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Abstract

Deep networks are typically trained with many more param-
eters than the size of the training dataset. Recent empiri-
cal evidence indicates that the practice of overparameteriza-
tion not only benefits training large models, but also assists
— perhaps counterintuitively — building lightweight models.
Specifically, it suggests that overparameterization benefits
model pruning / sparsification. This paper sheds light on these
empirical findings by theoretically characterizing the high-
dimensional asymptotics of model pruning in the overparam-
eterized regime. The theory presented addresses the follow-
ing core question: “should one train a small model from the
beginning, or first train a large model and then prune?”. We
analytically identify regimes in which, even if the location of
the most informative features is known, we are better off fit-
ting a large model and then pruning rather than simply train-
ing with the known informative features. This leads to a new
double descent in the training of sparse models: growing the
original model, while preserving the target sparsity, improves
the test accuracy as one moves beyond the overparameteriza-
tion threshold. Our analysis further reveals the benefit of re-
training by relating it to feature correlations. We find that the
above phenomena are already present in linear and random-
features models. Our technical approach advances the toolset
of high-dimensional analysis and precisely characterizes the
asymptotic distribution of over-parameterized least-squares.
The intuition gained by analytically studying simpler models
is numerically verified on neural networks.

1 Introduction

Large model size and overparameterization in deep learn-
ing are known to improve generalization performance
(Neyshabur et al. 2017), and, state-of-the-art deep neural
networks (DNNs) can be outrageously large. However, such
large models are not suitable for certain important applica-
tion domains, such as mobile computing (Tan et al. 2019;
Sandler et al. 2018). Pruning algorithms aim to address the
challenge of building lightweight DNNs for such domains.
While there are several pruning methods, their common goal
is to compress large DNN models by removing weak con-
nections/weights with minimal decline in accuracy. Here, a
key empirical phenomenon is that it is often better to train
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and prune a large model rather than training a small model
from scratch. Unfortunately, the mechanisms behind this
phenomenon are poorly understood especially for practical
gradient-based algorithms. This paper sheds light on this by
answering: What are the optimization and generalization dy-
namics of pruning overparameterized models? Does gradi-
ent descent naturally select the good weights?

Contributions: We analytically study the performance of
popular pruning strategies. First, we analyze linear models,
and then, generalize the results to nonlinear feature maps.
Through extensive simulations, we show that our analytical
findings predict similar behaviors in more complex settings.
(a) Distributional characterization (DC): The key innova-
tion facilitating our results is a theoretical characterization of
the distribution of the solution of overparameterized least-
squares. This DC enables us to accurately answer “what
happens to the accuracy if X% of the weights are pruned?”.
(b) Benefits of overparameterization: Using DC, we ob-
tain rigorous precise characterizations of the pruning perfor-
mance in linear problems. Furthermore, we use, so called
“linear gaussian equivalences", to obtain sharp analytic pre-
dictions for nonlinear maps, which we verify via extensive
numerical simulations. By training models of growing size
and compressing them to fixed sparsity, we identify a novel
double descent behavior, where the risk of the pruned model
is consistently minimized in the overparameterized regime.
Using our theory, we uncover rather surprising scenarios
where pruning an overparameterized model is provably bet-
ter than training a small model with the exact information of
optimal nonzero locations.
(c) Benefits of retraining: An important aspect of pruning
is retraining with using only the favorable weights identified
during the initial training. We show that retraining can ac-
tually hurt the performance when features are uncorrelated.
Howeyver, it becomes critical as correlations increase. Im-
portantly, we devise the DC of the train—prune—retrain
process (see Figs. 2 and 4 and the discussion around Def. 5
for details), and, we demonstrate that it correctly captures
the pruning performance of random features that are known
to be good proxies for understanding DNN behavior (Jacot,
Gabriel, and Hongler 2018).

We anticipate that our techniques towards establishing the
DC of the overparameterized problems might be useful, be-
yond the context of pruning, in other statistical inference
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Figure 1: We train sparse ResNet-20 models on
the CIFAR-10 dataset with varying width (i.e.
number of filters) and sparsity targets. The width
parameter controls the overall model size. The
solid (resp. dashed) lines are test (resp. training)
errors. The blue line corresponds to training of a
dense model with width-k. The other three curves
correspond to sparsity targets s € {5, 8,10}, for
which a dense model of width-k is first pruned
to achieve the exact same number of nonzeros
as a dense model of width-s and then retrained
over the identified nonzero pattern. Surprisingly,
all curves interpolate (achieve zero training error)
around the same width parameter despite varying
sparsity. The best test error is always achieved in
the overparameterized regime (large width). Test
error curves have two local minima which uncov-
ers a novel double descent phenomena for prun-
ing. The shaded region highlights the transition to
zero training error, where the test error peaks.

tasks that require careful distributional studies.

1.1 Prior Art

This work relates to the literature on model compression and

overparameterization in deep learning.
Neural network pruning: Large model sizes in deep

learning have led to a substantial interest in model prun-
ing/quantization (Han, Mao, and Dally 2015; Hassibi and
Stork 1993; LeCun, Denker, and Solla 1990). DNN pruning
has a diverse literature with various architectural, algorith-
mic, and hardware considerations (Sze et al. 2017; Han et al.
2015). The pruning algorithms can be applied before, dur-
ing, or after training a dense model (Lee, Ajanthan, and Torr
2018; Wang, Zhang, and Grosse 2020; Jin et al. 2016; Oy-
mak 2018) and in this work we focus on after training. Re-
lated to over-parameterizarion, (Frankle and Carbin 2019)
shows that a large DNN contains a small subset of favor-
able weights (for pruning), which can achieve similar per-
formance to the original network when trained with the same
initialization. (Zhou et al. 2019; Malach et al. 2020; Pensia
et al. 2020) demonstrate that there are subsets with good test
performance even without any training and provide theoret-
ical guarantees. However, these works do not answer why
practical gradient-based algorithms lead to good pruning
outcomes. Closer to us, (Li et al. 2020) derives formulas for
predicting the pruning performance of over-parameterized
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Figure 2: Random feature regression (RFR) with
ReLU feature-map ¢(a) = ReLU(Ra). Here R
has i.i.d. standard normal entries corresponding to
the input layer of a shallow neural net and we
regress the output layer. Solid lines follow from
our distributional characterization and the mark-
ers are obtained by solving random feature re-
gression, which exhibit a good match. The blue
line is the performance of usual RFR with grow-
ing number of features p. The other lines are ob-
tained by solving RFR with p features and pruning
and retraining the solution to fixed sparsity lev-
els (s, 2s,4s) with s/n = 0.1. Importantly, the
risks of the retrained models exhibit double de-
scent and are minimized when p > n despite
fixed model size / sparsity. The slight mismatch
of the red curve/markers is explained in Fig. 4.

least-squares without proofs. In contrast, we provide prov-
able guarantees, and, also obtain DC for more complex prob-
lems with general design matrices and nonlinearities.

Benefits of overparameterization: Studies on the opti-
mization and generalization properties of DNNs demon-
strate that overparameterization acts as a catalyst for learn-
ing. (Arora, Cohen, and Hazan 2018; Neyshabur, Tomioka,
and Srebro 2014; Gunasekar et al. 2017; Ji and Telgarsky
2018) argue that gradient-based algorithms are implicitly bi-
ased towards certain favorable solutions (even without ex-
plicit regularization) to explain benign overfitting (Bartlett
et al. 2020; Oymak and Soltanolkotabi 2020; Du et al. 2018;
Chizat, Oyallon, and Bach 2019; Belkin, Ma, and Man-
dal 2018; Belkin, Rakhlin, and Tsybakov 2019; Tsigler and
Bartlett 2020; Liang and Rakhlin 2018; Mei and Montanari
2019; Ju, Lin, and Liu 2020). More recently, these stud-
ies have led to interesting connections between kernels and
DNNs and a flurry of theoretical developments. Closest to
us, (Nakkiran et al. 2019; Belkin, Hsu, and Xu 2019; Belkin
et al. 2019) uncover a double-descent phenomenon: the test
risk has two minima as a function of model size. One minima
occurs in the classical underparameterized regime whereas
the other minima occurs when the model is overparame-
terized and the latter risk can in fact be better than for-
mer. Closer to our theory, (Derezinski, Liang, and Mahoney
2019; Hastie et al. 2019; Montanari et al. 2019; Deng, Kam-
moun, and Thrampoulidis 2019; Kini and Thrampoulidis
2020; Liang and Sur 2020; Salehi, Abbasi, and Hassibi
2020; Ju, Lin, and Liu 2020) characterize the asymptotic



performance of overparameterized learning problems. How-
ever these works are limited to characterizing the test error
of regular (dense) training. In contrast, we use distributional
characterization (DC) to capture the performance of more
challenging pruning strategies and we uncover novel double
descent phenomena (see Fig. 1).

2 Problem Setup

Let us fix the notation. Let [p] = {1,2,...,p}. Given 3 €
RP, let T4(3) be the pruning operator that sets the smallest
p — s entries in absolute value of 3 to zero. Let Z(3) C
[p] return the index of the nonzero entries of 3. I,, denotes
the n x n identity matrix and N (s, X) denotes the normal
distribution with mean g and covariance X. Xt denotes the
pseudoinverse of matrix X.

Data: Let (a;,y;)"™,; C R? x R with i.i.d. input-label pairs.
Let ¢(-) : R? — RP be a (nonlinear) feature map. We gener-
ate ©; = ¢(a;) and work with the dataset S = (x;, ;)"
coming i.i.d. from some distribution D. As an example, of
special interest to the rest of the paper, consider random fea-
ture regression, where ; = ¢(Ra;) for a nonlinear acti-
vation function v that acts entry-wise and a random ma-
trix R € RP*4 with i.i.d. N'(0,1) entries; see Fig. 2. In
matrix notation, we let y = [y ... yn]T € R™ and
X = [z1 ... ©,)7 € R™P denote the vector of labels
and the feature matrix, respectively. Throughout, we focus
on regression tasks, in which the training and test risks of a
model 3 is defined as

Population risk: £(8) = Ep[(y — 7 8)?]. 1))
Empirical risk:  £(8) = % Z ly— X837, (@
i=1

During training, we will solve the empirical risk minimiza-
tion (ERM) problem over a set of selected features A C [p],
from which we obtain the least-squares solution

B(A) = arg 5 g(lg)lz LEB). ()

For example, regular ERM corresponds to A = [p], and we
simply use 3 = B([p]) to denote its solution above. Let
3 = E[zx”] be the covariance matrix and b = E[yz] be
the cross-covariance. The parameter minimizing the test er-
ror is given by 3* = X'b. We are interested in training
a model over the training set S that not only achieves small
test error, but also, it is sparse. We do this as follows. First,
we run stochastic gradient descent (SGD) to minimize the
empirical risk (starting from zero initialization). It is com-
mon knowledge that SGD on least-squares converges to the
minimum /s norm solution given by B = X'ty. Next, we
describe our pruning strategies to compress the model.

Pruning strategies: Given dataset S and target sparsity
level s, a pruning function P takes a model 3 as input and
outputs an s-sparse model 3. Two popular pruning func-
tions are magnitude-based (MP) and Hessian-based (HP)
(a.k.a. optimal brain damage) pruning (LeCun, Denker, and
Solla 1990). The latter uses a diagonal approximation of the
covariance via 3 = diag(X 7 X)/n to capture saliency (see
(4)). Formally, we have the following definitions:

e Magnitude-based pruning: 3™ = T,(8).

e Hessian-based pruning: B2 = ﬁ]_l/sz(ﬁll/Qﬁ).

e Oracle pruning: Let A* C [p] be the optimal s indices
so that 3(A*) achieves the minimum population risk (in
expectation over ) among all B(A) and any subset A in
(3). When X is diagonal and s < n, using rather classical
results, it can be shown that (see Lemma 7 in the Supple-

mentary Material (SM)) these oracle indices are the ones
with the top-s saliency score given by

Saliency score = %, ;8;. “4)

Oracle pruning employs these latent saliency scores and
returns 39 by pruning the weights of 3 outside of A*.

We remark that our distributional characterization might al-
low us to study more complex pruning strategies, such as op-
timal brain surgeon (Hassibi, Stork, and Wolff 1994). How-
ever, we restrict our attention to the three aforementioned
core strategies to keep the discussion focused.

Pruning algorithm: To shed light on contemporary prun-
ing practices, we will study the following three-stage
train—prune—retrain algorithms.

