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Abstract

Constructing useful representations across a large number
of tasks is a key requirement for sample-efficient intelligent
systems. A traditional idea in multitask learning (MTL) is
building a shared representation across tasks which can then
be adapted to new tasks by tuning last layers. A desirable
refinement of using a shared one-fits-all representation is to
construct task-specific representations. To this end, recent Path-
Net/muNet architectures represent individual tasks as path-
ways within a larger supernet. The subnetworks induced by
pathways can be viewed as task-specific representations that
are composition of modules within supernet’s computation
graph. This work explores the pathways proposal from the
lens of statistical learning: We first develop novel generaliza-
tion bounds for empirical risk minimization problems learn-
ing multiple tasks over multiple paths (Multipath MTL). In
conjunction, we formalize the benefits of resulting multipath
representation when adapting to new downstream tasks. Our
bounds are expressed in terms of Gaussian complexity, lead
to tangible guarantees for the class of linear representations,
and provide novel insights into the quality and benefits of a
multipath representation. When computation graph is a tree,
Multipath MTL hierarchically clusters the tasks and builds
cluster-specific representations. We provide further discussion
and experiments for hierarchical MTL and rigorously identify
the conditions under which Multipath MTL is provably supe-
rior to traditional MTL approaches with shallow supernets.

1 Introduction
Multitask learning (MTL) promises to deliver significant ac-
curacy improvements by leveraging similarities across many
tasks through shared representations. The potential of MTL
has been recognized since 1990s (Caruana 1997) however its
impact has grown over time thanks to more recent machine
learning applications arising in computer vision and NLP that
involve large datasets with thousands of classes/tasks. Repre-
sentation learning techniques (e.g. MTL and self-supervision)
are also central to the success of deep learning as large pre-
trained models enable data-efficient learning for downstream
transfer learning tasks (Deng et al. 2009; Brown et al. 2020).

As we move from tens of tasks trained with small mod-
els to thousands of tasks trained with large models, new
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Figure 1: In Multipath MTL, each task selects a pathway
within a supernet graph. The composition of the modules
along the pathway forms the task-specific representation.
Fig. 1a depicts a general supernet graph (highlighted in gray
block), and the pathways for different tasks are shown in
colored arrows. Fig. 1b is a special instance where related
tasks are hierarchically clustered: For instance, Tasks 1 and 2
are assinged the same representation ψ1

2 ◦ ψ1.

statistical and computational challenges arise: First, not all
tasks will be closely related to each other, for instance, tasks
might admit a natural clustering into groups. This is also
connected to heterogeneity challenge in federated learning
where clients have distinct distributions and benefit from per-
sonalization. To address this challenge, rather than a single
task-agnostic representation, it might be preferable to use a
task-specific representation. Secondly, pretrained language
and vision models achieve better accuracy with larger sizes
which creates computational challenges as they push towards
trillion parameters. This motivated new architectural propos-
als such as Pathways/PathNet (Fernando et al. 2017; Dean
2021; Gesmundo and Dean 2022b) where tasks can be com-
puted over compute-efficient subnetworks. At a high-level,
each subnetwork is created by a composition of modules
within a larger supernet which induces a pathway as depicted
in Figure 1. Inspired from these challenges, we ask

Q: What are the statistical benefits of learning task-
specific representations along supernet pathways?

Our primary contribution is formalizing the Multipath MTL
problem depicted in Figure 1 and developing associated sta-
tistical learning guarantees that shed light on its benefits. Our
formulation captures important aspects of the problem includ-
ing learning compositional MTL representations, multilayer



nature of supernet, assigning optimal pathways to individ-
ual tasks, and transferring learned representations to novel
downstream tasks. Our specific contributions are as follows.
• Suppose we have N samples per task and T tasks in total.
Denote the hypothesis sets for multipath representation by Φ,
task specific heads by H and potential pathway choices by
A. Our main result bounds the task-averaged risk of MTL as√

DoF(Φused)
NT

+
√

DoF(H) + DoF(A)
N

. (1)

Here, DoF(·) returns the degrees of freedom of a hypothe-
sis set (i.e. number of parameters). More generally, Theo-
rem 1 states our guarantees in terms of Gaussian complexity.
Φused ⊆ Φ is the supernet spanned by the pathways of the
empirical solution and 1/NT dependence implies that cost of
representation learning is shared across tasks. We also show
a no-harm result (Lemma 1): If the supernet is sufficiently
expressive to achieve zero empirical risk, then, the excess
risk of individual tasks will not be harmed by the other tasks.
Theorem 2 develops guarantees for transferring the resulting
MTL representation to a new task in terms of representation
bias of the empirical MTL supernet.
•When the supernet has a single module, the problem boils
down to (vanilla) MTL with single shared representation
and our bounds recover the results by (Maurer, Pontil, and
Romera-Paredes 2016; Tripuraneni, Jin, and Jordan 2021).
When the supernet graph is hierarchical (as in Figure 1b), our
bounds provide insights for the benefits of clustering tasks
into similar groups and superiority of multilayer Multipath
MTL over using single-layer shallow supernets (Section 5).
•We develop stronger results for linear representations over a
supernet and obtain novel MTL and transfer learning bounds
(Sec. 4 and Theorem 4). These are accomplished by develop-
ing new task-diversity criteria to account for the task-specific
(thus heterogeneous) nature of multipath representations. Nu-
merical experiments support our theory and verify the ben-
efits of multipath representations. Finally, we also highlight
multiple future directions.

2 Setup and Problem Formulations
Notation. Let ∥ · ∥ denote the ℓ2-norm of a vector and opera-
tor norm of a matrix. | · | denotes the absolute value for scalars
and cardinality for discrete sets. We use [K] to denote the
set {1, 2, . . . ,K} and ≲,≳ for inequalities that hold up to
constant/logarithmic factors. QK denotes K-times Cartesian
product of a set Q with itself. ◦ denotes functional composi-
tion, i.e., f ◦ g(x) = f(g(x)).
Setup. Suppose we have T tasks each following data dis-
tribution {Dt}Tt=1. During MTL phase, we are given T
training datasets {St}Tt=1 each drawn i.i.d. from its corre-
sponding distribution Dt. Let St = {(xti, yti)}Ni=1, where
(xti, yti) ∈ (X ,R) is an input-label pair and X is the in-
put space, and |St| = N is the number of samples per task.
We assume the same N for all tasks for cleaner exposition.
Define the union of the datasets by Sall =

⋃T
t=1 St (with

|Sall| = NT ), and the set of distributions by D̄ = {Dt}Tt=1.
Following the setting of related works (Tripuraneni, Jin,

and Jordan 2021), we will consider two problems: (1) MTL

problem will use these T datasets to learn a supernet and
establish guarantees for representation learning. (2) Transfer
learning problem will use the resulting representation for a
downstream task in a sample efficient fashion.
Problem (1): Multipath Multitask Learning (M2TL). We
consider a supernet with L layers where layer ℓ has Kℓ mod-
ules for ℓ ∈ [L]. As depicted in Figure 1, each task will
compose a task-specific representation by choosing one mod-
ule from each layer. We refer to each sequence of L modules
as a pathway. LetA = [K1]×· · ·×[KL] be the set of all path-
way choices obeying |A| =

∏L
ℓ=1 Kℓ. Let αt ∈ A denote

the pathway associated with task t ∈ [T ] where αt[ℓ] ∈ [Kℓ]
denotes the selected module index from layer ℓ. We remark
that results can be extended to more general pathway sets as
discussed in Section 3.1.

