal trajectory generation is to impose on TS a
mathematical structure similar to the kinematics of
the UAV. The structure of the TS is given in Eq. (11)
with constraints given by Eq. (12). To simplify no-
tation, let c = ωmax − εω.

With the velocity fixed at v̂, the minimum turn
radius is defined as R = v̂/c. The idea of a minimum
turn radius allows us to visualize the area of space
that the UAV can reach in the next instant of time,
i.e. the local reachability region.

With this in mind, it seems natural that for a

Y

X
u  = - c

u  = +c

Local reachability region

R
C

L
C

Figure 12: Local reachability region of the TS.

trajectory to be time-optimal, it will be a sequence
of straight-line path segments combined with arcs
along the minimum radius circles (i.e. along the
edges of the local reachability region). In fact,
Anderson proved in Ref. 34 that this is the case.
By postulating that ωr follows a bang-bang control
strategy during transitions from one path segment
to the next, he showed that a κ-trajectory is time-
extremal, where a κ-trajectory is defined as follows.

Definition 7.1 As shown in Figure 13, a κ-
trajectory is defined as the trajectory that is con-

structed by following the line segment wi−1wi un-

til intersecting Ci, which is followed until Cp(κ) is

intersected, which is followed until intersecting Ci+1

which is followed until the line segment wiwi+1 is

intersected.

Note that different values of κ can be selected to
satisfy different requirements. For example, κ can be
chosen to guarantee that the UAV explicitly passes
over each waypoint, or κ can be found by a simple bi-
section search to make the trajectory have the same
length as the original straight-line path,34 thus fa-
cilitating timing-critical trajectory generation prob-
lems.

The TS implements κ-trajectories to follow way-
point paths. In evaluating the real-time nature of
the TS, we chose to require trajectories to have equal
path length as the initial straight line paths. The
computational complexity to find ωr is dominated
by finding circle-line and circle-circle intersections.
Since the TS also propagates the state of the sys-
tem in response to the input ωr, Eq. (11) must be
solved in real-time. This is done via a forth-order
Runge-Kutta algorithm.35 In this manner, the out-

7



w

w

i-1

i+1

w
i 

C

i+1
C

C
β

p(κ)

p(κ)

i

Figure 13: A dynamically feasible κ-trajectory.

put of the TS corresponds in time to the evolution
of the UAV dynamics and ensures a time-optimal
trajectory.

Hardware implementation of the TS has shown
the real-time capability of this approach. On a 1.8
GHz Intel Pentium 4 processor, one iteration of the
TS took on average 36 µ-seconds. At this speed, the
TS could run at 25 KHz - well above the dynamic
range of typical UAVs. Moving toward embedded
systems, we found that one iteration of the TS re-
quired a maximum of 47 milli-seconds on a Rabbit
Microprocessor running at 29 MHz. The low compu-
tational demand allows the TS to be run in real-time
at approximately 20 Hz on an embedded system on-
board the UAVs described in Section 3.

8 Waypoint Path Planning

For many anticipated military and civil applica-
tions, the capability for a UAV to plan its route as
it flies is important. Reconnaissance, exploration,
and search and rescue missions all require the abil-
ity to respond to sensed information and to navigate
on the fly.

In the flight control architecture shown in Fig-
ure 1, the coarsest level of route planning is carried
out by the path planner (PP). Our waypoint plan-
ning technique centers around the construction and
search of a Voronoi graph.23 The Voronoi graph pro-
vides a method for creating waypoint paths through
threats or obstacles in the airspace. A prime advan-
tage of the Voronoi graph is the computational speed
with which the graph can be created and searched.

In our work, we have modeled threats and obsta-
cles in two different ways: as points to be avoided
and as polygonal regions that cannot be entered.
With threats specified as points, construction of the
Voronoi graph is straightforward using existing al-
gorithms. For an area with n point threats, the
Voronoi graph will consist of n convex cells, each
containing one threat. Every location within a cell
is closer to its associated threat than to any other.
By using threat locations to construct the graph,
the resulting graph edges form a set of lines that are
equidistant from the closest threats. In this way, the
edges of the graph maximize the distance from the
closest threats. Figure 14 shows an example of a
Voronoi graph constructed from point threats.