1. Find the empirical risk minimizer ,é = XTy.
2. Prune 3 with strategy P to obtain 37
3. Retraining: Obtain 387 = 3(Z(3F)).
The last step obtains a new s-sparse model by solving ERM
in (3) with the features A = Z(3F) identified by pruning.
Figures 1 and 2 illustrate the performance of this procedure
for ResNet-20 on the CIFAR-10 dataset and for a random
feature regression on a synthetic problem, respectively . Our
analytic formulas for RF, as seen in Fig. 1, very closely
match the empirical observations (see Sec. 3 for further ex-
planations). Interestingly, the arguably simpler RF model
already captures key behaviors (double-descent, better per-
formance in the overparameterized regime, performance of
sparse model comparable to large model) in ResNet.
Sections 3 and 4 present numerical experiments on prun-
ing that verify our analytical predictions, as well as, our
insights on the fundamental principles behind the roles of
overparameterization and retraining. Sec 5 establishes our
theory on the DC of ,@ and provable guarantees on pruning.
All proofs are deferred to the Supplementary Material (SM).

3 Motivating Examples
3.1 Linear Gaussian Problems

We begin our study with linear Gaussian problems (LGP),
which we formally define as follows.

Definition 1 (Linear Gaussian Problem (LGP)) Given
latent vector B* € RY, covariance T and noise level o, as-
sume that each example in S is generated independently as
yi = @] B* + 0z; where z; ~ N(0,1) and z; ~ N (0, %).
Additionally, the map &(-) is identity and p = d.

Albeit simple, LGPs are of fundamental importance for the
following reasons: (1) We show in Sec. 5 that our theoretical
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Figure 3: Our theoretical predictions for various
pruning strategies in linear models with s/p = 0.1
and n/p = 0.3. We solve ERM using the first
k features and then prune to obtain an s-sparse
model. The vertical dashed line shows the & = s
point. The horizontal dashed line highlights the
minimum risk among all underparameterized so-
lutions (k < m) and all solutions obtained by a fi-
nal retraining. Retraining curves are omitted here,
but they can be found in Fig. 7 of SM.

framework rigorously characterizes pruning strategies for
LGPs; (2) Through a “linear Gaussian equivalence", we will
use our results for linear models to obtain analytic predic-
tions for nonlinear random features; (3) Our theoretical pre-
dictions and numerical experiments discussed next demon-
strate that LGPs already capture key phenomena observed in
more complex models (e.g., Fig. 1).

In Fig. 3, we consider LGPs with diagonal covariance 3.
We set the sparsity level s/p = 0.1 and the relative dataset
size n/p = 0.3. To parameterize the covariance and 3*, we
use a spiked vector A, the first s entries of which are set equal
to C' = 25 > 1 and the remaining entries equal to 1. A cor-
responds to the latent saliency score (cf. (4)) of the indices.
To understand the role of overparameterization, we vary the
number of features used in the optimization. Specifically, we
solve (3) with A = [k] and vary the number of features k
from O to p. Here we consider the train—prune algorithm,
where we first solve for 3([k]) and obtain our pruned model
BP ([k]) by applying magnitude, Hessian or Oracle pruning
(cf. P € {M, H,O}). Since A is decreasing, the indices are
sorted by saliency score; thus, Oracle pruning always picks
the first s indices. Solid lines represent analytic predictions,
while markers are empirical results. The vertical dashed line
is the sparsity level s/p.

In Fig. 3a, we set 3 = I, and B* = NN Note, that the
analytic curves correctly predict the test risk and the dou-
ble descent behavior. Observe that the Hessian and Magni-
tude pruning coincide here, since the diagonal of the em-
pirical covariance is essentially identity. In contrast, Fig. 3b
emphasizes the role of the feature covariance by setting
¥ = diag(A) and B* to be the all ones vector. In this
scenario, we observe that Hessian pruning performs bet-
ter compared to Fig. 3a and also outperforms Magnitude
pruning. This is because the empirical covariance helps dis-
tinguish the salient indices. Importantly, for Hessian and
Oracle pruning, the optimal sparse model is achieved in
the highly overparameterized regime k£ = p. Notably, the
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Figure 4: Tlustration of the mismatch between
pruning with retraining (red markers) and prun-
ing with fresh samples (cyan markers/line). The
setting here is exactly the same as in Fig. 2, but
we only show the case of sparsity 4s for which
the mismatch is observed. Observe that our ana-
lytical predictions accurately capture the risk of
retraining with fresh samples. However, we ob-
serve a discrepancy with the true risk of retrain-
ing (without fresh samples) around the interpola-
tion threshold. Also shown the risk of the original
ERM solution before pruning (in blue) and of the
magnitude-pruned model (before any retraining).

achieved performance at k& = p is strictly better than the hor-
izontal dashed line, which highlights the optimal risk among
all underparameterized solutions £ < n and all retraining
solutions (see also SM Sec. A). This has two striking conse-
quences. First, retraining can in fact hurt the performance;
because the train—prune performance at k = p is strictly
better than train—prune—sretrain for all k. Second, overpa-
rameterized pruning can be provably better than solving the
sparse model with the knowledge of the most salient features
as k = p s also strictly better than k = s.

3.2 Random Features Regression

We relate an ERM problem (3) with nonlinear map ¢ to an
equivalent LGP. This will allows us to use our theoretical
results about the latter to characterize the properties of the
original nonlinear map. We ensure the equivalence by prop-
erly setting up the LGP to exhibit similar second order statis-
tics as the original problem.

Definition 2 (Equivalent Linear Problem) Given dis-
tribution (x,y) ~ D, the equivalent LGP(3,X,0) with
n samples is given with parameters ¥ = E[zxT],
B* = X7 Elya] and o = E[(y — 27 8*)?]'/2.

In Section 5, we formalize the DC of LGPs, which enables
us to characterize pruning/retraining dynamics. Then, we
empirically verify that DC and pruning dynamics of equiv-
alent LGPs can successfully predict the original problem
(3) with non-linear features. The idea of setting up and
studying equivalent LGPs as a proxy to nonlinear models,
has been recently used in the emerging literature of high-
dimensional learning, for predicting the performance of the
original ERM task (Montanari et al. 2019; Goldt et al. 2020;
Abbasi, Salehi, and Hassibi 2019; Dereziniski, Liang, and
Mahoney 2019). This work goes beyond prior art, which fo-



cuses on ERM, by demonstrating that we can also success-
fully predict the pruning/retraining dynamics. Formalizing
the performance equivalence between LGP and equivalent
problem is an important future research avenue and it can
presumably be accomplished by building on the recent high-
dimensional universality results such as (Oymak and Tropp
2018; Hu and Lu 2020; Abbasi, Salehi, and Hassibi 2019;
Goldt et al. 2020).

In Fig. 2, we study random feature regression to approx-
imate a synthetic nonlinear distribution. Specifically, data
has the following distribution: Given input a ~ N(0, I,;),
we generate random unit norm 3' € R%, 3% € R and set
the label to be a quadratic function given by y = a” 3! +

(aT32)2. Then, we fix R " A(0,1) and we generate
ReLU features * = ReLU(Ra), where R corresponds to
the input layer of a two-layer network. The markers in Fig. 2
are obtained by solving RFR and pruning and retraining with
varying sparsity targets (s, 2s,4s with s/n = 10%). Here,
d = 10,n = 200. For each marker, the results are aver-
ages of 50 R € RP*? realizations and 10 iterations for each
choice of R. The lines are obtained via our DC of the equiv-
alent LGP (by using Defs. 4 and 5) where the latent param-
eter 3*, noise o and the covariance 3 of the RFR problem
are calculated for fixed realization of the input layer R (sim-
ilarly averaged over 50 random R). Our theory and empiri-
cal curves exhibit a good match. The results demonstrate the
importance of overparameterization for RF pruning, which
corresponds to picking random features smartly. Here, the
coefficients of least-squares act like a scoring function for
the saliency of random features and capture how well they
are aligned with the target function. The fact that the risk
of the pruned models is minimized in the overparameter-
ized regime implies that least-squares regression succeeds
in properly selecting salient random features from a larger
candidate set. In the context of deep learning, our discussion
can be interpreted as pruning hidden nodes of the network.

Predicting retraining performance. As discussed in Sec. 5
and Def. 5, for the retraining stage, our DC is accomplished
by assuming that retraining phase uses n fresh training ex-
amples (i.e. a new dataset Sgesh)- Let us denote the resulting

model by ,éf]rgh Perhaps surprisingly, Fig. 2 shows that this

DC correctly captures the performance of BRT with the ex-
ception of the red curve (4s). Fig. 4 focuses on this instance
and shows that our DC indeed perfectly predicts the fresh
retraining performance and verifies the slight empirical mis-

match between 357 and 35T, .
3.3 Neural Network Experiments

Finally, we study pruning deep neural networks. Inspired by
(Nakkiran et al. 2019), we train ResNet-20 with changeable
filters over CIFAR-10. Here, the filter number £ is equiv-
alent to the width/channel of the model. As the width of
ResNet-20 changes, the fitting performance of the dataset
varies. Here, we apply train—prune—retrain. Select s as
the sparsity target and s-filter ResNet-20 model as the base
model with N parameters. First, we train a dense model
with £ filters and N, parameters, N > N, and prune
it by only keeping the largest Ny entries in absolute value

non-zero. Ny grows approximately quadratically in k. Now,
the sparse model shares the same number of parameters
amenable to training as the does the base model. Finally,
we retain the pruned network and record its performance
on the same dataset and same configuration. In Fig. 1, we
plot the training and test error of dense and sparse models.
All the neural experiments are trained with Adam optimiza-
tion and 0.001 learning rate for 1000 epochs, with data aug-
mentation. Green, yellow and red lines correspond to 5, 8 or
10 sparsity targets, with around 28,000, 70,000 and 109,000
trainable parameters, respectively. As the width k grows, the
training and test error decrease for both 5-,8-,10-filter base
models, except for the shaded double descent range. These
experiments verify once the main message revealed to us
by studying simpler linear and random-feature models, that
is, training a larger model, followed by appropriate pruning,
can preform better than training a small model from the be-
ginning. Another worth-mentioning observation is that with
appropriate sparsity level (here, 10) the pruned model has
prediction performance comparable to the dense model. Fi-
nally and interestingly, the test error dynamics of the pruned
model exhibit a double descent that resembles that of the
dense model (previously observed in (Nakkiran et al. 2019)).

3.4 Further Intuitions on The Denoising Effect of
Overparameterization

To provide further insights into the pruning benefits of
overparameterization, consider a simple linear model (as in
Def 1) with n > p > s, noise level o = 0 and identity co-
variance. Suppose our goal is estimating the coefficients B3
for some fixed index set A C [p] with |A| = s. For prun-
ing, we can pick A to be the most salient/largest entries.

If we solve the smaller regression problem over A, B(A)
will only provide a noisy estimate of 34 . The reason is that,
the signal energy of the missing features [p] — A acts as a
noise uncorrelated with the features in A. Conversely, if we
solve ERM with all features (the larger problem), we per-
fectly recover 3* due to zero noise and invertibility (n > p).
Then one can also perfectly estimate 34 . This simple argu-
ment, which is partly inspired by the missing feature setup
in (Hastie et al. 2019), shows that solving the larger problem
with more parameters can have a “denoising-like effect" and
perform better than the small problem. Our contribution ob-
viously goes well beyond this discussion and theoretically
characterizes the exact asymptotics, handles the general co-
variance model and all (n, p, s) regimes, and also highlights
the importance of the overparameterized regime n < p.

4 Understanding the Benefits of Retraining

On the one hand, the study of LGPs in Fig. 3 and Fig. 7
of SM suggest that retraining can actually hurt the perfor-
mance. On the other hand, in practice and in the RFR ex-
periments of Fig. 4, retraining is crucial; compare the green
BM and red BET curves and see SM Section A for further
DNN experiments. Here, we argue that the benefit of retrain-
ing is connected to the correlations between input features.
Indeed, the covariance/Hessian matrices associated with RF
and DNN regression are not diagonal (as was the case in



Fig. 3). To build intuition, imagine that only a single feature
suffices to explain the label. If there are multiple other fea-
tures that can similarly explain the label, the model predic-
tion will be shared across these features. Then, pruning will
lead to a biased estimate, which can be mitigated by retrain-
ing. The following lemma formalizes this intuition under an
instructive setup, where the features are perfectly correlated.

Lemma 1 Suppose S is drawn from an LGP(0, X, 3,) as in
Def. 1 where rank(X) = 1 with & = AT for X € RP. De-
fine ¢ = T4(X)?/||All7,- For magnitude and Hessian prun-
ing (P € {M, H}) and the associated retraining, we have
the following excess risks with respect to (3*

. 2 2
ES(L(BD)] ~ £(8) = ST+ (1L PATB) o)
Error due to bias

Es[C(B:7)] — L(B") = 0®/(n —2). (©)
The lemma reveals that pruning the model leads to a biased
estimator of the label. Specifically, the bias coefficient 1 — ¢
arises from the missing predictions of the pruned features
(which correspond to the small coefficients of |A|). In con-
trast, regardless of s, retraining always results in an unbiased
estimator with the exact same risk as the dense model which
quickly decays in sample size n. The reason is that retrain-
ing enables the remaining features to account for the missing
predictions. Here, this is accomplished perfectly, due to the
fully correlated nature of the problem. In particular, this is in
contrast to the diagonal covariance (Fig. 3), where the miss-
ing features act like uncorrelated noise during retraining.