As depicted in Figure 1, let Ψℓ be the hypothesis set of
modules in ℓth layer and ψkℓ ∈ Ψℓ denote the kth module
function in the ℓth layer, referred to as (ℓ, k)’th module. Let
ht ∈ H be the prediction head of task t where all tasks use
the same hypothesis setH for prediction. Let us denote the
combined hypothesis

h = [h1, . . . , hT ] ∈ HT ,
α = [α1, . . . , αT ] ∈ AT ,
ψℓ = [ψ1

ℓ , . . . , ψ
Kℓ

ℓ ] ∈ ΨKℓ

ℓ , ∀ℓ ∈ [L],
ϕ := [ψ1, . . . ,ψL] ∈ Φ

where Φ = ΨK1
1 ×· · ·×ΨKL

L is the supernet hypothesis class
containing all modules/layers. Given a supernet ϕ ∈ Φ and
pathway α, ϕα = ψαL ◦ · · · ◦ ψα1 denotes the representation
induced by pathway α where we use the convention ψαℓ :=
ψ
α[ℓ]
ℓ . Hence, ϕαt

is the representation of task t. We would
like to solve for supernet weightsϕ, pathwaysα, and headsh.
Thus, given a loss function ℓ(ŷ, y), Multipath MTL (M2TL)
solves the following empirical risk minimization problem
over Sall to optimize the combined hypothesis f = (h,α,ϕ):

f̂ = arg min
f∈F

L̂Sall(f) := 1
T

T∑
t=1
L̂t(ht ◦ ϕαt

) (M2TL)

where L̂t(f) = 1
N

N∑
i=1

ℓ(f(xti), yti)

F := HT ×AT × Φ.

Here L̂t and L̂Sall are task-conditional and task-averaged
empirical risks. We are primarily interested in controlling
the task-averaged test risk LD̄(f) = E[L̂Sall(f)]. Let L⋆D̄ :=
minf∈F LD̄(f), then the excess MTL risk is defined as

RM2TL(f̂) = LD̄(f̂)− L⋆D̄. (2)

Problem (2): Transfer Learning with Optimal Pathway
(TLOP). Suppose we have a novel target task with i.i.d. train-
ing dataset ST = {(xi, yi)}Mi=1 with M samples drawn from
distribution DT . Given a pretrained supernet ϕ (e.g., fol-
lowing (M2TL)), we can search for a pathway α so that ϕα
becomes a suitable representation for DT . Thus, for this new



task, we only need to optimize the path α ∈ A and the pre-
diction head h ∈ HT while reusing weights of ϕ. This leads
to the following problem:

f̂ϕ = arg min
h∈HT ,α∈A

L̂T (f) where f = h ◦ ϕα (TLOP)

and L̂T (f) = 1
M

M∑
i=1

ℓ(f(xi), yi).

Here, f̂ϕ reflects the fact that solution depends on the suit-
ability of pretrained supernet ϕ. Let f⋆ϕ be a population
minima of (TLOP) given supernet ϕ (as M → ∞) and
define the population risk LT (f) = E[L̂T (f)]. (TLOP)
will be evaluated against the hindsight knowledge of op-
timal supernet for target: Define the optimal target risk
L⋆T := minh∈HT ,ϕ∈Φ LT (h ◦ ϕα) which optimizes h,ϕ
for the target task along the fixed pathway α = [1, . . . , 1].
Here we can fix α since all pathways result in the same search
space. We define the excess transfer learning risk to be

RTLOP(f̂ϕ) = LT (f̂ϕ)− L⋆T (3)

= LT (f̂ϕ)− LT (f⋆ϕ)︸ ︷︷ ︸
variance

+ LT (f⋆ϕ)− L⋆T︸ ︷︷ ︸
supernet bias

.

The final line decomposes the overall risk into a variance
term and supernet bias . The former arises from the fact that
we solve the problem with finite training samples. This term
will vanish as M → ∞. The latter term quantifies the bias
induced by the fact that (TLOP) uses the representation ϕ
rather than the optimal representation. Finally, while supernet
ϕ in (TLOP) is arbitrary, for end-to-end guarantees we will
set it to the solution ϕ̂ of (M2TL). In this scenario, we will
refer to {Dt}Tt=1 as source tasks.

3 Main Results
We are ready to present our results that establish generaliza-
tion guarantees for multitask and transfer learning problems
over supernet pathways. Our results will be stated in terms
of Gaussian complexity which is introduced below.

Definition 1 (Gaussian Complexity) Let Q be a set of hy-
potheses that map Z to Rr. Let (gi)ni=1 (gi ∈ Rr) be n
independent vectors each distributed as N (0, Ir) and let
Z = (zi)ni=1 ∈ Zn be a dataset of input features. Then, the
empirical Gaussian complexity is defined as

ĜZ(Q) = Egi

[
sup
q∈Q

1
n

n∑
i=1

g⊤
i q(zi)

]
.

The worst-case Gaussian complexity is obtained by consider-
ing the supremum over Z ∈ Zn as follows

G̃Z
n (Q) = sup

Z∈Zn

[ĜZ(Q)].

For cleaner notation, we drop the superscript Z from the
worst-case Gaussian complexity (using G̃n(Q)) as its input
space will be clear from context. When Z = (zi)ni=1 are

drawn i.i.d. from D, the (usual) Gaussian complexity is de-
fined by Gn(Q) = EZ∼Dn [ĜZ(Q)]. Note that, we always
have Gn(Q) ≤ G̃n(Q) assuming D is supported on Z . In our
setting, keeping track of distributions along exponentially
many pathways proves challenging, and we opt to use G̃n(Q)
which leads to clean upper bounds. The supplementary mate-
rial also derives tighter but more convoluted bounds in terms
of empirical complexity. Finally, it is well-known that Gaus-
sian/Rademacher complexities scale as

√
comp(Q)/n where

comp(Q) is a set complexity such as VC-dimension, which
links to our informal statement (1).

We will first present our generalization bounds for the
Multipath MTL problem using empirical process theory ar-
guments. Our bounds will lead to meaningful guarantees
for specific MTL settings, including vanilla MTL where all
tasks share a single representation, as well as hierarchical
MTL depicted in Fig. 1b. We will next derive transfer learn-
ing guarantees in terms of supernet bias, which quantifies
the performance difference of a supernet from its optimum
for a target. To state our results, we introduce two standard
assumptions.

Assumption 1 Elements of hypothesis setsH and (Ψℓ)Lℓ=1
are Γ-Lipschitz functions with respect to Euclidean norm.

Assumption 2 Loss function ℓ(·, y) : R × R → [0, 1] is
Γ-Lipschitz with respect to Euclidean norm.

3.1 Results for Multipath Multitask Learning
This section presents our task-averaged generalization bound
for Multipath MTL problem. Recall that f̂ = (ĥ, α̂, ϕ̂) is the
outcome of the ERM problem (M2TL). Observe that, if we
were solving the problem with only one task, the generaliza-
tion bound would depend on only one module per layer rather
than the overall size of the supernet. This is because each
task gets to select a single module through their pathway. In
light of this, we can quantify the utilization of supernet layers
as follows: Let K̂ℓ be the number of modules utilized by the
empirical solution f̂ . Formally, K̂ℓ = |{α̂t[ℓ] for t ∈ [T ]}|.
The following theorem provides our guarantee in terms of
Gaussian complexities of individual modules.

Theorem 1 Suppose Assumptions 1&2 hold. Let f̂ be the
empirical solution of (M2TL). Then, with probability at least
1− δ, the excess test risk in (2) obeysRM2TL(f̂)

≲ G̃N (H) +
L∑
ℓ=1

√
K̂ℓG̃NT (Ψℓ) +

√
log |A|
N

+ log(2/δ)
NT

.

