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ABSTRACT

CONSENSUS SEEKING, FORMATION KEEPING, AND

TRAJECTORY TRACKING IN MULTIPLE VEHICLE

COOPERATIVE CONTROL

Wei Ren

Electrical and Computer Engineering

Doctor of Philosophy

Cooperative control problems for multiple vehicle systems can be categorized

as either formation control problems with applications to mobile robots, unmanned air

vehicles, autonomous underwater vehicles, satellites, aircraft, spacecraft, and automated

highway systems, or non-formation control problems such as task assignment, cooperative

transport, cooperative role assignment, air traffic control, cooperative timing, and coopera-

tive search. The cooperative control of multiple vehicle systems poses significant theoreti-

cal and practical challenges. For cooperative control strategies to be successful, numerous

issues must be addressed. We consider three important and correlated issues: consensus

seeking, formation keeping, and trajectory tracking.

For consensus seeking, we investigate algorithms and protocols so that a team

of vehicles can reach consensus on the values of the coordination data in the presence of

imperfect sensors, communication dropout, sparse communication topologies, and noisy

and unreliable communication links. The main contribution of this dissertation in this area

is that we show necessary and/or sufficient conditions for consensus seeking with limited,



unidirectional, and unreliable information exchange under fixed and switching interaction

topologies (through either communication or sensing).

For formation keeping, we apply a so-called “virtual structure” approach to

spacecraft formation flying and multi-vehicle formation maneuvers. As a result, single

vehicle path planning and trajectory generation techniques can be employed for the virtual

structure while trajectory tracking strategies can be employed for each vehicle. The main

contribution of this dissertation in this area is that we propose a decentralized architecture

for multiple spacecraft formation flying in deep space with formation feedback introduced.

This architecture ensures the necessary precision in the presence of actuator saturation,

internal and external disturbances, and stringent inter-vehicle communication limitations.

A constructive approach based on the satisficing control paradigm is also applied to multi-

robot coordination in hardware.

For trajectory tracking, we investigate nonlinear tracking controllers for fixed

wing unmanned air vehicles and nonholonomic mobile robots with velocity and heading

rate constraints. The main contribution of this dissertation in this area is that our proposed

tracking controllers are shown to be robust to input uncertainties and measurement noise,

and are computationally simple and can be implemented with low-cost, low-power micro-

controllers. In addition, our approach allows piecewise continuous reference velocity and

heading rate and can be extended to derive a variety of other trajectory tracking strategies.



ACKNOWLEDGMENTS

I would first like to acknowledge my advisor, Dr. Randy Beard for his assistance

and guidance over the past four years. He has not only been a great mentor but a good

friend to me. I particularly appreciate his patience and encouragement to help me with my

study, and his suggestions and insights to help me solve challenging research problems and

develop new ideas.

I would like to acknowledge Dr. Tim McLain for his assistance, both technically

and socially. Being a great source of knowledge and experience, he is always willing to

give me suggestions and support. I would also like to thank the other members of my

committee: Dr. Sean Warnick, Dr. Wynn Stirling, and Dr. A. Lee Swindlehurst for their

support.

I gratefully acknowledge Dr. Dah-Jay Lee for his help and support all the time.

I am thankful for Dr. Wayne Barrett and Dr. Chris Grant from the Mathematics Department

for their technical guidance. I am also indebted to Dr. David Long for his advice.

I owe special thanks to Will Curtis at the Air Force Research Lab and Jisang

Sun, Derek Kingston, Jeff Anderson, Matt Blake, Walt Johnson, Carolyn Cornaby, and

Reed Christiansen at the BYU MAGICC Lab for their help over the past few years.

I am also thankful for the friendship with Wei Li, Chris Peel, Lihong Bu, Dahai

Lin, Xiaojun Wang, Zhihong Ding, Mike Turner, and Shon Hiatt at BYU.

Most importantly, I would like to acknowledge my wife, Fei for her love and

constant help. Despite her non-engineering background in economics law, she has been

very patient and supportive to me. She has also been willing to “discuss” control theory

with me whenever I met technical difficulties. I am also very grateful for the ubiquitous

encouragement and love brought to my life by my parents and sister.



viii



Contents

Acknowledgments vii

List of Tables xiii

List of Figures xvii

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Multi-agent Consensus Seeking . . . . . . . . . . . . . . . . . . . 3

1.2.2 Multi-agent Formation Keeping . . . . . . . . . . . . . . . . . . . 4

1.2.3 Trajectory Tracking with Input Constraints . . . . . . . . . . . . . 5

1.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Literature Review 7

2.1 Consensus Seeking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Formation Keeping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Trajectory Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 CLF and Satisficing Control . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 Constrained Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Consensus Seeking Under Fixed and Switching Interaction Topologies 13

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3 Consensus Under Fixed Interaction Topologies . . . . . . . . . . . . . . . 19

3.3.1 Consensus Using Continuous-Time Update Scheme . . . . . . . . . 19

ix



3.3.2 Consensus Using Discrete-Time Update Scheme . . . . . . . . . . 28

3.4 Consensus Under Dynamically Changing Interaction Topologies . . . . . . 32

3.4.1 Consensus Using Discrete-Time Update Scheme . . . . . . . . . . 32

3.4.2 Consensus Using Continuous-Time Update Scheme . . . . . . . . . 34

3.4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Multi-agent Formation Control 41

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 Multiple Spacecraft Formation Flying . . . . . . . . . . . . . . . . . . . . 41

4.2.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2.2 Decentralized Architecture via the Virtual Structure Approach . . . 46

4.2.3 Decentralized Formation Control Strategies . . . . . . . . . . . . . 52

4.2.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3 Satisficing Approach to Multi-agent Coordinated Control . . . . . . . . . . 68

4.3.1 Satisficing Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3.2 Satisficing Control for Formation Maneuvers . . . . . . . . . . . . 71

4.3.3 Application Example . . . . . . . . . . . . . . . . . . . . . . . . . 76

5 Trajectory Tracking Control with Input Constraints 83

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2 Trajectory Tracking for UAVs with Velocity and Heading Rate Constraints . 83

5.2.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2.2 CLF for Tracking Control with Saturation Constraints . . . . . . . 89

5.2.3 Nonlinear Tracking Control based on CLF . . . . . . . . . . . . . . 96

5.2.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.3 Experimental Study of Saturated Tracking Control for Mobile Robots . . . 106

5.3.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.3.2 Tracker Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.3.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 116

x



6 Conclusion and Future Work 125

6.1 Summary of Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Bibliography 141

xi



xii



List of Tables

5.1 Parameter values used in simulation. . . . . . . . . . . . . . . . . . . . . . 104

5.2 Specifications of the robot and velocity controller parameters. . . . . . . . 116

xiii



xiv



List of Figures

3.1 A graph that contains a spanning tree. . . . . . . . . . . . . . . . . . . . . 15

3.2 A spanning tree of the graph (Example 1). . . . . . . . . . . . . . . . . . . 15

3.3 A spanning tree of the graph (Example 2). . . . . . . . . . . . . . . . . . . 16

3.4 A spanning tree of the graph (Example 3). . . . . . . . . . . . . . . . . . . 16

3.5 Communication topology. . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.6 Consensus of τi and si using update law (3.4). . . . . . . . . . . . . . . . . 28

3.7 Consensus of τi and si without link from A2 to A1 using update law (3.4). . 29

3.8 Consensus and evolution of τi and si using update law (3.8). . . . . . . . . 29

3.9 Possible interaction topologies for A = {Ai|i = 1, · · · , 5}. . . . . . . . . . 38

3.10 The union of Gs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.11 Consensus with G[k] and G(tk) randomly switching from Gs. . . . . . . . . 39

3.12 Consensus with G[k] and G(tk) randomly switching from G ′s. . . . . . . . . 40

4.1 Coordinate Frame Geometry. . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 The centralized architecture based on the virtual structure approach. . . . . 47

4.3 The decentralized architecture via the virtual structure approach. . . . . . . 49

4.4 Plot of r̃Fxi with initial conditions r̃Fxi = 1 and ˙̃rFxi = 0 for different

choices of ΓGi. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.5 The geometric configuration of nine spacecraft. . . . . . . . . . . . . . . . 64

4.6 The average coordination error of the coordination vector instantiations. . . 64

4.7 The absolute position and attitude tracking errors. . . . . . . . . . . . . . . 65

4.8 The relative position and attitude errors. . . . . . . . . . . . . . . . . . . . 65

4.9 The control effort for spacecraft #1. . . . . . . . . . . . . . . . . . . . . . 68

4.10 The desired trajectories for robot #1 and #2. . . . . . . . . . . . . . . . . . 77

4.11 The formation function F (x, s) with F (x(t0), s(t0)) = 0.1. . . . . . . . . . 77

xv



4.12 The tracking errors for robot #1 and #2 with F (x(t0), s(t0)) = 0.1. . . . . . 78

4.13 The formation function F (x, s) with F (x(t0), s(t0)) = 0.43. . . . . . . . . 80

4.14 The tracking errors for robot #1 and #2 with F (x(t0), s(t0)) = 0.43. . . . . 80

4.15 Canister robots used in the experiment. . . . . . . . . . . . . . . . . . . . . 81

4.16 The commanded desired distance and actual distance between the two robots

with FU = 0.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.17 Formation measure function F (x, s) with FU = 0.1. . . . . . . . . . . . . . 82

5.1 System architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2 The feasible control set F(t, x) at some time t = t̂. . . . . . . . . . . . . . 97

5.3 The reference and actual trajectories of the 6-DOF model. . . . . . . . . . . 105

5.4 The trajectory tracking errors of the 6-DOF model. . . . . . . . . . . . . . 105

5.5 The reference and commanded control inputs of the 6-DOF model. . . . . . 106

5.6 The simulation scenario of the 6-DOF model with model uncertainties and

disturbances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.7 The trajectory tracking errors of the 6-DOF model with model uncertainties

and disturbances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.8 Hardware/software structure for the mobile robot testbed. . . . . . . . . . . 108

5.9 Canister robots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.10 Software architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.11 PID control loop for vc and ωc. . . . . . . . . . . . . . . . . . . . . . . . . 110

5.12 Desired and actual robot trajectories using velocity controllers when there

are two targets and εω1 = εω2 = 0.75 (rad/s). . . . . . . . . . . . . . . . . . 117

5.13 Tracking errors using velocity controllers when there are two targets and

εω1 = εω2 = 0.75 (rad/s). . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.14 Reference and commanded velocities using velocity controllers when there

are two targets and εω1 = εω2 = 0.75 (rad/s). . . . . . . . . . . . . . . . . . 118

5.15 Desired and actual robot trajectories using nonsmoooth backstepping when

there are two targets and εω1 = εω2 = 0.75 (rad/s). . . . . . . . . . . . . . . 119

5.16 Tracking errors using nonsmooth backstepping when there are two targets

and εω1 = εω2 = 0.75 (rad/s). . . . . . . . . . . . . . . . . . . . . . . . . . 120

xvi



5.17 Reference and actual velocities using nonsmooth backstepping when there

are two targets and εω1 = εω2 = 0.75 (rad/s). . . . . . . . . . . . . . . . . . 120

5.18 Control forces and torques using nonsmooth backstepping controller when

there are two targets and εω1 = εω2 = 0.75 (rad/s). . . . . . . . . . . . . . . 121

5.19 Desired and actual robot trajectories using the saturation controller when

there are three targets and εω1 = εω2 = 0.2 (rad/s). . . . . . . . . . . . . . . 122

5.20 Tracking errors using the saturation controller when there are three targets

and εω1 = εω2 = 0.2 (rad/s). . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.21 Reference and commanded velocities using the saturation controller when

there are three targets and εω1 = εω2 = 0.2 (rad/s). . . . . . . . . . . . . . . 123

xvii



xviii



Chapter 1

Introduction

1.1 Motivation

In the last ten years, advances in networking and distributed computing have

facilitated a paradigm shift from large, monolithic mainframe computers to networks of

less expensive, less powerful workstations. One motivation for multi-agent systems is to

achieve the same gains for mechanically controlled systems as has been gained in dis-

tributed computation. Rather than having a single monolithic (and therefore expensive and

complicated) machine do everything, the hope is that many inexpensive, simple machines,

can achieve the same, or enhanced functionality, through coordination. In essence, the ob-

jective is to replace expensive complicated hardware with software and multiple copies of

simple hardware.

There are numerous applications for multi-agent systems including space-based

interferometry, future autonomous combat systems, autonomous household appliances, en-

hanced surveillance systems, hazardous material handling systems, and active reconfig-

urable sensing systems. The objective of our research in multi-agent coordination is to

facilitate a similar paradigm shift from large, monolithic vehicles (e.g., spacecraft, robots,

unmanned air vehicles, autonomous underwater vehicles etc.) to groups of smaller, less

expensive vehicles that coordinate their action to achieve their objective. Examples include

replacing large space-based telescopes with multiple spacecraft interferometers, search and

rescue missions with air, land and sea vehicles, and mine detection operations.

The cooperative control problems for multi-agent systems can be categorized

as either formation control problems with applications to mobile robots [1, 2, 3, 4, 5, 6],
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unmanned air vehicles (UAVs) [7], autonomous underwater vehicles (AUVs) [8], satel-

lites [9, 10], aircraft [11], spacecraft [12, 13, 14, 15], and automated highway systems [16],

or non-formation control problems such as task assignment [17, 18], cooperative trans-

port [19, 20, 21], cooperative role assignment [22], air traffic control [23], cooperative tim-

ing [24, 25], and cooperative search [26]. The cooperative control of multi-agent systems

poses significant theoretical and practical challenges. For cooperative control strategies to

be successful, numerous issues must be addressed. We will consider three important and

correlated issues: consensus seeking, formation keeping, and trajectory tracking.

The study of information flow and interaction among multiple agents in a group

plays an important role in understanding the coordinated movements of these agents. For

cooperative control strategies to be effective, a team of vehicles must be able to respond to

unanticipated situations or changes in the environment that are sensed as a cooperative task

is carried out. As the environment changes, the vehicles on the team must be in agreement

as to what changes took place. A direct consequence of the assumption that shared infor-

mation is a necessary condition for coordination is that cooperation requires that the group

of agents reach a consensus on the coordination data. In other words, the instantiation of

the coordination data on each agent must asymptotically approach a sufficiently common

value.

The study of formation keeping is motivated by the obvious advantages achieved

by using formations of multiple vehicles to accomplish an objective. These include in-

creased feasibility, accuracy, robustness, flexibility, cost and energy efficiency, and prob-

ability of success. For example, the probability of success will be improved if multiple

vehicles are used to carry out a mission in a coordinated manner, e.g. multiple UAVs are

assigned to a certain target [27] or multiple AUVs are used to search for an underwater

object [8]. In addition, cost and energy efficiency may be maximized if multiple agents

can coordinate their movements in a certain way, e.g. multiple aircraft flying in a V-shape

formation to maximize fuel efficiency. Furthermore, in spacecraft interferometry applica-

tions in deep space, using formations of multiple microspacecraft instead of a monolithic

spacecraft can reduce the mission cost and improve system robustness and accuracy [28].
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The study of nonlinear tracking control techniques for vehicle systems with in-

put constraints is essential for the success of cooperative timing (see e.g. [29, 27]) and

formation keeping missions (see e.g. [15]). While control systems are needed to enhance

performance, increase operational speeds, and reduce costs in many areas of modern tech-

nology, current control system design tools are mostly limited to systems modeled by linear

dynamics. As engineers push the limits of technology, it is becoming necessary to consider

inherent nonlinearities in the system. Unfortunately there are few design tools for vehicle

systems with inherent nonlinear dynamics. This motivates the research of a new approach

to constructive nonlinear control design called “satisficing control” [30]. Meanwhile, the

study of the satisficing control paradigm in turn facilitates the design of nonlinear tracking

controllers for vehicle systems subject to polytopic input constraints.

1.2 Contributions

1.2.1 Multi-agent Consensus Seeking

We investigate algorithms so that a team of vehicles can reach consensus on the

values of the coordination data in the presence of (i) imperfect sensors, (ii) communication

dropout, (iii) sparse communication topologies, and (iv) noisy and unreliable communi-

cation links. A necessary and sufficient condition is shown for consensus seeking under

fixed communication topologies to answer the question of “With whom does the com-

munication take place?” and explore the minimum requirement to achieve consensus in

multiple vehicle systems [31]. Discrete-time and continuous-time consensus protocols as

well as necessary/sufficient conditions are also given for consensus of information under

dynamically switching interaction topologies due to limited and unreliable information ex-

change [32, 33]. The consensus seeking problem is also considered when the information

state of each vehicle is driven by exogenous input and random noise [34].

One feature of this dissertation in this area is that unidirectional information ex-

change is allowed instead of requiring bidirectional information exchange (e.g. [35]). This

will be important in applications where bidirectional communication or sensing are not

available. Another feature is that dynamic consensus problems are studied for time-varying
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information states and an analysis about the final consensus equilibrium is performed. Fur-

thermore, we extend some results of the Perron-Frobenius theorem in matrix theory and

some properties of the Laplacian matrix in graph theory.

1.2.2 Multi-agent Formation Keeping

We apply a so-called “virtual structure” approach to treat the entire desired for-

mation as a single entity with place-holders corresponding to each vehicle embedded in

the virtual structure to represent the desired position and orientation for each vehicle. As

the entire desired formation evolves in time, the place-holders trace out trajectories cor-

responding to each vehicle’s desired states. As a result, single vehicle path planning and

trajectory generation techniques can be employed for the virtual structure while trajectory

tracking strategies can be employed for each vehicle.

Regarding actuator saturation and internal and external disturbances to each ve-

hicle, an idea of introducing formation feedback from each vehicle to the virtual structure

is also proposed in the context of spacecraft formation flying to improve group stability

and robustness [36, 37]. In the case when a large number of vehicles are involved in the

group and stringent inter-vehicle communication limitations are exerted, a decentralized

framework is proposed, where a local copy of the coordination vector is instantiated on

each vehicle and brought into consensus through low-bandwidth communication between

neighboring vehicles using a bidirectional ring topology [38, 39]. The proposed frame-

work can achieve the following characteristics: First, formation feedback is included in the

framework to improve group robustness. Second, the group maneuvers are easy to pre-

scribe and direct in the framework. Finally, the framework guarantees high precision for

maintaining the formation during maneuvers.

Under the virtual leader / virtual structure framework, a constructive approach

based on the satisficing control paradigm is applied to multi-agent formation maneuvers.

This approach generates a group of control laws that guarantee bounded formation-keeping

error, finite completion time, and reasonable formation velocity as well as inverse opti-

mality and desirable stability margins [40]. This technique is applied to multiple robot

coordination in an experimental study.
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1.2.3 Trajectory Tracking with Input Constraints

We extend the satisficing control paradigm [30] to the case of time-varying non-

linear systems with input constraints and explore applications of the approach to trajectory

tracking for nonholonomic mobile robots [41] and unmanned air vehicles [42, 43, 44, 45]

subject to velocity and heading rate constraints. In addition, a similar idea can be applied

to multi-agent coordinated control [40] and human interaction schemes [46] to guarantee

stability.

The design methodology as applied to nonlinear systems with polytopic input

constraints can be summarized as follows: If a constrained control Lyapunov function can

be found for a system with polytopic input constraints, the feasible control set that defines

all the stabilizing controls with respect to the control Lyapunov function satisfying the input

constraints can be specified accordingly. A direct parametrization of this feasible control

set or selection from this feasible control set is applicable, e.g. finding the geometric mean

of the feasible control set or a parametrization based on the vertices of the feasible control

set (a polygon in this case).

The salient features of our approach are as follows. First, under the proposed

tracking CLF framework with input constraints, we allow the reference velocity and angu-

lar velocity to be piecewise continuous while other approaches to tracking control constrain

them to be uniformly continuous in order to apply Barbalat’s lemma. Second, using dif-

ferent selection schemes, our approach can be used to derive a variety of other trajectory

tracking strategies. Finally, it is computationally simple and can be implemented with a

low-cost, low-power microcontroller.

1.3 Organization

The remainder of this dissertation is organized as follows. In Chapter 2, we re-

view the relevant literature. In Chapter 3, we propose consensus algorithms and show nec-

essary and/or sufficient conditions for consensus of information under fixed and switching

interaction topologies. In Chapter 4, we address the problem of formation keeping in the

context of multiple spacecraft formation flying and multi-robot coordination respectively.

In Chapter 5, we present a control Lyapunov function approach to unmanned air vehicle

5



trajectory tracking with input constraints and demonstrate an experimental study of satu-

rated trajectory tracking control for a nonholonomic mobile robot. In Chapter 6, we offer

our concluding remarks.
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Chapter 2

Literature Review

2.1 Consensus Seeking

Distributed control of multi-agent systems has received significant attention in

recent years (c.f. [47, 48, 49, 50]). In some applications of distributed multi-agent systems,

shared information plays a central role and facilitates the coordination of the group. As

a result, a critical problem for coordinated control is to design appropriate protocols and

algorithms so that the group of agents can converge to a consistent view of the shared in-

formation in the presence of limited and unreliable information exchange and dynamically

changing interaction topologies.

Convergence to a common value is called the consensus or agreement problem

in the literature. Consensus problems have a history in the computer science literature

(see e.g. [51] and have recently found applications in cooperative control of multi-agent

systems [52, 53, 35, 54, 55, 56, 57, 58, 59, 31, 32].

One avenue of the research in consensus seeking relies on algebraic graph the-

ory, in which graph topologies are connected with the algebraic properties of the corre-

sponding graph matrices. In [52] information exchange techniques are studied to improve

stability margins and formation performance for vehicle formations. In [35], sufficient con-

ditions are given for consensus of the heading angles of a group of agents under undirected

switching interaction topologies. In [55], average consensus problems are solved for a net-

work of integrators using directed graphs. Using directed graphs, Ref. [31] and [32] show

necessary and/or sufficient conditions for consensus of information under time-invariant

and switching interaction topologies respectively.
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Meanwhile, some other researchers make use of nonlinear tools to study con-

sensus problems. In [56], a set-valued Lyapunov approach is used to consider consensus

problems with unidirectional time-dependent communication links. In [60, 61], nonlinear

contraction theory is used to study synchronization and schooling applications, which are

related to the consensus problem.

Optimality issues related to consensus problems are also studied in the liter-

ature. In [58], the fastest distributed linear averaging (FDLA) problem are addressed in

the context of consensus seeking among multiple autonomous agents. In [62], the authors

consider distributed consensus protocols that minimize a team objective function.

There is other research in the literature that is related to the consensus problem.

In [63], the authors study the flocking phenomenon observed in Reynolds by constructing

local control laws that allow a group of mobile agents to align their velocities, move with

a common speed and achieve desired inter-agent distances while avoiding collisions with

each other. In [64], the authors address some new directions for decentralized coordination

with local interactions. In [65], the authors study connections between phase models of

coupled oscillators and kinematic models of groups of self-propelled particles.

2.2 Formation Keeping

The concept of formation control has been studied extensively in the literature

with application to the coordination of multiple robots [1, 2, 3, 66, 4, 5, 67, 52, 53, 68, 6],

unmanned air vehicles (UAVs) [7], autonomous underwater vehicles (AUVs) [8], satel-

lites [9, 10], aircraft [11], and spacecraft [12, 28, 13, 14, 69].

Various strategies and approaches have been proposed for formation control.

These approaches can be roughly categorized as leader-following, behavioral, and virtual

structure approaches, to name a few. In the leader-following approach, some agents are

designated as leaders while others are designated as followers. The leaders track prede-

fined trajectories, and the followers track transformed versions of the states of their nearest

neighbors according to given schemes. In the behavioral approach, the control action for

each agent is defined by a weighted average of the control corresponding to each desired

behavior for the agent. In the virtual structure approach, the entire formation is treated as a
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single rigid body. The virtual structure can evolve as a whole in a given direction with some

given orientation and maintain a rigid geometric relationship among multiple agents. Sim-

ilar ideas to the virtual structure approach include the perceptive reference frame proposed

in [9] and the virtual leader proposed in [70].

There are numerous studies on the leader-following approach. In [1], nearest

neighbor tracking strategies are used to control a fleet of autonomous mobile robots mov-

ing in formation. In [12], various schemes and explicit control laws for formation keeping

and relative attitude alignment are derived for the coordination and control of multiple mi-

crospacecraft. While the leader-following approach is easy to understand and implement,

there are limitations. For example, the leader is a single point of failure for the formation.

In addition, there is no explicit feedback from the followers to the leader: if the follower is

perturbed by some disturbances, the formation cannot be maintained.

As an alternative to leader-following, the virtual structure approach was pro-

posed in [3] to acquire high precision formation control for mobile robots. In [15], the

virtual structure approach is applied to the spacecraft interferometry problem, where forma-

tion maneuvers are easily prescribed but no formation feedback is included from spacecraft

to the virtual structure. In [6], a Lyapunov formation function is used to define a formation

error and formation feedback is incorporated to the virtual leaders through parameterized

trajectories. In [71], the virtual structure approach is used to perform elementary formation

maneuvers for mobile robots, where group feedback is incorporated from the followers

to the virtual structure to improve group stability and robustness. Also in [36], following

the idea of [71], formation feedback is applied to spacecraft formation flying scenario via

the virtual structure approach. One advantage of the virtual structure approach is that it is

easy to prescribe the behavior for the group. Another advantage is that the virtual structure

approach can maintain tight formation during maneuvers. The main disadvantage of the

current virtual structure implementation is that it is centralized, which results in a single

point of failure for the whole system. Decentralization of the virtual structure approach is

addressed in this dissertation.
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The behavioral approach is a decentralized implementation and can achieve

more flexibility, reliability, and robustness than centralized implementations. In [2], the be-

havioral approach is applied to formation keeping for mobile robots, where control strate-

gies are derived by averaging several competing behaviors. In [72], several behavioral

strategies are presented for formation maneuvers of groups of mobile robots, where a bidi-

rectional ring topology is used to reduce the communication overhead for the whole system

and formation patterns are also defined to achieve a sequence of maneuvers. In [73], the

behavioral approach is used to maintain attitude alignment among a group of spacecraft.