5 Main Results

Here, we present our main theoretical result: a sharp asymp-
totic characterization of the distribution of the solution to
overparameterized least-squares for correlated designs. We
further show how this leads to a sharp prediction of the risk
of magnitude-based pruning. Concretely, for the rest of this
section, we assume the linear Gaussian problem (LGP) of
Definition 1, the overparameterized regime k = p > n and
the min-norm model

B =argmin |8, sty = X3, )

As mentioned in Sec. 2, 3 is actually given in closed-form
as B = X'iy. Interestingly, our analysis of the distribu-
tion of ,é does not rely on the closed-form expression, but
rather follows by viewing B as the solution to the convex
linearly-constrained quadratic program in (7). Specifically,
our analysis uses the framework of the convex Gaussian
min-max Theorem (CGMT) (Thrampoulidis, Oymak, and
Hassibi 2015), which allows to study rather general infer-
ence optimization problems such as the one in (7), by re-
lating them with an auxiliary optimization that is simpler to
analyze (Stojnic 2013; Oymak, Thrampoulidis, and Hassibi
2013; Thrampoulidis, Oymak, and Hassibi 2015; Thram-
poulidis, Abbasi, and Hassibi 2018; Salehi, Abbasi, and
Hassibi 2019; Taheri, Pedarsani, and Thrampoulidis 2020).
Due to space considerations, we focus here on the more chal-
lenging overparameterized regime and defer the analysis of
the underparameterized regime to the SM.

5.1 Distributional Characterization of the
Overparameterized Linear Gaussian Models

Notation: We first introduce additional notation necessary to
state our theoretical results. ® denotes the entrywise prod-
uct of two vectors and 1, is the all ones vector in RP.
The empirical distribution of a vector x € RP is given by
% le 0z,, Where 0, denotes a Dirac delta mass on z;.
Similarly, the empirical joint distribution of vectors @, ' €
RP is % Zle 5(371,7%2_). The Wasserstein-k (W},) distance be-
tween two measures 4 and v is defined as Wy (p,v) =
. N 1/k . .
(inf, E(x,y)mp | X = Y[¥) / , where the infimum is over
all the couplings of x and v, i.e. all random variables (X, Y")
such that X ~ v and Y ~ v marginally. A sequence of
probability distributions 7, on R™ converges in W}, to v,

written v, Ly if Wi(vp,v) — 0 as p — oo. Fi-
nally, we say that a function f : R™ — R is pseudo-
Lipschitz of order k, denoted f € PL(k), if there is a con-
stant L > O such that for all z,y € R™, |f(x) — f(y)| <
L+l + lyllg, )|z — y]l2. We call L the PL(k)
constant of f. An equivalent definition of W}, convergence
is that, for any f € PL(k), lim,, E f(X,) = E f(X),
where expectation is with respect to X;, ~ v, and X ~ v.
For a sequence of random variables &), that converge in
probability to some constant ¢ in the limit of Assumption

. P
1 below, we write X, — c.
Next, we formalize the set of assumption under which our

analysis applies. Our asymptotic results hold in the linear
asymptotic regime specified below.

Assumption 1 We focus on a double asymptotic regime
where n,p,s — o0 at fixed overparameterization ratio
K :=p/n > 0 and sparsity level o :== s/p € (0,1).
Additionally, we require certain mild assumptions on the
behavior of the covariance matrix 3 and of the true la-
tent vector 3*. For simplicity, we assume here that 3 =
diag([ZLl, ey 2137}7})'
Assumption 2 The covariance matrix X is diagonal and
there exist constants Yin, Ymax € (0,00) such that:
Emin S Ei,i S z]maxvfor all v € [p]
Assumption 3 The joint empirical distribution  of
{(XZi6,v/DB]) Yicyp) converges in  Wasserstein-k  dis-
tance to a probability distribution p on R~y X R for some
k > 4. That is % Zie[p] 5(211“\/173:) & L.
With these, we are ready to define, what will turn out to
be, the asymptotic DC in the overparameterized regime.

Definition 3 (Asymptotic DC — Overparameterized regime)
Let random variables (A, B) ~ p (where 1 is defined in
Assumption 3) and fix k > 1. Define parameter & as the
unique positive solution to the following equation

E [+ ) =kt (8)

Further define the positive parameter ~y as follows:

= (o4 [/ (o [y )

©))



With these and H ~ N (0, 1), define the random variable
1 A~Y/2
)8+ Vi e
1+EA 1+ (EA)—T
(10)

X, o2 (A, B, H) := (1 —

and let 11,; 2 be its distribution.

Our main result establishes asymptotic convergence of the
empirical distribution of (\/ﬁﬁ, V/PB*, %) for a rich class
of test functions. These are the functions within PL(3) that
become PL(2) when restricted to the first two indices. For-
mally, we define this class of functions as follows

F:={f:R®*x Z =R, f €PL(3)and (11)
sup “PL(2) constant of {(-, -,z)” < co}.
z€EZ

For pruning analysis, we set Z = [Yiin, Zmax] and define
Fe={f:R*x Z 5 R| f(z,y,2) = 2(y — g(x))
where g(-) is Lipschitz}. (12)
As discussed below, F is important for predicting the risk

of the (pruned) model. In the SM, we prove that F, C F.
We are now ready to state our main theoretical result.

Theorem 1 (Asymptotic DC — Overparameterized LGP)
Fix k > 1 and suppose Assumptions 2 and 3 hold. Recall

the solution ,é from (7) and let

71(y?X /8 2 Zd(f,@77fﬂb727 z)

be the joint empirical distribution of (\/[),8, VPB*, %), Let
f : R® = R be a function in F defined in (11). We have that

oY F (B VB
=1

As advertised, Theorem 1 fully characterizes the joint em-
pirical distribution of the min-norm solution, the latent vec-
tor and the covariance spectrum. The asymptotic DC al-
lows us to precisely characterize several quantities of in-
terest, such as estimation error, generalization error etc..
For example, a direct application of (13) to the function
flx,y,2) = 2(y — x)? € Fp C F directly yields the risk
prediction of the min-norm solution recovering (Hastie et al.
2019, Thm. 3) as a special case. Later in this section, we
show how to use Theorem 1 towards the more challenging
task of precisely characterizing the risk of magnitude-based
pruning.

Before that, let us quickly remark on the technical novelty
of the theorem. Prior work has mostly applied the CGMT to
isotropic features. Out of these, only very few obtain DC,
(Thrampoulidis, Xu, and Hassibi 2018; Miolane and Mon-
tanari 2018), while the majority focuses on simpler met-
rics, such as squared-error. Instead, Theorem 1 considers
correlated designs and the overparameterized regime. The
most closely related work in that respect is (Montanari et al.
2019), which very recently obtained the DC of the max-
margin classifier. Similar to us, they use the CGMT, but their
analysis of the auxiliary optimization is technically different
to ours. Our approach is similar to (Thrampoulidis, Xu, and
Hassibi 2018), but extra technical effort is needed to account
for correlated designs and the overparameterized regime.

i) = E[f(Xuo2, B,A)] . (13)

5.2 From DC to Risk Characterization
First, we consider a simpler “threshold-based" pruning
method that applies a fixed threshold at every entry of ﬁ
Next, we relate this to magnitude-based pruning and obtain
a characterization for the performance of the latter. In order
to define the threshold-based pruning vector, let

i) = {x if |[z] >t

0 otherwise ’

be the hard-thresholding function with fixed threshold ¢ &
Ry. Define B3/ := Ty, (B). where T acts component-

wise. Then, the population risk of BZ— becomes

L(B]) = Epl@"(B* = B]) +02)*]
=o2+ % Z 2”(\/]3/3: - 7;(\/2352))2
i=1

Ly +E[A(B - Ti(Xp02))] - (14)
In the second line above, we note that /pTy(r) =
T st (/). In the last line, we apply (13), after recogniz-
ing that the function (z,y, z) — z(y — T;(x))? is a member
of the F, family defined in (12). As in (13), the expectation
here is with respect to (A, B, H) ~ @ N(0,1).

Now, we show how to use (14) and Theorem 1 to charac-
terize the risk of the magnitude-based pruned vector BM :=
Ts (,5') Recall, here from Assumption 1 that s = ap. To re-
late 3 to 37, consider the set S; := {i € [p] : \/§|,f3'1\ >
t} for some constant ¢ € R (not scaling with n, p, s). Note
that the ratio |S;|/p is equal to

p
_ P
P Lmaizn — B, 1z =P (1Xeo2| 2 1).
i=1
Here, 1 denotes the indicator function and the convergence
follows from Theorem 1 when applied to a sequence of
bounded Lipschitz functions approximating the indicator.
Thus, by choosing

t*:=inf{t €R : P(| X, 02| > t) >}, (15)

it holds that |S;|/p %, &. In words, and observing that
X, o2 admits a continuous density (due to the Gaussian vari-
able H): for any € > 0, in the limit of n, p, s — 00, the vec-
tor 37. has (1-£¢)ap = (14¢)s non-zero entries, which cor-
respond to the largest magnitude entries of 3, with probabil-
ity approachingl. Since this hold for arbitrarily small ¢ > 0,
recalling ¢* as in (15), we can conclude from (14) that the
risk of the magnitude-pruned model converges as follows.
Corollary 1 (Risk of Magnitude-pruning) Let the same
assumptions and notation as in the statement of Theorem
1 hold. Specifically, let ﬁ be the min-norm solution in (7)
and Bﬁw := T4(B) the magnitude-pruned model at spar-
sity s. Recall the threshold t* from (15). The risk of Béw
satisfies the following in the limit of n,p, s — oo at rates
k:=p/n>1land o :=s/p € (0,1) (cf Assumption 1):

LBY) L 0 +E[A (B - Ti-(X,02))]

where the expectation is over (A, B, H) ~ n®@ N (0, 1).



5.3 Non-asymptotic DC and Retraining Formula

While Theorem 1 is stated in the asymptotic regime, dur-
ing analysis, the DC arises in a non-asymptotic fashion.
The following definition is the non-asymptotic counterpart
of Def. 3. We remark that this definition applies to arbitrary
covariance (not necessarily diagonal) by applying a simple
eigen-rotation before and after the DC formula associated
with the diagonalized covariance.

Definition 4 (Non-asymptotic DC) Fix p > n > 1 and set
k = p/n > 1. Given o > 0, covariance ¥ = Udiag(\)UT
and latent vector 3, set 3 = UT B and define the unique
non-negative terms £,7v,¢ € RP and ¢ € RP as follows:

p
& >0 s the solution of k1 :p_l Z (1 + (fAi)_l)_la

i=1
o? + 3 NGB

T2 S+ (EA) )

"y:

G=04+N)" , di=ry(1+ (X)) 1<i<p.

The non-asymptotic distributional prediction is given by the
following U -rotated normal distribution

Dyxp=UN(1,—¢) ®B,p tdiag A © ¢)).

We remark that this definition is similar in spirit to the con-
current/recent work (Li et al. 2020). However, unlike this
work, here we prove the asymptotic correctness of the DC,
we use it to rigorously predict the pruning performance and
also extend this to retraining DC as discussed next.
Retraining DC. As the next step, we would like to char-
acterize the DC of the solution after retraining, i.e., ,@RT.
We carry out the retraining derivation (for magnitude prun-
ing) as follows. Let Z C [p] be the nonzero support of
the pruned vector Bﬁ” . Re-solving (2) restricted to the fea-
tures over Z corresponds to a linear problem with effec-
tive feature covariance X7 with support of non-zeros re-
stricted to Z x Z. For this feature covariance, we can also
calculate the effective noise level and global minima of the
population risk B7. The latter has the closed-form solu-
tion 87 = E;Eﬁ*. The effective noise is given by ac-
counting for the risk change due to the missing features via
or = (0% + B*TEB* — 357 278%)/2. With these terms
in place, fixing Z and using Def. 4, the retraining prediction
becomes D, 5, 3,. This process is summarized below.