Here, the input spaces forH and Ψℓ are XH = ΨL ◦ . . .Ψ1 ◦
X , XΨℓ

= Ψℓ−1 ◦ . . .Ψ1 ◦ X for ℓ > 1, and XΨ1 = X .

In Theorem 1,
√

log |A|
N quantifies the cost of learning

the pathway and G̃N (H) quantifies the cost of learning the
prediction head for each task t ∈ [T ]. log |A| dependence
is standard for the discrete search space |A|. The G̃NT (Ψℓ)
terms are more interesting and reflect the benefits of MTL.
The reason is that, these modules are essentially learned with



NT samples rather than N samples, thus cost of represen-
tation learning is shared across tasks. The

√
K̂ℓ multiplier

highlights the fact that, we only need to worry about the
used modules rather than all possible Kℓ modules we could
have used. In essence,

∑L
ℓ=1

√
K̂ℓG̃NT (Ψℓ) summarizes the

Gaussian complexity of G̃(Φused) where Φused is the subnet-
work of the supernet utilized by the ERM solution f̂ . By
definition G̃(Φused) ≤ G̃(Φ). With all these in mind, Theo-
rem 1 formalizes our earlier statement (1).

A key challenge we address in Theorem 1 is decompos-
ing the complexity of the combined hypothesis class F in
(M2TL) into its building blocks A,H, (Ψℓ)Lℓ=1. This is ac-
complished by developing Gaussian complexity chain rules
inspired from the influential work of (Tripuraneni, Jordan,
and Jin 2020; Maurer 2016). While this work focuses on
two layer composition (prediction heads composed with a
shared representation), we develop bounds to control arbi-
trarily long compositions of hypotheses. Accomplishing this
in our multipath setting presents additional technical chal-
lenges because each task gets to choose a unique pathway.
Thus, tasks don’t have to contribute to the learning process
of each module unlike the vanilla MTL with shared represen-
tation. Consequently, ERM solution is highly heterogeneous
and some modules and tasks will be learned better than the
others. Worst-case Gaussian complexity plays an important
role to establish clean upper bounds in the face of this het-
erogeneity. In fact, in supplementary material, we provide
tighter bounds in terms of empirical Gaussian complexity Ĝ,
however, they necessitate more convoluted definitions that
involve the number of tasks that choose a particular module.

Finally, we note that our bound has a natural interpreta-
tion for parametric classes whose log(ε-covering number)
(i.e. metric entropy) grows with degrees of freedom as
DoF·log(1/ε). Then, Theorem 1 implies a risk bound propor-

tional to

√
T ·(DoF(H)+log |A|)+

∑L

ℓ=1
K̂ℓ·DoF(Ψℓ)

NT . For a neural
net implementation, this means small risk as soon as total
sample size NT exceeds total number of weights.

We have a few more remarks in place, discussed below.

• Dependencies. In Theorem 1, ≲ suppresses dependencies
on log(NT ) and ΓL. The latter term arises from the exponen-
tially growing Lipschitz constant as we compose more/deeper
modules, however, it can be treated as a constant for fixed
depth L. We note that such exponential depth dependence is
frequent in existing generalization guarantees in deep learn-
ing literature (Golowich, Rakhlin, and Shamir 2018; Bartlett,
Foster, and Telgarsky 2017; Neyshabur et al. 2018, 2017).
In supplementary material, we prove that the exponential
dependence can be replaced with a much stronger bound of√
L by assuming parameterized hypothesis classes.

• Implications for Vanilla MTL. Observe that Vanilla MTL
with single shared representation corresponds to the setting
L = 1 and K1 = 1. Also supernet is simply Φ = Ψ1 and
log |A| = 0. Applying Theorem 1 to this setting with T
tasks each with N samples, we obtain an excess risk upper
bound of Õ

(
G̃NT (Φ) + G̃N (H)

)
, where representation Φ

is trained with NT samples with input space X , and task-
specific heads ht ∈ H are trained with N samples with
input space Φ ◦ X . This bound recovers earlier guarantees
by (Maurer, Pontil, and Romera-Paredes 2016; Tripuraneni,
Jordan, and Jin 2020).

• Unselected modules do not hurt performance. A useful
feature of our bound is its dependence on Φused (spanned by
empirical pathways) rather than full hypothesis class Φ. This
feature arises from a uniform concentration argument where
we uniformly control the excess MTL risk over all potential
Φused choices. This uniform control ensures G̃NT (Φused) cost
for the actual solution f̂ and it only comes at the cost of an

additional
√

log |A|
N term which is free (up to constant)!

• Continuous pathways. This work focuses on relatively
simple pathways where tasks choose one module from each
layer. The results can be extended to other choices of pathway
sets A. First, note that, as long as A is a discrete set, we will

naturally end up with the excess risk dependence of
√

log |A|
N .

However, one can also consider continuous α, for instance,
due to relaxation of the discrete set with a simplex constraint.
Such approaches are common in differentiable architecture
search methods (Liu, Simonyan, and Yang 2019). In this case,
each entry α[ℓ] can be treated as a Kℓ dimensional vector
that chooses a continuous superposition of ℓ’th layer modules.
Thus, the overall α ∈ A parameter would have comp(A) =∑L

ℓ=1 Kℓ resulting in an excess risk term of
√∑L

ℓ=1 Kℓ/N .
Note that, these are high-level insights based on classical
generalization arguments. In practice, performance can be
much better than these uniform concentration based upper
bounds.

• No harm under overparameteration. A drawback of
Theorem 1 is that, it is an average-risk guarantee over T
tasks. In practice, it is possible that some tasks are hurt during
MTL because they are isolated or dissimilar to others (see
supplementary for examples). Below, we show that, if the
supernet achieves zero empirical risk, then, no task will be
worse than the scenario where they are individually trained
with N samples, i.e. Multipath MTL does not hurt any task.

Lemma 1 Recall f̂ is the solution of (M2TL) and f̂t =
ĥt ◦ ϕ̂α̂t

is the associated task-t hypothesis. Define the excess
risk of task t as Rt(f̂t) = Lt(f̂t) − L⋆t where Lt(f) =
EDt [L̂t(f)] is the population risk of task t and L⋆t is the
optimal achievable test risk for task t overF . With probability
at least 1− δ − P(L̂Sall(f̂) ̸= 0), for all tasks t ∈ [T ],

Rt(f̂t) ≲ G̃N (H) +
L∑
ℓ=1
G̃N (Ψℓ) +

√
log(2T/δ)

N
.

Here, P(L̂Sall(f̂) = 0) is the event of interpolation (zero
empirical risk) under which the guarantee holds. We call this
no harm because the bound is same as what one would get by
applying union bound over T empirical risk minimizations
where each task is optimized individually.



3.2 Transfer Learning with Optimal Pathway
Following Multipath MTL problem, in this section, we dis-
cuss guarantees for transfer learning on a supernet. Recall that
A is the set of pathways and our goal in (TLOP) is finding
the optimal pathway α ∈ A and prediction head h ∈ HT to
achieve small target risk. In order to quantify the bias arising
from the Multipath MTL phase, we introduce the following
definition.

Definition 2 (Supernet Bias) Recall the definitions DT ,
HT , and L⋆T stated in Section 2. Given a supernet ϕ, we
define the supernet/representation bias of ϕ for a target T as

BiasT (ϕ) = min
h∈HT ,α∈A

LT (h ◦ ϕα)− L⋆T .

Definition 2 is a restatement of the supernet bias term
in (3). Importantly, it ensures that the optimal pathway-
representation over ϕ can not be worse than the optimal
performance by BiasT (ϕ). Following this, we can state a gen-
eralization guarantee for transfer learning problem (TLOP).