An advantage of the behavioral approach is that explicit formation feedback is included

through the communication between neighbors. Unfortunately, the behavioral approach

is hard to analyze mathematically. Based on the way the formation patterns are defined

in [72], the behavioral approach has limited application in directing rotational maneuvers

for the group. In addition, the behavioral approach has limited ability for precise formation

keeping, that is, the group cannot maintain accurate formation during maneuvers.

2.3 Trajectory Tracking

The stabilization and tracking of dynamical systems with nonholonomic con-

straints has received recent attention in the literature. Ref. [74] provides a nice overview

of the developments in control of nonholonomic systems. An inherent challenge, identi-

fied by Brockett’s well-known necessary condition for feedback stabilization [75], is that

nonholonomic systems cannot be stabilized via smooth time-invariant state feedback. A

simple but classical example of a nonholonomic system is a mobile robot which serves as

an interesting topic for stabilization [76] and tracking [76, 77, 78, 79].

With unmanned air vehicles (UAVs) equipped with low-level altitude-hold, velocity-

hold, and heading-hold autopilots, the resulting UAV/autopilot models are assumed to be

first order for heading and Mach hold, and second order for altitude hold [80]. Therefore,

the planar kinematic equations of motion for the UAV/autopilot models are similar to those

of nonholonomic mobile robots. As a result, we will focus on reviewing some literature on

mobile robot tracking control.
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Current approaches to tracking control of mobile robots includes linear model [81,

82], sliding-mode [78], backstepping [83, 77, 79, 84], and passivity based approaches [85],

to name a few. Ref. [78] proposes a robust tracking strategy for nonholonomic wheeled mo-

bile robots using sliding modes. The approach asymptotically stabilizes the mobile robot to

a desired trajectory and is robust to bounded external disturbances. In [77], a tracking con-

trol methodology using time-varying state feedback based on the backstepping technique is

proposed for both a kinematic and simplified dynamic model of a two-degree-of-freedom

mobile robot, where local and global tracking problems are solved under certain conditions.

Using the backstepping technique and the LaSalle’s invariance principle, [84] proposed a

controller with saturation constraints which can simultaneously solve both the tracking and

regulation problems of a unicycle-modelled mobile robot. With their approach, mobile

robots can globally follow any path specified by a straight line, a circle, or a path approach-

ing the origin using a single controller. Ref. [85] developed a model-based control design

strategy via passivity and normalization approaches to deal with the problem of global sta-

bilization and global tracking control for the kinematic model of a wheeled mobile robot in

the presence of input saturations.

2.4 CLF and Satisficing Control

Control Lyapunov function (CLF) proposed in [86, 87] can be applied to gener-

ate stabilizing control laws. In [88], robust control Lyapunov functions are used to derive

pointwise min-norm control laws, which are shown to be optimal with respect to some

meaningful cost functionals. In [6], control Lyapunov functions are used to define a robot

formation so that a constrained motion control problem of multiple systems is converted

into a stabilization problem for one single system.

CLF-based satisficing control [30] evolved from the recently introduced notion

of satisficing decision theory [89, 90, 91] which can be seen as a formal application of cost-

benefit analysis to decision making problems. When combined with the global properties

of CLFs, satisficing is a powerful design tool which conveniently parameterizes the entire

class of continuous control laws which stabilize the closed-loop system with respect to a

known CLF. Additionally, robust satisficing [30] parameterizes a large class of satisficing
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controls which have the added benefit of desirable stability margins and which are inverse-

optimal.

2.5 Constrained Control

Controller design for nonlinear systems subject to input constraints offers both

practical significance and theoretical challenges. Two effective approaches for the design

of nonlinear controllers are control Lyapunov functions (CLFs) [87, 86] and receding hori-

zon control (RHC)/model predictive control (MPC), [92, 93]. Both approaches can be

extended to find control laws for nonlinear systems subject to certain input constraints.

In [94] and [95], constrained CLFs are applied to construct stabilizing universal formu-

las respectively for systems with control inputs bounded in a unit ball and systems with a

scalar control input that is positive and/or bounded. Input constraints can also be incor-

porated into the MPC framework, which is known as the constrained MPC (see [93] and

references therein). The issues limiting the utility of the RHC approach are its computation

requirements and stability concerns.
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Chapter 3

Consensus Seeking Under Fixed and Switching Interaction Topologies

3.1 Introduction

This chapter presents some new results on consensus seeking in distributed mul-

tiple vehicle cooperative control. The usefulness of cooperative control technologies will

be greatly enhanced if we understand the fundamental issues inherent in all coordination

problems. Toward this end, we offer the following, intuitively appealing, fundamental ax-

iom:

Axiom 3.1.1 Shared information is a necessary condition for coordination.

In cooperative control problems, shared information may take the form of com-

mon objectives, common control algorithms, relative position information, or a world map.

Underlying this axiom are two important questions: “What information should be shared?”

and “With whom should information be shared?”

In every cooperative control problem, there must be an identifiable cooperation

objective. To achieve the team objective, specific kernels of information must be shared

among members of the team. Identification of the key pieces of information to be shared

is a critical step in the formulation of a cooperative control solution. One approach is to

collect the information that must be jointly shared to facilitate cooperation into a vector

quantity called the coordination variable [96]. The coordination variable represents the

minimal amount of information needed to effect a specific coordination objective.

Information necessary for cooperation may be shared in a variety of ways. For

example, relative position sensors may enable vehicles to construct state information for
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other vehicles [10], or knowledge may be communicated between vehicles using a wire-

less network [53], or joint knowledge might be pre-programmed into the vehicles before a

mission begins [97].

For cooperative control strategies to be effective, a team of vehicles must be

able to respond to unanticipated situations or changes in the environment that are sensed

as a cooperative task is carried out. As the environment changes, the vehicles on the team

must be in agreement as to what changes took place. A direct consequence of Axiom 3.1.1

is that cooperation requires that the group of agents reach a consensus on the coordination

data. In other words, the instantiation of the coordination variable on each agent must

asymptotically approach a sufficiently common value.

A critical problem for cooperative control is to determine algorithms so that a

team of vehicles can reach consensus on the values of the coordination data in the presence

of (i) imperfect sensors, (ii) communication dropout, (iii) sparse communication topolo-

gies, and (iv) noisy and unreliable communication links. The question of “With whom

does communication take place?” is of great significance in seeking consensus among a

team of vehicles. The focus of this chapter is on providing answers to this question.

In Section 3.2, we establish the notation and formally state the consensus seek-

ing problem. Section 3.3 and 3.4 state some results on multi-agent consensus seeking for

fixed and switching interaction topologies respectively.

3.2 Problem Statement

Let A = {Ai|i ∈ I} be a set of n agents, where I = {1, 2, · · · , n}. A directed

graph G will be used to model the interaction topology among these agents. In G, the ith

node represents the ith agent Ai and a directed edge from Ai to Aj denoted as (Ai, Aj)

represents a unidirectional information exchange link from Ai to Aj , that is, agent j can

receive or obtain information from agent i, (i, j) ∈ I. If there is a directed edge from Ai

to Aj , Ai is defined as the parent node and Aj is defined as the child node. The interaction

topology may be dynamically changing, therefore let Ḡ = {G1,G2, · · · ,GM} denote the

set of all possible directed interaction graphs defined for A. In applications, the possible

interaction topologies will likely be a subset of Ḡ. Obviously, Ḡ has a finite number of
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elements. The union of a group of directed graphs {G`1 ,G`2 , · · · ,G`m} ⊂ Ḡ is a directed

graph with nodes given by Ai, i ∈ I and edge set given by the union of the edge sets of

G`j , where `j ∈ {1, 2, · · · ,M}.
A directed path in graph G is a sequence of edges (Ak1 , Ak2), (Ak2 , Ak3), (Ak3 , Ak4),

· · · in that graph, where kj ∈ I. Graph G is called strongly connected if there is a directed

path from Ai to Aj and Aj to Ai between any pair of distinct nodes Ai and Aj , ∀(i, j) ∈ I.

A directed tree is a directed graph, where every node, except the root, has exactly one

parent. A spanning tree of a directed graph is a directed tree formed by graph edges that

connect all the nodes of the graph (c.f. [98]). We say that a graph has (or contains) a span-

ning tree if a subset of the edges forms a spanning tree. Note that a spanning tree of a

directed graph may not be unique. Fig. 3.1 shows an interaction graph between five agents,

which contains a spanning tree as shown by Fig. 3.2. Two other spanning trees contained by

the interaction graph are shown by Figs. 3.3 and 3.4 as an example to show that a spanning

tree of a directed graph may not be unique.

Let Mn(IR) represent the set of all n × n real matrices. Given a matrix A =

[aij] ∈Mn(IR), the directed graph of A, denoted by Γ(A), is the directed graph on n nodes

Vi, i ∈ I, such that there is a directed edge in Γ(A) from Vj to Vi if and only if aij 6= 0

(c.f. [99]).

Let ξi ∈ IRp, i ∈ I, represent the ith information variable associated with the

ith agent. Here each information variable represents an instantiation of the coordination
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data for the team. The set of agents A is said to achieve consensus asymptotically if for

any ξi(0), i ∈ I, ‖ξi(t)− ξj(t)‖ → 0 as t → ∞ for each (i, j) ∈ I. In the sequel, we

assume that the information variable ξi is a scalar for simplicity. However, all the results

are valid for ξi ∈ IRp.

Given T as the sampling period, we propose the following discrete-time con-

sensus scheme:

ξi[k + 1] =
1∑n

j=1 αij[k]Gij[k]

n∑

j=1

αij[k]Gij[k]ξj[k], (3.1)

where k ∈ {0, 1, 2, · · · } is the discrete-time index, (i, j) ∈ I, αij[k] > 0 is a weighting

factor, Gii[k]
4
= 1, and Gij[k] equals one if information flows from Aj to Ai at time t = kT

and zero otherwise, ∀j 6= i. Eq. (3.1) can be written in matrix form as

ξ[k + 1] = D[k]ξ[k], (3.2)

where ξ = [ξ1, · · · , ξn]T , D = [dij], (i, j) ∈ I, with dij =
αij [k]Gij [k]∑n
j=1 αij [k]Gij [k]

.

In addition, we propose the following continuous-time consensus scheme:

ξ̇i(t) = −
n∑

j=1

σij(t)Gij(t)(ξi(t)− ξj(t)), (3.3)

where (i, j) ∈ I, σij(t) > 0 is the weighting factor, Gii(t)
4
= 1, and Gij(t) equals one if

information flows from Aj to Ai at time t and zero otherwise, ∀j 6= i. Eq. (3.3) can be

written in matrix form as
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ξ̇(t) = C(t)ξ(t), (3.4)

where C = [cij], (i, j) ∈ I, with cii = −
∑

j 6=i(σij(t)Gij(t)) and cij = σij(t)Gij(t), j 6= i.

Note that the interaction topology G may be dynamically changing due to un-

reliable transmission or limited communication/sensing range. This implies that Gij[k] in

Eq. (3.1) and Gij(t) in Eq. (3.3) may be time-varying. We use G[k] and G(t) to denote

the dynamically changing interaction topologies corresponding to Eq. (3.1) and Eq. (3.3)

respectively. We also allow the weighting factors αij[k] in Eq. (3.1) and σij(t) in Eq. (3.3)

to be dynamically changing to represent possibly time-varying relative confidence of each

agent’s information variable or relative reliabilities of different information exchange links

between agents. As a result, both matrix D[k] in Eq. (3.1) and matrix C(t) in Eq. (3.3) are

dynamically changing over time.

Compared to the models in [35], we do not constrain the weighting factors αij[k]

in Eq. (3.1) other than to require that they are positive. This provides needed flexibility for

some applications. The Vicsek model and simplified Vicsek model used in [35] can be

thought of as special cases of our discrete-time consensus scheme. If we let αij[k]
4
=

1 in Eq. (3.1), we obtain the Vicsek model. Also the simplified Vicsek model can be

obtained if we let αij[k]
4
= 1

g
, ∀j 6= i, and αii[k]

4
= 1 −∑j 6=i

1
g
Gij[k], where g > n is a

constant. Compared to [57], where the interaction graph is assumed to be time-invariant and

weighting factors σij are specified a priori to be constant and equal to each other, we study

continuous-time consensus schemes with dynamically changing interaction topologies and

weighting factors. The continuous-time update rule in [35] can also be regarded as a special

case of our continuous-time update scheme by letting σij
4
= 1

n
.

The main result of this chapter is that the update schemes (3.1) and (3.3) achieve

asymptotic consensus for A if the union of the collection of directed interaction graphs

across some time intervals has a spanning tree frequently enough as the system evolves.

Toward that end we have the following preliminary results.
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Lemma 3.2.1 The discrete update scheme (3.1) achieves asymptotic consensus for A if

and only if

D[k − 1]D[k − 2] · · ·D[2]D[1]D[0]→ 1cT (3.5)

as k →∞, where 1 denotes the n× 1 column vector with all the entries equal to 1, and c

is an n vector of constant coefficients.

Proof: Note that the set of agents A reaches consensus asymptotically if and only if the set

S = {ξ ∈ IRn : ξ1 = ξ2 = ... = ξn},

is attractive and positively invariant.

Since

ξ[k] = D[k − 1]D[k − 2] · · ·D[1]D[0]ξ[0],

Eq. (3.5) implies that

lim
k→∞

ξ[k] = 1cT ξ[0] =




cT ξ[0]
...

cT ξ[0]


 ,

which implies that S is attractive and positively invariant.

Conversely if S is attractive and positively invariant, then

lim
k→∞

ξ[k] = lim
k→∞

D[k − 1]D[k − 2] · · ·D[1]D[0]ξ[0] = 1α,

where α is a constant coefficient. Which in turn implies that

lim
k→∞

D[k − 1]D[k − 2] · · ·D[1]D[0] = 1cT .

Lemma 3.2.2 The continuous update scheme (3.3) achieves asymptotic consensus forA if

and only if

Φ(t, 0) = I +

∫ t

0

C(σ1) dσ1 +

∫ t

0

C(σ1)

∫ σ1

0

C(σ2) dσ2 dσ1 + · · · → 1cT (3.6)

as t→∞.

Proof: Noting that ξ(t) = Φ(t, 0)ξ(0), the proof is similar to that of Lemma 3.2.1.
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3.3 Consensus Under Fixed Interaction Topologies

In this section, we assume that the graph G is time-invariant and weighting fac-

tors in Eqs. (3.1) and (3.3) are constant. That is, matrix D and C in Eqs. (3.2) and (3.4) are

constant. We will derive necessary and sufficient conditions for consensus of information

using both the discrete-time and continuous-time update schemes.

3.3.1 Consensus Using Continuous-Time Update Scheme

In this section, we first consider the case when the information variable is in-

herently constant. We then consider the case when the information variable is dynamically

evolving in time. This is the case, for example, in formation control problems where the

information variable is the dynamic state of a virtual leader.

Static Consensus

Before moving on, we need the following definitions from matrix theory (c.f. [99]).

Let In denote the n× n identity matrix. A matrix A = [aij] ∈ Mn(IR) is nonnegative, de-

noted as A ≥ 0, if all its entries are nonnegative. Furthermore, if all its row sums are +1,

A is said to be a (row) stochastic matrix.

We need the following lemma to derive our main results.

Lemma 3.3.1 Given a matrix A = [aij] ∈ Mn(IR), where aii ≤ 0, aij ≥ 0, ∀i 6= j, and
∑n

j=1 aij = 0 for each j, then A has at least one zero eigenvalue and all of the non-zero

eigenvalues are in the open left half plane. Furthermore, A has exactly one zero eigenvalue

if and only if the directed graph associated with A has a spanning tree.

Proof:

For the first statement, note that A is diagonally dominant, has zero row sum,

and non-positive diagonal elements. Therefore, from the Gersgorin disc theorem (c.f. [99]),

A has at least one zero eigenvalue and all the other non-zero eigenvalues are in the open

left half plane.

The second statement will be shown using an induction argument.
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(Sufficiency.) Step 1. The first step is to show that A has exactly one zero

eigenvalue if the directed graph associated with A is itself a spanning tree.

Noting that the graph associated with A is a spanning tree, renumber the agents

consecutively by depth in the spanning tree, with the root numbered as agent A1. In other

words, children of A1 are numbered A2 to Aq1 , children of A2 to Aq1 are labelled Aq1+1 to

Aq2 and so on. Note that the associated matrix A is lower diagonal with only one diagonal

entry equal to zero [57].

Step 2. LetQ = [qij] ∈Mn(IR), where qii ≤ 0, qij ≥ 0, ∀i 6= j, and
∑n

j=1 qij =

0 for each j. Let S = [sij] ∈ Mn(IR) satisfy the similar properties to those of matrix

Q. Also let G1 and G2 be the interaction graphs associated with Q and S respectively.

We assume that s`` = q`` − σ`m, s`m = q`m + σ`m, and sij = qij otherwise, where

σ`m > 0 denotes the weighting factor for the information link from agent m to agent `,

m 6= `. That is, G2 corresponds to an interaction graph where one more directed link from

node m to node ` is added to graph G1, where m 6= `. Denote pQ(t) = det(tI − Q)

and pS(t) = det(tI − S) as the characteristic polynomial of Q and S respectively. Let

Qt = tI −Q and St = tI − S. Given any matrix M , denote M([i, j]) as the sub-matrix of

M formed by deleting the ith row and j th column.

Next, we will show that if matrix Q has exactly one zero eigenvalue, then so

does matrix S. Without loss of generality, we assume that the new directed information

link added to graph G1 is from node m to node 1, where m 6= 1, for simplicity since we can

always renumber node ` as node 1.

Obviously matrix S has at least one zero eigenvalue and all the other non-zero

eigenvalues are in the open left half plane following the first statement of this Lemma.

Below we will show that S has only one zero eigenvalue.

Assume that Qt = [qtij], and St = [stij], (i, j) ∈ I. Accordingly, it can be seen

that st11 = t−s11 = t−q11+σ1m = qt11+σ1m, st1m = −s1m = −q1m−σ1m = qt1m−σ1m,

and stij = qtij otherwise. Also note that detSt([1, j]) = detQt([1, j]), j ∈ I. Then we
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know that

detSt =
n∑

j=1

(−1)1+jst1jdetSt([1, j])

=
n∑

j=1

(−1)1+jqt1jdetSt([1, j])

+ σ1mdetSt([1, 1])− (−1)1+mσ1mdetSt([1,m])

=detQt + σ1m(detSt([1, 1]) + (−1)mdetSt([1,m])).

Consider a matrixE = [eij], (i, j) = 1, · · · , n−1, given by adding [s21, s31, · · · , sn1]T

to the (m− 1)th column of matrix S([1, 1]). Matrix E can be denoted as

E =




s22 s23 · · · s2m + s21 · · · s2n

s32 s33 · · · s3m + s31 · · · s3n
...

...
...

. . .
...

...

sn2 sn3 · · · snm + sn1 · · · snn



.

Thus ei(m−1) = s(i+1)m + s(i+1)1, i = 1, · · · , n − 1. Using the properties of determinants,

it can be verified that

det(tI − E) = detSt([1, 1]) + (−1)mdetSt([1,m]).

Obviously matrix E has zero row sum and nonpositive diagonal elements. Also matrix E

is diagonally dominant. From the Gersgorin disc theorem, we know that E has at least one

zero eigenvalue and all the other non-zero eigenvalues are on the open left half plane. As a

result, the Routh stability criterion implies that the characteristic polynomial of E denoted

as det(tI − E) has a nonnegative coefficient in the first power of t. We also know that

matrix Q has a positive coefficient for the first power of t in its characteristic polynomial

detQt since Q has exactly one zero eigenvalue and all the others are in the open left half

plane.

Noting that detSt = detQt+σ1mdet(tI−E), it is obvious that S has a positive

coefficient for the first power of t. Therefore, S can only have one zero eigenvalue.

Step 3. If graph G associated with A is itself a spanning tree, we know that

A has exactly one zero eigenvalue from Step 1. If not, graph G can be constructed by
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consecutively adding information links to the spanning tree. Step 2 implies that adding

one additional information link to the spanning tree results in an associated matrix that

also has exactly one zero eigenvalue. We can recursively add additional information links,

where Step 2 implies that the matrix associated with the new graph has exactly one zero

eigenvalue, until we obtain the graph G. By induction, we know that A has exactly one

zero eigenvalue if graph G has a spanning tree.

(Necessity.) If graph G does not have a spanning tree, then there exist at least

two separate subgroups or at least two agents in the group who do not receive any infor-

mation. For the first case, there is no information exchange between these subgroups and

matrix A can be written as block diagonal form by renumbering these agents based on

their subgroup. It is straightforward to see that each block has at least one zero eigenvalue.

Therefore, A has at least two zero eigenvalues. For the second case, A has at least two zero

rows, which implies that A has at least two zero eigenvalues.

Corollary 3.3.1 The Laplacian matrix of a graph has a simple zero eigenvalue if and only

if the graph has a spanning tree.

Proof: If we multiply the Laplacian matrix by -1, we get a matrix satisfying the properties

defined in Lemma 3.3.1.

Next, we will show that the group of vehiclesA reach consensus asymptotically

using the update scheme (3.3) if matrix C in Eq. (3.4) has exactly one zero eigenvalue and

all the others are in the open left half plane. The following result also computes the value

of the information variable that is reached through the consensus process.

Lemma 3.3.2 If C is given by Eq. (3.4), then eCt, ∀t > 0, is a stochastic matrix with

positive diagonal entries. Furthermore, if C has exactly one zero eigenvalue, then eCt →
1νT and ξi(t)→

∑n
i=1(νiξi(0)) as t→∞, where 1 = [1, · · · , 1]Tn×1, ν = [ν1, · · · , νn]T ≥

0, and
∑n

i=1 νi = 1.

Proof: Given eigenvalues λi ∈ σ(C) with eigenvectors zi, i = 1, · · · , n, where σ(A)

represents the spectrum of A, we know that eλit ∈ σ(eCt) with the same eigenvectors as C

(c.f. [99]). Noting that C has a zero eigenvalue with an associated eigenvector given by 1,
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then eCt has an eigenvalue 1 with the same eigenvector 1. Thus we know that eCt1 = 1,

which implies that eCt always has row sum equal to 1. Also note that C can be written as

the sum of a nonnegative matrix M and −βIn, where β is the maximum absolute value of

the diagonal entries of C. We can see that eCt = e−βteMt, which is obviously nonnegative

and has positive diagonal entries. As a result, eCt, ∀t > 0, is a stochastic matrix with

positive diagonal entries.

Furthermore, if C has exactly one zero eigenvalue, then eCt has exactly one

eigenvalue equal to 1 and all the other eigenvalues have modulus less than 1. Let J = [jml],

(m, l) = 1, · · · , n, be the Jordan matrix corresponding to matrix C, then jmm = λm.

Without loss of generality, assume that λn = 0 and λm is on the open left half plane,

m = 1, · · · , n− 1.

Let C = PJP−1, where P = [p1, · · · , pn] is an n× n matrix. Note that pn can

correspond to an eigenvector associated with eigenvalue λn = 0. Without loss of generality,

choose pn = 1 as the eigenvector.

We know that eCt = PeJtP−1. It can be verified that

eJt →




0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

0 0 · · · 1




as t → ∞ from the property of C (c.f. [99]). After some manipulation, we know that

eCt → 1νT as t → ∞, where νi, i = 1, · · · , n, corresponds to the last row of matrix P−1.

The result
∑n

i=1 νi = 1 comes from the fact that eCt has row sum equal to 1 for any t.

We also need to show that ν ≥ 0. Now consider matrix eCk, k = 0, 1, 2, · · · .
Obviously eCk should also approach to 1νT as k → ∞. From Lemma 8.2.7 in [99], ν

should be an eigenvector of matrix (eC)T associated with the simple eigenvalue 1. From

Theorem 8.3.1 in [99], (eC)T has a nonnegative eigenvector x ≥ 0 associated with the

simple eigenvalue 1. Thus it can be seen that ν = αx for some α 6= 0. Since
∑n

i=1 νi = 1,

it must be true that α > 0, which implies that ν ≥ 0.

The solution to Eq. (3.4) is given by ξ(t) = eCtξ(0). Therefore, it is obvious

that ξi(t)→
∑n

i=1(νiξi(0)), i = 1, · · · , n, as t→∞.
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Note that if we replace matrix C with γC in Eq. (3.4), where γ > 0, we can

increase consensus speed by increasing γ. The solution to Eq. (3.4) with this new matrix

is given by ξ = eγCtξ(0) = eC(γt)ξ(0), which converges faster than the original solution if

we choose γ > 1.

Ref. [57] shows that the group of agents A is consensus reachable if and only

if the associated interaction graph G has a spanning tree. The proof for this claim in [57]

is constructive in that the linear update law is based on a communication graph which is

the spanning tree of G. Of course, there may exist other connections in graph G which

are ignored. Ref. [57] only partially answers the question of whether the update law (3.3)

accounting for all existing connections achieves consensus asymptotically. The next result

provides a complete answer.

Theorem 3.3.2 The consensus strategy (3.3), achieves consensus asymptotically for A if

and only if the associated (static) interaction graph G has a spanning tree.

Proof: (Sufficiency.) Obviously matrix C in Eq. (3.4) associated with graph G has the same

properties as matrix A in Lemma 3.3.1. The fact that graph G has a spanning tree implies

that the directed graph of matrix C has a spanning tree. Therefore, we know that matrix C

has exactly one zero eigenvalue and all the others are in the open left half plane. As a result,

we know that the update law (3.3) achieves consensus asymptotically for A according to

Lemma 3.3.2.

(Necessity.) Suppose that the consensus strategy (3.3) achieves consensus asymp-

totically forA but that G does not have a spanning tree. Then there exist at least two agents

Ai andAj such that there is no path in G that contains bothAi andAj . Therefore it is impos-

sible to bring data between these two agents into consensus which implies that consensus

cannot be achieved asymptotically for A [57].