Definition 5 (Retraining DC) Consider the setting of
Def. 4 with o, %, 3* and sparsity target s. The sample 35T

from the retraining distribution Dg 5 g+ s constructed as

follows. Sample B ~ Dy x g~ and compute the set of the

top-s indices T = I(Ts(B)). Given Z, obtain the effective
covariance X7 € RP*P, population minima (35 € RP,
and the noise level oz > 0 as described above. Draw
/BRT ~ Ddzyzzﬂz'

Observe that, the support Z depends on the samples S via B
Thus, our retraining DC is actually derived for the scenario
when the retraining phase uses a fresh set of n samples to

break the dependence between Z, S (which obtains Bflfe{h).

Despite this, we empirically observe that the retraining DC

predicts the regular retraining (reusing S) performance re-

markably well and perfectly predicts BT as discussed in

Figs. 2 and 4. Finally, we defer the formalization of the re-
training analysis to a future work. This includes proving that

f#?gh obeys Def. 5 asymptotically as well as directly study-
ing 37T by capturing the impact of the Z, S dependency.

6 Conclusions and Future Directions

This paper sheds light on under-explored phenomena in
pruning practices for neural network model compression.
On a theoretical level, we prove an accurate distributional
characterization (DC) for the solution of overparameterized
least-squares for linear models with correlated Gaussian fea-
tures. Our DC allows to precisely characterize the pruning
performance of popular pruning methods, such as magni-
tude pruning. Importantly, our DC combined with a linear
Gaussian equivalence, leads to precise analytic formulas for
the pruning performance of nonlinear random feature mod-
els. On the experimental side, we provide a thorough study
of overparameterization and pruning with experiments on
linear models, random features and neural nets with grow-
ing complexity. Our experiments reveal striking phenomena
such as a novel double descent behavior for model pruning
and the power of overparameterization. They also shed light
on common practices such as retraining after pruning.

Going forward, there are several exciting directions to
pursue. First, it would be insightful to study whether same
phenomena occur for other loss functions in particular for
cross-entropy. Second, this work focuses on unregularized
regression tasks and it is important to identify optimal
regularization schemes for pruning purposes. For instance,
should we use classical ¢; /{5 regularization or can we re-
fine them by injecting problem priors such as covariance in-
formation? Finally, going beyond pruning, using DC, one
can investigate other compression techniques that processes
the output of the initial overparameterized learning problem,
such as model quantization and distillation.
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(a) Magnitude-based and randomly pruned models. (b) With and without retraining pruned models.

Figure 5: We train and prune ResNet-20 models on CIFAR-10 and also add randomly pruning and non-retraining curves.
Solid lines here are exactly the same as Figure 1 which show test errors of dense and s-sparse models. Dotted lines are test
errors of random-based pruned models in (a) and of magnitude-based pruned models however without retraining in (b).
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Figure 6: Here we use the simplest neural network consisting of two fully-connected layers to train MNIST with various
width and sparsity targets. In this architecture the width parameter equivalent to the number of hidden layer nodes controls
model size. Same as Figure 1 the blue line corresponds to training dense models with width k. As for the red and green lines
we choose 4- and 8-width models as base models respectively and prune k-width dense model to corresponding sparsity
targets. (a) shows both training and test errors after magnitude-based pruning and retraining. In (b) solid and dotted lines are
test errors of magnitude- and random-based pruned models with retraining. To verify the importance of retraining in neural
networks we present the test errors of magnitude-based models without retraining in (c).

Organization of the Supplementary Material

The supplementary material (SM) is organized as follows.
In Section A we provide additional experiments on neural networks and linear models further supporting the main results.

. In Section B we prove our main Theorem 1.
Section C provides our analysis and results on magnitude and Hessian pruning.

. Section D provides further supporting technical results used in our proofs.

S R S

. Section E provides our asymptotic analysis of overdetermined problems complementing our main results on overparameter-
ized problems.

6. In Section F we prove Lemma 1.

A Further Experiments and Intuitions

A.1 Further discussion and experiments on CIFAR-10

First, we provide further discussion on Figure 1. Recall that, in this figure, we apply train— prune—sretrain to obtain the sparse
neural networks. The test error and the training errors for the sparse models are evaluated at the end of the retraining phase.
Thus, it is rather surprising that sparse models manage to achieve zero training error around the same width parameter £ as the
dense model because while parameter count of the dense model increases in k, it is fixed for sparse models.



Secondly, we complement Figure 1 with two additional experiments. The first experiment assesses the benefit of pruning
compared to using a random nonzero pattern with the same sparsity. The second experiment assesses the benefit of retraining
by comparing the curves in Fig 1 with the test errors obtained without retraining. These two experiments are shown in Figure 5a
and 5b and all of them are trained over same dataset and configured as given in Section 3.3. Instead of applying magnitude-based
pruning, dotted red and green lines in Fig 5a are sparse models over 5 or 10 sparsity targets, pruned randomly to achieve same
number of nonzeros as magnitude-based pruning strategy. Although the double descent phenomenon and downward trend are
still present on the dotted lines, the performance is worse than magnitude-base pruning method. Fig. 5b shows how retraining
benefits pruning ResNet-20 models. The results agree with our intuition that the non-retrained (dotted) lines achieve much
bigger test error than retrained (solid) lines and overparameterization does not help in improving performance.

A.2 MNIST Experiments with two layers

In Figure 6 we train the simplest neural model with only 2 fully-connected layers over MNIST with various number of nodes
to explore properties of magnitude-based pruning, random pruning and non-retraining on simple neural networks. Here, the
number of nodes is equivalent to the width of the model, which directly controls the model size. Same as in Section 3.3, we
select an s-width model as base model and prune trained dense models to the same sparsity. All experiments are trained with
Adam optimization, 0.001 learning rate and 200 epochs under MNIST. Solid red, green and blue lines in Figure 6 correspond to
test error of 4-, 8-sparsity targets and dense models. In Figure 6a dotted lines are training errors of dense and s-sparse models.
As the width k£ grows, the training and test error decrease for all dense and sparse models. The behavior is similar to Figure
1 and training larger models benefit pruned-model accuracy however double descent is not really visible. We suspect that this
may be because of the simpler nature of the MNIST dataset and LeNet architecture compared to the CIFAR10 dataset and
ResNet-20 model. In Figure 6b, dotted lines apply randomly pruning. Different to magnitude pruning, where training bigger
models and then pruning results in better performance, randomly pruning hurts when the sparsity level s/k is relatively low.
This is because under magnitude-based pruning, we can identity most of optimal entries of weights from trained dense model
and retraining with these entries achieves lower errors. In constrast, random pruning learns nothing from the trained model and
as the sparsity level decreases, the probability that random operator selects the limited optimal entries by chance also decreases,
leading to worse performance. Dotted lines in Figure 6¢ show test errors of sparse models before retraining which educes the
same conclusion in Section A.1, that is retraining is crucial to improve the performance in neural networks.

A.3 Experiments on LGP

In Figure 7, we carry out the identical experiments as in Figure 3. The difference is that we display two more figures which are
the retraining curves for Magnitude- and Hessian-based pruning strategies shown in purple and yellow lines respectively. Figure
7a is the counterpart of Figure 3a and Figure 7b is the counterpart of Figure 3b. The main message in these experiments is that
retraining hurts the performance. This performance degradation is more emphasized in the overparameterized regime. Specif-
ically, both retrained versions of Magnitude and Hessian pruning BRTM apd BRT-H perform consistently worse compared to
their pruning-only counterparts ,@M and ﬁH . Observe that, the only regime where retraining outperforms the pruning-only ap-
proach is at the peak of double descent. This is the region where pruning-only risk diverges to infinity whereas retraining attains
finite risk. This is because the retraining stage solves a well-conditioned problem and avoids the ill-conditioning occurring at
n = k. Recall that, in light of Lemma 1, unlike the rank-one covariance case, retraining hurts because covariance is diagonal;
thus, features are uncorrelated and do not have overlapping predictions.

B Proofs for overparameterized least-squares
In this section, we assume the linear Gaussian problem (LGP) of Definition 1, the overparameterized regime k = p > n and

the min-norm model 3 of (7). We prove Theorem 1 that derives the asymptotic DC of B and we show how this leads to sharp
formulae for the risk of the Magnitude- and Hessian-pruned models.

B.1 Notation and Assumptions

For the reader’s convenience, we recall some necessary notation and assumptions from Section 5. We say that a function
f : R™ — Ris pseudo-Lipschitz of order k, denoted f € PL(k), if there is a constant L > 0 such that for all ,y € R™,

If(x) = f(y)| < L(1+ ||a:HIZ2_1 + ||y||§2_1) |l — yl|2 (See also Section D). We say that a sequence of probability distributions

vp on R™ converges in W), to v, written v, L/ v, if Wi(vp,v) — 0 as p — oo. An equivalent definition is that, for any
f € PL(k), lim, o E f(X,) = E f(X), where expectation is with respect to X, ~ v, and X ~ v (e.g., (Montanari and
Venkataramanan 2017)). Finally, recall that a sequence of probability distributions v,, on R™ converges weakly to v, if for
any bounded Lipschitz function f: lim, . E f(X,) = E f(X), where expectation is with respect to X,, ~ v, and X ~ v.
Throughout, we use C, C’, ¢, ¢’ to denote absolute constants (not depending on n, p) whose value might change from line to
line.

We focus on a double asymptotic regime where:

n,p,s — oo at fixed overparameterization ratio x := p/n > 1 and sparsity level o := s/p € (0,1).
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Figure 7: Same as Figure 3 however retraining curves are included. Our asymptotic prediction for various pruning strategies
in linear gaussian models with s/p = 0.1 and n/p = 0.3. We solve ERM using the first k features and then prune to obtain
an s-sparse model. The vertical dashed line shows the £ = s point. The horizontal dashed line highlights the minimum risk
among all underparameterized solutions including retraining. Retraining curves are not displayed.

For a sequence of random variables X, that converge in probability to some constant c in the limit of Assumption 1 below, we

write A, L, ¢ Fora sequence of event £, for which lim,,_, P(&,) = 1, we say that £, occurs with probability approaching 1.
For this, we will often use the shorthand “wpa 1".

Next, we recall the set of assumption under which our analysis applies:

Assumption 2 The covariance matrix 3 is diagonal and there exist constants Xyin, Lmax € (0, 00) such that: iy < 3;; <
Y max, for all i € [p].

Assumption 3 The joint empirical distribution of {(X;,/DB}) }iep) converges in Wasserstein-k distance to a probability
distribution p on R<g X R for some k > 4. That is %Zié[p} 8(2,.,/P8) LI .

We remark that Assumption 3 above implies (see (Bayati and Montanari 2011, Lem. 4) and (Javanmard and Montanari 2013,
Lem. A3)) that for any pseudo-Lipschitz function 1) : R? — R of order 4, i.e., ¢ € PL(4):

p

1
L2 (i V) 5 Eamyen (A, B)].

i=1
B.2 Asymptotic distribution and risk characterizations

In this section, we prove our main result Theorem 1. Recall that B is the min-norm solution. Since the distribution of 3 depends
on the problem dimensions (as it is a function of X, y), when necessary, we will use ,én notation to make its dimension
dependence explicit. Let ﬁp = P(ﬁ) be a pruned version of the min-norm solution B Recall from Section 5.2, that the first
crucial step in characterizing the risk £(3%) is studying the risk £(3] ) of a threshold-based pruned vector.

To keep things slightly more general, consider B39 defined such that \/ﬁBQ = g(\/f)[:}), where ¢ is a Lipschitz function acting
entry-wise on 5’ (for example, g can be the (arbitrarily close Lipschitz approximation of the) thresholding operator 7; of Section

5.2). Then, the risk of Bg can be written as
L(B%) =Ep|(x"(B* — BY) + 02)’] = 0 + (B* — B9)"E(B* - BY)

p
=0+ 3 B (Vi — a(viB))
=1

1< .
= 02+§Zf(\/23/8i7\/ﬁ/6:72i,i)7 (16)
i=1
where in the last line, we defined the function f as f = f, € F, C F given by

fe(x,y, 2) == z(y — g(x))®> where g is Lipschitz.
Here, recall the definition of the families F in (12) and F in (11).



The following theorem establishes the asymptotic limit of (16). For the reader’s convenience, we repeat the notation intro-
duced in Definition 3. Let random variables (A, B) ~ u (where p is defined in Assumption 3) and fix x > 1. Define parameter
¢ as the unique positive solution to the following equation

e [0 ] =w

Further define the positive parameter «y as follows:

2
vim (o7 8 [ regp)) (- e e )
With these and H ~ N(0, 1), define the random variable

3 _ 1 VAT
Xy o2 1= X,ngz(A,B,H) = (1 - 1+¢EA ) +\[1—|—(§A) H,

and let IT,; 2 be its distribution.