Figure 14: Voronoi graph with point threats

Construction of a Voronoi graph for obstacles
modeled as polygons is an extension of the point-
threat method. In this case, the graph is constructed
using the vertices of the polygons that form the pe-
riphery of the obstacles. This initial graph will have
numerous edges that cross through the obstacles. To
eliminate these infeasible edges, a pruning operation
is performed. Using a line intersection algorithm,
those edges that intersect the edges of the polygon
are detected and removed from the graph. Figure 15
shows the initial polygon based graph and the final
graph after pruning.

Finding good paths through the Voronoi graph re-
quires the definition of a cost metric associated with
traveling along each edge. In our work, two metrics
have been employed: path length and threat expo-
sure. A weighted sum of these two costs provides a
means for finding safe, but reasonably short paths.
Although the highest priority is usually threat avoid-
ance, the length of the path must be considered to

8



Figure 15: Voronoi graph before and after pruning
with polygon threats

prevent safe, but meandering paths from being cho-
sen.

Once a metric is defined, the graph is searched
using an Eppstein search.21 This is an computa-
tionally efficient search with the ability to return k
best paths through the graph. Once k best paths are
known, a coordination agent can choose which path
to choose for each vehicle in the team (to ensure si-
multaneous arrival, for example). The points of this
chosen path are passed on the the trajectory gen-
erator which smooths through the path, taking into
account the dynamics and constraints of the vehicle.

9 Conclusion

This paper has described an approach to au-
tonomous control for fixed-wing UAVs. In partic-
ular, we have described small UAV hardware, low-
cost, light-weight autopilot technologies, and a com-
putationally efficient approach to real-time trajec-
tory generation.

Acknowledgements

This work was funded by AFOSR grants F49620-
01-1-0091 and F49620-02-C-0094, and by DARPA
grant NBCH1020013.

References

[1] Uninhabited Air Vehicles: Enabling Science for Mil-

itary Systems. National Academy Press, 2000.

[2] L. Kavraki, P. Svestka, J. Latombe, and M. Over-
mars, “Proababilistic roadmaps for path planning
in high dimensional configuration spaces,” IEEE

Transactions on Robotics and Automation, vol. 12,
no. 4, pp. 566–580, 1996.

[3] R. Bohlin and L. Kavraki, “Path planning using
lazy rpm,” in Proceedings of the IEEE International

Conference on Robotics an Automation, 1997.

[4] S. LaValle and J. Kuffner, “Randomized kinody-
namic planning,” in Proceedings of the 1999 IEEE

International Conference on Robotics and Automa-

tion, 1999.

[5] S. LaValle, “Rapidly-exploring random trees: A
new tool for path planning,” Technical Report 98-
11, Iowa State University, Ames,IA, Oct. 1998.

[6] E. Frazzoli, M. Dahleh, and E. Ferron, “Real-time
motion planning for agile autonomous vehicles,” in
Proceedings of the AIAA Guidance, Navigation, and

Control Conference, (Denver, CO), August 2000.
AIAA Paper No. AIAA-2000-4056.

[7] E. Frazzoli, M. Dahleh, and E. Ferron, “Ro-
bust hybrid control for autonomous vehicle motion
planning,” Technical Report LIDS-P-2468, Mas-
sachusetts Institute of Technology, Cambridge, MA,
Oct. 1999. submitted to the IEEE Transactions on

Automatic Control.

[8] C. Hargraves and S. Paris, “Direct trajectory op-
timization using nonlinear programming and collo-
cation,” AIAA J. Guidance and Control, vol. 10,
pp. 338–342, 1987.

[9] O. von Stryk and R. Bulirsch, “Direct and indi-
rect methods for trajectory optimization,” Annals

of Operation Research, vol. 37, pp. 357–373, 1992.

[10] Y. Chen and J. Huang, “A new computational ap-
proach to solving a class of optimal control prob-
lems,” International Journal of Control, vol. 58,
no. 6, pp. 1361–1383, 1993.

[11] L. Singh and J. Fuller, “Trajectory generation for
a UAV in urban terrain, using nonlinear MPC,”
in Proceedings of the American Control Conference,
(Arlington, VA), 2001.

[12] A. Isidori, Nonlinear Control Systems. Communica-
tion and Control Engineering, New York, New York:
Springer Verlag, 2nd ed., 1989.

[13] B. Charlet, J. Levine, and R. Marino, “On dynamic
feedback linearization,” Systems and Control Let-

ters, vol. 13, pp. 143–151, 1989.

[14] M. Fliess, J. Levine, P. Martin, and P. Rouchon,
“Flatness and defect of non-linear systems: intro-
ductory theory and examples,” International Jour-

nal of Control, vol. 61, no. 6, pp. 1327–1360, 1995.