Note that the linear update law (3.3) only achieves consensus for constant co-

ordination variables, which may not be suitable for applications where the coordination

variable evolves dynamically. For example, in the context of leader-following approaches

(c.f. [38]), the group leader’s trajectory can act as the coordination variable for the whole

group.
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Dynamic Consensus

Suppose that the information variable on each vehicle is driven by the same

time-varying input u(t), which might represent an a priori known feedforward signal. The

associated consensus scheme is given by

ξ̇i = −
n∑

j=1

kijGji(ξi − ξj) + u(t), i = 1, · · · , n. (3.7)

Eq. (3.7) can also be written in matrix form as

ξ̇ = Cξ +Bu(t), (3.8)

where C is the matrix associated with graph G andB = [1, · · · , 1]T . We have the following

theorem regarding consensus of the information variables ξi, i = 1, . . . , n.

Theorem 3.3.3 The consensus strategy (3.8) achieves consensus asymptotically for A if

and only if the associated interaction graph G has a spanning tree. Furthermore the infor-

mation variables satisfy ‖ξi(t)− ζ(t)‖ → 0 as t→∞, where ζ(t) is the solution of

ζ̇ = u(t), ζ(0) = µ,

where µB is equilibrium of the differential equation

π̇ = Cπ, π(0) = ξ(0).

Proof: (Sufficiency.) The solution to Eq. (3.8) is given by ξ(t) = ξs(t) + ξe(t), where

ξs(t) = eCtξ(0) and ξe(t) =
∫ t
0
eC(t−τ)Bu(τ)dτ (c.f. [100]). Note that ξs represents the

zero input solution to Eq. (3.8), that is, solution to ξ̇ = Cξ. From Theorem 3.3.2, it is

obvious that each component of ξs satisfies ξsi(t)→ µ as t→∞, i = 1, · · · , n. Also note

that ξe represents the zero state solution to Eq. (3.8). We know that eC(t−τ)B = B since

eC(t−τ) always has row sum equal to 1. Therefore, it can be seen that each component of ξe

satisfies ξei =
∫ t
0
u(τ)dτ , i = 1, · · · , n. Combining ξs and ξe, gives ‖ξi(t)− ζ(t)‖ → 0 as

t→∞.

(Necessity.) The necessary part follows directly from Theorem 3.3.2.
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Equilibrium Points

We have shown that the linear consensus strategy (3.3) achieves consensus

asymptotically for A if the graph G has a spanning tree. In addition, ξi(t) will converge to
∑n

i=1(νiξi(0)) as t → ∞, where
∑n

i=1 νi = 1 and νi ≥ 0. A natural question is whether

each initial condition ξi(0) will contribute to the final equilibrium point. In the following

we provide a partial answer to this question. We assume that graph G has a spanning tree

in this section.

Observe that if there is a node Ak in G without an incoming link (there is at

most one such node in graph G from Theorem 3.3.2), the linear update law corresponding

to this node is given by ξ̇k = 0 from Eq. (3.3), which implies that ξk(t) = ξk(0) for all t.

Therefore, the other nodes must converge to ξk(0) for any kij > 0. That is, νk = 1 and

νi = 0, ∀i 6= k.

In general, the initial condition of a node contributes to the equilibrium value if

and only if the node has a directed path to all the other nodes in G. Thus νi 6= 0 for any

node which has directed paths to all the other nodes in G and νi = 0 otherwise. As a special

case, the initial condition of each node in a graph contributes to the final equilibrium point

if and only if the graph is strongly connected. The above argument can be explained as

follows. If there is no path from node j to node m in G, it is impossible for ξm(t) to be

influenced by ξj(0). On the other hand, if there is a path from node j to every other node

in G, then ξi(t), ∀i 6= j, will be influenced by ξj(0).

The fact that νi ≥ 0, i = 1, · · · , n can also be explained from the following

perspective. Assume that ν` < 0 for some `. Consider the case ξ`(0) > 0 and ξi(0) = 0,

∀i 6= `. We know that ξi(t) will converge to
∑n

i=1(νiξi(0)) = ν`ξ`(0), which is negative.

Following the update law (3.3), ξ̇`(0) < 0 if there is any incoming link to A` and ξ̇`(0) = 0

otherwise. In the first situation, ξ`(t) will decrease and ξi(t), ∀i 6= ` cannot decrease since

ξ̇i(0) ≥ 0, which implies that ξi(t) will be synchronized to a value c with 0 ≤ c < ξ`(0).

In the second situation, ξi(t) will be synchronized to ξ`(0). Both cases are contradictory to

the above result. Therefore, νi ≥ 0, i = 1, · · · , n.
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Figure 3.5: Communication topology.

Illustrative Example

In this section, we consider a scenario where six vehicles are to rendezvous at

a position along a parameterized trajectory represented by (rx(τ(t)), ry(s(t))). Fig. 3.5

shows the corresponding communication links between these vehicles. Note the existence

of a spanning tree.

It is assumed that each vehicle knows the parameterized trajectory. Therefore

the parameters τ and s therefore represent the minimum information needed to achieve the

coordination objective: i.e., τ and s are the coordination variables. We will instantiate τ

and s on each vehicle as τi and si, i = 1, · · · , 6. Here we let ξi = [τi, si]
T , i = 1, · · · , 6.

Based on the communication topology shown in Fig. 3.5, the matrix C is given

by

C = γ




−1.5 1.5 0 0 0 0

2 −2 0 0 0 0

0.9 0 −2.8 0 1.9 0

0 1.2 0 −2.5 0 1.3

0 0 1.4 1.8 −3.2 0

0 0 0 0 0.7 −0.7




⊗ I2,

where γ > 0 is a coefficient, ⊗ denotes the Kronecker product, and kij > 0, (i, j) =

1, · · · , 6, is chosen arbitrarily. The initial conditions for each instantiation of τ and s are

given by τi = 0.2i− 0.1 and si = 0.2i, i = 1, · · · , 6.

Fig. 3.6 shows the consensus scenario using update law (3.4) for γ = 1 and

γ = 5 respectively. We can see that only the initial conditions of A1 and A2 affect the
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Figure 3.6: Consensus of τi and si using update law (3.4).

equilibrium value, which is consistent with the communication graph shown in Fig. 3.5,

where it can be seen that onlyA1 andA2 have a directed path to all the other nodes. Fig. 3.7

shows the same consensus scenario corresponding to the communication graph formed by

deleting the link from A2 to A1 in Fig. 3.5. It can be seen that each instantiation of τ and s

converges to τ1(0) and s1(0) respectively.

Fig. 3.8 illustrates a dynamic consensus scenario using update law (3.8) for γ =

1 and γ = 5 respectively. The common predefined planning schemes for τ and s are given

by τ̇ = 1
5
|sin(t)| and ṡ = 1

4
|cos(t)| respectively. Here we let u(t) = [ 1

5
|sin(t)| , 1

4
|cos(t)|]T

in Eq. (3.8). It can be seen that consensus is achieved asymptotically and that both τi and

si follow the appropriate trajectories.

3.3.2 Consensus Using Discrete-Time Update Scheme

Before moving on, we need the following definitions. A stochastic matrix P is

called indecomposable and aperiodic (SIA) if limn→∞ P
n = 1yT , where y is some column
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Figure 3.7: Consensus of τi and si without link from A2 to A1 using update law (3.4).
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Figure 3.8: Consensus and evolution of τi and si using update law (3.8).
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vector [101]. For nonnegative matrices, A ≥ B implies that A−B is a nonnegative matrix.

It is easy to verify that if A ≥ ρB, for some ρ > 0, and the directed graph of B has a

spanning tree, then the directed graph of A has a spanning tree.

We need the following lemmas to derive our main results.

Lemma 3.3.3 If a nonnegative matrix A = [aij] ∈ Mn(IR) has the same positive constant

row sums given by µ > 0, then µ is an eigenvalue of A with an associated eigenvector

1 and ρ(A) = µ, where ρ(·) denotes the spectral radius. In addition, the eigenvalue µ

of A has algebraic multiplicity equal to one, if and only if the graph associated with A

has a spanning tree. Furthermore, if the graph associated with A has a spanning tree and

aii > 0, then µ is the unique eigenvalue of maximum modulus.

Proof: The first statement follows directly from the properties of nonnegative matrices

(c.f. [99]).

For the second statement, we need to show both the necessary and sufficient

conditions.

(Sufficiency.) If the graph associated with A has a spanning tree, then the graph

associated with B = A− µIn also has a spanning tree. We know that λi(A) = λi(B) + µ,

where i = 1, · · · , n, and λi(·) represents the ith eigenvalue. Noting that B satisfies the

conditions in Lemma 3.3.1, we know that zero is an eigenvalue of B with algebraic multi-

plicity equal to one, which implies that µ is an eigenvalue of A with algebraic multiplicity

equal to one.

(Necessity.) If the graph associated with A does not have a spanning tree, we

know that B = A − µIn has more than one zero eigenvalue from Lemma 3.3.1, which in

turn implies that A has more than one eigenvalue equal to µ.

For the third statement, the Gersgorin disc theorem [99] implies that all the

eigenvalues of A are located in the union of the n discs given by

n⋃

i=1

{z ∈ C : |z − aii| ≤
∑

j 6=i

|aij|},

where C is the set of complex numbers. Noting that aii > 0, it is easy to see that this union

is included in a circle given by {z ∈ C : |z| = µ} and the circular boundaries of the union
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of n discs has only one intersection with the circle at z = µ. Thus we know that |λ| < µ for

every eigenvalue of A satisfying λ 6= µ. Combining the second statement, we know that µ

is the unique eigenvalue of maximum modulus.

Corollary 3.3.4 A stochastic matrix has algebraic multiplicity equal to one for its eigen-

value λ = 1 if and only if the graph associated with the matrix has a spanning tree. Fur-

thermore, a stochastic matrix with positive diagonal elements has the property that |λ| < 1

for every eigenvalue not equal to one.

Lemma 3.3.4 If A ∈ Mn(IR) and A ≥ 0, then ρ(A) is an eigenvalue of A and there is a

nonnegative vector x ≥ 0, x 6= 0, such that Ax = ρ(A)x.

Proof: See Theorem 8.3.1 in [99].

Lemma 3.3.5 Let A = [aij] ∈ Mn(IR) be a stochastic matrix. If A has an eigenvalue

λ = 1 with algebraic multiplicity equal to one, and all the other eigenvalues satisfy |λ| < 1,

then A is SIA, that is, limm→∞A
m → 1νT , where ν satisfies ATν = ν and 1Tν = 1.

Furthermore, each element of ν is nonnegative.

Proof: The first part of the lemma follows Lemma 8.2.7 in [99]. For the second part, it is

obvious that AT is also nonnegative and has ρ(AT ) = 1 as an eigenvalue with algebraic

multiplicity equal to one. Thus Lemma 3.3.4 implies that the eigenspace of AT associated

with eigenvalue λ = 1 is given by cx, where c ∈ C, c 6= 0, and x is a nonnegative

eigenvector. Since ν is also an eigenvector of AT associated with eigenvalue λ = 1 and

satisfies 1Tν = 1, it follows that each element of ν must be nonnegative.

Next, we show necessary and sufficient condition for consensus of information

using discrete-time update scheme (3.1).

Theorem 3.3.5 With a time-invariant interaction topology and constant weighting factors,

the discrete-time update scheme (3.1) achieves consensus asymptotically for A as k →∞
if and only if the associated interaction graph G has a spanning tree.

Proof: From Lemma 3.2.1, we need to show that Dk → 1cT , where c is a constant column

vector.
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(Sufficiency.) Obviously D is a stochastic matrix with positive diagonal entries.

The fact that graph G has a spanning tree also implies that the directed graph of D has a

spanning tree. Combining Corollary 3.3.4 and Lemma 3.3.5, we know that limk→∞D
k →

1νT , where ν satisfies the properties defined in Lemma 3.3.5.

(Necessity.) If G does not have a spanning tree, neither does the directed graph

of D, which implies, by Corollary 3.3.4, that the algebraic multiplicity of eigenvalue λ = 1

of D is m > 1. Therefore, the Jordan decomposition of Dk has the form Dk = MJkM−1,

where M is full rank and Jk is lower triangular with m diagonal elements equal to one.

Therefore, the rank of limk→∞D
k is at least m > 1 which implies, by Lemma 3.2.1, that

A cannot reach consensus asymptotically.

Using discrete-time consensus scheme (3.1), we have similar results for dynam-

ics consensus and equilibrium point analysis. We omit these two parts for simplicity.

3.4 Consensus Under Dynamically Changing Interaction Topologies

We need the following two lemmas. The first lemma is from [35] and the second

lemma is originally from [101] and restated in [35].

Lemma 3.4.1 [35] Letm ≥ 2 be a positive integer and let P1, P2, · · · , Pm be nonnegative

n× n matrices with positive diagonal elements, then

P1P2 · · ·Pm ≥ γ(P1 + P2 + · · ·+ Pm),

where γ > 0 can be specified from matrices Pi, i = 1, · · · ,m.

Lemma 3.4.2 [101] Let S1, S2, · · · , Sk be a finite set of SIA matrices with the property

that for each sequence Si1 , Si2 , · · · , Sij of positive length, the matrix product SijSij−1
· · ·Si1

is SIA. Then for each infinite sequence Si1 , Si2 , · · · there exists a column vector y such that

lim
j→∞

SijSij−1
· · ·Si1 = 1yT .

3.4.1 Consensus Using Discrete-Time Update Scheme

The next lemma sets the stage for showing that under certain conditions, the

existence of a spanning tree is sufficient for consensus under dynamically changing inter-

action topologies using the discrete-time update scheme (3.1).
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Lemma 3.4.3 If the union of a set of directed graphs {Gi1 ,Gi2 , · · · ,Gim} ⊂ Ḡ has a span-

ning tree, then the matrix product Dim · · ·Di2Di1 is SIA, where Dij is a stochastic matrix

corresponding to each directed graph Gij in Eq. (3.2).

Proof: From Lemma 3.4.1, we know that Dim · · ·Di2Di1 ≥ γ
∑m

j=1Dij for some γ > 0.

Since the union of {Gi1 ,Gi2 , · · · ,Gim} has a spanning tree, we know that the

directed graph of matrix
∑m

j=1Dij has a spanning tree, which in turn implies that the

directed graph of the matrix product Dim · · ·Di2Di1 has a spanning tree. Also the matrix

productDim · · ·Di2Di1 is a stochastic matrix with positive diagonal entries since stochastic

matrices with positive diagonal entries are closed under matrix multiplication.

Combining Corollary 3.3.4 and Lemma 3.3.5, we know that the matrix product

Di1Di2 · · ·Dim is SIA.

The following theorem extends the discrete-time convergence result of [35].

Theorem 3.4.1 Let G[k] ∈ Ḡ be a switching interaction graph at time t = kT . Also let

αij[k] ∈ ᾱ, where ᾱ is a finite set of arbitrary positive numbers. The discrete-time update

scheme (3.1) achieves consensus asymptotically forA if there exists an infinite sequence of

uniformly bounded, non-overlapping time intervals [kjT, (kj+ lj)T ), j = 1, 2, · · · , starting

at k1 = 0, with the property that each interval [(kj + lj)T, kj+1T ) is uniformly bounded

and the union of the graphs across each such interval has a spanning tree. Furthermore, if

the union of the graphs after some finite time does not have a spanning tree, then consensus

cannot be achieved asymptotically for A.

Proof: Let D̄ denote the set of all possible matrices D[k] under dynamically changing

interaction topologies and weighting factors αij[k]. We know that D̄ is a finite set since

both set Ḡ and set ᾱ are finite.

Consider the jth time interval [kjT, kj+1T ), which includes the time interval

[kjT, (kj + lj)T ) and must be uniformly bounded since both [kjT, (kj + lj)T ) and [(kj +

lj)T, kj+1T ) are uniformly bounded. Also the sequence of time intervals [kjT, kj+1T ),

j = 1, 2, · · · , are contiguous.

The union of the graphs across [kjT, kj+1T ), denoted as Ḡ[kj], has a span-

ning tree since the union of the graphs across [kjT, (kj + lj)T ) has a spanning tree. Let
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{D[kj], D[kj + 1], · · · , D[kj+1 − 1]} be the set of stochastic matrices corresponding to

each graph in the union Ḡ[kj]. Following Lemma 3.4.3, the matrix product D[kj+1 −
1] · · ·D[kj +1]D[kj], j = 1, 2, · · · , is SIA. Then by applying Lemma 3.4.2 and mimicking

a similar proof for Theorem 2 in [35], the first part can be proved.

If the union of the graphs after some finite time t̂ does not have a spanning tree,

then during the infinite time interval [t̂,∞), there exist at least two agents such that there is

no path in the union of the graphs that contains these two agents, which then implies that

information of these two agents cannot reach consensus.

3.4.2 Consensus Using Continuous-Time Update Scheme

In this section, we will focus on demonstrating that under certain conditions, the

existence of a spanning tree is also sufficient for consensus under dynamically changing

interaction topologies using the continuous-time update scheme. To do so, we need the

following lemma.

Lemma 3.4.4 If the union of the directed graphs {Gt1 ,Gt2 , · · · ,Gtm} ⊂ Ḡ has a spanning

tree and Cti is the matrix corresponding to each directed graph Gti in Eq. (3.4), then the

matrix product eCtm∆tm · · · eCt2∆t2eCt1∆t1 is SIA, where ∆ti > 0 are bounded.

Proof: From Eq. (3.4), each matrix Cti satisfies the properties defined in Lemma 3.3.1.

Thus each Cti can be written as the sum of a nonnegative matrix Mti and −ηtiIn, where ηti

is the maximum absolute value of the diagonal entries of Cti , i = 1, · · · ,m.

From Lemma 1 in [31], we know that eCti∆ti = e−ηti∆tieMti∆ti ≥ ρiMti for

some ρi > 0. Since the union of the directed graphs {Gt1 ,Gt2 , · · · ,Gtm} has a spanning

tree, we know that the union of the directed graphs of Mti has a spanning tree, which in

turn implies that the union of the directed graphs of eCti∆ti has a spanning tree. From

Lemma 3.4.1, we know that eCtm∆tm · · · eCt2∆t2eCt1∆t1 ≥ γ
∑m

i=1 e
Cti∆ti for some γ > 0,

which implies that the above matrix product also has a spanning tree.

It can also be verified that each matrix eCti∆ti is a stochastic matrix with positive

diagonal entries, which implies that the above matrix product is also stochastic with positive

diagonal entries.

34



Combining Corollary 3.3.4 and Lemma 3.3.5, we know that the above matrix

product is SIA.

In this dissertation, we also apply dwell time (c.f. [102, 35]) to the continuous-

time update scheme (3.4), which implies that the interaction graph and weighting factors are

constrained to change only at discrete times, that is, the matrix C(t) is piecewise constant.

Eq. (3.4) can be rewritten as

ξ̇(t) = C(ti)ξ(t), t ∈ [ti, ti + τi) (3.9)

where t0 is the initial time and t1, t2, · · · is an infinite time sequence at which the interaction

graph or weighting factors change, resulting in a change in C(t).

Let τi = ti+1 − ti be the dwell time, i = 0, 1, · · · . Note that the solution to

Eq. (3.9) is given by ξ(t) = eC(tk)(t−tk)eC(tk−1)τk−1 · · · eC(t1)τ1eC(t0)τ0ξ(0), where k is the

largest nonnegative integer satisfying tk ≤ t. Let τ̄ be a finite set of arbitrary positive

numbers. Let Υ be an infinite set generated from set τ̄ , which is closed under addition, and

multiplications by positive integers. We assume that τi ∈ Υ, i = 0, 1, · · · . By choosing the

set τ̄ properly, dwell time can be chosen from an infinite set Υ, which somewhat simulates

the case when the interaction graph G changes dynamically over time.

The following theorem extends the continuous-time convergence result in [35].

Theorem 3.4.2 Let t1, t2, · · · be an infinite time sequence at which the interaction graph or

weighting factors switch and τi = ti+1 − ti ∈ Υ, i = 0, 1, · · · . Let G(ti) ∈ Ḡ be a switch-

ing interaction graph at time t = ti and σij(ti) ∈ σ̄, where σ̄ is a finite set of arbitrary

positive numbers. The continuous-time update scheme (3.3) achieves consensus asymptoti-

cally for A if there exists an infinite sequence of uniformly bounded, non-overlapping time

intervals [tij , tij+lj), j = 1, 2, · · · , starting at ti1 = t0, with the property that each interval

[tij+lj , tij+1
) is uniformly bounded and the union of the graphs across each such interval

has a spanning tree. Furthermore, if the union of the graphs after some finite time does not

have a spanning tree, then consensus cannot be achieved asymptotically for A.
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Proof: The set of all possible matrices eC(ti)τi , where τi ∈ Υ, under dynamically changing

interaction topologies and weighting factors can be chosen or constructed by matrix multi-

plications from the set Ē = {eC(ti)τi , τi ∈ τ̄}. Clearly Ē is finite since Ḡ, σ̄, and τ̄ are all

finite.

Consider the jth time interval [tij , tij+1
), which includes the time interval [tij , tij+lj)

and must be uniformly bounded since both [tij , tij+lj) and [tij+lj , tij+1
) are uniformly bounded.

Also the sequence of time intervals [tij , tij+1
), j = 1, 2, · · · , are contiguous.

The union of the graphs across [tij , tij+1
), denoted as Ḡ(tij), has a spanning tree

since the union of graphs across [tij , tij+lj) has a spanning tree. Let {C(tij), C(tij+1), · · · , C(tij+1−1)}
be a set of matrices corresponding to each graph in the union Ḡ(tij). Following Lemma 3.4.4,

the matrix product eC(tij+1−1)τij+1−1 · · · eC(tij+1)τij+1eC(tij )τij , j = 1, 2, · · · , is SIA. Then,

the first part follows from Lemma 3.4.2 and an argument similar to the proof of Theorem 2

in [35].

The second part is similar to that in Theorem 3.4.1.

3.4.3 Discussion

The contribution of this section is that the results in [35], which are limited to

undirected graphs, are extended to directed graphs. Therefore, unidirectional information

exchange is allowed instead of requiring bidirectional information exchange. This will be

important in applications where bidirectional communication or sensing is not available.

Ref. [35] shows that consensus of information (the heading of each agent in

their context) can be achieved if the union of a collection of graphs is connected frequently

enough. This section demonstrates that the same result can be achieved as long as the union

of the graphs has a spanning tree, which is a milder requirement than being connected and

implies that one half of the information exchange links required in [35] can be removed

without adversely affecting the convergence result. In this sense, the results for conver-

gence in [35] can be thought of as a special case of a more general result. Of course, the

final achieved equilibrium points will depend on the property of the directed graphs. For

example, compared to strongly connected graphs, graphs that are not strongly connected
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will reach different final equilibrium points (see [31] for an analysis of the final equilibrium

points).

The leader following scenario described in [35] can also be thought of as a spe-

cial case of our result. If there is one agent in the group which does not have any incoming

link, but the union of the interaction graphs has a spanning tree frequently enough, then

this agent must be the root of the spanning tree, i.e, the leader. Since consensus is guaran-

teed, the information state of the other agents asymptotically converges to the information

state of the leader. Therefore, the scenario discussed in [35] of being linked to a leader

frequently enough is a special case of having a spanning tree, frequently enough, with the

leader as the root.

For the continuous model used in [35], the switching times of the interaction

graph is constrained to be separated by τD time units, where τD is a constant dwell time.

Our continuous update scheme allows the switching times to be within an infinite set of

positive numbers generated by any finite set of positive numbers, which is better suited to

simulating the random switching of interaction graphs. Therefore, the continuous scheme

in [35] can be thought of a special case of our result by letting τ̄ = {τd} and Υ = {kτd|k =

1, 2, · · · }.
Unlike the update schemes in [35], we do not constrain the weighting factors

in our discrete and continuous update schemes, other than to require that they be positive.

This provides flexibility to account for relative confidence in information from different

agents.

An additional contribution of this section is the proof for properties of nonneg-

ative matrices with the same positive row sums. The Perron-Frobenius Theorem states

that if a nonnegative matrix A is irreducible, that is, the directed graph of A is strongly

connected, then the spectral radius of A is a simple eigenvalue. We show that the irre-

ducibility condition is too stringent for nonnegative matrices with the same positive row

sums. Lemma 3.3.3 explicitly shows that for a nonnegative matrix A with identical posi-

tive row sums, the spectral radius of A (the row sum in this case) is a simple eigenvalue if

and only if the directed graph of A has a spanning tree. In other words, A may be reducible

but retains its spectral radius as a simple eigenvalue. Furthermore, if A has a spanning tree
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Figure 3.9: Possible interaction topologies for A = {Ai|i = 1, · · · , 5}.

and positive diagonal entries, we know that the spectral radius ofA is the unique eigenvalue

of maximum modulus.

Note that we assume that weighting factors αij and σij are chosen from any

finite set of positive numbers for simplicity of proof. In fact, the results of this section are

still valid if this assumption is relaxed to αij ∈ [αL, αM ] and σij ∈ [σL, σM ], where αL,

αM , σL, and σM are arbitrary positive numbers satisfying αL < αM and σL < σM . The

argument is based on the concluding remark in [101], which deals with the case when the

set of stochastic matrices is infinite.

3.4.4 Simulation Results

In this section, we simulate information consensus for five agents under dynam-

ically changing interaction topologies using the discrete-time update scheme (3.2) and the

continuous-time update scheme (3.9) respectively.

For simplicity, we constrain the possible interaction graphs for these five agents

to be within the set Gs = {G1,G2,G3,G4,G5} as shown in Fig. 3.9, which is obviously a

subset of Ḡ. For the discrete-time update scheme, we assume that the interaction graph

switches randomly in Gs at each time t = kT , where k = 0, 1, 2, · · · and T is 0.5 seconds.

For the continuous-time update scheme, we assume that the interaction graph switches

randomly in Gs at each random time t = tk, k = 0, 1, 2, · · · . The weighting factors in

Eqs. (3.2) and (3.9) are chosen arbitrarily a priori for each directed graph in Gs to satisfy

αij[k] > 0 and σij(tk) > 0, (i, j) ∈ I and k = 0, 1, 2, · · · .
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Figure 3.10: The union of Gs.
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Figure 3.11: Consensus with G[k] and G(tk) randomly switching from Gs.

Note that each directed graph in Gs does not have a spanning tree but that the

union of these graphs do have a spanning tree is evident from Fig. 3.10. As the switching

between graphs in Gs is random, the condition for consensus will be generically satisfied.