Theorem 1 (Asymptotic DC — Overparameterized LGP) Fix x > 1 and suppose Assumptions 2 and 3 hold. Recall the
solution B from (7) and let

1 P
M (y, X, 8", %) ;,Z (VPBi/PB! Zii)

be the joint empirical distribution of (\/;5,3, VPB*,X). Let f : R3 — R be a function in F defined in (11). We have that

p
O FB VEBL Bi) T E[f(Xo B (13)
=1

Before we prove the theorem, let us show how it immediately leads to a sharp prediction of the risk behavior. Indeed, a direct
application of (13) for f = f, to (16) shows that

A p 2
L(B%) — 0 + E.p.1)mpan©1) [[£(Xeo2, B,A)] = 0% + Ea B, 1) ~uan 0,1) [E (B —9(Xx02)) } - A7

We further remark on the following two consequences of Theorem 1.

First, since (13) holds for any PL(2) function, we have essentially shown that f["(y, X, 3*,3) converges in Wasserstein-2
distance to II,; ,2 ® u, where recall that I1,; ;2 is the distribution of the random variable X, ;2.

Second, the theorem implies that the empirical distribution of \/]337, converges weakly to II,; . To see this, apply (13) for
the PL(2) function f(z,y, z) = 1(x) where ¢ : R — R is a bounded Lipschitz test function.

B.3 Proof of Theorem 1

Let X € R™*? have zero-mean and normally distributed rows with a diagonal covariance matrix ¥ = E[zx”]. Given a ground-
truth vector 3* and labels y = X3* + 0z, z ~ N(0, I,,), we consider the least-squares problem subject to the minimum
Euclidian norm constraint (as k = p/n > 1) given by

1
mﬁin§||,6||§2 subjectto  y = X0. (18)

It is more convenient to work with the following change of variable:
= VE(B - 8. (19)

With this, the optimization problem in (7) can be rewritten as
1 _
®(X) = min 5”2’1/210 + B*[|7, subjectto Xw = oz, (20)

where we set X = XX~ 1/2 % pr (0, 1). First, using standard arguments, we show that the solution of (20) is bounded. Hence,
we can constraint the optimization in a sufficiently large compact set without loss of generality.

Lemma 2 (Boundedness of the solution) Let w,, := w, (X, z) be the minimizer in (20). Then, with probability approaching
1, it holds that w,, € B, where

Ymax VE+1
Ymin Ve — 1

B:={w||wl: < B:}, By :=5 (VZmax E[B?] + 0).



Proof First, we show that the min-norm solution 3 = X7 (X X 7)™y of (18) is bounded. Note that x > 1, thus X X7 is
invertible wpa 1. We have,

512 T v Ty 1 lyll7, lylI7, lylI7, lylI7,
12 =T (XX < = L < o = — .
”IB ||€2 Y ( ) v= Ar]z)in()(‘XdT) )\min(XEXT) - )\min(XXT) Emin U?nin(X) Emin

But, wpa 1, omin (X)//1 > % (y/k — 1) . Furthermore, ||y||2 < | X282 + 0]|2]l2 < Omax(X)vVZmax||B* ]2 + 7| 2]|2-

Hence, wpa 1,
lyll2/v/n < 2(v/F + 1)/ Emax VE [B] + 20,
where we used the facts that wpa 1: ||z]|2/v/n Loy, o X) < V20(\/F + 1) and by Assumption 3:

2n

" 1{ w2 P
18715 = - > _(vpB1)* — E [B7].
i=1
Put together in (21), shows that
2(vE 4+ 1)VEmaxVE [B?] + 20

1Bnlle, < o (i —1)/2 =: By. (22)

Recalling that w,, = VEB, — VEB*, we conclude, as desired, that wpa 1, [|[W, |, < \/Zmaxé+ + VEmax/E[B?] < B
| ]

Lemma 2 implies that nothing changes in (20) if we further constrain w € B in (20). Henceforth, with some abuse of
notation, we let

1 _
(X)) := miré §||2_1/2w + B*||7, subjectto Xw = oz, (23)
we

Next, in order to analyze the primary optimization (PO) problem in (23) in apply the CGMT (Thrampoulidis, Oymak, and
Hassibi 2015; Thrampoulidis, Abbasi, and Hassibi 2018). Specifically, we use the constrained formulation of the CGMT given
by Theorem 2. Specifically, the auxiliary problem (AO) corresponding to (23) takes the following form with g ~ AN(0, I,,),
h ~N(0,1,), h ~ N(0,1):

1
#(g,h) = min 5||Z]’1/2'u; + 8|7, subjectto |[|glle,|w olle, < AT w + oh. (24)

We will prove the following techincal result about the AO problem.

Lemma 3 (Properties of the AO — Overparameterized regime) Let the assumptions of Theorem 1 hold. Let ¢, = ¢(g, h)
be the optimal cost of the minimization in (24). Define ¢ as the optimal cost of the following deterministic min-max problem

- ) 1 uo? 9 1 B?

The following statements are true.
(i). The AO minimization in (24) is «~—-strongly convex and has a unique minimizer w>° := w29 (g, h).

Smax n
(ii). In the limit of n,p — 00, p/n = K, it holds that $(g, h) N b, i.e., forany e > 0:
lim P (J¢(g,h) — | > £) =0.
(iii). The max-min optimization in (25) has a unique saddle point (u., 7 ) satisfying the following:
U /T =& and T. =7,

where £, 7y are defined in Definition 3. ) A
(iv). Let f : R> = R be a function in PL(3). Let 32° = 829 (g, h) = X~1/2wAC + 3*. Then,

1 A
Ez.f (ﬁﬁy‘?o)ﬁB*aE) i> E(B,A,H)N;/,@N(O,l) [f (Xm(rz(BaAaH)vaA)] .
=1

In particular, this holds for all functions f € F defined in (11).
(v). The empirical distribution of BX° converges weakly to the measure of Xy 02, and also, for some absolute constant C' > 0:

18217, < C wpa . (26)



We prove Lemma 3 in Section B.4. We remark that Assumption 3 on Wy-convergence of the joint empirical distribution of
{(2i.i, v/PB7) }ie[p) is required in the proof of the statement (iv) above. More generally if 173 -convergence is known for some
integer k, then statement (iv) above holds for test functions f € PL(k — 1). This is the first place in the proof of Theorem 1,
where we use the assumption f € F; indeed, we show in Lemma 4 that 7, C F C PL(3). The second part is in proving the
perturbation result in (33) below. Unlike the former, when proving the perturbation result, the requirement f € F cannot be
relaxed (e.g. to f € PL(k — 1)) by simply increasing the order of Wj-convergence in Assumption 3.

Finalizing the proof of Theorem 1: Here, we show how Lemma 3 leads to the proof of Theorem 1 when combined with the
CGMT framework (Thrampoulidis, Oymak, and Hassibi 2015; Thrampoulidis, Abbasi, and Hassibi 2018).
Let f : R3 — R be a function in F, where F was defined in (11). For convenience, define

Fu(Bu, 8", 5) : Zﬁ(fﬂm¢wwng and a, i= B, [f(Xy02(A, B, H), B, A)] .
Fix any € > 0 and define the set
S=8(8"3%) = {w=VEB-p8") €B||F.(B,0"5) — a.| > 2}. (27)
With this definition, observe that, it suffices to prove that the solution w,, = VE (Bn — B*) of the PO in (18) satisfies w,, ¢ S

wpa 1.
To prove the desired, we need to consider the “perturbed" PO and AO problems (compare to (20) and (24)) as:

O5(X) = mlg HE V2 4+ 3% subjectto Xw = oz, (28)
we
and
I S .
$s(g,h) :glelréiHE Y2 + ¥, subjectto ||glle, ||w olle, < hTw + oh. (29)

Recall here, that X = X¥~1/2 & N(0,1), g ~ N(0,1,,), h ~ N(0,I,), h ~ N(0,1) and we have used the change of

variables w := vX(8 — 3*) for convenience. o
Using (Thrampoulidis, Abbasi, and Hassibi 2018, Theorem 6.1(iii)) it suffices to find costants ¢, ¢ 5 and 1 > 0 such that the

following three conditions hold:

1. ¢s > ¢+ 3n,

2. ¢(g,h) < ¢+ n, with probability approaching 1,

3. ¢s(g,h) > ¢s — n, with probability approaching 1.

In what follows, we explicitly find ¢, ¢, 1 such that the three conditions above hold.

Satisfying Condition 2: Recall the deterministic min-max optimization in (25). Choose ¢ = D(u.,7.) be the optimal cost of

this optimization. From Lemma 3(ii), ¢(g, h) N 6. Thus, for any 1 > 0, with probability approaching 1:
6+n=>¢lg.h)=é—n (30)

Clearly then, Condition 2 above holds for any n > 0.

Satisfying Condition 3: Next, we will show that the third condition holds for appropriate ¢. Let wA° = wA°(g, h) be the

unique minimizer of (24) as per Lemma 3(i), i.e., %HE*U?wﬁO + ﬁ||§2 = ¢(g, h). Again from Lemma 3, the minimization

in (24) is 1/Xax-strongly convex in w. Here, ¥,,,.x is the upper bound on the eigenvalues of X as per Assumption 3. Thus,
for any € > 0 and any feasible w the following holds (deterministically):

~2

ﬁ, provided that ||w — wA© ||, > & 31

1o
SI=7 2w+ BIIZ, > é(g.h) +

Now, we argue that wpa 1,
for all w € S it holds that [|w — wWAC||y > &, (32)

for an appropriate value of a constant € > 0.
Consider any w € S.
First, by definition in (27), for 3 = /2w + 3* we have that

[Fn(B, 87, %) — an| = 2e.



Second, by Lemma 3(iv), with probability approaching 1,
[F(BR°, B, %) —au| <e.
Third, we will show that wpa 1, there exists universal constant C' > 0 such that
|Fa(BC. B 2) — Fu(B, 8", 2)| < C|B1° ~ B2 (33)
Before proving (33), let us argue how combining the above three displays shows the desired. Indeed, in that case, wpa 1,
2¢ < [Fo(B.8". 8) — 0u| < |Fu(B°. 8. B) — Fu(B, 6%, 5)| + |Fu (80, 87, 8) — au|
<et+ClB =B
= B-B 2 >¢/C=:¢
= |lw — W22 > év/Smin =: &.
In the last line above, we recalled that 8 = B2 + B* and 3; ; > Xin, ¢ € [p] by Assumption 3. This proves (32).

Next, combining (32) and (31), we find that wpa 1, $[|2~/%w + Bliz, > o(g,h) + %, for all w € S. Thus,

€2

QEmax ’

¢S(g7h) > ¢(g’h) +

When combined with (30), this shows that
&2

¢s(g,h) > ¢ +

=1 (34)

Zmax

Thus, choosing ¢g = ¢
Perturbation analysis via Pseudo-Lipschitzness (Proof of (33)). To complete the proof, let us now show (33). Henceforth, C'
is used to denote a universal constant whose value can change from line to line. Recall that f € F where F : R? x Z — Riis the
set of PL(3) functions such that f(-,-, z) is PL(2) for all z € Z. Suppose that the PL(2) constant of f(-, -, z) is upper bounded
over z € Z by some C' > 0. We also let C' change from line to line for notational simplicity. Then, we have the following chain
of inequalities:

%) * * 1 ! *
|Fn</67ALO(g7 h‘)vlg 72) - Fn(lg716 7E)| 2;2 ‘ (\/> n,i o fﬁz B Z:L 1) - f(\/ﬁgu \/I)/Bz 5 Ei,i)‘
i=1
C < R
EZ(lJrH\f[ Bl + volB;, Billl2) vpIBaS — Bil
7,:
1/2 1/2\ s 4
< (1+ an 211B) +\7 an BIB)*) 182 - Bll2
< C(1+maX{Hﬁ*llg,II5n \|2,|\ﬁ||2}1/2) 1820 = Bl (33)
In the second line above, we used the fact that f(-, -, z) is PL(2). The third line follows by Cauchy-Schwartz inequality. Finally,
in the last line, we used the elementary fact that @ + b + ¢ < 3max{a,b,c} fora =237 (B)?and b = Y7 (B29)? and

P 32
i=1 0

Hence, it follows from (35) that in order to prove (33), we need to show boundedness of the following terms: ||32°||2, [|3*]|2

and ||B||2. By feasibility of 32° and 3, we know that 329, 3 € B. Thus, the desired ||3|2 < oo and ||342°]]2 < oo follow

directly by Lemma 2 (Alternatively, for 32C we conclude the desired by directly applying Lemma 3(v)). Finally, to prove
[|B3*]|2 < 0o, note that

* 1 - *
18113 = ];Z(\/:Bﬁi)z,
i=1
which is bounded wpa 1 by Assumption 3, which implies bounded second moments of ,/p3*. This completes the proof of
(33), as desired.