Theorem 2 Suppose Assumptions 1&2 hold. Let supernet ϕ̂
be the solution of (M2TL) and f̂ϕ̂ be the empirical minima

of (TLOP) with respect to supernet ϕ̂. Then with probability
at least 1− δ,

RTLOP(f̂ϕ̂) ≲ BiasT (ϕ̂) +
√

log(2|A|/δ)
M

+ G̃M (HT ),

where input space of G̃M (HT ) is given by {ϕ̂α◦X
∣∣ α ∈ A}.

Theorem 2 highlights the sample efficiency of transfer
learning with optimal pathway. While the derivation is
straightforward relative to Theorem 1, the key consideration
is the supernet bias BiasT (ϕ̂). This term captures the excess
risk in (TLOP) introduced by using ϕ̂. Let ϕ⋆ be the popula-
tion minima of (M2TL). Then we can define the supernet dis-
tance of ϕ̂ and ϕ⋆ by dT (ϕ̂;ϕ⋆) = BiasT (ϕ̂)−BiasT (ϕ⋆).
The distance measures how well the finite sample solution
ϕ̂ from (M2TL) performs compared to the optimal MTL
solution ϕ⋆. A plausible assumption is so-called task di-
versity proposed by Chen et al. (2021); Tripuraneni, Jor-
dan, and Jin (2020); Xu and Tewari (2021). Here, the idea
(or assumption) is that, if a target task is similar to the
source tasks, the distance term for target can be controlled in
terms of the excess MTL risk RM2TL(f̂) (e.g. by assuming
dT (ϕ̂;ϕ⋆) ≲ RM2TL(f̂) + ε). Plugging in this assumption
would lead to end-to-end transfer guarantees by integrating
Theorems 1 and 2, and we extend the formal analysis to ap-
pendix. However, as discussed in Theorem 4, in multipath
setting, the problem is a lot more intricate because source
tasks can choose totally different task-specific representations
making such assumptions unrealistic. In contrast, Theorem 4
establishes concrete guarantees by probabilistically relating
target and source distributions. Finally, BiasT (ϕ⋆) term is un-
avoidable, however, similar to dT (ϕ̂;ϕ⋆), it will be small as
long as source and target tasks benefit from a shared supernet
at the population level.

4 Guarantees for Linear Representations
As a concrete instantiation of Multipath MTL, consider a
linear representation learning problem where each module
ψkℓ applies matrix multiplications parameterized byBk

ℓ with
dimensions pℓ × pℓ−1: ψkℓ (x) = Bk

ℓ x. Here pℓ are module
dimensions with input dimension p0 = p and output dimen-
sion pL. Given a path α, we obtain the linear representation
Bα = ΠL

ℓ=1B
α[ℓ]
ℓ ∈ RpL×p where pL is the number of rows

of the final moduleBα[L]
L . When pL ≪ p,Bα is a fat matrix

that projects x ∈ Rp onto a lower dimensional subspace.
This way, during few-shot adaptation, we only need to train
pL ≪ p parameters with featuresBαx. This is also the cen-
tral idea in several works on linear meta-learning (Kong et al.
2020a; Sun et al. 2021; Bouniot et al. 2020; Tripuraneni, Jin,
and Jordan 2021) which focus on a single linear representa-
tion. Our discussion within this section extends these results
to the Multipath MTL setting.

Denote f = {((Bk
ℓ )Kℓ

k=1)Lℓ=1, (ht, αt)Tt=1} where ht ∈
RpL are linear prediction heads. Let F be the search space
associated with f . Follow the similar setting as in Section 2
and let X ⊂ Rp. Given dataset Sall = (St)Tt=1, we study

f̂ = min
f∈F
L̂Sall(f) := 1

NT

T∑
t=1

N∑
i=1

(yti − h⊤
t Bαt

xti)2.

(4)

Let Bp(r) ⊂ Rp be the Euclidean ball of radius r. To proceed,
we make the following assumption for a constant C ≥ 1.

Assumption 3 For all ℓ ∈ [L], Ψℓ is the set of matrices with
operator norm bounded by C andH = BpL(C).

The result below is a variation of Theorem 1 where the bound
is refined for linear representations (with finite parameters).

Theorem 3 Suppose Assumptions 2&3 hold, and input set
X ⊂ Bp(R) for a constant R > 0. Then, with probability at
least 1− δ,

RM2TL(f̂) ≲
√
L · DoF(F)

NT
+
√

log |A|
N

+ log(2/δ)
NT

,

where DoF(F) = T · pL +
∑L
ℓ=1 Kℓ · pℓ · pℓ−1 is the total

number of trainable parameters in F .

We note that Theorem 3 can be stated more generally for
neural nets by placing ReLU activations between layers. Here
≲ subsumes the logarithmic dependencies, and the sample
complexity has linear dependence on L (rather than exponen-
tial dependence as in Thm 1). In essence, it implies small
task-averaged excess risk as soon as total sample size ≳
total number of weights.

While flexible, this result does not guarantee that f̂ can
benefit transfer learning for a new task. To proceed, we intro-
duce additional assumptions under which we can guarantee
the success of (TLOP). The first assumption is a realizability
condition that guarantees tasks share same supernet represen-
tation (so that supernet bias is small).

Assumption 4 (A) Task datasets are generated from a
planted model (xt, yt) ∼ Dt where yt = x⊤

t θ
⋆
t + zt where



xt, zt are zero mean,O (1)-subgaussian and E[xtx⊤
t ] = Ip.

(B) Task vectors are generated according to ground-truth
supernet f⋆ = {((B̄k

ℓ )Kℓ

k=1)Lℓ=1, (h̄t, ᾱt)Tt=1} so that θ⋆t =
B̄⊤
ᾱt
h̄t. f⋆ is normalized so that ∥B̄k

ℓ ∥ = ∥h̄t∥ = 1.

Our second assumption is a task diversity condition adapted
from (Tripuraneni, Jin, and Jordan 2021; Kong et al. 2020b)
that facilitates the identifiability of the ground truth supernet.

Assumption 5 (Diversity during MTL) Cluster the tasks
by their pathways via Hα = {h̄t

∣∣ ᾱt = α}. Define clus-
ter population γα = |Hα|/pL and covariance Σα =
γ−1
α

∑
h∈Hα

hh⊤. For a proper constant c > 0 and for
all pathways α we have Σα ⪰ cIpL

.

Verbally, this condition requires that, if a pathway is chosen
by a source task, that pathway should contain diverse tasks
so that (M2TL) phase can learn a good representation that
can benefit transfer learning. However, this definition is flex-
ible in the sense that pathways can still have sophisticated
interactions/intersections and we don’t assume anything for
the pathways that are not chosen by source. We also have
the challenge that, some pathways can be a lot more pop-
ulated than others and target task might suffer from poor
MTL representation quality over less populated pathways.
The following assumption is key to overcoming this issue by
enforcing a distributional prior on the target task pathway so
that its pathway is similar to the source tasks in average.

Assumption 6 (Distribution of target task) Draw αT uni-
formly at random from source pathways (ᾱt)Tt=1. Target task
is distributed as in Assumption 4(A) with pathway αT and
θ⋆T = B̄⊤

αT
hT with ∥hT ∥ = 1.

With these assumptions, we have the following result that
guarantees end-to-end multipath learning ((M2TL) phase fol-
lowed by (TLOP) using MTL representation).