Alternatively, it is obvious that the union of these graphs is not connected, which implies

that the conditions in [35] are not satisfied. Simulation results show that asymptotic con-

sensus is achieved using both the discrete-time update scheme and the continuous-time

update scheme.

The initial information variable was selected arbitrarily as ξi = 0.2 ∗ i, i =

1, · · · , 5. Fig. 3.11 shows the consensus results using both the discrete-time update scheme

and the continuous-time update scheme. Note that ξi(t), i = 1, · · · , 5, reaches consensus

for both cases.
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Figure 3.12: Consensus with G[k] and G(tk) randomly switching from G ′s.

Consider now a leader following scenario where the information graph switches

in G ′s
4
= Gs \ G1. As a result, there is no information exchange link from A3 to A1. In this

case, the union of the information graphs has a spanning tree, however, unlike the previous

case there is no incoming information link to A1. Fig. 3.12 shows the consensus results

using both the discrete-time update scheme and the continuous-time update scheme. Note

that ξi(t), i = 2, · · · , 5, converges asymptotically to ξ1(0) as expected. This is similar to

the leader following case in [35] except that we do not need the followers to be jointly

linked to the leader, that is, the union of the directed graphs is not necessarily connected.
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Chapter 4

Multi-agent Formation Control

4.1 Introduction

This chapter presents some new results on spacecraft formation control and

multiple robot coordination. One motivation for multi-agent systems is to achieve the same

gains for mechanically controlled systems as has been gained in distributed computation.

Rather than having a single monolithic (and therefore expensive and complicated) machine

do everything, the hope is that many inexpensive, simple machines, can achieve the same,

or enhanced functionality, through coordination. In essence, the objective is to replace ex-

pensive complicated hardware with software and multiple copies of simple hardware [103].

In Section 4.2, we propose a decentralized architecture for multiple spacecraft

formation flying in deep space with formation feedback introduced. In Section 4.3, we

propose a constructive satisficing approach to multi-agent formation maneuvers.

4.2 Multiple Spacecraft Formation Flying

In this section, we propose a decentralized formation scheme for spacecraft

formation flying in deep space. This scheme is built on the combined strength of decen-

tralized control and the virtual structure approach. By following a decentralized coordina-

tion architecture via the virtual structure approach, we introduce decentralized formation

control strategies, which are appropriate when a large number of spacecraft are involved

and/or stringent inter-spacecraft communication limitations are exerted. In our decentral-

ized scheme, each spacecraft in the formation instantiates a local copy of the formation
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control, i.e. the coordination vector under the virtual structure framework. The local in-

stantiation of the coordination vector in each spacecraft is then synchronized by communi-

cation with its neighbors following a bidirectional ring topology. The effectiveness of the

proposed control strategies is demonstrated through simulation results.

4.2.1 Problem Statement

In this section, we introduce some preliminary notation and properties for space-

craft formation flying including reference frames, unit quaternions, desired states for each

spacecraft, and spacecraft dynamics.

Reference Frames

Four coordinate frames are used in this section as shown in Fig. 4.1. Reference

frame FO is used as an inertial frame. Reference frame FF is fixed at the virtual center

of the formation, i.e. the virtual structure, as a formation frame. Reference frame Fi is

embedded at the center of mass of each spacecraft as a body frame, which rotates with

the spacecraft and represents its orientation. Reference frame F d
i represents the desired

configuration for each spacecraft. Given any vector p, the representation of p in terms of

its components in FO, FF , and Fi are represented by [p]O, [p]F , and [p]i respectively.

Let the direction cosine matrix Cab denote the orientation of the frame Fa with

respect to Fb, then [p]a = Cab[p]b, where [p]a and [p]b are the coordinate representations of

vector p in Fa and Fb respectively.

Unit Quaternions

Unit quaternions (c.f. Ref. [104]) are used to represent the attitudes of rigid

bodies in this section. A unit quaternion is defined as q = [q̂T , q̄]T , where q̂ = a · sin(φ
2
)

and q̄ = cos(φ
2
). In this notation, a is a unit vector in the direction of rotation with a

coordinate representation [a1, a2, a3]
T , called the eigenaxis, and φ is the rotation angle

about a, called the Euler angle. By definition, a unit quaternion is subject to the constraint

that qT q = 1. Note that a unit quaternion is not unique since q and −q represent the same
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Figure 4.1: Coordinate Frame Geometry.

attitude. However, uniqueness can be achieved by restricting φ to the range 0 ≤ φ ≤ π so

that q̄ ≥ 0 [105]. In the remainder of the section, we assume that q̄ ≥ 0.

The product of two unit quaternions p and q is defined by

qp =


 q̄p̂+ p̄q̂ + q̂ × p̂

q̄p̄− q̂T p̂


 ,

which is also a unit quaternion. The conjugate of the unit quaternion q is defined by q∗ =

[−q̂T , q̄]T . The conjugate of qp is given by (qp)∗ = p∗q∗. The multiplicative identity

quaternion is denoted by qI = [0, 0, 0, 1]T , where qq∗ = q∗q = qI and qqI = qIq = q.

Suppose that qd and q represent the desired and actual attitude respectively, then the attitude

error is given by qe = qd∗q = [q̂Te , q̄e]
T , which represents the attitude of the actual reference

frame F with respect to the desired reference frame F d.

The relationship between the rotation matrix Cab and the unit quaternion q is

given by

Cab = (2q̄2 − 1)I + 2q̂q̂T − 2q̄q̂×,

where q represents the attitude of Fa with respect to Fb [104].
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Given a vector v with coordinate representation [v1, v2, v3]
T , the cross-product

operator is denoted by [106]

v× =




0 −v3 v2

v3 0 −v1
−v2 v1 0


 ,

which represents the fact that v × w = v×w. Also define Ω(v) as

Ω(v) =


 −v

× v

−vT 0


 .

The Desired States for Each Spacecraft

In the virtual structure approach, the entire desired formation is treated as a

single structure called the “virtual structure” with formation frame FF located at its virtual

center of mass to represent its configuration. The virtual structure then has position rF ,

velocity vF , attitude qF , and angular velocity ωF relative to FO.

Let ri, vi, qi, and ωi represent the position, velocity, attitude, and angular veloc-

ity of the ith spacecraft relative to the inertial frame FO. Similarly, let riF , viF , qiF , and ωiF

represent the position, velocity, attitude, and angular velocity of the ith spacecraft relative

to the formation frame FF . A superscript “d” is also used to represent the corresponding

desired state of each spacecraft relative to either FO or FF .

Conceptually, we can think that place holders corresponding to each spacecraft

are embedded in the virtual structure to represent the desired position and attitude for each

spacecraft. As the virtual structure as a whole evolves in time, the place holders trace out

trajectories for each corresponding spacecraft to track. As a result, the actual states of the

ith place holder represent the desired states of the ith spacecraft. With FF as a reference

frame, these states can be denoted by rdiF , qdiF , vdiF , and ωdiF .

Generally, rdiF , qdiF , vdiF , and ωdiF can vary with time, which means the desired

formation shape is time-varying. However, if we are concerned with formation maneuvers

that preserve the overall formation shape, that is, each place holder needs to preserve fixed

relative position and orientation in the virtual structure, rdiF and qdiF should be constant and
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vdiF and ωdiF should be zero. This requirement can be loosened to make the formation shape

more flexible by allowing the place holders to expand or contract while still keeping fixed

relative orientation. We will focus on this scenario in this latter section. Of course, the

approach here can be readily extended to the general case.

Let λF = [λ1, λ2, λ3] where the components represent the expansion/contraction

rates of the virtual structure along each FF axis. The state of the virtual structure can be

defined as ξ = [rTF , v
T
F , q

T
F , ω

T
F , λ

T
F , λ̇

T
F ]
T . We note that if each spacecraft has knowledge of

ξ, and its own desired position and orientation with respect to the virtual structure, then for-

mation keeping is transformed into an individual tracking problem. Therefore, the vector ξ

represents the minimum amount of information needed by each spacecraft to coordinate its

motion with the group. Motivated by this reasoning, we will call ξ the coordination vector.

Given ξ, the desired states for the ith spacecraft are given by

[rdi ]O =[rF ]O + COFΛ[r
d
iF ]F

[vdi ]O =[vF ]O + COF Λ̇[r
d
iF ]F + [ωF ]O × (COFΛ[r

d
iF ]F )

[qdi ]O =[qF ]O[q
d
iF ]F (4.1)

[ωdi ]O =[ωF ]O,

where COF (qF ) is the rotation matrix of the frame FO with respect to FF and Λ =

diag(λF ). Note that unlike the constant desired states rdiF , vdiF , qdiF , and ωdiF relative to

FF , the desired states rdi , vdi , qdi , and ωdi relative to FO are time-varying since ξ is time-

varying. The evolution equations of the desired states are given by

[ṙdi ]O =[vdi ]O

[v̇di ]O =[v̇F ]O + 2[ωF ]O × (COF Λ̇[r
d
iF ]F ) (4.2)

+ COF Λ̈[r
d
iF ]F + [ω̇F ]O × (COFΛ[r

d
iF ]F )

[q̇di ]O =[q̇F ]O[q
d
iF ]F

[ω̇di ]O =[ω̇F ]O.
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Spacecraft Dynamics

The translational dynamics of each spacecraft relative to FO are

dri
dto

= vi

mi
dvi
dto

= fi, (4.3)

where mi and fi are the mass and control force associated with the ith spacecraft respec-

tively.

The rotational dynamics of each spacecraft relative to FO (c.f. Ref. [12]) are

dq̂i
dto

= −1

2
ωi × q̂i +

1

2
q̄iωi

dq̄i
dto

= −1

2
ωi · q̂i (4.4)

Ji
dωi
dto

= −ωi × (Jiωi) + τi,

where Ji and τi are inertia tensor and control torque associated with the ith spacecraft

respectively.

4.2.2 Decentralized Architecture via the Virtual Structure Approach

In this section, we propose a decentralized architecture for spacecraft formation

flying via the virtual structure approach. In order to demonstrate the salient features of our

decentralized scheme, we first introduce previous work on centralized architectures via the

virtual structure approach and previous work on general decentralized control architectures.

Previous Work on Centralized Architectures

Ref. [15] introduced the general centralized coordination architecture shown in

Fig. 4.2, which is based on the virtual structure approach.

The system G is a discrete event supervisor, which evolves a series of formation

patterns by outputting its current formation pattern yG. The system F is the formation

control module, which produces and broadcasts the coordination vector ξ. The system

Ki is the local spacecraft controller for the ith spacecraft, which receives the coordination
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Figure 4.2: The centralized architecture based on the virtual structure approach.

vector ξ from the formation control module, converts ξ to the desired states for the ith

spacecraft, and then controls the actual state for the ith spacecraft to track its desired state.

The system Si is the ith spacecraft, with control input ui representing the control force and

torque, and output yi representing the measurable outputs from the ith spacecraft. In this

centralized scheme, G and F are implemented at a centralized location (e.g. spacecraft

#1), and then the coordination vector ξ is broadcast to the local controllers of the other

spacecraft. Note that there is formation feedback from each local spacecraft controller

to the formation control module F through the performance measure zi. Also, there is

formation feedback from F to G through the performance measure zF [15].

The strength of this centralized scheme is that formation algorithms are fairly

easy to realize. The weakness is that heavy communication and computation burden is con-

centrated on the centralized location, which may degrade the overall system performance.

Also the centralized location results in a single point of failure for the whole system.
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Previous Work on Decentralized Control

In Ref. [10], a decentralized architecture is proposed for autonomous establish-

ment and maintenance of satellite formations, where each satellite only processes local

measurement information and transmission vectors from the other nodes so that a local

Kalman filter can be implemented to obtain a local control. It is also shown that the decen-

tralized framework generates a neighboring optimal control if the planned maneuvers and

trajectories are themselves optimal.

In Ref. [72], a decentralized control is implemented using a bidirectional ring

topology, where each robot only needs position information of its two neighbors. A forma-

tion pattern is defined to be a set composed of the desired locations for each robot, i.e.

P = {hd1, · · · , hdN},

where N is the number of mobile robots in the formation. Two competing objectives are

considered. The first objective is to move the robots to their final destinations. The second

objective is to maintain formation during the transition. The goal of the control law for

each robot is to drive the total tracking error and formation error of the group to zero. Sim-

ilarly, in Ref. [73], three objectives are considered for the synchronized multiple spacecraft

rotation problem. The first objective is to rotate each spacecraft to zero attitude error. The

second objective is to maintain formation throughout the maneuver. The third objective is

to rotate the spacecraft about a defined axis of rotation.

Decentralized Architecture

In this section, instead of using a set of desired locations for each agent as a

formation pattern, we take advantage of the virtual structure approach to define the forma-

tion pattern by P = ξd, where ξd = [rd
T

F , vd
T

F , qd
T

F , ωd
T

F , λd
T

F , λ̇
dT

F ]T is the desired constant

coordination vector representing the desired states of the virtual structure. We will assume

piecewise rigid formations which implies that vdF = ωdF = λ̇dF ≡ 0. By specifying the

formation pattern for the group, the movements of each spacecraft can be completely de-

fined. Through a sequence of formation patterns P (k) = ξd(k), k = 1, · · · , K, the group

can achieve a class of formation maneuver goals. In Ref. [72], the formation pattern is
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Figure 4.3: The decentralized architecture via the virtual structure approach.

defined in such a way that each vehicle only knows its final location in the formation while

its trajectory throughout the maneuver is not specified. Here the formation pattern is de-

fined such that each spacecraft will track a trajectory specified by the state of the virtual

structure, while preserving a certain formation shape. From this point of view, collision

avoidance is handled more efficiently than in Ref. [72].

In our decentralized architecture, each spacecraft in the formation instantiates a

local copy of the coordination vector. We use ξi = [rTFi, v
T
Fi, q

T
Fi, ω

T
Fi, λ

T
Fi, λ̇

T
Fi]

T to repre-

sent the coordination vector instantiated in the ith spacecraft corresponding to the coordi-

nation vector ξ defined in the third subsection of Sec. 4.2.1. A bidirectional ring topology is

used to communicate the coordination vector instantiation instead of the position or attitude

information among each spacecraft. A decentralized architecture via the virtual structure

approach is shown in Fig. 4.3.

In this case, instead of implementing the discrete event supervisor and forma-

tion control module at a centralized location, each spacecraft has a local copy of the dis-

crete event supervisor G and formation control module F, denoted by Gi and Fi for the
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ith spacecraft respectively. As in Fig. 4.2, Ki and Si represent the ith local spacecraft

controller and the ith spacecraft respectively.

Before the group maneuver starts, a sequence of formation patterns has been

preset in each discrete event supervisor Gi. The goal of Gi is to transition through the

sequence of formation patterns so that a class of group maneuver goals can be accom-

plished sequentially. Certain mechanisms need to be applied to coordinate and synchronize

the group starting time, e.g., simple semaphores. When the group maneuver starts, each

discrete event supervisor Gi outputs the current formation pattern yGi = ξd(1), to the for-

mation control module Fi. Each formation control module Fi implements a coordination

vector instantiation ξi. The goal of Fi is to evolve ξi to its current desired formation pat-

tern ξd(k) and synchronize ξi with coordination vector instantiations implemented on other

spacecraft. Here we use a bidirectional ring topology, which means that the coordination

vector ξi instantiated in the ith spacecraft is synchronized with its two neighbors, that is,

instantiations ξi−1 and ξi+1 implemented in the (i−1)th and the (i+1)th spacecraft respec-

tively. Communications between the ith spacecraft and the (i−1)th and (i+1)th spacecraft

needs to be established to transmit and receive the coordination vector instantiations. The

formation control module Fi then sends its coordination vector instantiation ξi to the local

spacecraft controller Ki. Based on ξi, the local controller Ki can derive the desired states

and the corresponding derivatives for the ith spacecraft from Eqs. (4.1) and (4.2). A lo-

cal controller Ki is designed to guarantee that the ith spacecraft tracks its desired states

asymptotically. Formation feedback is also included from the ith spacecraft controller Ki

to the ith formation control module Fi through the performance measure zi indicating the

ith spacecraft’s tracking performance. Accordingly, as we will see in Sec. 4.2.3, the control

law for ξi implemented in Fi depends on the performance measure zi, the current desired

formation pattern yGi = ξd(k), and the corresponding coordination vector instantiations

ξi−1 and ξi+1 from the ith spacecraft’s neighbors. Of course, formation feedback can also

be included from other spacecraft to the ith formation control module Fi at the cost of

additional communication. Formation feedback from the ith formation control module Fi

to the ith discrete event supervisor Gi is also included through the performance measure

zFi, which indicates how far the ith instantiation ξi is from its current maneuver goal ξd(k)
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and synchronization performance between ξi and its neighbors. Like the coordination and

synchronization of the first group maneuver starting time, similar mechanisms can be ap-

plied to indicate the accomplishment of the current formation pattern and coordinate and

synchronize the starting time for the next formation pattern among spacecraft. Then the

same procedure described above repeats so that a sequence of formation patterns can be

achieved.

Compared with the architecture in Ref. [10], which is based on a fully inter-

connected network, the architecture proposed here imposes fewer communication require-

ments. Even if the compression of data transmission is realized in Ref. [10], each vehicle

still needs extensive data transmitted from all the other vehicles, which causes additional

inter-vehicle communications especially when a large number of vehicles are involved.

The architecture proposed here only requires communication between adjacent neighbors

during the maneuver.

The communication requirement for each spacecraft during the maneuver can

be estimated as follows. We know that rFi, vFi, ωFi, λFi, and λ̇Fi all have 3 components

and qFi has 4 components. Thus the coordination vector ξi has 19 components. Assume

that each component is encoded as B bits and the sample rate of the system is given by

L Hz. By communicating with its two adjacent neighbors, the required bandwidth for

each spacecraft can be estimated as 38BL bits/sec. Note that this is the case when group

translation, group rotation, and group expansion/contraction are all involved. If only one

group maneuver is involved, the bandwidth can be further reduced to almost one third of

the above bandwidth estimate.

Compared to its centralized alternative, there is no master in the loop and each

spacecraft evolves in a parallel manner so that a single point of failure existing in any

centralized implementation can be eliminated and the total system performance will not

degrade catastrophically under failure. As a result, the decentralized implementation offers

more flexibility, reliability, and robustness than the corresponding centralized alternative.

The weakness is that each local instantiation must be synchronized, which accounts for

additional complexity and inter-vehicle communications to the whole system. Due to the

ring topology and the implementation of the coordination vector, information exchange
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among spacecraft can be reduced in the above decentralized architecture. Therefore, this

weakness can be somewhat mitigated although the disadvantage of increased inter-vehicle

communication requirements is a typical concern for decentralized systems. Of course,

there may exist discrepancies between the starting time of each instantiation of the coordi-

nation vector dynamics. This starting time discrepancy can be mitigated through the control

law for each coordination vector, which will synchronize neighboring coordination vector

instantiations. Also, there may exist time delay when neighboring spacecraft exchange in-

formation. This issue is not modelled in the above decentralized architecture and needs to

be addressed in future work.

4.2.3 Decentralized Formation Control Strategies

Two major tasks need to be carried out in the decentralized formation control

scheme via the virtual structure approach. One is to propose suitable control laws for each

spacecraft to track its desired states defined by the virtual structure. The other is to control

and synchronize each virtual structure instantiation to achieve the desired formation pat-

terns in a decentralized manner. In the first and second subsection of Sec. 4.2.3, we present

control strategies for each spacecraft and each virtual structure instantiation respectively.

In the third subsection of Sec. 4.2.3, we provide convergence analysis for the system com-

posed of the coupled dynamics of N spacecraft and N coordination vector instantiations.

Formation Control Strategies for Each Spacecraft

For the ith spacecraft, defineXi = [rTi , v
T
i , q

T
i , ω

T
i ]
T andXd

i = [rd
T

i , vd
T

i , qd
T

i , ωd
T

i ]T

as the actual state and desired state respectively. Define X̃i = Xi−Xd
i = [r̃Ti , ṽ

T
i , q̃

T
i , ω̃

T
i ]
T

as the error state for the ith spacecraft.
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We know that the desired states for each spacecraft also satisfy the translational

and rotational dynamics (4.3) and (4.4) respectively, that is,

drdi
dto

= vdi

mi
dvdi
dto

= fdi

dq̂di
dto

= −1

2
ωdi × q̂di +

1

2
q̄di ω

d
i (4.5)

dq̄di
dto

= −1

2
ωdi · q̂di

Ji
dωdi
dto

= −ωdi × (Jiω
d
i ) + τ di .

This is valid since the desired states for each spacecraft are the same as the actual states for

each corresponding place holder, which satisfies the translational and rotational dynamics.

The proposed control force for the ith spacecraft is given by

fi = mi(v̇
d
i −Kri(ri − rdi )−Kvi(vi − vdi )), (4.6)

where mi is the mass of the ith spacecraft, and Kri and Kvi are symmetric positive definite

matrices.

The proposed control torque for the ith spacecraft is given by

τi = Jiω̇
d
i +

1

2
ωi × Ji(ωi + ωdi )− kqiq̂d∗i qi −Kωi(ωi − ωdi ), (4.7)

where Ji is the moment of inertia of the ith spacecraft, kqi is a positive scalar, Kωi is a

symmetric positive definite matrix, and q̂ represents the vector part of the quaternion.

Note that Eqs. (4.6) and (4.7) require both Xd
i and Ẋd

i which are obtained from

ξi and ξ̇i using Eqs. (4.1) and (4.2).

Formation Control Strategies for Each Virtual Structure Instantiation

As in the third subsection of Sec. 4.2.2, ξi is the ith coordination vector instanti-

ation and ξd(k) is the current desired constant goal for the coordination vector instantiations,

i.e. the current formation pattern. For notation simplicity, we hereafter use ξd instead of

ξd(k) to represent a certain formation pattern to be achieved. Define

ξ̃i = ξi − ξd = [r̃TFi, ṽ
T
Fi, q̃

T
Fi, ω̃

T
Fi, λ̃

T
Fi,

˙̃λTFi]
T
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as the error state for the ith coordination vector instantiation. There are two objectives

for the instantiation of the coordination vector implemented in each spacecraft. The first

objective is to reach its desired constant goal ξd defined by the formation pattern set. The

second objective is to synchronize each instantiation, i.e., ξ1 = ξ2 = · · · = ξN . Following

the idea introduced in Ref. [72, 73], where behavior-based strategies are used to realize

goal seeking and formation keeping for each agent, we apply behavior-based strategies to

synchronize the coordination vector instantiations during the maneuver as well as evolve it

to its desired goal at the end of the maneuver.

Define EG as the goal seeking error to represent the total error between the

current instantiation ξi and the desired goal ξd:

EG(t) =
N∑

i=1

∥∥ξi − ξd
∥∥2 .

Also define ES as the synchronization error to represent the total synchronization error

between neighboring instantiations:

ES(t) =
N∑

i=1

‖ξi − ξi+1‖2 ,

where the summation index i is defined modulo N , i.e., ξN+1 = ξ1 and ξ0 = ξN . Defining

E(t) = EG(t) + ES(t), then the control objective is to drive E(t) to zero asymptotically.

Since the coordination vector represents the states of the virtual structure, we

suppose that the ith coordination vector instantiation satisfies the following rigid body dy-

namics 


ṙFi

mF v̇Fi

q̇Fi

JF ω̇Fi

λ̇Fi

λ̈Fi




=




vFi

fFi

1
2
Ω(ωFi)qFi

−ωFi × JFωFi + τFi

λ̇Fi

νFi




, (4.8)

where mF and JF are the virtual mass and virtual inertia of the virtual structure, fFi and

τFi are the virtual force and virtual torque exerted on the ith implementation of the virtual

structure, and νFi is the virtual control effort used to expand or contract the formation.
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The tracking performance for the ith spacecraft is defined as eT i = e(Xi, X
d
i ),

where e(Xi, X
d
i ) > 0 when Xi 6= Xd

i and e(Xi, X
d
i ) = 0 when Xi = Xd

i . In the sequel,

we choose eT i =
∥∥∥X̃i

∥∥∥
2

. Define ΓGi = DG + KF eT i to incorporate formation feedback

from the ith spacecraft to the ith coordination vector implementation, where DG and KF

are symmetric positive definite matrices. Obviously, ΓGi is also a positive definite matrix.

If we let KF = 0, there is no formation feedback.

The proposed control force fFi is given by

fFi =mF (−KG(rFi − rdF )− ΓGivFi

−KS(rFi − rF (i+1))−DS(vFi − vF (i+1)) (4.9)

−KS(rFi − rF (i−1))−DS(vFi − vF (i−1))),

where KG is a symmetric positive definite matrix, and KS and DS are symmetric positive

semi-definite matrices.

The proposed control torque τFi is given by

τFi =− kGq̂d∗F qFi − ΓGiωFi

− kS ̂q∗F (i+1)qFi −DS(ωFi − ωF (i+1)) (4.10)

− kS ̂q∗F (i−1)qFi −DS(ωFi − ωF (i−1)),

where kG > 0 and kS ≥ 0 are scalars, ΓGi follows the same definition as above, DS is a

symmetric positive semi-definite matrix, and q̂ represents the vector part of the quaternion.

Similar to Eq. (4.9), the proposed control effort νFi is given by

νFi =−KG(λFi − λdF )− ΓGiλ̇Fi

−KS(λFi − λF (i+1))−DS(λ̇Fi − λ̇F (i+1)) (4.11)

−KS(λFi − λF (i−1))−DS(λ̇Fi − λ̇F (i−1)),

whereKG is a symmetric positive definite matrix, ΓGi follows the same definition as above,

and KS and DS are symmetric positive semi-definite matrices.

Note that the matrices in Eqs. (4.9), (4.10), and (4.11) can be chosen differently

based on specific requirements to change the weights of translation, rotation, and expan-

sion/contraction effects. In Eqs. (4.9), (4.10), and (4.11), the first two terms are used to
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drive EG → 0, the third and fourth terms are used to synchronize the ith and (i + 1)th

coordination vector instantiations, and the fifth and sixth terms are used to synchronize the

ith and (i − 1)th coordination vector instantiations. The second term, that is, the forma-

tion feedback term is also used to slow down the ith virtual structure implementation when

the ith spacecraft has a large tracking error. This strategy needs each spacecraft to know

its neighboring coordination vector instantiations, which can be accomplished by nearest

neighbor communication. From Eqs. (4.9), (4.10), and (4.11), we can also see that be-

sides ξi−1, ξi, and ξi+1 the control laws for the ith coordination vector instantiation also

require the current constant formation pattern ξd and X̃i through the formation feedback

gain matrix ΓGi.