Satisfying Condition 1: To prove Condition 1, we simply pick 7 to satisfy the following
=2 _ g2
—n>¢+3n & n<

2Zmax max

(i_)s>(,2_5+377 = QZ_5+

This completes the proof of Theorem 1.



B.4 Proof of Lemma 3

Proof of (i). Strong convexity of the objective function in (24) is easily verified by the second derivative test and use of
Assumption 3 that 3, ; < X,,,«, ¢ € [p]. Uniqueness of the solution follows directly from strong convexity.

Proof of (ii). Using Lagrangian formulation, the solution W to (24) is the same as the solution to the following:

eB u> \/ﬁ
where we have: (i) set g := g/y/n and h := h/ /P (ii) recalled that p/n = &; and, (iii) used ( un) to denote the optimal

solutions in (36). The subscript n emphasizes the dependence of ( AO un) on the problem d1mens1ons Also note that (even

though not explicit in the notation) ( AO un) are random variables dependmg on the realizations of g, h and h.
Notice that the objective function above is convex in w and linear (thus, concave) in u. Also, B is compact. Thus, strong
duality holds and we can flip the order of min-max (Fan 1953). Moreover, in order to make the objective easy to optimize with

respect to w, we use the following variational expression for the square-root term 4 /||w||7, + o2

w||? + o? 7|lgl? 2 w|?
ol /ol + 0 = gl min_ A7 PR ET T o Tl
relon/o?+B2] | 2 27 r€lo\/o?+ BT 2 21 27

where By is defined in Lemma 2. For convenience define the constraint set for the variable 7 as 7' := [0, /02 + B2 ]. For
reasons to be made clear later in the proof (see proof of statement (iii)), we consider the (possibly larger) set:

) - . oh
(0, 0,) = arg min max =[50 4+ 6, + ( lwl, + o?lglle, — VAR w + ) (36)

T := [o,max{y/0? + B2, 27,}]

where T, is as in the statement of the lemma.

The above lead to the following equivalent formulation of (36),

UTHQH2 uo?®  uch 1 u =
~AO _ : 23 : —1/2 * 12 2 T

w,, ", Uy, Tp) =mMax min ——=+ — + —= +minq -||2 w + + —||wl|7, —uveh'w. (37

( m n) u>0 weB,TeT 2 2T \/ﬁ weB | 2 || 16 He? 21 || ”ZQ ( )
The minimization over w is easy as it involves a strongly convex quadratic function. First, note that the unconstrained optimal
w’ := w'(,u) (for fixed (7, u)) is given by

1 _
w = w(ru) = - (874 21) (57280 —uy/h) (38)
T
and (37) simplifies to
B urlgllf, | wo®  woh 1 —1/2 gx P\ (-1 Y\ (12
(Un,Tn) = IIIBS())( 5_%17@ 5 + o + W ) (2 B* — U\/Eh) (2 + ;I> (2 B* ufh) R(u,T).

(39)

It can be checked by direct differentiation and the second- derlvatwe test that the objective function in (39) is strictly convex in
7 and strictly concave in u over the domain {(u,7) € Ry x Ry} !. Thus, the saddle point (u,, 7,,) is unique. Specifically, this
implies that the optimal 'w Oin (37)is given by (cf. (38))

-1

WHO = w' (1, up) = — (2—1 + 7“7‘”1) (2‘1/2ﬁ* - un\/Eﬁ) : (40)
In Lemma 3(v) we will prove that wpa 1, in the limit of p — oo, ||WA®||2 < C for sufficiently large absolute constant C' > 0.
Thus, by choosing the upper bound in the definition of B in Lemma 2 strictly larger than C, guarantees that the unconstrained
wAO in (40) is feasible in (37).
Asymptotic limit of the key quantities 7,,, u,,: In what follows, we characterize the high-dimensional limit of the optimal pair
(tn, 7) in the limit n,p — oo, p/n — k. We start by analyzing the (point-wise) convergence of R(u, 7). For the first three
summands in (39), we easily find that

url|gl|? uo?  uch P ur  uo?
e L
2 27 Vn 2 27
'To analyze the matrix-vector product term in (39) for (7, u) one can use the fact that 3 is diagonal. This way, as a function of u and 7 the

analysis reduces to the properties of relatively simple functions. For instance, for 7, this function is in the form f(7) = —(a + b/7)~" for
a,b > 0, which is strictly convex.



Next, we study the fourth summand. First, note that

(uv/rh)T (271 + gI)_l (uv/kh) = u*K %hT (271 + gI)_1 h

o 1q~ B
=uR=-) ST
PiE B tT
9 1
—>u,‘£EAlJrﬁ (41)

In the last line, A is a random variable as in Definition 3. Also, we used Assumption 3 together with the facts that h is
independent of 3 and that the function (21, 22) + 23(xy ' + u/7)~! is PL(3) assuming x5 is bounded (see Lemma 5 for
proof). Second, we find that

T—1/2 (=1 | U\ P sm1/290 1 T u )t *

()72 (874 2r) 2 = (e (T4 78) (VB
2
_ lzp: (VDB /\/Zi4)
P Ei_ﬂ‘l + %
LN
A=t 2]

Here, A, B are random variables as in Definition 3 and we also used Assumption 3 together with the fact that the function

(z1,29) + 232y (x5 " + u/7)~! is PL(3) assuming x5 is bounded (see Lemma 5 for proof). Third, by independence of

(B*,X) from h

(42)

T -1 1< hizi_il/2 o
(uy/rh)T (2—1 + %I) $128% — uy/k - . 3 M oo (43)
i=1 iy T

Putting these together, the objective R(u, 7) in (39) converges point-wise in u, T to

P 1 uo? 1 BZA-1
R(u,7) — D(u,7) = 3 (u7+ — —~u’k E [A—l n 2] —E [A—l ) “4)
Note that R (u, 7) (and thus, D(u, 7)) is convex in 7 and concave in u. Thus, the convergence in (44) is in fact uniform (e.g.,
(Andersen and Gill 1982)) and we can conclude that

P .

h D . 45

¢(g,h) — maxmin D(u,7) 45)

and using strict concave/convexity of D(u, 7), we also have the parameter convergence (Newey and McFadden 1994, Lem.
7.75)

P .
nsTn) — xy Tx) i = D s . 46
(Un, Tn) (Us, T4) := arg max min (u,7) (46)
In the proof of statement (iii) below, we show that the saddle point of (45) is (., 7). In particular, 7, is strictly in the interior
of T, which combined with convexity implies that

ey pdp Do) = gy Do) =6

This, together with the first display above proves the second statement of the lemma.
Proof of (iii). Next, we compute the saddle point (u.,7«) by studying the first-order optimality conditions of the strictly

concave-convex D(u, 7). Specifically, we consider the unconstrained minimization over 7 and we will show that the minimum
is achieved in the strict interior of 7. Direct differentiation of D(u, 7) gives

2 1 2 1 1 B2A!
T+U—2mE[ u}—l—umE — | +-E|———| =0, (47a)
T A-l+ 2] 7 (A-1 4 ) LA 4 )
2 3 1 BQA—l
u_ﬂ_l E —— _u —— | =0, (47b)
2 72 (A1 + %) 72 (A1 4 &)




Multiplying (47b) with - and adding to (47a) results in the following equation

1 1

1

L 1} K
Thus, we have found that the ratio 1;— is the unique solution to the equat10n in (48). Note that this coincides with the Equation
(8) that defines the parameter £ in Definition 3. The fact that (48) has a unique solution for all K > 1 can be easily seen as
F(z)=E [(M)%H} ,x € Ry has range (0, 1) and is strictly increasing (by differentiation).

Thus, we call { = =. Moreover, multiplying (47b) with u leads to the following equation for 7,:

2 B2A~! 2 B2AT!
2=o w1 | pee| BAT e +E | _ +E [ .
’ ' (A1 +¢) (A1 +¢) Cor-ewEl L] 1-sE[ L
(A=1+4¢)? (€M) ~141)?
49)

Again, note that this coincides with Equation (9) that determines the parameter +y in Definition 3, i.e., 72 = ~. By definition of
T and of 7., it is clear that 7, is in the strict interior of T .

Proof of (iv). For convenience, define

(34, 8°. %) Zf( ,H,\fﬁl,2”> and . = E,, [f(Xp02(A, B, H), B,A)] .

pA0 | repeated here for convenience.

—1
WAO = (2 + I) (2—1/2,6* - un\/ﬁz) .
Tn
Also, recall that BAO =312 AO + B*. Thus, (and using the fact that h is distributed as —h),

- -1
BAO = m1/2 (2—1 + Z"I) un/mh + (I e (2—1 + Z"I) 2-1/2> B*

Recall from (40) the explicit expression for w;

271/2 1
AAO *
== ni:—anh +( >5¢- (50)
N (gn zz) +€nzz,z
For i € [p], define
2—1/2 1
i = e * 51
n, 1+(§* i)t \fT < +£*Ei,i>ﬁ ©b

In the above, for convenience, we have denoted &,, := u,,/7,, and recall that &, := . /7.

The proof proceeds in two steps. In the first step, we use the fact that &, N & and u., £, Uy (see (46)) to prove that for
any € € (0,£,/2), there exists an absolute constant C' > 0 such that wpa 1:

|Fn(VPBRC, /BB ) = Fu(y/pvn, v/DB", B)| < Ce. (52)
In the second step, we use pseudo-Lipschitzness of f and Assumption 3 to prove that
|Fy(vn, 8%, )] = . (53)

The desired follows by combining (52) and (53). Thus, in what follows, we prove (52) and (53).
Proof of (52). Fix some ¢ € (0, £, /2). From (46), we know that w.p.a. 1 |£,, — &.| < € and |u,, — u.| < &. Thus, w29 is close
to v,,. Specifically, in this event, for every i € [p], it holds that:

N 1 1 |Pui) T, T.
AO _ < * _ i n . *
1B Bl es, Trem, TV EL T Es) T 1+(5*2¢,i>—1‘
1 1 |hs| Uy, U
— | 3* _ _
|/61 | 1 + §n2” 1 + 6*2 f\/ z i §n + Ez_ﬂl 5* + Ez_,zl
|10 — & || U — &] (il Jun — v
<|6; ’ + VK VR -
| ||1+£n2i,i”1+§*2i1| \/ “(fn‘i‘zu)(f*‘*‘zu \/Tgn"_xi,il

< B} |Xmaxe + \/E|}_l’b|u*2?n/a2x€ + \/E‘h |Erln/a2x
< Ce (lhil +187]) - (54)



where C' = C(Zax, K, U« ) is an absolute constant. In the second line above, we recalled that u,, = 7,&, and u, = 7., In the
third line, we used the triangle inequality. In the fourth line, we used that{, > 0,0 < X, ; < X, and &, > . —e > €, /2 > 0.

Now, we will use this and Lipschitzness of f to argue that there exists absolute constant C' > 0 such that wpa 1,

|Fu(v/DBEC, VDB, 2) — Fu(v/pvn, VBB, Z)| < Ce.

Denote, a; = (\f i ,f,@ i) and b; = (/PVn.i, /PP, Xi,i). Following the exact same argument as in (33) (just
substitute B <+ v,, in the derlvatlon) we have that for some absolute constant C' > 0 wpa 1:

(8209, h). 8", 5) = Fa(vn, 8, 8)| < ClIBR° — w2 (55)
From this and (54), we find that
» 1/2
Fu(329(g,h), B, %) — Fo(vn, 67, (Z 1Rl +1871) )
i=1
< Cev24/(18*113 + [[Rl3- (56)
But, recall that 18113 = 7 P (/PBF)? < oo, as p — oo by Assumption 3. Also, since h; ~ N(0,1/p), it holds that

2 < 2,wpalasp— oco. Therefore, from (56), wpa 1, there exists constant C' > 0 such that

|F(B2°(g, h), B*,8) — Fy(v,, 85, %) < C ¢,

as desired.
Proof of (53). Next, we will use Assumption 3 to show that

|F(vn, B, 2)| - a. (57)

Notice that v,, is a function of 3*, X, h. Concretely, define § : R> — R, such that

~1/2
~ T2 -1
=2 Jkr, 1—(1+¢, ,
g(.’Ehl'Q,l'g) 1_|_ (5*51»'2)_1 \/ET xs3 + ( ( +£ x2) )xl
and notice that
5 1/2 )
Ui =G X hy — a7 whi + —_— x.
VPoni = § (VBB s Bi) = e S VAT ( 1+§*Ei,i>\/ﬁﬁ
Thus,
1 p 1 p
Fn(’l)n,ﬂ*, EZ \[ﬁwzz l7h ) \/]3/6':7211 =: EZ ia\/ﬁﬂ;azi,i)a
where we have defined i : R® — R:
h(xy, x2, x3) := f(g(x2, T3, 1), 22, 23) . (58)

We will prove that h € PL(4). Indeed, if that were the case, then Assumption 3 gives

p

1 " P -
» > h(hi BB} Zii) — Envo.nyen [R(H, B, A)] = Exvo,1ey [f (G(B, A, H), B,A))] (59)
i=1
=E[f (XH702 (A,B,H)7B7A)} = Qu, (60)
where the penultimate equality follows by recognizing that (cf. Eqn. (93))
_ T A~ 1/2
9B, A H) = (1= (1+&A)” )BJF\/»WH Xy02(A, B, H).