Theorem 4 Suppose Assumptions 3–6 hold and ℓ(ŷ, y) =
(y − ŷ)2. Additionally assume input set X ⊂ Bp(R) for a
constantR > 0 andHT ⊂ RpL . Solve MTL problem (M2TL)
with the knowledge of ground-truth pathways (ᾱt)Tt=1 to
obtain a supernet ϕ̂ and NT ≳ DoF(F) log(NT ). Solve
transfer learning problem (TLOP) with ϕ̂ to obtain a target
hypothesis f̂ϕ̂. Then, with probability at least 1−3e−cM − δ,

path-averaged excess target risk (3) obeys EαT [RTLOP(f̂ϕ̂)]

≲ pL

√
L · DoF(F) + log(8/δ)

NT
+ pL
M

+
√

log(8|A|/δ)
M

.

Here DoF(F) = T · pL +
∑L
ℓ=1 Kℓ · pℓ · pℓ−1, and EαT

denotes the expectation over the random target pathways.

In words, this result controls the target risk in terms of the
sample size of the target task and sample size during multi-
task representation learning, and provides a concrete instan-
tiation of discussion following Theorem 2. In Theorem 9 in
appendix, we provide a tighter bound for expected transfer
risk when linear head hT is uniformly drawn from the unit
sphere. The primary challenge in our work compared to re-
lated vanilla MTL results by (Tripuraneni, Jin, and Jordan
2021; Du et al. 2020; Kong et al. 2020b) is the fact that,

we deal with exponentially many pathway representations
many of which may be low quality. Assumption 6 allows us
to convert task-averaged MTL risk into a transfer learning
guarantee over a random pathway. Finally, Theorem 4 as-
sumes that source pathways are known during MTL phase.
In Appendix E, we show that this assumption is indeed neces-
sary: Otherwise, one can construct scenarios where (M2TL)
problem admits an alternative solution f̃ with optimal MTL
risk but the resulting supernet ϕ̃ achieves poor target risk.
Supplementary material discusses this challenge and identi-
fies additional conditions that make ground-truth pathways
uniquely identifiable when we solve (M2TL).

5 Insights from Hierarchical Representations
We now discuss the special two-layer supernet structure de-
picted in Figure 1b. This setting groups tasks into K := K2
clusters and first layer module is shared across all tasks
(K1 = 1). Ignoring first layer, pathway αt ∈ [K] becomes
the clustering assignment for task t. Applying Theorem 1,
we obtain a generalization bound of

RM2TL(f̂) ≲ G̃NT (Ψ1)+
√
KG̃NT (Ψ2)+G̃N (H)+

√
logK
N

.

Here, ψ1 ∈ Ψ1 is the shared first layer module, ψk2 ∈ Ψ2
is the module assigned to cluster k ∈ [K] that personalizes
its representation, and we have |A| = K. To provide fur-
ther insights, let us focus on linear representations with the
notation of Section 4: ψ1(x) = B1x, ψk2 (x′) = Bk

2x
′, and

ht(x′′) = h⊤
t x

′′ with dimensionsB1 ∈ RR×p,Bk
2 ∈ Rr×R,

ht ∈ Rr and r ≤ R ≤ p. Our bound now takes the form

RM2TL(f̂) ≲
√
Rp+KrR+ T (r + logK)

NT
,

whereRp andKrR are the number of parameters in supernet
layers 1 and 2, and (r + logK)/N is the cost of learning
pathway and prediction head per task. Let us contrast this to
the shallow MTL approaches with 1-layer supernets.
• Vanilla MTL: LearnB1 ∈ RR×p and learn larger predic-
tion heads hVt ∈ RR (no clustering needed).
• Cluster MTL: Learn larger cluster modulesBC,k

2 ∈ Rr×p,
and learn pathway αt and head ht ∈ Rr (noB1 needed).
Experimental Insights. Before providing a theoretical com-
parison, let us discuss the experimental results where we
compare these three approaches in a realizable dataset gen-
erated according to Figure 1b. Specifically, we generate B̄1
and {B̄k

2}Kk=1 with orthonormal rows uniformly at random
independently. We also generate h̄t uniformly at random over
the unit sphere independently. Let ᾱt be the cluster assign-
ment of task t where each cluster has same size/number of
tasks with T̄ = T/K tasks. The distribution Dt associated
with task t is generated as

y = x⊤θ⋆t where θ⋆t = (h̄⊤
t B̄

αt
2 B̄1)⊤, x ∼ N (0, Ip),

without label noise. We evaluate and present results from
two scenarios where cluster assignment of each task ᾱt is
known (Figure 2) or not (Figure 3). MTL, Cluster-MTL and
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(a) Varying n with T̄ = 10, K = 40
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(b) Varying T̄ with N = 10, K = 40
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(c) Varying K with N = 10, T̄ = 10
Figure 2: We compare the sample complexity of MTL, Cluster-MTL and Multipath-MTL in a noiseless linear regression setting.
For each figure, we fix two of the configurations and vary the other one. We find that Multipath-MTL is superior to both baselines
of MTL and Cluster-MTL as predicted by our theory. The solid curves are the median risk and the shaded regions highlight the
first and third quantile risks. Each marker is obtained by averaging 20 independent realizations.

Multipath-MTL labels corresponds to our single representa-
tion, clustering and hierarchical MTL strategies respectively,
in the figures.

In Figure 2, we solve MTL problems with the knowl-
edge of clustering ᾱt. We set ambient dimension p = 32,
shared embedding R = 8, and cluster embeddings r = 2.
We consider a base configuration of K = 40 clusters,
T̄ = T/K = 10 tasks per cluster and N = 10 samples
per task (see supplementary material for further details). Fig-
ure 2 compares the performance of three approaches for the
task-averaged MTL test risk and demonstrates consistent
benefits of Multipath MTL for varying K, T̄ ,N .

We also consider the setting where ᾱt, t ∈ [T ] are un-
known during training. Set p = 128, R = 32 and r = 2, and
fix number of clusters K = 50 and cluster size T̄ = 10. In
this experiment, instead of using the ground truth clustering
ᾱt, we also learn the clustering assignment α̂t for each task.
As we discussed and visualized in supplementary material, it
is not easy to cluster random tasks even with the hindsight
knowledge of task vectors θ⋆t . To overcome this issue, we
add correlation between tasks in the same cluster. Specifi-
cally, generate the prediction head by h̄′

t = γh̄k + (1− γ)h̄t
where h̄k, h̄t are random unit vectors corresponding to the
cluster k and task t (assuming ᾱt = k). To cluster tasks,
we first run vanilla MTL and learn the shared representa-
tion B̂1 and heads (ĥVt )Tt=1. Next build task vector estimates
by θ̂t := B̂⊤

i ĥ
V
t , and get T × T task similarity matrix us-

ing Euclidean distance metric. Applying standard K-means
clustering to it provides a clustering assignment α̂t. In the ex-
periment, we set γ = 0.6 to make sure hindsight knowledge
of θ⋆t is sufficient to correctly cluster all tasks. Results are
presented in Figure 3, where solid curves are solving MTL
with ground truth ᾱt while dashed curves are using α̂t. We
observe that when given enough samples (N ≥ 60), all tasks
are grouped correctly even if the MTL risk is not zero. More
importantly, Multipath MTL does outperform both vanilla
MTL and cluster MTL even when the clustering is not fully
correct.
Understanding the benefits of Multipath MTL. Naturally,
superior numerical performance of Multipath MTL in Figure
2&3 partly stems from the hierarchical dataset model we
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Figure 3: We group the T = 500 tasks into K = 50 clusters
and compare the sample complexity of different MTL strate-
gies. Given different sample size, we cluster tasks based on
the trained MTL model and solve Cluster-/Multipath-MTL
based on the assigned clusters. Solid curves are results using
ground truth cluster knowledge ᾱt and dashed are using the
learned clustering α̂t. Experimental setting follows the same
setting as in Figure 2.