Convergence Analysis

The following Lemmas will be used to prove our main theorem.

Lemma 4.2.1 If both the unit quaternion and angular velocity pairs (qs, ωs) and (qp, ωp)

satisfy the rotational dynamics (4.4) with moment of inertia J and with control torque τs

and τp respectively, δω = ωs − ωp and δq = qs − qp with δq̂ = q̂s − q̂p and δq̄ = q̄s − q̄p,
and V1 = δq̄2 + δq̂ · δq̂ and V2 = 1

2
δω · Jδω, then V̇1 = δω · q̂∗pqs and V̇2 = δω · (τs − τp −

1
2
(ωs × Jδω)).

Proof: Identical to the proof for attitude control in Ref. [12] by replacing qi with qp, ωi with

ωp, qdi with qs, and ωdi with ωs.

For a vector x, we simply use xTx or ‖x‖2 to represent the vector dot product

x · x hereafter.

Lemma 4.2.2 If A ∈ IRk×k and B ∈ IRl×l are symmetric positive semi-definite matrices,

then A⊗B is positive semi-definite, where ⊗ denotes the Kronecker product. Moreover, if

both A and B are symmetric positive definite, then so is A⊗B.

Proof: See Ref. [107].

Lemma 4.2.3 If C is a circulant matrix with the first row given by [2,−1, 0, · · · , 0,−1] ∈
IRN , then C ∈ IRN×N is symmetric positive semi-definite. Let P ∈ IRp×p and Z =
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[zT1 , · · · , zTN ]T , where zi ∈ IRp. If the terms P (zi − zi−1) + P (zi − zi+1) are stacked in a

column vector, the resulting vector can be written as (C ⊗ P )Z.

Proof: See Ref. [72].

From Eqs. (4.3), (4.4), (4.6), and (4.7), the dynamics for the ith spacecraft can

be represented by ˙̃Xi = f(X̃i, ξi), where f(·, ·) can be determined from those equations.

From Eqs. (4.8), (4.9), (4.10), and (4.11), the dynamics for the ith coordination vector

instantiation can be represented by ξ̇i = g(ξi−1, ξi, ξi+1, X̃i), where g(·, ·, ·, ·) can also be

determined from those equations. Therefore, the coupled dynamics of the whole system

composed of N spacecraft and N coordination vector instantiations are time-invariant with

states X̃i and ξi, i = 1, · · · , N . LaSalle’s invariance principle will be used to prove the

main theorem for convergence of the whole system.

Theorem 4.2.1 If the control laws for each spacecraft are given by (4.6) and (4.7), and the

control laws for each coordination vector instantiation are given by (4.9), (4.10) and (4.11),

then
∑N

i=1 eT i + E(t)→ 0 asymptotically.

Proof: For the whole system consisting of N spacecraft and N coordination vector instan-

tiations, consider the Lyapunov function candidate:

V = Vsp + VFt + VFr + VFe, (4.12)
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where

Vsp =
N∑

i=1

(
1

2
r̃Ti Krir̃i +

1

2
ṽTi ṽi + kqiq̃

T
i q̃i +

1

2
ω̃Ti Jiω̃i

)
,

VFt =
1

2

N∑

i=1

(rFi − rF (i+1))
TKS(rFi − rF (i+1))

+
1

2

N∑

i=1

(
r̃TFiKGr̃Fi + vTFivFi

)
,

VFr =
N∑

i=1

kS(qFi − qF (i+1))
T (qFi − qF (i+1))

+
N∑

i=1

(
kGq̃

T
Fiq̃Fi +

1

2
ωTFiJFωFi

)
,

VFe =
1

2

N∑

i=1

(λFi − λF (i+1))
TKS(λFi − λF (i+1))

+
1

2

N∑

i=1

(
λ̃TFiKGλ̃Fi + λ̇TFiλ̇Fi

)
.

With the proposed control force (4.6) for each spacecraft, the second equation

in the translational dynamics (4.3) for the ith spacecraft can be rewritten as ˙̃vi = −Krir̃i −
Kviṽi. Applying Lemma 4.2.1, the derivative of Vsp is

V̇sp =
N∑

i=1

(−ṽTi Kviṽi)

+
N∑

i=1

ω̃Ti

(
kqiq̂d∗i qi + τi − τ di −

1

2
(ωi × Jiω̃i)

)
.

From Eq. (4.5), τ di = Jiω̇
d
i +ω

d
i ×(Jiωdi ). With the proposed control torque (4.7)

for each spacecraft, after some manipulation, we know that

V̇sp =
N∑

i=1

(
−ṽTi Kviṽi − ω̃Ti Kωiω̃i

)
≤ 0. (4.13)

Differentiating VFt, we can get

V̇Ft =
N∑

i=1

vTFi(KS(rFi − rF (i+1))

+KS(rFi − rF (i−1)) +KGr̃Fi +
fFi
mF

).
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With the proposed control force (4.9) for each coordination vector instantiation,

V̇Ft =−
N∑

i=1

(vTFiΓGivFi

+ (vFi − vF (i+1))
TDS(vFi − vF (i+1))) ≤ 0. (4.14)

Applying Lemma 4.2.1, the derivative of VFr is

V̇Fr =
N∑

i=1

(ωFi − ωF (i+1))
TkS ̂q∗F (i+1)qFi

+
N∑

i=1

ωTFi(kGq̂
d∗
F qFi + τFi −

1

2
ωFi × JFωFi).

After some manipulation,

V̇Fr =
N∑

i=1

ωTFi(kS ̂q∗F (i+1)qFi − kS ̂q∗FiqF (i−1) + kGq̂d∗F qFi + τFi).

With the proposed control torque (4.10) for each coordination vector instantiation,

V̇Fr =−
N∑

i=1

(ωTFiΓGiωFi

+ (ωFi − ωF (i+1))
TDS(ωFi − ωF (i+1))) ≤ 0. (4.15)

Similar to V̇Ft, with the proposed control effort (4.11) for each coordination

vector instantiation, the derivative of VFe is

V̇Fe =−
N∑

i=1

(λ̇TFiΓGiλ̇Fi

+ (λ̇Fi − λ̇F (i+1))
TDS(λ̇Fi − λ̇F (i+1))) ≤ 0. (4.16)

From Eqs. (4.13), (4.14), (4.15), and (4.16), it is obvious that V̇ = V̇sp + V̇Ft +

V̇Fr + V̇Fe ≤ 0. Let Σ = {(X̃1, · · · , X̃N , ξ̃1, · · · , ξ̃N)|V̇ = 0}, and let Σ̄ be the largest

invariant set in Σ. On Σ̄, V̇ ≡ 0, i.e. V̇sp = V̇Ft = V̇Fr = V̇Fe ≡ 0, which implies that

ṽi ≡ 0, ω̃i ≡ 0, vFi ≡ 0, ωFi ≡ 0, λ̇Fi ≡ 0, i = 1, · · · , N .

Since ṽi ≡ 0, we know that r̃i = 0 from Eqs. (4.3) and (4.6). Since ω̃i ≡ 0, we

also know that q̂d∗i qi = 0 from Eqs. (4.4) and (4.7), which then implies that qi = qdi , i.e.

q̃i = 0.
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Then following vFi ≡ 0, from Eq. (4.9) and the second equation in Eq. (4.8), it

can be seen that

KGr̃Fi +KS(rFi − rF (i+1))

+KS(rFi − rF (i−1)) = 0, i = 1, · · · , N,

which is equivalent to

KGr̃Fi +KS(r̃Fi − r̃F (i+1))

+KS(r̃Fi − r̃F (i−1)) = 0, i = 1, · · · , N. (4.17)

From Lemma 4.2.3, Eq. (4.17) can also be written as (IN ⊗KG + C ⊗KS)r̃F = 0, where

r̃F = [r̃TF1, · · · , r̃TFN ]T , IN is an N × N identity matrix, and C is the circulant matrix

defined in Lemma 4.2.3. Based on Lemma 4.2.2 and 4.2.3, IN ⊗ KG is positive definite

and C ⊗KS is positive semi-definite. Thus we know that r̃F = 0.

Following a similar procedure as above, we can also show that λ̃Fi = 0 since

λ̇Fi ≡ 0.

Also following ωFi ≡ 0, from Eq. (4.10) and the fourth equation in Eq. (4.8),

we know that

kGq̂d∗F qFi + kS ̂q∗F (i+1)qFi + kS ̂q∗F (i−1)qFi = 0,

i = 1, · · · , N. (4.18)

Since the quaternion multiplication is associative, we know that q∗F (i+1)qFi = q∗F (i+1)qIqFi =

q∗F (i+1)(q
d
F q

d∗
F )qFi = (q∗F (i+1)q

d
F )(q

d∗
F qFi), where qI is the multiplicative identity quaternion

defined in the second subsection of Sec. 4.2.1. Therefore, Eq. (4.18) is equivalent to

kGq̂d∗F qFi + kS ̂(q∗F (i+1)q
d
F )(q

d∗
F qFi)

+kS ̂(q∗F (i−1)q
d
F )(q

d∗
F qFi) = 0, i = 1, · · · , N. (4.19)

Following Ref. [73] and applying the property of the unit quaternion, Eq. (4.19)

can be written as ̂p∗i (q
d∗
F qFi) = 0, where pi = kGqI + kS(q

d∗
F qF (i+1)) + kS(q

d∗
F qF (i−1)).

Compared with Eq. (7) in Ref. [73], Eq. (4.19) has the same form when we treat

qi as qd∗F qFi and kF as kS and delete keq̂iR term in Eq. (7) in Ref. [73]. It can be verified
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that their proof for q̂i = 0 is still valid when keq̂iR term is omitted, which is only used to

guarantee the rotation of the spacecraft about a defined axis.

Then following the result q̂i = 0 in Ref. [73], we can show that q̂d∗F qFi = 0,

which implies that qFi = qdF , i.e. q̃Fi = 0.

Therefore, by LaSalle’s invariance principle,
∥∥∥X̃i

∥∥∥→ 0,
∥∥∥ξ̃i
∥∥∥→ 0, and ‖ξi − ξi+1‖ →

0, i = 1, · · · , N . Accordingly,
∑N

i=1 eT i + E(t)→ 0 asymptotically.

From Theorem 4.2.1, we can see that each virtual structure instantiation will

achieve its final goal asymptotically and each spacecraft will also track its desired state

specified by the virtual structure asymptotically during the maneuver. Therefore, the for-

mation maneuver can be achieved asymptotically.

Discussion

Note that different performance measure functions e(·, ·) may be chosen to mea-

sure formation maintenance. For example, e(X̃i) = X̃T
i PX̃i, where P is symmetric pos-

itive definite. Matrix P can be designed to adjust the relative weights of translational and

rotational formation error based on certain requirements. The motivation for the design of

the nonlinear gain matrices ΓGi is to meet the following requirements. When a spacecraft

is out of its desired configuration, that is, eT i is large, its coordination vector instantiation

will slow down or even stop, allowing the spacecraft to regain formation. When a space-

craft is maintaining its desired configuration, that is, eT i is small, its coordination vector

instantiation will keep moving toward its final goal at a reasonable speed. By this design,

each coordination vector instantiation will be aimed at performing reasonably fast forma-

tion maneuvers as well as preserving tight formation shape during the maneuver even in

the case of control saturation, disturbances, and malfunctions. In this section, we choose a

candidate for such gain matrices as ΓGi = DG +KF eT i , where DG = DT
G > 0 is the gain

matrix which corresponds to the nominal formation speed when the formation is preserved

tightly, and KF = KT
F > 0 is the formation gain matrix which weights the performance

measure eT i. Of course, other choices are also feasible. In the case of KF = 0, no for-

mation feedback is introduced. We will see that formation gain matrix with larger entries
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result in better formation maintenance but slower convergence speed. We can see that

eT i → 0⇒ ΓGi → DG

eT i →∞⇒ ΓGi →∞.

As a result, nonlinear gains slow down or speed up the coordination vector instantiation

based on how far out of the desired configuration each spacecraft is.

Since PD-like control laws are used for each spacecraft and each coordination

vector instantiation, the transient specifications for each spacecraft and each coordination

vector instantiation can be satisfied by designing corresponding gain matrices in the control

laws following the design procedure for the coefficients of a second-order system. For a

second order system s2 + k1s+ k2 = 0, if we define rise time tr and damping ratio ζ , then

natural frequency ωn is approximately 1.8/tr. Therefore, if we let k2 = ω2
n = (1.8/tr)

2

and k1 = 2ζωn = 2ζ(1.8/tr), the transient specifications for the system are satisfied. We

can design Kri, kqi, KG, and kG according to k2, and design Kvi, Kωi, and DG according

to k1. For example, Kri and Kvi can be defined as k2I3 and k1I3 respectively, where I3 is a

3× 3 identity matrix.

An illustrative example is shown as follows. Let KG = I3 and KS = DS = 0 in

Eq. (4.9). Note that the translational dynamics of the ith coordination vector instantiation

can be rewritten as ¨̃rFi+ΓGi ˙̃rFi+KGr̃Fi = 0, where r̃Fi = rFi− rdF i = [r̃Fxi, r̃Fyi, r̃Fzi]
T .

Fig. 4.4 shows a plot of r̃Fxi for different choices of matrix ΓGi. We can see that the dynam-

ics of the ith coordination vector instantiation evolve more slowly as the elements of ΓGi

are increased to be sufficiently large. That is, it takes longer time for the ith coordination

vector instantiation to achieve its desired states. When ΓGi → ∞, the coordination vector

instantiation will stop evolving.

Moreover, for each spacecraft, if we define a translational tracking error for the

ith spacecraft as Eti = 1
2
r̃Ti Krir̃i+

1
2
‖ṽi‖2, Eti decreases during the maneuver and r̃Ti Krir̃i

is bounded by 2Eti(0)−‖ṽi‖2 following the proof for V̇sp. Similarly if we define a rotational

tracking error as Eri = kqi ‖q̃i‖2 + 1
2
ω̃iJiω̃i, Eri decreases during the maneuver and ‖q̃i‖2

is bounded by 1
kqi

(Eri(0)− 1
2
ω̃iJiω̃i). For each coordination vector instantiation, following

the proof for V̇Ft, V̇Fr, and V̇Fe, we know that VFt, VFr, and VFe are bounded by VFt(0),
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Figure 4.4: Plot of r̃Fxi with initial conditions r̃Fxi = 1 and ˙̃rFxi = 0 for different choices
of ΓGi.

VFr(0), and VFe(0) respectively. Therefore,
∑N

i=1(rFi − rF (i+1))
TKS(rFi − rF (i+1)) ≤

2VFt(0),
∑N

i=1 r̃
T
FiKGr̃Fi ≤ 2VFt(0),

∑N
i=1

∥∥qFi − qF (i+1)

∥∥2 ≤ 1
kS
VFr(0),

∑N
i=1 ‖q̃Fi‖

2 ≤
1
kG
VFr(0),

∑N
i=1(λFi − λF (i+1))

TKS(λFi − λF (i+1)) ≤ 2VFe(0), and
∑N

i=1 λ̃
T
FiKGλ̃Fi ≤

2VFe(0).

4.2.4 Simulation Results

In this section, we consider a scenario with nine spacecraft. In the scenario, a

mothership spacecraft with mass equal to 1500 Kg is located one kilometer away from a

plane where eight daughter spacecraft each with mass 150 Kg are distributed equally along

a circle with a diameter one kilometer in the plane. The configuration of the nine spacecraft

is shown in Fig. 4.5. We assume that the nine spacecraft evolve like a rigid structure, that is,

the formation shape is preserved and each spacecraft preserves a fixed relative orientation

within the formation throughout the formation maneuvers.
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Figure 4.5: The geometric configuration of nine spacecraft.
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Figure 4.7: The absolute position and attitude tracking errors.
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Figure 4.8: The relative position and attitude errors.
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We simulate a scenario when the nine spacecraft start from rest with some ini-

tial position and attitude errors and then perform a group rotation of 45 degrees about the

inertial z axis. Here we assume that each place holder in the formation has the same ori-

entation, that is, qdiF is the same for each spacecraft. In simulation, we instantiate a local

copy of the coordination vector ξ in each spacecraft and synchronize them using the control

strategy introduced in the second subsection of Sec. 4.2.3. To show the robustness of the

control strategy, we start the coordination vector implementation in each spacecraft at a

different time instance and introduce a different sample time varying from 0.4 seconds to

0.6 seconds for each coordination vector instantiation. Various communication delays are

also added among spacecraft. Three cases will be compared in this section. These include

cases without actuator saturation and formation feedback (case 1), with actuator saturation

but without formation feedback (case 2), with both actuator saturation and formation feed-

back (case 3). In fact, there is another case without actuator saturation but with formation

feedback (case 4). Since there is little difference between this case and case 1, we will not

include this case in this section. Here we assume that the control force and control torque

for spacecraft #1 are saturated at |fx|, |fy|, |fz| = 2 N and |τx|, |τy|, |τz| = 0.0006 Nm re-

spectively, and the control force and control torque for all the other spacecraft are saturated

at |fx|, |fy|, |fz| = 1 N and |τx|, |τy|, |τz| = 0.0003 Nm respectively.

In this section, the average coordination error is defined as 1
N

∑N
i=1

∥∥ξi − ξ̄
∥∥,

where ξ̄ = 1
N

∑N
i=1 ξi. The average coordination error in these three cases is plotted in

Fig. 4.6. We can see that each instantiation of the coordination vector is synchronized

asymptotically in all these cases. Also, the average coordination error is large during the

initial time interval since each local instantiation starts at a different time instance. Case

1 and 2 are identical since the actuator saturation for each spacecraft does not affect the

dynamics of the virtual structure when there is no formation feedback from each spacecraft

to its coordination vector instantiation. The maximum average coordination error in case

3 is larger than that in the other two cases since formation feedback is introduced for each

coordination vector instantiation, which may add some dissimilarities between different

instantiations.
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In Fig. 4.7, we plot the absolute position and attitude tracking errors for space-

craft #1, #4, and #7 in these three cases. The position tracking error is defined as
∥∥ri − rdi

∥∥

while the attitude tracking error is defined as
∥∥qi − qdi

∥∥. We can see the tracking errors in

each case will decrease to zero asymptotically by using the control law given in the first

subsection of Sec. 4.2.3. The absolute position and attitude tracking errors in case 2 are

much larger than those in the other two cases due to the actuator saturation. In case 3, with

formation feedback, the absolute position and attitude tracking errors are similar to those in

case 1 even if there is actuator saturation. When we increase the entries in the gain matrix

KF to increase formation feedback, the absolute tracking errors can be decreased further

but the system convergence time will become longer correspondingly.

In Fig. 4.8, we plot the relative position and attitude errors between some space-

craft in these three cases. Based on the configuration, the desired relative distance be-

tween spacecraft #1 and #2 and the desired relative distance between spacecraft #1 and

#6 should be equal. The desired relative distance between spacecraft #3 and #7 and the

desired relative distance between spacecraft #5 and #9 should also be equal. We plot

| ‖r1 − r2‖ − ‖r1 − r6‖ | and | ‖r3 − r7‖ − ‖r5 − r9‖ | in part (a) as examples to see how

well the formation shape is preserved. The desired relative attitude between each space-

craft should be equal based on our previous assumption. We plot ‖q1 − q4‖, ‖q4 − q7‖,
and ‖q7 − q1‖ in part (b) as examples to see how well the relative orientation relationships

between these spacecraft are preserved. Similarly, the relative position tracking errors in

case 2 are larger than those in the other two cases due to the control force saturation. In

case 3, with formation feedback, the relative position errors are smaller than those in case

2. The relative attitude errors in case 3 are even smaller than those in the other two cases

due to the formation feedback.

In Fig. 4.9, we plot the control effort for spacecraft #1 in these three cases. We

can see that both the control force and control torque approach zero asymptotically. We

can also see that τz saturates in case 2 during the initial time period while this saturation is

mitigated with formation feedback introduced in case 3.
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Figure 4.9: The control effort for spacecraft #1.

4.3 Satisficing Approach to Multi-agent Coordinated Control

In this section, we address the problem of multi-agent formation maneuvers by

combining the group CLF approach [108] with the satisficing control paradigm [30]. As a

result, the application of satisficing controls is extended from regulation problems to multi-

agent coordination. We show that under certain conditions a group of satisficing control

laws chosen from the robustly satisficing set can guarantee bounded formation keeping

error, finite completion time, and reasonable formation velocity as well as inverse optimal-

ity and desirable stability margins. This technique is applied to a group of nonholonomic

robots in experimental study as a proof of concept.
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4.3.1 Satisficing Theory

As models for each individual agent, we will consider only affine nonlinear

systems of the form

ẋ = f(x) + g(x)u, (4.20)

where x ∈ IRn, f : IRn → IRn, g: IRn → IRn×m and u ∈ IRm. We will assume throughout

the section that f and g are locally Lipschitz functions. A continuously differentiable

function V : IRn → IR is said to be a control Lyapunov function (CLF) for the system if V

is positive definite, radially unbounded, and if infu ∂V
∂x

(f + gu) < 0, for all x 6= 0.

The basic idea of satisficing is to define two utility functions that quantify the

benefits and costs of an action. At a state x, the benefits of choosing a control u are

given by the “selectablity” function ps(u, x). Similarly, at a state x, the costs associated

with choosing u are given by the “rejectability” function pr(u, x). The “satisficing” set is

those options for which selectability exceeds rejectability: i.e., Sb(x) = {u : ps(u, x) >

1
b
pr(u, x)} where b(x) is a (possibly state-dependent) parameter that can be used to control

the size of the set.

As in [30], we will associate the notion of selectability with stability, and the

notion of rejectability with instantaneous cost. In particular, let ps(u, x) = −∂V
∂x

(f + gu),

where V is a known CLF. Obviously, only stabilizing controls will make ps(u, x) positive.

We choose the rejectability criteria to be pr(u, x) = l(x) + uTR(x)u, where R(x) =

R(x)T > 0 is a positive definite matrix function whose elements are locally Lipschitz and

l: IRn → IR is a locally Lipschitz non-negative function. For these choices the satisficing

set becomes

Sb(x) =

{
u ∈ IRm: − ∂V

∂x
(f + gu) >

1

b
[l(x) + uTR(x)u]

}
. (4.21)

Note if the value of b is too small, Sb might be empty. To ensure that the satisficing set is

always nonempty we define:

b(x)
4
=





l
− ∂V
∂x
f
, if ∂V

∂x
g = 0

2 ∂V
∂x
f+2
√

( ∂V
∂x
f)2+l ∂V

∂x
gR−1gT ( ∂V

∂x
)T

∂V
∂x
gR−1gT ( ∂V

∂x
)T

, otherwise
. (4.22)
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From Lemma 5 in [30], we know that for each x 6= 0, b(x) ≥ 0, and b > b(x) implies that

Sb(x) 6= ∅.
Letting

α1(x, b)
4
=

1

2
bR−1gT (

∂V

∂x
)T (4.23)

α2(x, b)
4
= R−1/2

√
1

4
b2
∂V

∂x
gR−1gT (

∂V

∂x
)T − l − b∂V

∂x
f, (4.24)

the subscript b on S can be eliminated (S is the union of the sets Sb over all b > b), and the

satisficing set for x 6= 0, can be characterized as

S(x) = {−α1(x, b) + α2(x, b)ν: b > b(x), ‖ν‖ < 1} ,

where ν ∈ IRm. We know that S(x) is nonempty for x 6= 0, and the satisficing set can be

parameterized by the two selection functions b(x) ∈ IR and ν(x) ∈ IRm.

The mapping k : IRn → IRm is called a satisficing control if k(0) = 0, k(x) ∈
S(x) for each x ∈ IRn \ {0}, and k is locally Lipschitz on IRn \ {0}. It is shown in [30]

that if k(x) is a satisficing control then the closed loop system ẋ = f + gk is uniformly

asymptotically stable. It is also shown in [30] that if V is a CLF, ν: IRn → IRm is locally

Lipschitz on IRn \ {0} and satisfies ‖ν(x)‖ < 1, and b: IRn → IR+ is locally Lipschitz on

IRn \ {0} and satisfies b(x) < b(x), then

k(x) =




0, if x = 0

−α1(x, b(x)) + α2(x, b(x))ν(x), otherwise
(4.25)

is a satisficing control.

In [30], the robust satisficing set, denoted SR(x), is defined as

SR(x) ={u ∈ S(x):
∂V

∂x
gR−1/2ν ≤ 0}

={−α1(x, b) + α2(x, b)ν:

b > b(x), ‖ν‖ < 1,
∂V

∂x
gR−1/2ν ≤ 0}.

The mapping kR: IRn → IRm is called a robustly satisficing control if kR(0) = 0, kR(x) ∈
SR(x) for each x ∈ IRn \ {0},and kR is locally Lipschitz on IRn \ {0}. It is shown in [30]
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that if kR is a robustly satisficing control, then it has stability margins equal to (− 1
2
,∞) and

it is inverse-optimal. It is also shown in [30] that Eq. (4.25) is a robustly satisficing control

if ∂V
∂x
gR−1/2ν ≤ 0 is also satisfied besides all the other conditions for a satisficing control.

4.3.2 Satisficing Control for Formation Maneuvers

Suppose each agent’s dynamics can be described as

ẋi = fi(xi) + gi(xi)ui, i = 1, . . . , N, (4.26)

where fi and gi are locally Lipschitz functions, xi ∈ IRni , and ui ∈ IRmi .

In this section we apply the virtual leader/virtual structure approach (c.f. [3,

15, 70, 109]). We define a virtual leader or virtual center of the virtual structure, which

in turn defines the rest of the formation, that is, defines the desired state for each agent.

Let x0(s(t)) denote the parameterized state of the virtual leader or the virtual center of the

virtual structure, where s is a parameter that incorporates error feedback into the whole

system through its evolution [109]. Let xdi (s(t)) represent the desired state of the ith agent,

which can be defined from x0(s(t)). Our goal is to construct a group of controllers that

guarantee multi-agent coordination in the sense of the framework developed in [108].