It remains to show that & € PL(4). Lemma 6 in Section D shows that if f € PL(k), then h € PL(k + 1) for all integers k& > 2.
Using this and the fact that 7 C PL(3), for any f € F, we find that h € PL(4). This completes the proof of (53).



Proof of (v): Let® : R — R be any bounded Lipschitz function. The function f(a, b, ¢) = 1(a) is trivially PL(2). Thus, by
directly applying statement (iv) of the lemma, we find that

© Y UVEB (g ) < E [6(X )]

Since this holds for any bounded Lipschitz function, we have shown that the empirical distribution of B;?O converges weakly
to the distribution of X, ,>. It remains to prove boundedness of the 2nd moment as advertised in (26). Recall from (50) that

—1/2

- X 1 .
VDB = Wﬂ%hi + <1 - 1+§nzzz> (vVPB;).

. . . P P .
Using this, boundedness of 33, ; from Assumption 3, and the fact that 7, — 7,,§, — &, there exists constant C' =
C'(Zmax, Lmin, ks Tx, &) such that wpa 1,

1< . 1< 1<
=S CIWVEBSP < =D P+ =D VB
P P P

But the two summands in the expression above are finite in the limit of p — oo. Specifically, (i) from Assumption 3,
Ly B 5 EIB?) < ooi (i) L Y70, |hal> 5 E[H?] = 1, using the facts that h; " A(0,1) and H ~ N(0,1).

This proves (26), as desired.

C Asymptotic formulas on Magnitude- and Hessian- pruning
Here, we use Theorem 1 to characterize the risk of the magnitude- and Hessian- pruned solutions. This section supplements the
discussion in Section 5.2. For completeness, first, we recall the magnitude-pruning results of Section 5.2 and restate Corollary
1 below. This corollary characterizes the performance of magnitude pruning. Following this, we shall further discuss Hessian
pruning.

C.1 Magnitude-based pruning

We begin with the following necessary definitions. Define the hard-thresholding function with fixed threshold ¢ € R, as
follows:

a iflz] >t
T(@) = {0 otherwise - D)
Further, given model sparsity target 1 > « > 0, define the threshold ¢* as follows:
t*:=inf {t € R : Pr(|X, 02| >t) > a}. (62)

Corollary 1 (Risk of Magnitude-pruning) Let the same assumptions and notation as in the statement of Theorem 1 hold.
Specifically, let 3 be the min-norm solution in (7) and BM := T,(3) the magnitude-pruned model at sparsity s. Recall the
threshold t* from (15). The risk of B satisfies the following in the limit of n,p,s — oo at rates k := p/n > 1 and

a:=s/p € (0,1) (c¢f. Assumption 1):
£BM) L o +E[A (B - Ti- (X,02))]
where the expectation is over (A, B, H) ~ n®@ N (0, 1).
The proof of the corollary above, is given in Section 5.2. Below, we extend the results to Hessian-based pruning.
C.2 Hessian-based pruning

Let B be the min-norm solution in (7). Recall that the Hessian-pruned model (via Optimal Brain Damage) 3% at sparsity s is
given by

B = 5712T (212p), (63)

where 3 = diag(X” X ) /n the diagonal of the empirical covariance matrix.
We will argue that the following formula characterizes the asymptotic risk of the Hessian pruning solution. Recall the notation
in (61) and define

= inf{t €R : Pr(|AY2X, 2| >t) > a}. (64)



The risk of the Hessian-pruned model satisfies the following in the limit of n, p, s — oo atrates x := p/n > land « := s/p €
(0,1) (cf. Assumption 1):

LB = o” +E [(AWB = T (AY 2X,i,nz>)1 : (65)

where the expectation is over (A, B, H) ~ u ® N(0,1). In our LGP experiments, we used this formula (65) to accurately
predict the Hessian-based pruning performance.

Recall the definition of the hard-thresholding operator 7;(x). Similar to Section 5.2, we consider a threshold-based pruning
vector

/@TH —E 1/2T/f( /Qﬂ)

where 7T; acts component-wise. Further define
Bl =BT (1),

Note that BZ— H” uses the true (diagonal) covariance matrix X instead of its sample estimate 3. For later reference, note here that
3. concentrates (entry-wise) to 3. Using boundedness of 32 and standard concentration of sub-exponential random variables.
First, we compute the limiting risk of BZ— HT Then, we will use the fact that 3 concentrates (entry-wise) to 3, to show that

the risks of BZ— A" and ﬁz— H are arbitrarily close as p — co.

Similar to (14),
AT ,H* * AT ,H* * AT ,H*

LB ) +(B =BT )TEB -8

ol + Zz“ VBB = =P mB))” = 0 + ;Z< =Bt - TR eB:)”
i=1

- C’”ISZ( SUEVIE; - Tl + 22 0)’

= Z VDA — (wz—|—)\)) (66)

In the second line above, we used that |/p7;, \/5(:13) = Ti(y/pr). In the third line, we recalled the change of variable in (19),

i.e., W is the solution to (20). Finally, in the last line we defined A* := /X 8* (note that this is related to the saliency score A
defined in (4)).

To evaluate the limit of the empirical average in (66), we proceed as follows. First, we claim that the empirical distribution

of \/pA* converges weakly to the distribution of the random variable B VA, where (A, B) ~ p. Note that this convergence is
already implied by the proof of Theorem 1 by setting the g function to be zero in (12). For an explicit proof, take any bounded
Lipschitz test function ¢ : R — R and call ¢/ (z, y) := ¥(y/zy). Then,

0 (Ziis VDB]) = ' (14, VDB = [0(V/Ziin/BB]) — 0 (\/ i iv/DB; )| < CI/Zi /DB — /2787 |
< ClvpB; — voB!'| + C' VB! |V Zii —
< C(IVpB; — B! | + VB! Zii — i)
< C(L+ VBB Sillla + 1B S I/ IVEB; — VBBE2 + (51 — 42
Thus, ¢’ is PL(2). Hence, from Assumption 3,

LY UV = 5 (B, vi)) 5 Bl (B V)] = Elp(BVE) )
i=1 =1

Besides, from Theorem 1 applied for f.(x,y,2) = 232 (i.e., set g the zero function in (12)), we have that

- S VB Ly ELBIA.
=1



Therefore, convergence in (67) actually holds for any ¢ € PL(2). Next, observe that, w of (40) can be written in terms of A*
via

—1
1
_ (I . “”z:) (A" — wny/RZh). (69)

After this observation, the convergence proof can be finalized by using a modified version of Assumption 3 as follows.

Assumption 4 (Empirical distribution for saliency) Set A} = \/X; ;37. The joint empirical distribution of {(2; i, A7) }ic[p]

converges in Wasserstein-k distance to a probability distribution i = p(A,S) on Rsg X R for some k > 4. That is
1 Wi
» Zie[p] O(S5.1,/PA) = L.

Under this assumption, it can be verified that, the exact same proof strategy we used for magnitude-based pruning would
apply to Hessian-based pruning by replacing 3* with A*. The reason is that the Hessian pruning risk is a PL(4) function of
h, X\*, % (e.g. can be shown in a similar fashion to Lemma 6). Observe that Assumption 4 is a reasonable assumption given
the naturalness of the saliency score. If we only wish to use the earlier Assumption 3 rather than Assumption 4, one can obtain
the equivalent result by modifying 3 to enforce a slightly higher order bounded moment and convergence condition. Finally,
one needs to address the perturbation due to the finite sample estimation of the covariance. Note that, even if the empirical
covariance doesn’t converge to the population, its diagonal weakly converges to the population (as we assumed the population
is diagonal). The (asymptotically vanishing) deviation due to the finite sample affects can be addressed in an identical fashion to
the deviation analysis of 7,,, u,, at (52) and (54). While these arguments are reasonably straightforward and our Hessian pruning
formula accurately predicts the empirical performance, the fully formal proof of the Hessian-based pruning is rather lengthy to
write and does not provide additional insights.

D Useful results about pseudo-Lipschitz functions and CGMT

For k > 1 we say a function f : R™ — R is pseudo-Lipschitz of order k and denote it by f € PL(k) if there exists a constant
L > 0 such that, for all x,y € R™:

[f(@) = f)] < L1+ el +llylls™) Iz~ yll. (70)
In particular, when f € PL(k), the following properties hold; see (Bayati and Montanari 2011):
1. There exists a constant L/ such that for all € R"™: |f(x)| < L'(1 + ||=||5).

2. f is locally Lipschitz, that is for any M > 0, there exists a constant Ly, < oo such that for all z,y € [-M, M]™,
|f(x) — f(y)| < Larm||® — yl|2. Further, Las < c(1 + (M+/m)*~1) for some costant c.

Using the above properties, we prove the following two technical lemmas used in the proof of Theorem 1
Lemma 4 Let g : R = R be a Lipschitz function. Consider the function f : R> — R defined as follows:
f(®) = z3(z2 — g(21))%

Then, f € PL(3). If additionally, f : R> x Z — R for a bounded set Z C R, then f € F C PL(3). Specifically, setting
Z = [Zmin, Zmax] (as per Assumption 3), we find that Fp C F, where F is defined in (12).

Proof We first prove that f € PL(3).
Let h : R? — R defined as h(u) = (uz — g(u1))?. The function (u;,us) — us — g(uy) is clearly Lipschitz. Thus,
h € PL(2),1i.e.,

[h(u) = h(v)] < C(L+ ullz + v]l2)u—vllz and |A(v)] < C'(1+||v]3). (71)
Therefore, letting = (u, r3) € R® and y = (v,y3) € R3, we have that
£(@) — £w)] = lesh(u) — ysh(w)] < |zsllh(w) — h(w)| + [h@)]zs — s
< Clas|(1+ ullz + [vll2)|w = vll2 + C'(1 + ||v]|3)]s — ys]
< Cllasl? + A+ lluflz + [vl2)*) [l = vl + (1 + [|v]l3)]2s — ysl
< O+ llf3 + lyll2)][w —vll2 + C'(1+ [J]l3 + [[ylI3)]as — ys|
<O+ I3 + Iyl — ylla- (72)

In the second line, we used (71). In the third line, we used 2xy < x? + y2. In the fourth line, we used Cauchy-Schwarz
inequality. C, C" > 0 are absolute constants that may change from line to line.



Now, we shall prove that f € F. To accomplish this, we simply need to show that for all z € Z, f(-, -, z) is PL(2) (for some
uniform PL constant). This can be shown as follows. Let C' = sup, ¢ z |2|. Then

|f(z,y,2) — f(@', 9, 2)| = |2(y — g(x))* — 2(y — g(2'))?] (73)
< Cl(y —g(x))* = (v — g(z))?| (74)
<O+ lulley + [Jvlle,)[lu — vl[e,, (75)

where u = [z, y] and v = [/, 3//]. In the second line above, we used boundedness of Z. In the third line, we used the fact that
the function v (z,y) = (y — g(x))? is PL(2) as it is a quadratic of a Lipschitz function.
This completes the proof of the lemma. [ ]

Lemma 5 (PL with Bounded Variables) Let f : R® — R be a PL(k) function, M C R be a compact set and g be a
continuously differentiable function over M. Then h(z,y) = f(x)g(y) is PL(k + 1) over R x M.

Proof First observe that g has continuous derivatives and is continuous over a compact set. Thus g and its gradient are bounded
and g is Lipschitz over M. Let B = sup,,c », max |g(x)|, || Vg()|¢,. To proceed, given pairs (z, y) and (z’, y') over R x M,
we have that

[z, y) = bz’ y")| < [h(z,y) — bz, y)| + (2’ y) — bz’ y")| (76)

<|f(@) = f(@)lg(y)| + 1 (@)]lg(y) — 9(¢)] (77)

< Blf(z) = f(2')| + Blly — ¢/le.| f ()] (78)

< B+ &'l + llzlig Dlle = 2'lle, + Blly — 3 le. (1 4+ [|2']I7,) (79)

< O+ =8, + 12'11E,) 12 = 2 lleas (80)

where z = [z y| and C an absolute constant. This shows the desired PL(k + 1) guarantee. [ |

The following lemma is in similar spirit to Lemma 5 and essentially follows from similar lines of arguments (i.e. using Lips-
chitzness induced by boundedness).