study. This model will also shed light on shortcomings of
1-layer supernets drawing from our theoretical predictions.
First, observe that all three baselines are exactly specified:
We use the smallest model sizes that capture the ground-
truth model so that they can achieve zero test risk as N,K, T
grows. For instance, Vanilla MTL achieves zero risk by set-
tingB1 = B̄1,h

V
t = (B̄αt

2 )⊤h̄t and cluster MTL achieves
zero risk by setting BC,k

2 = B̄k
2 B̄1,ht = h̄t. Thus, the

benefit of Multipath MTL arises from stronger weight shar-
ing across tasks that reduces test risk. In light of Sec. 4, the
generalization risks of these approaches can be bounded as√

DoF(F)/NT where Number-of-Parameters compare as
Vanilla: Rp + TR, Cluster: Krp + Tr, Multipath: Rp +
KrR+ Tr. From this, it can be seen that Multipath is never
worse than the others as long as Kr ≥ R and T̄ = T/K ≥ r.
These conditions hold under the assumption that multipath
model is of minimal size: Otherwise, there would be a strictly
smaller zero-risk model by setting R← Kr and r ← T̄ .

Conversely, Multipath shines in the regime Kr ≫ R
or T̄ ≫ r. As Kr

R , pR → ∞, Multipath strictly outper-
forms Cluster MTL. This arises from a cluster diversity phe-



nomenon that connects to the task diversity notions of prior
art. In essence, since r-dimensional clusters lie on a shared R
dimensional space, as we add more clusters beyond Kr ≥ R,
they will collaboratively estimate the shared subspace which
in turn helps estimating their local subspaces by projecting
them onto the shared one. As T̄

r ,
R
r →∞, Multipath strictly

outperforms Vanilla MTL. T̄r is needed to ensure that there is
enough task diversity within each cluster to estimate its local
subspace. Finally, Rr ratio is the few-shot learning benefit of
clustering over Vanilla MTL. The prediction heads of vanilla
MTL is larger which necessitates a larger N , at the minimum
N ≥ R. Whereas Multipath works with as little as N ≥ r.
The same argument also implies that clustering/hierarchy
would also enable better transfer learning.

6 Related Work
Our work is related to a large body of literature spanning
efficient architectures and statistical guarantees for MTL, rep-
resentation learning, task similarity, and subspace clustering.
•Multitask Representation Learning. While MTL prob-
lems admit multiple approaches, an important idea is building
shared representations to embed tasks in a low-dimensional
space (Zhang and Yang 2021; Thrun and Pratt 2012; Wang,
Kolar, and Srebro 2016; Baxter 2000). After identifying this
low-dimensional representation, new tasks can be learned in
a sample efficient fashion inline with the benefits of deep rep-
resentations in modern ML applications. While most earlier
works focus on linear models, (Maurer, Pontil, and Romera-
Paredes 2016) provides guarantees for general hypothesis
classes through empirical process theory improving over
(Baxter 2000). More recently, there is a growing line of work
on multitask representations that spans tighter sample com-
plexity analysis (Garg and Liang 2020; Hanneke and Kpotufe
2020; Du et al. 2020; Kong et al. 2020b; Xu and Tewari
2021; Lu, Huang, and Du 2021), convergence guarantees
(Balcan, Khodak, and Talwalkar 2019; Khodak, Balcan, and
Talwalkar 2019; Collins et al. 2022; Ji et al. 2020; Collins
et al. 2021; Wu, Zhang, and Ré 2020), lifelong learning (Xu
and Tewari 2022; Li et al. 2022), and decision making prob-
lems (Yang et al. 2020; Qin et al. 2022; Cheng et al. 2022;
Sodhani, Zhang, and Pineau 2021). Closest to our work is
(Tripuraneni, Jin, and Jordan 2021) which provides tighter
sample complexity guarantees compared to (Maurer, Pontil,
and Romera-Paredes 2016). Our problem formulation gen-
eralizes prior work (that is mostly limited to single shared
representation) by allowing deep compositional representa-
tions computed along supernet pathways. To overcome the
associated technical challenges, we develop multilayer chain
rules for Gaussian Complexity, introduce new notions to as-
sess the quality of supernet representations, and develop new
theory for linear representations.
• Quantifying Task Similarity and Clustering. We note
that task similarity and clustering has been studied by (Shui
et al. 2019; Nguyen, Do, and Carneiro 2021; Zhou et al.
2020; Fifty et al. 2021; Kumar and Daume III 2012; Kang,
Grauman, and Sha 2011; Aribandi et al. 2021; Zamir et al.
2018) however these works do not come with comparable
statistical guarantees. Leveraging relations between tasks are

explored even more broadly (Zhuang et al. 2020; Achille et al.
2021). Our experiments on linear Multipath MTL connects
well with the broader subspace clustering literature (Vidal
2011; Parsons, Haque, and Liu 2004; Elhamifar and Vidal
2013). Specifically, each learning task θt can be viewed as a
point on a high-dimensional subspace. Multipath MTL aims
to cluster these points into smaller subspaces that correspond
to task-specific representations. Our challenge is that we only
get to see the points through the associated datasets.
• ML Architectures and Systems. While traditional ML
models tend to be good at a handful of tasks, next-generation
of neural architectures are expected to excel at a diverse range
of tasks while allowing for multiple input modalities. To
this aim, task-specific representations can help address both
computational and data efficiency challenges. Recent works
(Ramesh and Chaudhari 2021a; Shu et al. 2021; Ramesh and
Chaudhari 2021b; Fifty et al. 2021; Yao et al. 2019; Vuorio
et al. 2019; Mansour et al. 2020; Tan et al. 2022; Ghosh et al.
2020; Collins et al. 2021) propose hierarchical/clustering
approaches to group tasks in terms of their similarities, (Qin
et al. 2020; Ye, Zha, and Ren 2022; Gupta et al. 2022; Asai
et al. 2022; He et al. 2022) focus on training mixture-of-
experts (MoE) models, and similar to the pathways (Strezoski,
Noord, and Worring 2019; Rosenbaum, Klinger, and Riemer
2017; Chen, Gu, and Fu 2021; Ma et al. 2019) study on
task routing. In the context of lifelong learning, PathNet,
PackNet (Fernando et al. 2017; Mallya and Lazebnik 2018)
and many other existing methods (Parisi et al. 2019; Mallya,
Davis, and Lazebnik 2018; Hung et al. 2019; Wortsman et al.
2020; Cheung et al. 2019) propose to embed many tasks
into the same network to facilitate sample/compute efficiency.
PathNet as well as SNR (Ma et al. 2019) propose methods to
identify pathways/routes for individual tasks and efficiently
compute them over the conditional subnetwork. With the
advent of large language models, conditional computation
paradigm is witnessing a growing interest with architectural
innovations such as muNet, GShard, Pathways, and PaLM
(Gesmundo and Dean 2022a,b; Barham et al. 2022; Dean
2021; Lepikhin et al. 2020; Chowdhery et al. 2022; Driess
et al. 2023) and provide a strong motivation for theoretically-
grounded Multipath MTL methods.