Since we have CLF-based techniques developed for the regulation problem, an

intuitive way to tackle tracking is to transform it to a regulation problem. Letting x̃i =

xi − xdi we have that

˙̃xi = fi(x̃i + xdi )− ẋdi + gi(x̃i + xdi )ui. (4.27)

It is clear that system (4.27) is a time-varying system since xdi and ẋdi are functions of

time. Under certain circumstances it is relatively straightforward to find a CLF Vi(xi, x∗i ) to

regulate xi → x∗i asymptotically when x∗i is a constant desired state. Accordingly, we know

that V̇i =
∂Vi
∂xi
ẋi < 0, ∀xi 6= x∗i . If xdi (s(t)) is a smooth desired state, we can replace x∗i

in the CLF Vi(xi, x∗i ) with xdi (s(t)) to obtain Vi(xi, xdi (s(t))). If Vi(xi, xdi (s(t))) is smooth

and ∂Vi
∂xi
ẋi < 0, ∀xi 6= xdi (s), for each specific s ∈ [s1, s2], we can view Vi(xi, x

d
i (s(t))) as a

pointwise (in s) CLF to regulate xi to xdi (s) in a pointwise fashion. We have the following

definition to formally define a pointwise CLF.
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Definition 4.3.1 A continuously differentiable function Vi : IRni × IRni → IR is a point-

wise control Lyapunov function (pCLF) for system (4.26) if it is positive definite, radially

unbounded, and satisfies

inf
ui∈IRmi

{
∂Vi(xi, x

d
i (s))

∂xi
[fi(xi) + gi(xi)ui]

}
< 0, (4.28)

∀xi 6= xdi (s) and each constant s ∈ [s1, s2].

Hereafter we assume that a pointwise CLF can be found for a smooth parame-

terized desired trajectory xdi (s), that is, Vi(xi, xdi (s)) = 0 at xi = xdi (s) for each s ∈ [s1, s2].

We also assume that Vi(xi, xdi (s)) → ∞ if
∥∥xi − xdi (s)

∥∥ → ∞ for any s ∈ [s1, s2]. Note

that V̇i = ∂Vi
∂xi
ẋi +

∂Vi
∂s
ṡ. Although V̇i is not necessarily negative, we can use satisficing

control to guarantee that ∂Vi
∂xi
ẋi < 0, a property which is necessary for our later result.

Following the definition in [108], we define a formation measure function as

F (x, s) =
N∑

i=1

βiVi(xi(t), x
d
i (s))), (4.29)

where Vi is the pointwise CLF for each agent and βi > 0, to represent the tracking perfor-

mance. The formation is defined to be preserved if F (x, s) ≤ FU , where FU is an upper

bound on the formation measure function F (x, s).

Following [108], let ṡ be given by

ṡ =





min

{
v0

δ+‖
∂x0(s)
∂s

‖
,
− ∂F
∂x
ẋ

δ+| ∂F
∂s
|

(
σ(FU )

σ(F (x,s))

)}
,

s1 ≤ s < s2

0, s = s2

, (4.30)

where δ > 0 is a small positive constant, v0 is the nominal velocity for the formation, and

σ(·) is a class K function. Therefore, formation maneuvers are performed in two steps.

First, when s1 ≤ s < s2, the formation is preserved within some boundary given by FU .

Second, when s = s2, each agent is regulated to a constant desired state given by xdi (s2)

and reaches (eventually) its final goal.

Lemma 4.3.1 If ṡ is given by Eq. (4.30), then F (x(t0), s(t0)) ≤ FU implies that F (x(t), s(t)) ≤
FU , ∀t ≥ t0. Furthermore, given a class K function σi(·), if s ∈ [s1, s2] and there is
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a control ui(xi, s) and an arbitrary constant µi > 0 such that
−
∂Vi
∂xi

ẋi

σi(Vi(xi,xdi (s)))
≥ µi and

−
∂Vi
∂xi

ẋi

σi(Vi(xi,xdi (s)))
→ ∞ as Vi → 0, i = 1, · · · , N , then s will reach s2 within finite time and

∥∥dx0

dt

∥∥ ≈ v0 for F (x, s)¿ FU and δv0 ¿
∥∥∥∂x0(s)

∂s

∥∥∥.

Proof: see [108].

The satisficing control framework for time-invariant systems can be used to

find a class of valid control laws. We extend satisficing control from the regulation prob-

lems to the pointwise time-varying regulation problems. Let Vi(xi, xdi (s)) be the pointwise

CLF for each specific s ∈ [s1, s2], which will be used to regulate xi to xdi (s). Also let

li(xi, x
d
i (s)) = σi(Vi(xi, x

d
i (s))). We use ∂Vi(xi,x

d
i (s))

∂xi
and li(xi, xdi (s)) to replace ∂V

∂x
and l in

Eqs. (4.22), (4.23), and (4.24) respectively to obtain bi(xi, xdi (s)), α1(xi, bi), and α2(xi, bi).

A robustly satisficing control for the ith agent in the formation is now given by

ui(xi, s) = −α1(xi, bi) + α2(xi, bi)νi, (4.31)

where νi: IRn×IRn → IRmi is locally Lipschitz on IRn\{xdi (s)} and satisfies
∥∥νi(xi, xdi (s))

∥∥ <
1, ∂Vi

∂xi
giR

−1/2
i νi ≤ 0, and bi: IRn × IRn → IR+ is locally Lipschitz on IRn \ {xdi (s)} and

satisfies bi(xi, x
d
i (s)) < bi(xi, x

d
i (s)). Therefore, we know that the control law (4.31) guar-

antees inverse optimality and desirable stability margins from a pointwise perspective.

The following theorem shows that the class of robustly satisficing controllers

satisfy the conditions of Lemma 4.3.1.

Theorem 4.3.2 If s ∈ [s1, s2], ṡ is given by Eq. (4.30), and ui(xi, s) is given by Eq. (4.31)

with σi(·) chosen properly, then the robustly satisficing control law (4.31) satisfies all de-

sired properties for a feasible control law specified in Lemma 4.3.1. Moreover, the control

law (4.31) guarantees that F (x, s) < FU for all t > T for arbitrary F (x(s(t0)), s(t0)),

where T is some finite constant.

Proof: For the first part of the proof, it can be verified that F (x, s) is ultimately bounded

due to the fact that Ḟ (x, s) < 0 if F (x(t), s(t)) ≥ FU following the definition of ṡ. There-

fore, we know that
∥∥xi − xdi (s)

∥∥ is bounded. Since s ∈ [s1, s2] and xdi (s) is smooth, it is

straightforward to see that
∥∥xdi

∥∥ is bounded, which implies that ‖xi‖ is also bounded. Not-

ing that li = σi(Vi) > 0, ∀xi 6= xdi (s), we get that bi is locally Lipschitz on IRn \ {xdi (s)}
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following Lemma 6 in [30]. When xi → xdi (s), function σi(·) can be chosen such that

li = σi(Vi(xi, x
d
i (s))) has a sufficiently high order to guarantee that

lim
xi→xdi (s)

−σi(Vi)
∂Vi
∂xi
fi

and

lim
xi→xdi (s)

2∂Vi
∂xi
fi + 2

√
(∂Vi
∂xi
fi)2 + li

∂Vi
∂xi
giR

−1
i gTi (

∂Vi
∂xi

)T

∂Vi
∂xi
giR

−1
i gTi (

∂Vi
∂xi

)T

are bounded. Combining all the above arguments, we know that bi is bounded, ∀xi 6= xdi (s).

Accordingly, an upper bounded bi can be chosen to be above the bounded bi, e.g. bi =

bi + κi, where κi is any positive constant. In the following, we suppose that 0 < bi < Li,

where Li is a positive constant.

Following Eq. (4.21), we know that

− ∂Vi
∂xi

ẋi >
1

bi
(li + uTi Riui)

=⇒− ∂Vi
∂xi

ẋi >
1

bi
(σi(Vi) + uTi Riui)

=⇒− ∂Vi
∂xi

ẋi >
σi(Vi)

bi

=⇒
−∂Vi
∂xi
ẋi

σi(Vi)
>

1

Li
.

Note again that σi(·) can be chosen to have a higher order such that
−
∂Vi
∂xi

ẋi

σi(Vi)
→∞ as Vi → 0

(see Lemma II.2 in [6] for an example of selection). As a result, the desired properties for

a feasible control law in Lemma 4.3.1 are satisfied correspondingly.

For the second part of the proof, note that ∂F
∂s

=
∑N

i=1 βi
∂Vi
∂xdi

∂xdi
∂s

. Since s ∈
[s1, s2], xdi (s) is smooth, and both ‖xdi ‖ and ‖xi‖ are bounded, we get that ‖ ∂Vi

∂xdi
‖ and ‖∂xdi

∂s
‖

are also bounded. Therefore, | ∂F
∂s
| is bounded. In the following we suppose that | ∂F

∂s
| < B,

where B is a positive upper bound.

If F (x, s) ≥ FU at any time t, we can get

1−
∂F
∂s

δ + |∂F
∂s
|

(
σ(FU)

σ(F (x, s))

)
>

δ

B + δ
=M. (4.32)

74



Since ui(xi, s) is a satisficing control, from Eq. (4.21), we know that

∂F

∂x
ẋi =

N∑

i=1

βi
∂Vi
∂xi

ẋi

≤ −
N∑

i=1

βi(li(xi, x
d
i ) + uTi Riui)

bi(xi, xdi )
.

Note that

Ḟ (x, s) =
∂F

∂x
ẋ+

∂F

∂s
ṡ(x, s)

≤ ∂F

∂x
ẋ+

∂F

∂s

−∂F
∂x
ẋ

δ + |∂F
∂s
|

(
σ(FU)

σ(F (x, s))

)

=
∂F

∂x
ẋ

[
1−

∂F
∂s

δ + |∂F
∂s
|

(
σ(FU)

σ(F (x, s))

)]

≤ −
N∑

i=1

βi(li(xi, x
d
i ) + uTi R

T
i ui)

bi(xi, xdi )
M

≤ −
N∑

i=1

βili(xi, x
d
i )

Li
M. (4.33)

Let W3(x, s) =
∑N

i=1
βili(xi,x

d
i )

Li
M , then W3(x, s) > 0,∀xi 6= xdi . From Theo-

rem 3.8 in [110], F will keep decreasing until F (x, s) < FU . Here we assume that F will

keep decreasing until F (x, s) < FU before s reaches s2. If not, we know that

∂F

∂x
ẋ =

N∑

i=1

βi
∂Vi
∂xi

ẋi < 0

when s = s2. In this case, F will keep decreasing to zero.

If F (x, s) < FU at some time t1, we assume that F (x, s) will increase and

exceed FU at some time. Suppose it reaches the upper bound FU at some time t2, where

t2 > t1. We know that Ḟ (s(t2), x(t2)) < 0 from Eq. (4.33), that is, once F (x, s) reaches FU

from below, it will decrease immediately and cannot exceed FU . Therefore, F (x, s) < FU

within finite time for arbitrary initial formation error.

From the above proof, we note that the upperbound FU is not necessarily a

constant throughout the formation maneuvers. We can set FU as a function of time, for

example, a decreasing stairstep function or an exponentially decreasing function and so on

based on the requirement for formation keeping. By choosing a smaller FU , the formation

will evolve correspondingly more slowly.
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4.3.3 Application Example

In this section we use robustly satisficing controllers to perform formation ma-

neuvers for a group of nonholonomic robots. The kinematic equations for these robots

are:

ẋi = vi cos(φi)

ẏi = vi sin(φi)

φ̇i = ωi,

where (xi, yi) is the Cartesian position of the ith robot, φi is the orientation of the ith

robot, and (vi, ωi) is the control input. The translational motion of the robot in the direction

perpendicular to the drive axis is restricted, which is known as the nonholonomic constraint.

A common technique is to use feedback linearization [111] to simplify the dynamics for

a fixed point off the center of the wheel axis which can be denoted as (xhi, yhi). The

disadvantage of doing this is that the angular information about the robot is lost. The off

axis position is given by the equations

xhi = xi + Li cos(φi)

yhi = yi + Li sin(φi).

Thus the output dynamics are

 ẋhi

ẏhi


 = R(φi)


 vi

Liωi


 ,

where R(·) is the rotation matrix. Setting vi and Liωi in the control to

 vi

Liωi


 = R(−φi)


 uxi

uyi


 ,

we obtain 
 ẋhi

ẏhi


 =


 uxi

uyi


 .

It is obvious that fi(zi) = 0, gi(zi) = diag{1, 1}, where zi = [xhi, yhi]
T , and

ui = (uxi, uyi). Let Vi = 1
2
(xhi − xdhi)2 + 1

2
(yhi − ydhi)2, which is a valid (pointwise in s)
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Figure 4.10: The desired trajectories for robot #1 and #2.
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Figure 4.11: The formation function F (x, s) with F (x(t0), s(t0)) = 0.1.

77



0 50 100 150 200 250 300 350
0

0.1

0.2

0.3

0.4
tracking error for robot #1

(m
)

0 50 100 150 200 250 300 350
0

0.1

0.2

0.3

0.4
tracking error for robot #2

time (s)

(m
)

Figure 4.12: The tracking errors for robot #1 and #2 with F (x(t0), s(t0)) = 0.1.

CLF for the ith robot. Define F (x, s) = 2
∑N

i=1 Vi(xhi, x
d
hi(s)) as the formation measure

function. Let σi(Vi) = V 2
i and use robustly satisficing control for the robots. Although

we use a very simple model here, the general idea of using robustly satisficing control for

formation maneuvers is feasible for any affine nonlinear system for which a pointwise CLF

can be found.

We will simulate two robots moving in a spiral formation. Set FU = 0.2 and

let s ∈ [0, 5]. The desired distance between these two robots is 10 meters. The center

of the line connecting the desired positions of the two robots, i.e., the virtual center of the

formation, tracks a trajectory (xh0, yh0) given by (0, s). Also the line connecting the desired

positions of the two robots rotates about its center counterclockwise with an angle given by

ω0s. The desired states for the two robots are (xdhi, y
d
hi) which are given by (5 cos(ω0s), s+

5 sin(ω0s)) and (−5 cos(ω0s), s − 5 sin(ω0s)) respectively. The two robots start from rest

with some initial errors.
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In Fig. 4.10, we plot the desired trajectories for robot #1 and #2. The actual

trajectories almost coincide with the desired ones. To see the pattern clearly, we let s ∈
[0, 15]. In Fig. 4.11, we plot F (x, s) when the initial formation error is below the upper

bound FU . We can see that the formation error is always bounded by FU . The tracking

errors for robot #1 and #2 in this case are shown in Fig. 4.12. In Fig. 4.13, we plot F (x, s)

when the initial formation error is above the upper bound FU . We can see that even if

the initial formation error is above the upper bound, F (x, s) decreases quickly until it is

bounded by FU . The tracking errors for robot #1 and #2 in this case are shown in Fig. 4.14.

From Fig. 4.11 and Fig. 4.13, we can see that F ≈ FU when the multi-agent system is

far away from its final goal. But when s = s2, F (x, s) will decrease to zero so that each

agent can be regulated to its final state. From Fig. 4.11 and Fig. 4.13, we can also see that

the completion time for s to reach s2, which is 5 in this example, is about 261 seconds.

Therefore, the system has finite completion time.

Hardware tests are conducted in a 4.5 meters by 4.5 meters testbed in BYU

MAGICC Laboratory. To show the effectiveness of the control laws, two robots will per-

form a spiral formation with various desired distances during the maneuver. An overhead

vision system mounted on the ceiling is used to measure the positions and orientations of

the two robots. Fig. 4.15 shows the mobile robots used in the experiment. Fig. 4.16 shows

the desired and actual distance between the two robots during the maneuver with FU = 0.1.

It can seen that formation is preserved well during the maneuver. Fig. 4.17 shows the cor-

responding formation measure function. Note that F (x, s) decreases and stays below FU

for initial formation errors above FU .
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Figure 4.13: The formation function F (x, s) with F (x(t0), s(t0)) = 0.43.
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Figure 4.14: The tracking errors for robot #1 and #2 with F (x(t0), s(t0)) = 0.43.
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Figure 4.15: Canister robots used in the experiment.
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Figure 4.16: The commanded desired distance and actual distance between the two robots
with FU = 0.1.
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Figure 4.17: Formation measure function F (x, s) with FU = 0.1.
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Chapter 5

Trajectory Tracking Control with Input Constraints

5.1 Introduction

This chapter presents some new results on trajectory tracking control strate-

gies. Although we discuss trajectory tracking control in the context of cooperative control,

e.g. trajectory tracking in cooperative timing missions [96, 27], these control strategies can

be applied to general scenarios.

In Section 5.2, we consider the problem of constrained nonlinear tracking con-

trol for small fixed-wing unmanned air vehicles (UAVs). An input-to-state control Lya-

punov function (ISS-CLF) based technique is used to design nonlinear tracking controllers

for UAVs with velocity and heading rate constraints. In Section 5.3.2, we apply the same

design strategies to tracking control of nonholonomic mobile robots with input constraints

similar to those of fixed-wing UAVs. Experimental results of the nonlinear tracking con-

trollers for a nonholonomic mobile robot are presented as a proof of concept.

5.2 Trajectory Tracking for UAVs with Velocity and Heading Rate Constraints

The inherent properties of fixed-wing UAVs impose the input constraints of pos-

itive minimum velocity due to the stall conditions of the aircraft, bounded maximum ve-

locity, and saturated heading rate. Unmanned air vehicles equipped with low-level altitude-

hold, velocity-hold, and heading-hold autopilots can be modelled by kinematic equations

of motion that are similar to those of nonholonomic mobile robots. However, existing ap-

proaches for mobile robots (c.f. [77, 78, 85, 84]) are not directly applicable to our problem
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since negative velocities are allowed in these approaches. This section deals with the is-

sue of tracking control for UAV kinematic models with physically motivated heading rate

and velocity constraints. We approach the problem using constrained CLFs. While our

approach is designed for UAVs in particular, it is also valid for mobile robot kinematic

models with similar input constraints.

We take the following approach to UAV trajectory tracking. We first propose a

time-varying, constrained CLF for the UAV kinematic model. Following [30], the CLF is

used to define a state-dependent, time-varying set of “feasible” control values from which

different controllers can be instantiated. Selection from this feasible control set, guarantees

accurate tracking as well as satisfaction of the saturation constraints. As noted in [30], dif-

ferent control strategies can be derived by selection from the feasible control set according

to some auxiliary performance index. This approach introduces a great deal of flexibility to

the tracking control problem. In this section we propose a simple selection scheme based

on saturation functions. The motivation for this selection scheme is computational simplic-

ity. It is worthwhile to mention that the existing CLF-based universal formulas introduced

in [95, 94] are not feasible in the UAV case due to its special input constraints, that is,

controls are constrained to lie in a rectangle.

The salient features of our approach are as follows: First, under the proposed

tracking CLF framework with input constraints, we allow the reference velocity and angu-

lar velocity to be piecewise continuous while other approaches to tracking control (e.g. [85,

84]) constrain them to be uniformly continuous in order to apply Barbalat’s lemma. Sec-

ond, using different selection schemes, our approach can be used to derive a variety of

other trajectory tracking strategies. Finally, it is computationally simple and can be im-

plemented on off-the-shelf inexpensive microcontrollers. To illustrate the effectiveness of

the controller, we apply our approach to a UAV scenario, where the UAV is assigned to

transition through several opportunities in the presence of dynamic hazards. Instead of fol-

lowing simple paths composed of straight lines and circles (e.g. [85, 84]), the UAV tracks

a trajectory generated dynamically from the trajectory generator described in [112], which

responds the current, possibly time-varying, opportunity/hazard scenario presented to the

UAV.
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Figure 5.1: System architecture.

5.2.1 Problem Statement

As shown in Fig. 5.1, the overall system architecture considered in this section

consists of five layers [45]: Waypoint Path Planner (WPP), Dynamic Trajectory Smoother

(DTS), Trajectory Tracker (TT), Longitudinal and Lateral Autopilots, and the UAV.

The WPP generates waypoint paths (straight-line segments) that change in ac-

cordance with the dynamic environment consisting of the location of the UAV, the tar-

gets, and the dynamically changing threats. The DTS smoothes through these waypoints

and produces a feasible time-parameterized desired trajectory, that is, the desired position

(xr(t), yr(t)), heading ψr(t), and altitude hr(t). The TT outputs the velocity command

vc, heading command ψc, and altitude command hc to the autopilots based on the desired

trajectory. The autopilots then use these commands to control the elevator, δe, aileron, δa,

rudder δr, and throttle δt, of the UAV [45]. In this section we focus on the trajectory tracker.

With the UAV equipped with standard autopilots, the resulting UAV/autopilot

models are assumed to be first order for heading and Mach hold, and second order for

altitude hold [80]. Letting (x, y), ψ, v, and h denote the inertial position, heading angle,

velocity, and altitude of the UAV respectively, the kinematic equations of motion are given

by
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ẋ = v cos(ψ)

ẏ = v sin(ψ)

ψ̇ = αψ(ψ
c − ψ) (5.1)

v̇ = αv(v
c − v),

ḧ = −αḣḣ+ αh(h
c − h),

where ψc, vc, and hc are the commanded heading angle, velocity, and altitude to the autopi-

lots, and α∗ are positive constants [80].

Assuming that αv is large, v converges to vc quickly relative to the time-scale

of the other dynamics, the first four equations in Eq. (5.1) reduce to

ẋ = vc cos(ψ)

ẏ = vc sin(ψ) (5.2)

ψ̇ = αψ(ψ
c − ψ).

In the remainder of the section, we assume that the altitude controller follows

the design presented in [27], and focus on the design of the velocity and heading controller

based on Eq. (5.2). Letting ψc = ψ + 1
αψ
ωc, Eq. (5.2) becomes

ẋ = vc cos(ψ)

ẏ = vc sin(ψ) (5.3)

ψ̇ = ωc.

The dynamics of the UAV impose the following input constraints

U1 = {vc, ωc|0 < vmin ≤ vc ≤ vmax,

−ωmax ≤ ωc ≤ ωmax}. (5.4)

Note that if vmin = −vmax, then Eq. (5.3) is the same as the kinematic model for a mobile

robot with similar input constraints.
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We will assume that the desired reference trajectory (xr, yr, ψr, vr, ωr) produced

by the DTS satisfies

ẋr = vr cos(ψr)

ẏr = vr sin(ψr)

ψ̇r = ωr,

where vr and ωr are piecewise continuous and satisfy the constraints

vmin + εv ≤vr ≤ vmax − εv
−ωmax + εω ≤ωr ≤ ωmax − εω, (5.5)

where εv and εω are positive control parameters. The inclusion of ε∗ in the constraints of the

reference trajectory generator, guarantees that there is sufficient control authority to track

the trajectory. We will see that as ε∗ approach zero, the feasible control set vanishes. The

control objective is to find feasible control inputs vc and ωc such that |xr − x|+ |yr − y|+
|ψr − ψ| → 0 as t→∞.

Transforming the tracking errors expressed in the inertial frame to the UAV

frame, the error coordinates [113] can be denoted as



xe

ye

ψe


 =




cos(ψ) sin(ψ) 0

− sin(ψ) cos(ψ) 0

0 0 1







xr − x
yr − y
ψr − ψ


 . (5.6)

Accordingly, the tracking error model can be represented as

ẋe = ωcye − vc + vr cos(ψe)

ẏe = −ωcxe + vr sin(ψe) (5.7)

ψ̇e = ωr − ωc.

Following [84], Eq. (5.7) can be simplified as

ẋ0 = u0

ẋ1 = (ωr − u0)x2 + vr sin(x0) (5.8)

ẋ2 = −(ωr − u0)x1 + u1,
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where

(x0, x1, x2)
4
= (ψe, ye,−xe) (5.9)

and u0
4
= ωr − ωc and u1

4
= vc − vr cos(x0).

The input constraints under the transformation become

U2 = {u0, u1|ω ≤ u0 ≤ ω̄, v ≤ u1 ≤ v̄}, (5.10)

where ω
4
= ωr − ωmax, ω̄

4
= ωr + ωmax, v

4
= vmin − vr cos(x0), and v̄

4
= vmax − vr cos(x0)

are time-varying.

Obviously, Eqs. (5.6) and (5.9) are invertible transformations, which means

(x0, x1, x2) = (0, 0, 0) is equivalent to (xe, ye, ψe) = (0, 0, 0), or in other words (xr, yr, ψr) =

(x, y, ψ). Therefore, the original tracking control objective is converted to a stabilization

objective. That is, our goal is to find feasible control inputs u0 and u1 to stabilize x0, x1,

and x2.

Note from Eq. (5.8) that when both x0 and x2 go to zero, that x1 becomes

uncontrollable. To avoid this situation we introduce another change of variables. Let

x̄0 = mx0 +
x1

π1
, where m > 0 and π1

4
=
√
x21 + x22 + 1. Accordingly, x0 = x̄0

m
− x1

mπ1
.

Obviously, (x̄0, x1, x2) = (0, 0, 0) is equivalent to (x0, x1, x2) = (0, 0, 0). Therefore it is

sufficient to find control inputs u0 and u1 to stabilize x̄0, x1, and x2. With the same input

constraints (5.10), Eq. (5.8) can be rewritten as

ẋ = f1(t, x) + g1(t, x)[u0, u1]
T , (5.11)

where x = [x̄0, x1, x2]
T ,

f1(t, x) =




x2

π1
ωr +

1+x2
2

π3
1
vr sin

(
x̄0

m
− x1

mπ1

)

x2ωr + vr sin
(
x̄0

m
− x1

mπ1

)

−ωrx1




and

g1(t, x) =




m− x2

π1
−x1x2

π3
1

−x2 0

x1 1


 .
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5.2.2 CLF for Tracking Control with Saturation Constraints

In this section, we find a valid CLF for UAV trajectory tracking with input

constraints. Consider the following class of affine nonlinear time-varying systems

ẋ = f(t, x) + g(t, x)u, (5.12)

where x ∈ IRn, u ∈ IRm, and f : IR+× IRn → IRn and g : IR+× IRn → IRn×m are locally

Lipschitz in x and piecewise continuous in t.