[15] M. Milam and R. M. K. Mushambi, “A new compu-
tational approach to real-time trajectory generation
for constrained mechanical systems,” in Proceedings

of the IEEE Conf. on Decision and Control, (Syd-
ney, Australia), pp. 845–851, December 2000.

[16] M. Milam, R. Franz, and R. Murray, “Real-time
constrained trajectory generation applied to a flight

9



control experiment,” in Proceedings of the Interna-

tional Federation of Automatic Control Conference,
2002.

[17] S. Agrawal and N. Faiz, “Optimization of a class of
nonlineaer dynamic systems: new efficient method
without Lagrange multipliers,” J. Optimization

Theory and Applications, vol. 97, no. 1, pp. 11–28,
1998.

[18] N. Faiz, S. K. Agrawal, and R. M. Murray, “Tra-
jectory planning of differentially flat systems with
dynamics and inequalities,” AIAA Journal of Guid-

ance, Control and Dynamics, vol. 24, pp. 219–227,
March–April 2001.

[19] G. J. Toussaint, T. Basar, and F. Bullo, “Motion
planning for nonlinear underactuated vehicles using
H

∞ techniques,” in American Control Conference,
2001.

[20] R. Sedgewick, Algorithms. Addison-Wesley, 2nd ed.,
1988.

[21] D. Eppstein, “Finding the k shortest paths,” SIAM

Journal of Computing, vol. 28, no. 2, pp. 652–673,
1999.

[22] T. McLain and R. Beard, “Cooperative rendezvous
of multiple unmanned air vehicles,” in Proceed-

ings of the AIAA Guidance, Navigation and Control

Conference, (Denver, CO), August 2000. Paper no.
AIAA-2000-4369.

[23] P. Chandler, S. Rasumussen, and M. Pachter, “UAV
cooperative path planning,” in Proceedings of the

AIAA Guidance, Navigation, and Control Confer-

ence, (Denver, CO), August 2000. AIAA Paper No.
AIAA-2000-4370.

[24] R. W. Beard, T. W. McLain, M. Goodrich, and
E. P. Anderson, “Coordinated target assignment
and intercept for unmanned air vehicles,” IEEE

Transactions on Robotics and Automation, vol. 18,
pp. 911–922, December 2002.

[25] http://zagi.com.

[26] R. C. Nelson, Flight Stability and Automatic Con-

trol. Boston, Massachusetts: McGraw-Hill, 2nd ed.,
1998.

[27] M. Rauw, FDC 1.2 - A SIMULINK Toolbox for

Flight Dynamics and Control Analysis, February
1998. Available at http://www.mathworks.com/...

[28] J. Roskam, Airplane Flight Dynamics and Auto-

matic Flight Controls, Parts I & II. Lawrence,
Kansas: DARcorporation, 1998.

[29] W. Ren and R. W. Beard, “CLF-based tracking
control for UAV kinematic models with saturation
constraints,” in Proceedings of the IEEE Conference

on Decision and Control, 2003. (to appear).

[30] W. Ren and R. W. Beard, “Trajectory tracking for
unmanned air vehicles with velocity and heading
rate constraints,” IEEE Transactions on Control

Systems Technology, (in review).

[31] T.-C. Lee, K.-T. Song, C.-H. Lee, and C.-C.
Teng, “Tracking control of unicycle-modeled mo-
bile robots using a saturation feedback controller,”
IEEE Transactions on Robotics and Automation,
vol. 9, pp. 305–318, March 2001.

[32] E. P. Anderson and R. W. Beard, “An algorithmic
implementation of constrained extremal control for
UAVs,” in Proceedings of the AIAA Guidance, Nav-

igation and Control Conference, (Monterey, CA),
August 2002. AIAA Paper No. 2002-4470.

[33] E. P. Anderson, R. W. Beard, and T. W. McLain,
“Real time dynamic trajectory smoothing for un-
inhabited aerial vehicles,” IEEE Transactions on

Control Systems Technology, (in review).

[34] E. P. Anderson, “Constrained extremal tra-
jectories and unmanned air vehicle trajectory
generation,” Master’s thesis, Brigham Young
University, Provo, Utah 84602, April 2002.
http://www.ee.byu.edu/ee/robotics/publications/thesis/ErikAnderson.ps.

[35] R. L. Burden and J. D. Faires, Numerical Anal-

ysis. Boston: PWS-KENT Publishing Company,
fourth ed., 1988.

10