7 Discussion
This work explored novel multitask learning problems which
allow for task-specific representations that are computed
along pathways of a large supernet. We established general-
ization bounds under a general setting which proved insight-
ful when specialized to linear or hierarchical representations.
We believe there are multiple exciting directions to explore.
First, it is desirable to develop a stronger control over the
generalization risk of specific groups of tasks. Our Lemma 1
is a step in this direction. Second, what are risk upper/lower
bounds for Multipath MTL as we vary the depth and width
of the supernet graph? Discussion in Section 5 falls under
this question where we demonstrate the sample complexity
benefits of Multipath MTL over traditional MTL approaches.
Finally, following experiments in Section 5, can we estab-
lish similar provable guarantees for computationally-efficient
algorithms (e.g. method of moments, gradient descent)?
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Figure 4: Three specific MTL settings: Vanilla MTL, Cluster MTL and Hierarchical MTL. In vanilla MTL, all the tasks share
the same representation ϕ ∈ Φ, and each task learns its specific head ht ∈ H. It corresponds to the setting that |A| = 1, L = 1
and K1 = 1. In Cluster MTL, tasks are clustered into groups and different groups are assigned with different and uncorrelated
representations. If we assume there are K clusters, then |A| = K, L = 1 and K1 = K. While, Fig. 1b shows the Hierarchical
MTL with only two layers, here we present the more general Hierarchical MTL setting. Assume the degree of a hierarchical
supernet is K (In Fig. 4c, K = 3), then |A| = KL−1 where L is the number of layers in supernet, and Kℓ = Kℓ−1.

Organization of the Supplementary Material
The supplementary material (SM) is organized as follows.
1. In Appendix A we introduce additional notions used throughout the supplementary material.
2. Appendix B provides our main proofs in Section 3 and introduces two direct corollaries of Theorem 1. We also provide a

data-dependent bound in terms of empirical Gaussian complexity (rather than worst-case). In Appendix B.5 we also provide
end-to-end transfer learning bound by introducing a proper notion of task diversity.

3. Appendix C provides additional guarantees (Thm 8) for parametric classes via non-data-dependent covering argument. The
advantages of Theorem 8 are: (1) Sample complexity has linear dependence on supernet depth L (rather than exponential), (2)
It applies to unbounded loss functions, (3) It is also a supporting result for the proof of Theorem 3&4.

4. Appendix D provides our proofs in Section 4. We also introduce Corollary 4, which is a direct application of Theorem 1.
Lemma 7 proves the necessity of our Assumption 5.

5. In Appendix E, we include a short discussion on the challenges of transfer learning: Specifically, we provide a lemma/example
that shows that, under the assumptions of Theorem 4, if ground-truth MTL pathways are not known, there are MTL settings
for which transfer learning can provably fail. This construction highlights the (combinatorial) challenge of finding the right
task clusterings during MTL phase that are actually useful for transfer phase.

6. Appendix F provides further details, algorithms, and results on numerical experiments in Section 5.

A Useful Definitions
We will start with some useful notions. Let ∥ · ∥ denote the ℓ2-norm of a vector, and [L] denote the set {1, 2, . . . , L}. We denote
the K times Cartesian product of a hypothesis set Q with itself by QK . Now assume we have a hypothesis set Q : X → Rr

and an input dataset of size n, defined byX = {x1, . . . ,xn}, where xi ∈ X . Let {σij}i∈[n],j∈[r] denote Rademacher variables
uniformly and independently taking values in {−1, 1} and {gij}i∈[n],j∈[r] denote i.i.d. standard random Gaussian variables.
Then we can define the empirical and population Rademacher/Gaussian complexities of a hypothesis set Q over inputsX and
data space X with sample size n as

Empirical/Population Rademacher complexities: R̂X(Q) = Eσij

sup
q∈Q

1
n

n∑
i=1

r∑
j=1

σijqj(xi)

 , Rn(Q) = EX

[
R̂X(Q)

]
,

Empirical/Population Gaussian complexities: ĜX(Q) = Egij

sup
q∈Q

1
n

n∑
i=1

r∑
j=1

gijqj(xi)

 , Gn(Q) = EX

[
ĜX(Q)

]
,

where we have q ∈ Q and q(x) = [q1(x), . . . , qr(x)]⊤. Note that in vector notation one can also write R̂X(Q) =
Eσi

[
supq∈Q

1
n

∑n
i=1 σ

⊤
i q(xi)

]
and ĜX(Q) = Eg

[
supq∈Q

1
n

∑n
i=1 g

⊤
i q(xi)

]
, where σi and gi are r-dimensional with in-

dependent Rademacher/Gaussian variables in each entry. Also recall that worst-case versions R̃n, G̃n are obtained by taking
supremum over the input space.



B Proofs in Section 3
We first introduce some lemmas used throughout this section, then provide the proofs of our mean results.

B.1 Supporting Lemmas
The following is a seminal contraction lemma due to Talagrand (Talagrand 2006).
Lemma 2 (Talagrand’s Contraction inequality) Let ε = (εi)ni=1 be i.i.d. random variables with symmetric sign
(e.g. Rademacher, standard normal). Let (ϕi)ni=1 be L-Lipschitz functions and F be a hypothesis set. We have that

Eε

[
sup
f∈F

n∑
i=1

εiϕi(f(xi))
]
≤ LEε

[
sup
f∈F

n∑
i=1

εif(xi)
]
.

As a corollary of this, we can deduce that adjusted empirical Gaussian complexity nĜX(F) is non-decreasing in sample size n.
Corollary 1 Let X be a bounded input space and F : X → R be a hypothesis set. Let Xm be a dataset of size m and
Xn = (xi)ni=1 be a dataset of size n that containsXm. We have that

mĜXm
(F) ≤ nĜXn

(F).
We note that, when F : X → Rp is vector valued and we apply p× n L-Lipschitz functions ϕij , the identical results (Lemmas 2
and Corollary 1) follow from Sudakov-Fernique inequality under Gaussian ε ∈ Rn×p (e.g. Exercise 7.2.13 of (Vershynin 2018)).

This also implies usual (distributional) and worst-case Gaussian complexities are also non-decreasing.
Proof Let (ϕi)ni=1 be functions that are identity for i ≤ m and zero for i > m. Observe that

mĜXm
= Eε

[
sup
f∈F

m∑
i=1

εif(xi)
]

= Eε

[
sup
f∈F

n∑
i=1

εiϕi(f(xi))
]
≤ nĜXn

.

The following lemma shows that adjusted worst-case Gaussian complexity
√
nG̃X(F) is essentially non-decreasing in sample

size n.
Lemma 3 (Worst-case Gaussian Complexity over Input Space and Sample Size) For any bounded input space X and hy-
pothesis set F , we have that

sup
1≤m≤n

√
mG̃m(F) ≤

√
2nG̃n(F).

Proof First suppose n/2 ≤ m ≤ n. In this case, from Corollary 1, we know that mG̃m(F) ≤ nG̃n(F) =⇒
√
mG̃m(F) ≤√

2m√
n
G̃m(F) ≤

√
2nG̃n(F). What remains is the scenario m < n/2. To do this, we will show monotonicity under doubling

√
mG̃m(F) ≤

√
2mG̃2m(F). If this holds, then you can double m until a point n/2 ≤ m ≤ n and apply the first bound.

Consider worst-case dataset for G̃m defined as

Y = arg max
X∈X m

ĜX(F).

Let Y ′ be a dataset of size 2m that repeats the elements of Y twice so that y′
m+i = y′

i = yi. Here, we consider hypothesis set
F : X → Rp, and then f(yi) = [f1(yi), · · · , fp(yi)]⊤. Also let ε ∈ Rm×p, ε′ ∈ R2m×p where ε′

i ∼ N (0, Ip), i ∈ [2m] and

εi = ε′
i+ε′

m+i√
2 ∼ N (0, Ip). We have that

2mG̃2m(F) ≥ Eε

sup
f∈F

2m∑
i=1

p∑
j=1

ε′
ijfj(y′

i)


≥ Eε

sup
f∈F

m∑
i=1

p∑
j=1

ε′
i,jfj(y′

i) + ε′
(m+i),jfj(y′

m+i)


≥
√

2 Eε

sup
f∈F

m∑
i=1

p∑
j=1

εijfj(yi)


=
√

2mG̃m.