Definition 5.2.1 (see [87]) A continuously differentiable function V : IR+ × IRn → IR is

a control Lyapunov function (CLF) for system (5.12) with input constraints u ∈ U ⊂ IRm

if it is positive-definite, decrescent, radially unbounded in x, and satisfies

inf
u∈U

{
∂V

∂t
+
∂V

∂x
(f(t, x) + g(t, x)u)

}
≤ −W (x), (5.13)

∀x 6= 0 and ∀t ≥ 0 where W (x) is a continuous positive-definite function.

In order to find a CLF with bounded input constraints, we prefer the partial

derivative of V to be bounded. Accordingly, we have the following lemma.

Lemma 5.2.1 If P (x) =
√
xTx+ 1− 1, then P (x) is continuously differentiable, radially

unbounded, positive-definite, and
∥∥∂P
∂x

∥∥ ≤ 1.

Proof: Trivial.

Lemma 5.2.1 will be used to construct a CLF for system (5.11). The following

lemma defines a continuous positive-definite function that will be used in the construction

of the CLF.

Lemma 5.2.2 Let

W (x) = γ0

(
x̄0
π2

)2

+ γ1k1 (vmin + εv)
x1
π1

sin

(
x1
mπ1

)

+ γ2

(
k1 −

1

2

)(
x2
π1

)2 [
(vmin + εv) cos

(
x1
mπ1

)
− vmin

]
, (5.14)

where π2
4
=
√
x̄20 + 1. If k1 > 1

2
, γi > 0, and m > 2/ cos−1

(
vmin

vmin+εv

)
, then W (x) is

continuous and positive-definite.
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Proof: SinceW is a composition of continuous functions, it is continuous. The first term in

Eq. (5.14) is clearly positive and zero if and only if x̄0 = 0. The second term in Eq. (5.14)

is nonnegative if
∣∣∣ x1

mπ1

∣∣∣ < π. But since

∣∣∣∣
x1
mπ1

∣∣∣∣ <
1

m
< cos−1

(
vmin

vmin + εv

)
/2 < π/4, (5.15)

the second term is positive and zero if and only if x1 = 0. Since
∣∣∣∣
x1
mπ1

∣∣∣∣ < cos−1
(

vmin

vmin + εv

)
/2 < cos−1

(
vmin

vmin + εv

)

=⇒ cos

(
x1
mπ1

)
>

vmin

vmin + εv

⇐⇒ (vmin + εv) cos

(
x1
mπ1

)
− vmin > 0, (5.16)

the third term in Eq. (5.14) is positive and zero if and only if x2 = 0.

The following theorem defines a valid CLF for UAV trajectory tracking with

input constraints.

Theorem 5.2.2 The function

V = P (x̄0) + k1P


x1
x2




=
√
x̄20 + 1 + k1

√
x21 + x22 + 1− (1 + k1)

satisfies infu∈U2{∂V∂x (f1+ g1u)} ≤ −W (x), that is, V is a CLF for system (5.11) with input

constraints (5.10), if W (x) is given by Lemma 5.2.2, 0 < γ1 < 1, 0 < γ2 < 1 and

m > max

{
M0, 1 +

d2
εω

}
,
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where

M0
4
=max





2

cos−1
(

vmin

vmin+εv

) , 1 +
√
2
d1
εω



 (5.17)

d1
4
=

(
k1 +

1

2

)
[2vmax − εv] + γ2(k1 −

1

2
)εv

+ k1 [(vmax − εv) + γ1(vmin + εv)]

+ (ωmax − εω) + (vmax − εv) + γ0 (5.18)

d2
4
=(vmax − εv)[

√
2(k1 −

1

2
)
M2

M0

+
√
2k1

M1

M0

+ 1]

+ (ωmax − εω) + γ0 (5.19)

and

M1
4
= sup

0<|α|<1/M0
|β|<1/M0

∣∣∣∣
sin (α− β) + sin (β)

α

∣∣∣∣ (5.20)

M2
4
= sup

0<|α|<1/M0
|β|<1/M0

∣∣∣∣
cos (β)− cos (α− β)

α

∣∣∣∣ . (5.21)

Proof: Obviously V is positive-definite, decrescent, and radially unbounded, therefore it

remains to show that V̇ +W3 ≤ 0 for all x.

Differentiating V and setting u0 = −εωsign(x̄0), we obtain the following ex-

pression after some algebraic manipulation:

V̇ +W3(x) =− εω
|x̄0|
π2

(m− x2
π1

)

+ σ1u1 + σ2 + σ3 + σ4 (5.22)

where

σ1 =

(
k1 −

x̄0x1
π2π21

)(
x2
π1

)

σ2 = γ2(k1 −
1

2
)

(
x2
π1

)2 [
(vmin + εv) cos

(
x1
mπ1

)
− vmin

]

σ3 = k1

(
x1
π1

)[
vr sin

(
x̄0
m
− x1
mπ1

)
+ γ1(vmin + εv) sin

(
x1
mπ1

)]

σ4 =

(
x̄0
π2

)[
x2
π1
ωr +

1 + x22
π31

vr sin

(
x̄0
m
− x1
mπ1

)
+ γ0

(
x̄0
π2

)]
.
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Three cases will be considered with respect to x̄0.

Case 1: |x̄0| ≥ 1.

Since |x̄0/π2| < 1, |x1/π21| < 1/2, and
∣∣∣x2

π1

∣∣∣ < 1, we know that |σ1| ≤ (k1 + 1/2). Note

that

σ1u1 ≤ (k1 + 1/2)(2vmax − εv)

σ2 ≤ γ2(k1 − 1/2)εv

σ3 ≤ k1 [(vmax − εv) + γ1(vmin + εv)]

σ4 ≤ (ωmax − εω) + (vmax − εv) + γ0.

Since m > 1 +
√
2d1/εω, we get that

V̇ +W3 ≤ −εω
|x̄0|
π2

(m− 1) + d1

≤ − εω√
2
(m− 1) + d1 < 0,

where the second inequality comes from |x̄0|
π2
≥ 1/

√
2 since |x̄0| ≥ 1.

Case 2: 0 < |x̄0| < 1.

Eq. (5.22) can be arranged as

V̇ +W3 =
|x̄0|
π2

{
−εω(m−

x2
π1

) +
π2
|x̄0|

[σ1u1 + σ2 + σ3 + σ4]

}
.

We will show that

d2 ≥
π2
|x̄0|

(σ1u1 + σ2) +
π2
|x̄0|

σ3 +
π2
|x̄0|

σ4, (5.23)

which implies that m > 1 + d2/εω guarantees that V̇ +W3 ≤ 0.

Set

u1 =




vmin − vr cos

(
x̄0

m
− x1

mπ1

)
, x2 ≥ 0

vmax − vr cos
(
x̄0

m
− x1

mπ1

)
, x2 < 0.

(5.24)

For the first term in Eq. (5.23), consider the following two cases with regard to

x2.
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(1): x2 ≥ 0.

Noting that (x2/π1)2 ≤ |x2| /π1 and
∣∣∣∣
x̄0
m
− x1
mπ1

∣∣∣∣ < 2/m < cos−1
(

vmin

vmin + εv

)

=⇒vmin − vr cos
(
x̄0
m
− x1
mπ1

)
< 0, (5.25)

∣∣∣∣
x̄0x1
π2π21

∣∣∣∣ <
1

2

=⇒(k1 −
x̄0x1
π2π21

) > (k − 1

2
), (5.26)

cos

(
x1
mπ1

)
> 0

=⇒(vmin + εv) cos

(
x1
mπ1

)
− vmin ≤ vr cos

(
x1
mπ1

)
− vmin, (5.27)

the first term in Eq. (5.23) can be bounded as follows:

π2
|x̄0|

(σ1u1 + σ2)

=
π2
|x̄0|
{(k1 −

x̄0x1
π2π21

)

( |x2|
π1

)[
vmin − vr cos

(
x̄0
m
− x1
mπ1

)]

+ γ2(k1 − 1/2)

(
x2
π1

)2

[(vmin + εv) cos

(
x1
mπ1

)
− vmin]}

≤ π2
|x̄0|
{(k1 − 1/2)

( |x2|
π1

)[
vmin − vr cos

(
x̄0
m
− x1
mπ1

)]

+ (k1 − 1/2)

( |x2|
π1

)
[vr cos

(
x1
mπ1

)
− vmin]}

≤π2(k1 −
1

2
)vr

1

m

∣∣∣∣∣∣

cos
(

x1

mπ1

)
− cos

(
x̄0

m
− x1

mπ1

)

|x̄0| /m

∣∣∣∣∣∣

≤
√
2(k1 − 1/2)(vmax − εv)

1

M0

M2,

where the last inequality comes from 1/m < 1/M0, π2 <
√
2 since 0 < |x̄0| < 1, and

Eq. (5.21) by letting α = x̄0/m and β = x1/mπ1.

(2): x2 < 0.

Noting that vmax − vr cos
(
x̄0

m
− x1

mπ1

)
≥ εv and (vmin + εv) cos

(
x1

mπ1

)
− vmin ≤ εv, we

get that

π2
|x̄0|

(σ1u1 + σ2)
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=
π2
|x̄0|
{(k1 −

x̄0x1
π2π21

)

(
−|x2|
π1

)[
vmax − vr cos

(
x̄0
m
− x1
mπ1

)]

+ γ2(k1 − 1/2)

(
x2
π1

)2

[(vmin + εv) cos

(
x1
mπ1

)
− vmin]}

≤ π2
|x̄0|
{(k1 −

1

2
)

(
−|x2|
π1

)
εv + γ2(k1 −

1

2
)

( |x2|
π1

)
εv} ≤ 0.

The second term in Eq. (5.23) can be bounded as follows:

π2
|x̄0|

σ3

≤ π2
|x̄0|

[
k1vr

(
x1
π1

)
sin

(
x̄0
m
− x1
mπ1

)

+k1vr

(
x1
π1

)
sin

(
x1
mπ1

)]

≤π2k1vr
∣∣∣∣
x1
π1

∣∣∣∣
1

m

∣∣∣∣∣∣

sin
(
x̄0

m
− x1

mπ1

)
+ sin

(
x1

mπ1

)

|x̄0| /m

∣∣∣∣∣∣

≤
√
2k1(vmax − εv)

1

M0

M1,

where the first inequality comes from x1

π1
sin
(

x1

mπ1

)
≥ 0 according to (5.15), and the last

inequality comes from π2 <
√
2, 1/m < 1/M0, and Eq. (5.20) by letting α = x̄0/m and

β = x1/mπ1.

The third term in Eq. (5.23) can be bounded as follows:

π2
|x̄0|

σ4

=
π2
|x̄0|

x̄0
π2

[
x2
π2
ωr +

1 + x22
π31

vr sin

(
x̄0
m
− x1
mπ1

)
+ γ0

x̄0
π2

]

≤
∣∣∣∣
x2
π1
ωr

∣∣∣∣+
∣∣∣∣
1 + x22
π31

vr sin

(
x̄0
m
− x1
mπ1

)∣∣∣∣+ γ0

∣∣∣∣
x̄0
π2

∣∣∣∣

≤(ωmax − εω) + (vmax − εv) + γ0.

Combining these expressions gives the desired result.
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Case 3: x̄0 = 0.

In this case we have V̇ +W3 = σ1(u1 + σ2) + σ3. For σ3 we have

σ3 = k1

(
x1
π1

)
sin

(
x1
mπ1

)
[γ1(vmin + εv)− vr]

≤ k1

(
x1
π1

)
sin

(
x1
mπ1

)
vr(γ1 − 1) ≤ 0.

From Eq. (5.24),

u1 =




vmin − vr cos

(
x1

mπ1

)
, x2 ≥ 0

vmax − vr cos
(

x1

mπ1

)
, x2 < 0.

(5.28)

Consider the following two cases with regard to x2.

(1): x2 ≥ 0.

Similar to Case 2, we get that

σ1u1 + σ2

=k1

( |x2|
π1

)[
vmin − vr cos

(
x1
mπ1

)]

+ γ2(k1 − 1/2)

(
x2
π1

)2

[(vmin + εv) cos

(
x1
mπ1

)
− vmin]

≤k1
( |x2|
π1

)[
vmin − vr cos

(
x1
mπ1

)]

+ γ2k1

( |x2|
π1

)
[vr cos

(
x1
mπ1

)
− vmin]

=(γ2 − 1)k1

( |x2|
π1

)[
vr cos

(
x1
mπ1

)
− vmin

]
,

which is nonpositive since 0 < γ2 < 1 and m > 1/ cos−1(vmin/(vmin + εv)).

(2): x2 < 0.

Similar to Case 2, we get that

σ1u1 + σ2

=k1

(
−|x2|
π1

)
[vmax − vr cos

(
x1
mπ1

)
]

+ γ2(k1 − 1/2)

(
x2
π1

)2

[(vmin + εv) cos

(
x1
mπ1

)
− vmin]

≤k1
(
−|x2|
π1

)
εv + γ2k1

( |x2|
π1

)
εv
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≤(γ2 − 1)k1

( |x2|
π1

)
εv,

which is also nonpositive.

It is straightforward to show that M1 and M2 in Eqs. (5.20) and (5.21) are

bounded as |α| approaches both 0 and 1/M0. Therefore M1 and M2 are finite and can

be found by straightforward optimization techniques.

Theorem 5.2.2 demonstrates that V is a valid CLF for system (5.11) under satu-

ration constraints (5.10). Note that a very conservative upper bound is found for m in each

case for simplicity of the proof. In reality, m can be much smaller than the upper bound

specified above.

5.2.3 Nonlinear Tracking Control based on CLF

With the CLF given in Theorem 5.2.2, our goal in this section is to find a family

of feasible tracking control laws based on this CLF.

Define the feasible control set as

F(t, x) = {u ∈ U2|
∂V

∂x
g1(t, x)u+

∂V

∂x
f1(t, x) ≤ −W (x)},

where V is given in Theorem 5.2.2 and W (x) is given in Lemma 5.2.2. Note that the fact

that V is a constrained CLF for system (5.11) guarantees that F(t, x) is nonempty for any

t and x.

Fig. 5.2 shows the feasible control set at some time t = t̂. The line denoted by

∂V
∂x
g1u + ∂V

∂x
f1 +W = 0 separates the 2-D control space into two halves, where the half

plane ∂V
∂x
g1u+

∂V
∂x
f1+W ≤ 0 (the entire right plane in Fig. 5.2) represents the unconstrained

stabilizing control values. The input constraints (5.10) produce a time-varying rectangle in

the u0 − u1 plane. The shaded area represents the stabilizing controls which also satisfy

input constraints (5.10), that is, the feasible control set F(t, x).
We have the following theorem.

Theorem 5.2.3 If the time-varying feedback control law k(t, x) satisfies

1. k(t, 0) = 0,
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u0

u1

0

Figure 5.2: The feasible control set F(t, x) at some time t = t̂.

2. k(t, x) ∈ F(t, x), ∀x 6= 0,

3. k(t, x) is locally Lipschitz in x and piecewise continuous in t, ∀x 6= 0 and ∀t ≥ 0,

then this control solves the tracking problem with input constraints, that is, |xr−x|+ |yr−
y|+ |ψr − ψ| → 0 as t→∞.

Proof: see [30].

There are an infinite number of possibilities for selecting a feedback strategy

that satisfies Theorem 5.2.3. In this section we will investigate the performance of an

aggressive selection scheme that chooses the maximum allowable u0 and u1 outside of a

region close to the origin. This scheme can be interpreted as a high-gain scheme with

saturation. Define a saturation function as

sat(a, b, c) =





b, a < b

a, b ≤ a ≤ c

c, a > c

,

where it is assumed that b < c.
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Define

M3
4
= max{0, sup

0<|α|<1

|β|<1

0<ϑ≤1

(α2 + 1)
ρ1
α2
} (5.29)

M4
4
= max{0, sup

0<α<1

|β|<1

(α2 + 1)
ρ2
α2
} (5.30)

M5
4
= max{0, sup

0<|α|<1

(α2 + 1)
ρ3
α2
}, (5.31)

where

ρ1 =

(
k1β +

α√
α2 + 1

ϑ

)
sin

(
α− β
m

)
+ k1γ1β sin

(
β

m

)

ρ2 =
|α|√
α2 + 1

(ωmax − εω)

+ (k1 −
1

2
)

[
vmin − (vmin + εv) cos

(
α− β
m

)]

+ γ2(k1 −
1

2
)

[
(vmin + εv) cos

(
β

m

)
− vmin

]

ρ3 =
|α|√
α2 + 1

(ωmax − εω) + (k1 −
1

2
)(γ2 − 1)εv,

and k1, γ1, γ2, and m are defined in Theorem 5.2.2.

It is easy to see that M3, M4, and M5 in Eqs. (5.29), (5.30), and (5.31) are

bounded as |α| approaches 1. Note that 1 < (α2+1) < 2 since 0 < |α| < 1. For Eq. (5.29),

two cases will be considered with regard to β. In the case of β = 0, (α2 + 1)ρ1/α
2 =

(
√
α2 + 1)ϑ sin( α

m
)/α, which is bounded by 1/m as α approaches 0. In the case of β 6= 0,

as |α| approaches 0, ρ1 approaches k1(γ1−1)β sin( β
m
), which is negative since 0 < γ1 < 1

and
∣∣ β
m

∣∣ < 1
m
< π

4
following Eq. (5.15). Thus M3 = 1/m as |α| approaches 0. For

Eq. (5.30), as |α| approaches 0, ρ2 approaches (k1−1/2)(γ2−1)[(vmin+εv) cos
(
β
m

)
−vmin],

which is also negative following Eq. (5.16). Thus M4 = 0 as |α| approaches 0. For

Eq. (5.31), as |α| approaches 0, ρ3 approaches (k1 − 1
2
)(γ2 − 1)εv, which is also negative.

Thus M5 = 0 as |α| approaches 0. Therefore M3, M4, and M5 are finite and can be found

by straightforward numerical techniques.
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Define

κω = max{2ωmax − εω,
d3

m− 1
,

d4
m− 1

} (5.32)

κv =
ωmax − εω
2k1 − 1

+ γ2εv, (5.33)

where

d3 =M3(vmax − εv) + γ0 +
1

2
(ωmax − εω)

d4 =M3(vmax − εv) + γ0 +max{M4,M5}.

Lemma 5.2.3 If

u0 = sat(−ηωx̄0, ω, ω̄) (5.34)

u1 = sat(−ηvx2, v, v̄) (5.35)

where ηω > κω and ηv > κv and κω and κv are defined as above, then ksat(t, x) = [u0, u1]
T

satisfies the conditions of Theorem 5.2.3.

Proof: Obviously ksat(t, x) satisfies the first and third conditions in Theorem 5.2.3. We will

show that it also stays in the feasible control setF(t, x), that is, V̇ = ∂V
∂x

(f1+g1ksat(t, x)) ≤
−W (x).

Note that

V̇ +W (x) = δ1 + δ2 + δ3 + δ4, (5.36)

where

δ1 = k1

(
x1
π1

)[
vr sin(

x̄0
m
− x1
mπ1

) + γ1(vmin + εv) sin

(
x1
mπ1

)]

+
x̄0
π2

1 + x22
π31

vr sin

(
x̄0
m
− x1
mπ1

)

δ2 =
x̄0
π2

(
m− x2

π1

)
u0 + γ0

(
x̄0
π2

)2

δ3 =
x̄0
π2

x2
π1
ωr

δ4 =

(
k1 −

x̄0x1
π2π21

)(
x2
π1

)
u1

+ γ2(k1 −
1

2
)

(
x2
π1

)2 [
(vmin + εv) cos

(
x1
mπ1

)
− vmin

]
.
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Four cases will be considered as follows:

Case 1: −ηωx̄0 /∈ [ω, ω̄] and −ηvx2 /∈ [v, v̄].

In this case, the saturation functions are the same as the discontinuous signum like functions

in Theorem 5.2.2, which implies that V̇ ≤ −W (x) in this case.

Case 2: −ηωx̄0 ∈ [ω, ω̄] and −ηvx2 ∈ [v, v̄].

In this case, we can see that u0 = −ηωx̄0 and u1 = −ηvx2. We also know that |x̄0| < 1

since ηω > κω ≥ 2ωmax − εω.

Noting that

δ1 ≤M3(vmax − εv)
(
x̄0
π2

)2

(5.37)

δ2 ≤ [−(m− 1)ηω + γ0]

(
x̄0
π2

)2

(5.38)

δ3 ≤
1

2

[(
x̄0
π2

)2

+

(
x2
π1

)2
]
(ωmax − εω) (5.39)

δ4 ≤ (k1 −
1

2
)(γ2εv − ηv)

(
x2
π1

)2

, (5.40)

where Eq. (5.37) comes from Eq. (5.29) by letting α = x̄0, β = x1/π1, and ϑ = (1+x22)/π
3
1 ,

and Eq. (5.39) follows Young’s Inequality. Therefore,

V̇+W (x) ≤ [d3 − (m− 1)ηω]

(
x̄0
π2

)2

+

[
1

2
(ωmax − εω) + (k1 −

1

2
)(γ2εv − ηv)

](
x2
π1

)2

,

which is nonpositive since ηω > κω ≥ d3/(m− 1) and ηv > κv =
ωmax−εω
2k1−1

+ γ2εv.

Case 3: −ηωx̄0 ∈ [ω, ω̄] and −ηvx2 /∈ [v, v̄].

In this case, |x̄0| < 1, δ1 and δ2 follow the same inequalities (5.37) and (5.38), and δ3 ≤(
|x2|
π1

)(
|x̄0|
π2

)
(ωmax− εω). Note that v < 0 from the property of m and v̄ ≤ εv. If −ηvx2 <

v, we can get that x2 > − v
ηv
> 0. Thus (δ3 + δ4) ≤

(
|x2|
π1

)
M4

(
x̄0

π2

)2
≤ M4

(
x̄0

π2

)2
. If

−ηvx2 > v̄, we can get that x2 < − v̄
ηv
< 0. Thus (δ3 + δ4) ≤

∣∣∣x2

π1

∣∣∣M5

(
x̄0

π2

)2
≤M5

(
x̄0

π2

)2
.

Therefore, V̇ +W (x) ≤ 0 since ηω > κω ≥ d4/(m− 1).

Case 4: −ηωx̄0 /∈ [ω, ω̄] and −ηvx2 ∈ [v, v̄].

In this case, u0sign(x̄0) ≤ −εω and δ4 follows the same inequality (5.40). It can be seen
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that (σ1u1 + σ2)
4
= δ4 ≤ 0 since ηv > κv > γ2εv. We can see that V̇ + W (x) ≤

−εω |x̄0|
π2

(m − x2

π1
) + σ3 + σ4. Then following the proof for Theorem 5.2.2, we know that

V̇ +W (x) ≤ 0 is guaranteed based on the choice of m.

Combining these four cases gives the desired result.

In Lemma 5.2.3 we used a simple control law that stays in the feasible control

set. Other continuous saturation functions like atan, tanh are also possible as long as they

stay in the feasible control set. In the case of vr and ωr being uniformly continuous, it is

also possible to use geometrical strategies to find feasible control laws (e.g. choose the

geometrical center of the feasible control set F(t, x) as feasible controls).

Note that the commanded velocity and heading rate to the autopilots are defined

as vc
4
= u1 + vr cos(x0) and ωc

4
= ωr − u0.

Physically, there may exist perturbation terms in system (5.11) due to uncer-

tainties and external disturbances. We address the issue of uncertainties and disturbances

under the input-to-state (ISS) framework [114].

Consider the system

ẋ = f(t, x) + g(t, x)u+ d, (5.41)

which introduces a perturbation term d ∈ IRn to the nominal system (5.12).

Definition 5.2.4 [115] A continuously differentiable function V : IR+ × IRn → IR is an

ISS-CLF for system (5.41) if it is positive-definite, decrescent, radially unbounded in x and

there exist class K functions χ(·) and ρ(·) such that

inf
u∈IRm

∂V

∂t
+
∂V

∂x
f +

∂V

∂x
gu+

∂V

∂x
d ≤ −χ(‖x‖),∀ ‖x‖ ≥ ρ(‖d‖).

GivenW (x) in Eq. (5.14), there exists a classK function χw such that χw(‖x‖) ≤
W (x), ∀x ( [110], Lemma 3.5).

Lemma 5.2.4 Let µ = sup‖x‖→∞ χw(‖x‖) and b1 = [1, k1, k1]
T . If ‖d‖ < λµ

‖b1‖
, where

0 < λ < 1, then V (x) is also an ISS-CLF with input constraints (5.10) for system

ẋ = f1(t, x) + g1(t, x)u+ d, (5.42)

where d is the perturbation term to the nominal system (5.11).
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Proof: Note that ∂V
∂x

= [ x̄0

π2
, k1

x1

π1
, k1

x2

π1
], where | x̄0

π2
| < 1, |x1

π1
| < 1, and |x2

π1
| < 1.

It can be seen that

inf
u∈U2

∂V

∂x
f1 +

∂V

∂x
g1u+

∂V

∂x
d

≤ −W (x) +

∥∥∥∥
∂V

∂x
d

∥∥∥∥

≤ −(1− λ)χw(‖x‖)− λαw(‖x‖) + ‖b1‖ ‖d‖

≤ −(1− λ)χw(‖x‖), ∀ ‖x‖ ≥ α−1w

(‖b1‖ ‖d‖
λ

)

Note that α−1w (·) in the last inequality is also a class K function of ‖d‖ and is well defined

since ‖b1‖‖d‖
λ

< µ.

Note that here χw(·) is a class K function instead of a class K∞ function, which

in turn imposes constraints for ‖d‖. This can be explained from the constrained input

perspective. In the case of d = 0, the derivative of the CLF cannot approach −∞ as

the tracking errors approach∞ even with maximum control authority due to the saturated

controls. As a result, χw(·) can only be a class K function given the input constraints. Also

note that with control inputs given by Eqs. (5.34) and (5.35) V (x) is an ISS-Lyapunov

function under the same assumptions of Lemma 5.2.4.

It is obvious that the commanded control vc and ωc rely on the state measure-

ment x, y, and ψ. Due to measurement noise, there exist input uncertainties for [vc, ωc]T .