Lemma 6 Let functions f,g : R®> — R such that f € PL(k) and

—1/2
Y -1
9(2,y,2) 1= ———— VK2 + (1= (1 +&y) ).
1+ (&y)! ( )
Here, &, Ty, Kk are positive constants. Further define
h(z,y,2) = f(9(y,2,2),y,2), 1)

and assume that y take values on a fixed bounded compact set M C RT. Then, it holds that h € PL(k + 1).
Proof Since f is PL(k), for some L > 0, (70) holds. Fix z,2’ € R,a = [y, 2] € R?anda’ = [/, 2] € R%. Letb = [g,a] =
[9,y, 2] € R® where g = g(y, z,7) € R and define accordingly b’ = [g’,a’] and g’ = g(v/, %', 2'). We have that
h([z, a]) = h([2",a])| = |£(b) — f(b)]
<L(L+[Bl5 + 1157 1o — ']l
<C(1+alls™ +lla’l5 " + 191" +1g'(*) (la - a'll2 + g — g']), (82)

d

for some constant C' > 0. In the last inequality we have repeatedly used the inequality (3°;", [|v;][3)2 < C(m)- >0, [Jvi 4.
Next, we need to bound the g term in terms of (z, a). This is accomplished as follows

lg/"~! = ﬂ\/%m +(1-(1+&y) N -
1+ (&y)~t
< O(lz] + |z~
<C(lz/* 4+ 1Y) <Ol + a5 ). (83)

Here, the value of the constant C' > 0 may change from line to line. Secondly and similarly, we have the following perturbation
bound on the g — g’. Recall that i, 3y’ C M are bounded. Additionally, since M C R* and is compact, M is strictly bounded
away from 0. Let

—-1/2

91 (y) = Vi — and go(y) =1—(14+&y)~ "

L+ (&y)!



It can be seen that g7, go are continuously differentiable functions over M. Thus ¢, g2 are bounded and have bounded deriva-
tives over M. We will prove the following sequence of inequalities

lg—g'l =l9(y,z,2) — g(y', 2, 2")|
<o)z — g1(y")2'| + 92(y)z — g2(y") 7’|
<lg1(y)z = g1(y)2’| + 191 (y)2" — g1 (y')2’|
+192(y)2 — g2(9) 2’| + 192(y)2" — 92(¥') ']
< Cilr — 2’| + Col|2'||y — y'| + 3|z — 2| + Cul[|ly — /|
<SCA+ I+ [ZN)(lz =2+ |2 =2+ [y —y]) (84)
< CV3(1+ [/ + 1))@, 2] — [a’, 2] 2. (85)

In the fourth inequality above, we used the fact that |g;(y)|, |¢;(y)| are bounded. In the last line, we used Cauchy-Scwhartz.
Substituting (83) and (85) in (82) gives:

h(z,y,2) = h(z'.y', ) < C(L+lall5™" + la’[l57" + 2| + /1) (L + 2] + |2'])|[[@, 2] — [, 2']||2
< C (14 |la, z]l5 + lla’,2"]]15) l[[a, 2] — [, 2/]||2. (86)
Thus, h € PL(k + 1), as desired. [ |

The following theorem replaces the compactness constraint with closedness in the CGMT and is borrowed from (Li et al.
2020). For related statements see also (Deng, Kammoun, and Thrampoulidis 2019, App. A).

Theorem 2 (CGMT with Closedness Constrains) Let 1) be a convex function obeying limjy||,, —o0 Y(w) = oo. Given a
closed set S, define

CA(X) = min A Xwlle, +9(w) (87)
ox(g,h) = min A([[wlle,lglle, — R w) s + o (w), (88)
and
Poo(X) = _min  4(w) (89)
bc(g,h) = (90)

min
wES,[|wlle, lIglle, <hTw
For all X € [0, 00) U {00}, we have that
o P(®A(X) < t) <2P(oa(X) <1).
o If S is additionally convex, we additionally have that P(® (X)) > t) < 2P(¢x(X) > t). Combining with the first statement,

this implies that for any p,t > 0
P(I®A(X) — ul > t) < 2P(|oa(X) — p| = t)

E Underparameterized analysis

This section provides our results for the asymptotic DC in the underparameterized regime. This results establish direct coun-
terparts of the overparameterized results Definition 3 and Theorem 1. However, underparameterized DC is substantially less
involved compared to overparameterized. A key reason is that underparameterized least-squares returns an unbiased estimate
of the ground-truth parameter. Similar to Section B, for simplicity, we assume diagonal covariance however results can be
translated to arbitrary covariance via eigen-rotation trick (e.g. recall Def. 4). Throughout, we solve the following problem

B = X'y = argmin |y - X8, oD

where y = X 3* + 0z and X = X/X. Now, set w = \/E([)’ — [3*) as previously. We can rewrite
B=X'y=p"+2""%w* where w*=argmin|oz — Xwl7,. (92)

We will prove the following DC for the underparameterized problem with n < p and p/n =k < 1.

Definition 6 (Asymptotic DC — Underparameterized regime) Let random variables (B, \) ~ u (where u is defined in As-
sumption 3) and fix k < 1. Let H ~ N(0, 1) and define the random variable

A2l

\/ﬁ’ (93)

Xuo2(B,H):=B+o

and let 11,; 2 be its distribution.



We are now ready to state our main theoretical result.

Theorem 3 (Asymptotic DC — Underparameterized LGP) Fix x < 1. Let Assumptions ? and 3 hold. Consider ﬁ as in (91)
and 11, (y, X,B8*, %) := % - 5\/1531:,\/15;6:721:,1" the joint empirical distribution of (\/p3, \/pB*, X). Recall the definition of
the measure 11,; ;2 in Def. 6. Let f : R? — R be a function in F where F is defined in (11). We have that

1< . .
];Z F(/PBis VDB Bis) EaB,m~uan(0,1) [f(Xeo2, B,A)] 94)
=1

Specifically, the asymptotic test risk of 5’ is given by %
Proof To avoid repetition, we will not provide the full proof as the technical details of the proofs for over/under-parameterized
overlap to a significant extent. Instead, we will provide the part of the proof that deviates from the overparameterized.

Since & < 1, the problem has a unique solution. Set w = v/X(3 — 3*). Define X, = [X z] and w, = [w o]. This leads to
the optimization problem B
w =argmin || Xw + 0z|¢, = argmin || X ws||¢,-

Fix g ~ N(0,1,),h ~ N(0,1,,),g9 ~ N(0,1). Applying CGMT leads to the following Auxiliary Optimization

#(g,h) =min max hTa|w.|s — ||alng’w + go 95)
@ lafle, <1
= min||hll, [welle, — g7 w + go. (96)
Solving for optimal w leads to the solution
. WwhO og
W = argmin [l o e, — g0 = [l — g = 0= ——L
\ [w?€llZ, +0° VI1RIE, = gllZ,
. AO |12 2 0'2Hh”§2 . AO
Observing ||w??||;. + 0 = 77—r2= and plugging w"* in, we find
2 TRTZ, ~T9lZ,

_ [RII7, — llglI?
o (g ) =~ e g fiRlE g, +
v I1RIE, = llgllz,
Thus, in the asymptotic regime ¢(g, h) converges to the objective

6(g.h) = ¢ =ov/n—p.
The remaining arguments are same as in Lemma 3. First, the problem is strongly convex with o2, (X)), which satisfies
02, (X)/p = 1 wpa. 1. Thus, the solution w* of the primary problem (92) will not deviate from w”°. Secondly, the em-
pirical distribution of
T o\/rg p_ 0\/Pg og og

\/7 *: H — = — 71 s
JIlz = lglz, VPP Vnfp—1 o Ve

converges to c H/+v/k~1 — 1. By Assumption 3, the empirical distribution of \/f)B = /p(B* + 2~ 1/2w*) converges to B +

oA"Y2H/\/k=1T =1 ~ TI, ,2. Finally, again by Assumption 3, for any f € F, we obtain the advertised result (94). The
asymptotic test risk is given by

p 2 2
L(B) =Ellg"VE@B - ) +0z[}] = 0>+ Y (Bi - 8% 0P+ —— =

=1

In the main body of the paper, we claim that the optimal s features to use in the underparameterized regime is given by the
features with the maximum saliency score. This is proven below.

Lemma 7 (Optimal s features to use) Fix a sequence of sets A, C [p] of size s such that 3 ;e n Bri%, N B(A). Set

K = s/n. Under same assumptions as in Thm 3, the asymptotic test risk of B(A) is given by

LBy 2 B- BB 7

Thus, the optimal feature set /A chooses the indices with maximum Saliency Score (4) which maximizes B(A).

11—k



Proof The key idea is the fact that we can treat the missing features as uncorrelated noise. First, due to diagonal covariance,
observe that, over the feature set A, the optimal population model (i.e. infinite sample) is 3% . Thus, the s feature problem

minimized by 3(A) can be written as the dataset model
y=xLBA + 04,
where the noise level is given by
El(y — @aBh)’] = o? + El(@aBy) = o? + Y B,
igA
The latter quantity converges to B — B(A) wpa. 1. Thus, applying Theorem 3, 3(A) achieves the advertised asymptotic risk.
|

F Proof of Lemma 1

Lemma 8 (Lemma 1 restated) Suppose S is drawn from an LGP(0, %, 3,) as in Def. 1 where rank(X) = 1 with = AT
for X € RP. Define { = T,(X)?/|| A7, For magnitude and Hessian pruning (P € {M, H}) and the associated retraining, we
have the following excess risks with respect to 3*

4202

BS[L(B)] - £(B) = —5 + (1= O*(A"8")? 97)
ES[L(BIT)] - £(B") = 0*/(n —2). (98)

Proof Retraining analysis: We claim that for any feature set A with Aa # 0, the test risk of ,@(A) is exactly identical.
Secondly, pruning is guaranteed to pick a nonzero support satisfying Ax # 0 2. Thus, as described next, retraining always
achieves a fixed risk. Set ¢* = AT 3*. By definition, each input example x; has the form x; = g;A and y; = g;c¢* + 0z;. Set
g=1lg1 ... gu)T and g = g/||g||¢,- Thus, we have X = gAT and y = gAT 3* + 2. Decompose z = z + g' zg where Z is
orthogonal to g. When solving the regression of A, we have that

Xa=gM\\ y=c'g+o(z+g"2g)
The least-squares solution has the form 8 = B(A) = éAa/ [Aall7, where
A:argmin||(c*—c)g+az||gz = ¢=c"+o07. (99)

Hgll . Observe that /p~y has Student’s t-distribution with p degrees of freedom. Set h, € N (0,1). Now, observe

that a fresh test sample with y = 7 8* + oe with = g, the test error obeys

where v =

L(B(A)) =E(y —zXB(A))? (100)
= E[((¢* — &)g + 0¢)?] (101)
= (v*+1)0? (102)

Now, observe that the minimum risk is obviously £(3*) = o2. Thus, the excess retraining risk becomes

L(B(A)) - L(B) =~*0>.
regardless of choice of A. Finally, averaging this risk over S returns E[0?y?] = 02 /(n — 2). Thus retraining risk has the fixed
excess risk same as the one advertised in Lemma 1. )
Pruning analysis: For pruning setting A = [p] above, we have that 3 = ¢\ /||A||7,. This means that, for both Magnitude and
Hessian pruning?, pruned vector takes the form 3, = ¢T, (A)/IIA]I7, - Using the fact that ATT (X) = [|To(A)IZ, = CIIAlIZ,
we find

. T
(B — £(B*) = E[(c* Wm oo - o (103)
=E[(¢* — &) g + 0€)?] — o? (104)

=E[(((1 = {)c* = (ov)g + 0€)?] — o2 (105)

= ((1-¢)c* — o)™ (106)

This is because B = ¢ for some scalar ¢ # 0 as ,@ lies in the row space of X. Then, Hessian/Magnitude-pruning would pick a nonzero
support of 3 which corresponds to the nonzero support of .

3 . . . . . . . .
They yield the same result since diagonal covariance is proportional to A in magnitude.



Finally, using zero-mean ~y, we find

Es[C(B,)] - £(8*) = Es[(1 = Q)¢ = ¢o7)*] = (1 = ¢)*¢*? + ﬁ =

which concludes the proof after observing ¢*? = (AT 3*)2. Here, we call (1 — ¢)2¢*? “the error due to bias”. The reason is that
the predictable signal in the data is the noiseless component & 3*. Pruning leads to an error in this predictable component by
resulting in a biased estimate of the label (when conditioned on the random variable g which controls the signal). [ ]