Equivalently, we may consider input uncertainties for [u0, u1]T in system (5.11). We denote

the actual control input to system (5.11) as u = [u0+∆u0, u1+∆u1]
T , where ∆u0 and ∆u1

represent the uncertainties. Due to saturation constraints, we know that |∆u0| ≤ 2ωmax and

|∆u1| ≤ vmax − vmin.

We have the following lemma considering input uncertainties.

Lemma 5.2.5 Let b2 = [m + 1, k1 +
1
2
]T and ∆u = [∆u0,∆u1]

T . If ‖∆u‖ < λµ
‖b2‖

, where

0 < λ < 1, then V (x) is an ISS-Lyapunov function for system (5.11) with control inputs

given by Eqs. (5.34) and (5.35) and d = g1∆u.

Proof: Noting that

∂V

∂x
g1 = [(m− x2

π1
)
x̄0
π2
,− x̄0

π2

x1x2
π31

+ k1
x2
π1

],
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where
∣∣∣(m− x2

π1
) x̄0

π2

∣∣∣ < m + 1, and
∣∣∣− x̄0

π2

x1x2

π3
1

+ k1
x2

π1

∣∣∣ < k1 +
1
2
, the result then directly

follows Lemma 5.2.4.

One advantage of the CLF-based approach used in this section is that it only re-

quires vr and ωr to be piecewise continuous instead of being uniformly continuous, which

results in wider potential applications than other approaches which require uniform conti-

nuity. The other advantage is that it provides the possibility to use other advanced strategies

to choose feasible controls fromF(t, x). For example, at each time t, a feasible control may

be generated from F(t, x) while optimizing some performance index function or minimiz-

ing some cost function at the same time. This may introduce more flexibility and benefits to

the tracking control problem than specifying a fixed control law in advance. In addition, it

is also possible to propose a suboptimal controller from F(t, x) based on the combination

of model predictive techniques and the tracking CLF.

Although the approach in this section is designed specifically for system (5.3),

the design strategy can be applied to general nonlinear systems. That is, if a constrained

control Lyapunov function (CLF) can be found for a system with polytopic input con-

straints, the feasible control set that defines all the stabilizing controls with respect to the

CLF satisfying the input constraints can be specified accordingly. Ref. [30] provides a

complete parametrization of the unconstrained stabilizing controls with respect to a certain

CLF. Following this idea, a direct parametrization of the feasible control set or selection

from the feasible control set is applicable, e.g. finding the geometric mean of the feasible

control set or a parametrization based on the vertices of the feasible control set (a polygon

in this case).

5.2.4 Simulation Results

In this section, we simulate a scenario where a UAV is assigned to transition

through several known targets in the presence of dynamic threats. The parameters used

in this section are given in Table 5.1, which are the parameters of a three foot wingspan

UAV used at BYU. The simulation results in this section are based on a full six-degree-of-

freedom, twelve-state model. Note that the value for m is much lower than the theoretical
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Table 5.1: Parameter values used in simulation.

Parameter Value Parameter Value

vmin 8.0 (m/s) vmax 13.0 (m/s)
ωmax 0.671 (rad/s) εv 1.5 (m/s)
εω 0.2 (rad/s) vr ∈ [9.5, 11.5] (m/s)
ωr ∈ [−0.471, 0.471] (rad/s) αψ 0.55
αv 0.192 m 1
k1 2 γ0, γ1, γ2 0.5
η0 10 η1 10

lower bound defined in Theorem 5.2.2. However, as we will see in the following, the satu-

ration controller works well using this value, which implies the robustness of the controller

to parameter variations.

Fig. 5.3 shows the reference trajectory generated by the dynamic trajectory

smoother described in [112] and the actual trajectories generated by the saturation con-

troller proposed in Lemma 5.2.3 and controller based on state-dependent Riccati equation

(SDRE) approach [116], respectively. We note that the SDRE controller has been saturated

to satisfy the input constraints. The diamonds denote threat locations to be avoided. Each

trajectory at t = 0 is denoted by a circle while each trajectory at t = 30 is denoted by

a square. Also each trajectory at t = {6, 12, 18, 24} is denoted by a plus symbol. The

trajectory tracking errors are plotted in Fig. 5.4. Note that the performance of the SDRE

controller is much worse than that of the saturation controller since the SDRE design does

not account for input constraints explicitly. In fact, the SDRE controller is not guaranteed to

stay in the feasible control set. Without input constraints, the SDRE controller can achieve

much better performance at the expense of huge velocity and heading rate commands.

Fig. 5.5 shows the reference control inputs vr and ωr and commanded control inputs vc

and ωc. Obviously, ωr is only piecewise continuous instead of being uniformly continuous.

The reference control inputs generated by the trajectory generator satisfy their constraints

respectively. We can also see that vc and ωc satisfy their input constraints respectively.

Fig. 5.6 shows the reference trajectory and the actual trajectory of the 6-DOF

model using the saturation controller under model uncertainties and disturbances. As in
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Figure 5.3: The reference and actual trajectories of the 6-DOF model.
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Figure 5.4: The trajectory tracking errors of the 6-DOF model.
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Figure 5.5: The reference and commanded control inputs of the 6-DOF model.

Fig. 5.3, a circle denotes the starting point of a trajectory and a square denotes the ending

point. A diamond symbol denotes the trajectory at t = {10, 20, 30, 40}. Fig. 5.7 shows the

corresponding tracking errors. Here each sensor measurement is corrupted with zero mean

white noise. We can see that the saturation controller is robust to model uncertainties and

disturbances.

5.3 Experimental Study of Saturated Tracking Control for Mobile Robots

With mobile robots programmed to emulate UAVs flying at a constant altitude

in hardware, the main purpose of this section is to demonstrate experimental results of the

tracking controllers accounting for velocity and heading rate constraints similar to those of

UAVs. The experimental study here is related to the simulation studies in Section 5.2. In

this section, we conduct experimental tests where a nonholonomic mobile robot is assigned

to follow a desired trajectory so as to transition through several targets in the presence of

static and dynamic threats. We present experimental results of two velocity controllers,

where one is a saturation controller and the other is a discontinuous controller. These
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Figure 5.8: Hardware/software structure for the mobile robot testbed.

hardware results are also compared to simulation results of two dynamic controllers that

are based on nonsmooth backstepping.

5.3.1 Experimental Setup

The experimental tests were conducted in the Multi-AGent Intelligent Coordi-

nation and Control (MAGICC) Laboratory at Brigham Young University.

Mobile Robot Testbed

The MAGICC Lab mobile robot testbed consists of a 5 m by 5 m field. Fig. 5.8

shows the schematic hardware/software structure for the testbed.

In our experiments, all high-level controls including the trajectory tracker are

performed on a host computer. In the MAGICC Lab, host computers communicate with

mobile robots over a wireless LAN. An overhead camera is mounted on the ceiling directly

above the testbed to measure the position and heading of each robot. Using vision data,

Simulink and the MMRT toolbox [117] are used to implement control algorithms. Control

commands are then sent to a PC/104 computer onboard a mobile robot over the wireless

LAN. The MAGICC board1 is an integrated circuit board with a microprocessor, motor

drivers, encoder channels, and analog input channels [103]. The MAGICC board produces

1a circuit board designed by students from Multiple AGent Intelligent Coordination and Control (MAG-
ICC) Laboratory at Brigham Young University
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Figure 5.9: Canister robots.

PWM output to the motors and calculates the robot linear and angular velocities, which

can then sent to the host computer to estimate robot state information. Fig. 5.9 shows the

canister robots used in our experiments.

Software Architecture

Fig. 5.10 shows the software architecture implemented in our experiments. The

architecture consists of five components: target manager, waypoint path planner, waypoint

manager, real-time trajectory generator, trajectory tracker, and low-level robot control.

The top three components in Fig. 5.10 have been addressed in [27, 118, 112].

Next, we describe low-level robot control. Trajectory tracker will be discussed in the next

section.

Low-level control algorithms are implemented in the MAGICC board with the

objective of maintaining commanded robot linear and angular velocities during the experi-

ments. Fig. 5.11 shows a PID control loop for the commanded linear and angular velocities.

Note that the trajectory tracker outputs the commanded linear and angular velocities vc and

ωc. They are then converted to the commanded left and right wheel voltages denoted by V c
l
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Figure 5.11: PID control loop for vc and ωc.

and V c
r respectively via the conversion factor K1. The actual left and right wheel voltages

denoted V a
l and V a

r respectively are then converted back to the actual linear and angular

velocities va and ωa respectively via the conversion factor K2.

5.3.2 Tracker Design

The tracker design for nonholonomic mobile robots follows a similar procedure

as that in Section 5.2. For clarity of notations, we restate the tracking problem in the context

of mobile robot tracking control.

The kinematic equations of a nonholonomic mobile robot are given by

ẋ = v cos(θ)

ẏ = v sin(θ) (5.43)

θ̇ = ω
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where (x, y) is the Cartesian position of the robot center, θ is the orientation, v is the linear

velocity, and ω is the angular velocity. The simplified dynamic equations of motion are

given by

mv̇ = F

Jω̇ = τ, (5.44)

where m is the mass, J is the mass moment of inertia, F is the force, and τ is the torque

applied to the robot.

In order to simulate fixed-wing unmanned air vehicles flying at a constant alti-

tude, the following input constraints are imposed on the robot:

0 < vmin ≤ v ≤ vmax

−ωmax ≤ ω ≤ ωmax, (5.45)

where ωmax > 0.

In this section, the desired reference trajectory (xr, yr, θr, vr, ωr) generated by

the trajectory generator satisfies

ẋr = vr cos(θr)

ẏr = vr sin(θr) (5.46)

θ̇r = ωr

where vr and ωr are piecewise continuous and satisfy inf t≥0 vr(t) > vmin, supt≥0 vr(t) <

vmax, and supt≥0 |ωr(t)| < ωmax.

Without loss of generality, the constraints for vr and ωr can be written as

vmin + εv1 ≤vr ≤ vmax − εv2
−ωmax + εω1 ≤ωr ≤ ωmax − εω2, (5.47)

where εv1, εv2, εω1, and εω2 are positive control parameters.

With regard to the kinematic model (5.43), the control objective is to find feasi-

ble inputs v and ω such that |xr − x|+ |yr − y|+ |θr − θ| → 0 as t→∞.
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Transforming the tracking errors expressed in the inertial frame to the robot

frame, the error coordinates [113] become



xe

ye

θe


 =




cos(θ) sin(θ) 0

− sin(θ) cos(θ) 0

0 0 1







xr − x
yr − y
θr − θ


 . (5.48)

Accordingly, the tracking error model can be represented as

ẋe = ωye − v + vr cos(θe)

ẏe = −ωxe + vr sin(θe) (5.49)

θ̇e = ωr − ω.

Following [84], Eq. (5.49) can be simplified as

ẋ0 = u0 (5.50a)

ẋ1 = (ωr − u0)x2 + vr sin(x0) (5.50b)

ẋ2 = −(ωr − u0)x1 + u1, (5.50c)

where

(x0, x1, x2)
4
= (θe, ye,−xe) (5.51)

and u0
4
= ωr − ω and u1

4
= v − vr cos(x0).

The input constraints under the transformation become

ω ≤u0 ≤ ω̄

v ≤u1 ≤ v̄, (5.52)

where ω
4
= ωr − ωmax, ω̄

4
= ωr + ωmax, v

4
= vmin − vr cos(x0), and v̄

4
= vmax − vr cos(x0)

are time-varying due to state dependence and time-varying properties of vr and ωr.

Note from Eq. (5.50) that x1 is not directly controllable when both x0 and x2 go

to zero. To avoid this situation we introduce another change of variables.

Let

x̄0 = λx0 +
x1√

x21 + x22 + 1
, (5.53)

112



where λ > 0. Accordingly, x0 = 1
λ
(x̄0 − x1√

x2
1+x

2
2+1

). Obviously, (x̄0, x1, x2) = (0, 0, 0) is

equivalent to (x0, x1, x2) = (0, 0, 0), which is in turn equivalent to (xe, ye, θe) = (0, 0, 0)

and (xr, yr, θr) = (x, y, θ) since Eqs. (5.48) and (5.51) are invertible transformations.

Therefore, the original tracking control objective is converted to a stabilization objective,

that is, it is sufficient to find feasible control inputs u0 and u1 to stabilize x̄0, x1, and x2.

With the same input constraints (5.52), Eq. (5.50a) can be rewritten as

˙̄x0 =
1 + x22√

x21 + x22 + 1
3 vr sin(x0) +

x2√
x21 + x22 + 1

ωr

+ (λ− x2√
x21 + x22 + 1

)u0 −
x1x2√

x21 + x22 + 1
3u1. (5.54)

In the sequel, we first design velocity controllers based on the kinematic model (5.43),

where a saturation controller and a discontinuous controller will be given. Then we apply

the nonsmooth backstepping approach proposed in [119] to design force and torque con-

trollers based on the dynamic model (5.44) for comparison purposes in Section 5.3.3.

Let χ = [x̄0, x1, x2]
T . In Section 5.2 we have shown that for k > 1

2
and λ > κ

in Eq. (5.53), where κ is a positive constant expressed precisely in Section 5.2,

V0(χ) =
√
x̄20 + 1 + k

√
x21 + x22 + 1− (1 + k) (5.55)

is a constrained CLF for system (5.50) with input constraints (5.52) such that inf V̇0(χ) ≤
−W (χ), where W (χ) is a continuous positive-definite function.

Define a signum like function as

sgn(a, b, c) =





b, a < 0

0, a = 0

c, a > 0

.

By mimicking the proof in Section 5.2 that V0 is a constrained CLF for sys-

tem (5.50), it is straightforward to verify that V0 is a constrained Lyapunov function for

system (5.50) with control inputs u0 = sgn(x̄0, ω̄, ω) and u1 = sgn(x2, v̄, v). Noting

that v = u1 + vr cos(x0) and ω = ωr − u0, a discontinuous controller for the kinematic
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model (5.43) is given by

vc =





vmin, x2 > 0

vr, x2 = 0

vmax, x2 < 0

, (5.56)

ωc =





ωmax, x̄0 > 0

ωr, x̄0 = 0

−ωmax, x̄0 < 0

. (5.57)

Define the saturation function as

sat(a, b, c) =





b, a < b

a, b ≤ a ≤ c

c, a > c

,

where it is assumed that b < c.

Similarly, V0 is also a constrained Lyapunov function for system (5.50) with

control inputs u0 = sat(−ηωx̄0, ω, ω̄) and u1 = sat(−ηvx2, v, v̄), where ηω and ηv are re-

quired to be greater than some positive constants which are expressed precisely in Lemma 5.2.3.

Therefore, a saturation controller for the kinematic model (5.43) is given by

vc =





vmin, −ηvx2 < v

vr cos(x0)− ηvx2, v ≤ −ηvx2 ≤ v̄

vmax, −ηvx2 > v̄

, (5.58)

ωc =





ωmax, −ηωx̄0 < ω

ωr + ηωx̄0, ω ≤ −ηωx̄0 ≤ ω̄

−ωmax, −ηωx̄0 > ω̄

. (5.59)

Given kinematic control laws, a standard way to extend the kinematic control

laws to dynamic strategies is to apply backstepping techniques. It is obvious that both vc

and ωc are not differentiable for the discontinuous controller and the saturation controller.
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Note that the continuity of the saturation controller depends on the continuity of vr and

ωr. In this section, vr and ωr are only assumed to be piecewise continuous. As a result,

traditional backstepping techniques are not applicable to find dynamic control laws for

the dynamic model (5.44). Therefore we resort to the nonsmooth backstepping approach

proposed in [119] to tackle this problem.

Note that Eqs. (5.54), (5.50b), (5.50c), and (5.44) can be rewritten as

χ̇ = f(t, χ) + g(χ)ξ

ξ̇ = ν, (5.60)

where ξ = [v, ω]T , ν = [F/m, τ/J ]T ,

f(t, χ) =



λωr +
1+x2

2√
x2
1+x

2
2+1

3vr sin(x0) +
x1x2√

x2
1+x

2
2+1

3 vr cos(x0)

vr sin(x0)

−vr cos(x0)




and

g(χ) =




− x1x2√
x2
1+x

2
2+1

3 −(λ− x2√
x2
1+x

2
2+1

)

0 x2

1 −x1



.

Let [vc, ωc]T = φ(t, χ) represent the saturation or discontinuous control law

described above for the kinematic model (5.43). Let ˙̃φ(t, χ) denote the generalized time

derivative of φ and let µ represent the minimum norm element of ˙̃φ(t, χ) (see [120, 119]).

Define

ν = µ−K(ξ − φ(t, χ))−
(
∂V0
∂χ

g(χ)

)T
, (5.61)

where K is a 2× 2 symmetric positive definite matrix and

(
∂V0
∂χ

g(χ)

)T
=



− x̄0√

x̄2
0+1

x1x2√
x2
1+x

2
2+1

3 + k x2√
x2
1+x

2
2+1

−(λ− x2√
x2
1+x

2
2+1

) x̄0√
x̄2
0+1


 .

Let the dynamic control law be given by

 F

τ


 =


 m 0

0 J


 ν. (5.62)
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Table 5.2: Specifications of the robot and velocity controller parameters.

Parameter Value

m 10.1 (kg)
J 0.13 (kg m2)
vmin 0.075 (m/s)
vmax 0.24 (m/s)
ωmax 2 (rad/s)
vr ∈ [0.15, 0.19] (m/s)
ωr ∈ [−1.25, 1.25] (rad/s)
λ 1
ηv 3
ηω 10

Consider a Lyapunov function candidate V = V0(χ) +
1
2
(ξ − φ(t, χ))T (ξ −

φ(t, χ)). Note that V̇0 ≤ −W (χ) if ξ = φ(t, χ) from the argument that V0 is a Lyapunov

function for the kinematic model (5.43). Following Theorem 5 in [119], it can be verified

that the control law (5.62) guarantees that ‖χ‖ + ‖ξ − φ(t, χ)‖ → 0 asymptotically as

t → ∞. Note that unlike the case of Theorem 5 in [119], ξ does not approach zero since

here we consider a tracking problem where φ(t, 0) = [vr, ωr]
T while Theorem 5 in [119]

considers a stabilization problem where φ(0) = 0. Therefore, it is straightforward to see

that |x̄0|+ |x1|+ |x2|+ |v − vr|+ |ω − ωr| → 0 asymptotically as t→∞.

5.3.3 Experimental Results

In this section, we present hardware results of the tracker using both the satura-

tion velocity controller and the discontinuous velocity controller derived in Section 5.3.2.

These hardware results are also compared to simulation results using the dynamic con-

troller (5.62).

Table 5.2 shows the specifications of the robot and parameters used to obtain

the experimental results.

Figs. 5.12, 5.13, and 5.14 show the hardware results of the tracker using the

two velocity controllers under relatively large control authority |ωc| ≤ 2 (rad/s), that is,

116



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x (m)

y 
(m

)

desired
actual (saturation)
actual (discontinuous)
threats
popup threats
targets

Figure 5.12: Desired and actual robot trajectories using velocity controllers when there are
two targets and εω1 = εω2 = 0.75 (rad/s).

εω1 = εω2 = 0.75 (rad/s). In Fig. 5.12, we show the trajectories of the robot transitioning

through two targets in the presence of static threats and popup threats, where stars indicate

the starting points of the trajectories. Fig. 5.13 compares the tracking errors of the two

velocity controllers. Due to vision noise, there exist a steady-state tracking error of about

0.05 meters and glitches in the heading tracking errors for both controllers. Note that the

controllers are robust to glitches in the robot orientation measurement. Fig. 5.14 compares

the reference and commanded velocities for both controllers. We can see that the velocities

of the discontinuous controller switch frequently in time. Although similar performance is

achieved using both controllers, we notice that the motion of the robot using the saturation

controller is smooth while the motion of the robot using the discontinuous controller has

significant jerks in the velocity results.
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Figure 5.13: Tracking errors using velocity controllers when there are two targets and
εω1 = εω2 = 0.75 (rad/s).
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Figure 5.14: Reference and commanded velocities using velocity controllers when there
are two targets and εω1 = εω2 = 0.75 (rad/s).
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Figure 5.15: Desired and actual robot trajectories using nonsmoooth backstepping when
there are two targets and εω1 = εω2 = 0.75 (rad/s).

As a comparison to the above hardware results using velocity controllers, we

also show simulation results using the dynamic controller based on nonsmooth backstep-

ping in Figs. 5.15, 5.16, 5.17, and 5.18. The robot used in our testbed has physical con-

straints for force and torque of |F | ≤ 30 N and |τ | ≤ 230 Nm. We choose k = 2 in

Eq. (5.61). Note that nonsmooth backstepping is applied to both the saturation velocity

controller and the discontinuous velocity controller. The dynamic controllers based on

nonsmooth backstepping for both velocity controllers have similar tracking performances

as shown in Figs. 5.15 and 5.16. However, compared to the case using nonsmooth back-

stepping for the saturation velocity controller, switching phenomena for actual linear and

angular velocities and control forces and torques are more severe than in the case of using

nonsmooth backstepping for the discontinuous controller as shown in Fig. 5.17 and 5.18.

As a final test, we reduce the control authority to |ωc| ≤ 1.45 (rad/s), that is,

εω1 = εω2 = 0.2 (rad/s), and introduce one more target in the test field. Figs. 5.19, 5.20,

and 5.21 show the hardware results of the tracker using the saturation velocity controller
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Figure 5.16: Tracking errors using nonsmooth backstepping when there are two targets and
εω1 = εω2 = 0.75 (rad/s).
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Figure 5.17: Reference and actual velocities using nonsmooth backstepping when there are
two targets and εω1 = εω2 = 0.75 (rad/s).
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Figure 5.18: Control forces and torques using nonsmooth backstepping controller when
there are two targets and εω1 = εω2 = 0.75 (rad/s).

in this situation. As shown in Fig. 5.21, ωc is constrained within [−1.45, 1.45] (rad/s)

compared to Fig. 5.14 where ωc is constrained within [−2, 2] (rad/s). Note that similar

performances are still achieved with much smaller control authority for ωc and the robot

transitions through three target consecutively as desired.
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Figure 5.19: Desired and actual robot trajectories using the saturation controller when there
are three targets and εω1 = εω2 = 0.2 (rad/s).
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Chapter 6

Conclusion and Future Work

6.1 Summary of Main Results

The motivation for the research of cooperative control results from the hope that

many coordinated small, inexpensive vehicles can achieve the same or better performance

than one monolithic vehicle. The main purpose of this dissertation is to address three im-

portant and correlated issues in cooperative control: consensus seeking, formation keeping,

and trajectory tracking.

The study of information flow and interaction among multiple agents in a group

plays an important role in understanding the coordinated movements of these agents. In

Chapter 3, we investigate algorithms and protocols so that a team of vehicles can reach

consensus on the values of the coordination data in the presence of (i) imperfect sensors,

(ii) communication dropout, (iii) sparse communication topologies, and (iv) noisy and un-

reliable communication links. We show necessary and/or sufficient conditions for consen-

sus seeking with limited, unidirectional, and unreliable information exchange under fixed

and switching interaction topologies (through either communication or sensing).

Multi-agent formation keeping is a field of active research in the literature. In

Chapter 4, we apply a so-called “virtual structure” approach to spacecraft formation fly-

ing and multi-vehicle formation maneuvers. As a result, single vehicle path planning and

trajectory generation techniques can be employed for the virtual structure while trajectory

tracking strategies can be employed for each vehicle. For multiple spacecraft formation

flying, we propose a decentralized architecture with formation feedback introduced. This

architecture ensures the necessary precision in the presence of actuator saturation, internal
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and external disturbances, and stringent inter-vehicle communication limitations. We also

apply a constructive approach based on the satisficing control paradigm to multiple robot

coordination.

The study of constrained nonlinear tracking control for vehicles using the sat-

isficing paradigm facilitates the cooperative timing and formation keeping missions. In

Chapter 5, we extend the satisficing control paradigm to the case of time-varying nonlin-

ear systems with input constraints and explore applications of the approach to trajectory

tracking for nonholonomic mobile robots and unmanned air vehicles subject to polytopic

velocity and heading rate constraints. Our proposed tracking controllers are shown to be

robust to input uncertainties and measurement noise, and are computationally simple and

can be implemented with low-cost, low-power microcontrollers. In addition, our approach

allows piecewise continuous reference velocity and heading rate and can be extended to

derive a variety of other trajectory tracking strategies.

6.2 Future Work

For consensus seeking, we assumed single integrator dynamics in our previous

study. It is possible to extend the results to double integrator dynamics. Our results also

suggest that the same framework could be applied to decentralized spacecraft formation

flying scenario, where the communication topologies between spacecraft could be switch-

ing with time. In addition, the coordination data might be driven by nonlinear dynamics,

which is also an interesting topic to study in the future. Furthermore, the issue of time

delay in multi-agent consensus seeking should also be taken into account in the future.

For multi-agent formation keeping, the current work in this dissertation focuses

on fixed formations. An interesting topic of research might be reconfigurable formations.

Another direction could be the study of optimization issues for multi-agent formation keep-

ing.

For constrained tracking control, future work may be involved in exploring a

parameterization of control laws with input constraints if a constrained control Lyapunov

function is known. In addition, there is no feedback introduced from the trajectory tracker

to the trajectory generator in our current software architecture. In the future, the trajectory
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generator should be evolving based on the tracking performance of the trajectory tracker.

Future work may also be involved in considering the effect of wind on trajectory tracking

and testing the trajectory tracker in hardware. In addition, because the parameter αφ is un-

known in general, adaptive control technique could be used to extend the current trajectory

tracker in order to estimate this parameter.

6.3 Conclusion

Three important issues of cooperative control including consensus seeking, for-

mation keeping, and trajectory tracking have been addressed. For consensus seeking, we

analyze protocols under both fixed and switching interaction topologies. For formation

keeping, we propose a decentralized scheme for multiple spacecraft formation flying in

deep space and a satisficing approach to multiple vehicle coordination. For trajectory track-

ing, we investigate nonlinear tracking controllers for both fixed wing unmanned air vehicles

and nonholonomic mobile robots with polytopic input constraints.
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