Dividing both sides by
√

2m, we conclude with the claim
√
mG̃m(F) ≤

√
2mG̃2m(F).

The following is a model selection argument shows that G̃(Φ) can be replaced with G̃(Φused).



Lemma 4 (Only utilized supernet matters) Observe that T tasks can choose from up to |A|T supernets in total. Let Φall =
(Φi)Hi=1 with H ≤ |A|T be the set of unique supernets (since two supernets that choose same number of modules per layer are
identical architectures). Suppose the outcome of empirical risk minimization (M2TL) obeys ϕ̂ ∈ Φused ∈ Φall. Let K̂ℓ be the
number of (used) modules in Φused. With probability 1− δ, we have that

LD̄(f̂)− L̂Sall(f̂) ≲ G̃N (H) +
L∑
ℓ=1

√
K̂ℓG̃NT (Ψℓ) +

√
log |A|
N

+ log(2/δ)
NT

, (5)

RM2TL(f̂) := LD̄(f̂)− L⋆D̄ ≲ G̃N (H) +
L∑
ℓ=1

√
K̂ℓG̃NT (Ψℓ) +

√
log |A|
N

+ log(2/δ)
NT

. (6)

Proof Let LΦ′ , L̂Φ′ be the population and empirical risks we achieve when we run the (M2TL) problem over Φ′ ∈ Φall rather
than Φ. Additionally, let Kℓ(Φ′) denote the number of modules in the ℓth layer of the architecture Φ′. Given Φ′, also define
CN (Φ′, δ) to be the excess risk bound one obtains via (9) ((9) in Theorem 5 is obtained without using Lemma 4), that is,

CN (Φ′, δ) = G̃N (H) +
L∑
ℓ=1

√
Kℓ(Φ′)G̃NT (Ψℓ) +

√
log |A|
N

+ log(2/δ)
NT

.

To proceed, applying (9) over Φ′ ∈ Φall and union bounding over all H ≤ |A|T , with probability at least 1− δ, we find that,
all Φ′ ∈ Φall obeys

|L̂Φ′(f̂)− LΦ′(f̂)| ≲ CN (Φ′, δ/H).

Fortunately, CN (Φ′, δ/H) ≲ CN (Φ′, δ) since the latter already includes a
√

log |A|
N term. Using this union bound, optimality of

ϕ̂ ∈ Φused (and that of the associated f̂ ∈ Fused), and using L̂Φused(f̂) = L̂Φ(f̂) = L̂Sall(f̂), we find that

LΦused(f̂) ≤ L̂Φused(f̂) +O (CN (Φused, δ)) (7)

≤ L̂Sall(f̂) +O (CN (Φused, δ)) . (8)

The last line establishes Inequality (5). To conclude with the second inequality, we control the excess risk error by observing test
risk upper bounds the training risk. Namely, let f⋆ ∈ F be the population minima. First, with 1− δ probability, for this singleton
hypothesis, we have that

|LD̄(f⋆)− L̂Sall(f⋆)| ≤
√

log(2/δ)
NT

.

Second, we can write

L̂Sall(f̂) ≤ L̂Sall(f⋆) ≤ LD̄(f⋆) +
√

log(2/δ)
NT

.

Combining this with (8), we establish the guarantee against the ground-truth optima f⋆

LΦused(f̂)−
[
LD̄(f⋆) +

√
log(2/δ)
NT

]
≤ LΦused(f̂)− L̂Sall(f̂) ≤ O (CN (Φused, δ)) ,

which establishes the claim (6) after subsuming
√

log(2/δ)
NT within CN (Φused, δ).

B.2 Proof of Theorem 1
Let us define the covering number of a hypothesis as well as natural data-dependent Euclidean distance for ease of reference in
the subsequent discussion (see (Wainwright 2019)).
Definition 3 (Covering number) LetQ : X → Rr be a family of functions. Given q, q′ ∈ Q, and a distance metric d(q, q′) ≥ 0,
an ε-cover of set Q with respect to d(·, ·) is a set {q1, q2, . . . , qN} ⊂ Q such that for any q ∈ Q, there exists some i ∈ [N ] such
that d(q, qi) ≤ ε. The ε-covering number N (ε;Q, d) is defined to be the cardinality of the smallest ε-cover.

Definition 4 (Data-dependent distance metric ρ) Let Q : X → Rr be a family of functions. Given q, q′ ∈ Q and an
input dataset X = {x1, . . . ,xn} with xi ∈ X , we define the dataset-dependent Euclidean distance by ρX(q, q′) :=√

1
n

∑
i∈[n],j∈[r](qj(xi)− q′

j(xi))2 =
√

1
n

∑
i∈[n] ∥q(xi)− q′(xi)∥2, where q(x) = [q1(x), . . . , qr(x)]⊤.

Now we are ready to prove our main theorem which incorporates additional dependencies that were omitted from the original
statement.



Theorem 5 (Theorem 1 restated) Suppose Assumptions 1&2 hold. Let f̂ be the empirical solution of (M2TL). Let DX =
supx∈X ,h∈H,ϕ∈Φ,α∈A |h ◦ϕα(x)| <∞, and set Γ† =

∑L
ℓ=0 Γℓ. Then, with probability at least 1− δ, the excess test risk in (2)

obeys

RM2TL(f̂) ≤ 768Γ
(
DX

NT
+DX

√
log |A|
N

+ Γ† logNT
(
G̃N (H) +

L∑
ℓ=1

√
KℓG̃NT (Ψℓ)

))
+ 2

√
log 2

δ

NT
. (9)

Here, the input spaces forH and Ψℓ are XH = ΨL ◦ . . .Ψ1 ◦X , XΨℓ
= Ψℓ−1 ◦ . . .Ψ1 ◦X for ℓ > 1, and XΨ1 = X . The above

is our general results, which we do not focus on the actual modules used in f̂ . Now let K̂ be the number of modules utilized by f̂ ,
then with probability at least 1− δ, we can obtain

RM2TL(f̂) ≲ G̃N (H) +
L∑
ℓ=1

√
K̂ℓG̃NT (Ψℓ) +

√
log |A|
N

+ log(2/δ)
NT

. (10)

Here, ≲ suppresses dependencies on logNT , Γ† and DX .

Remark. While this result is stated with worst-case Gaussian complexity, the line (20) states our result in terms of empirical
Gaussian complexity which is always a lower bound and is in terms of the training dataset. However, (20) is more convoluted
and involves worst-case hypothesis being applied to the training data. The latter arises from the fact that it is difficult to track the
evolution of features across arbitrary pathways and hierarchical layers.
Proof To start with, let us recap some notations. Assume we have T tasks each with N training samples i.i.d. drawn from
(Dt)Tt=1 respectively, and let D̄ = {Dt}Tt=1. Denote the training dataset and inputs of tth task by St = {(xti, yti)}Ni=1 and
Xt = {xti}Ni=1, and define the union by Sall =

⋃T
t=1 St andX =

⋃T
t=1Xt. Let h = [h1, . . . , hT ] ∈ HT , α = [α1, . . . , αT ] ∈

AT , ψℓ = [ψ1
ℓ , . . . , ψ

Kℓ

ℓ ] ∈ ΨKℓ

ℓ , ℓ ∈ [L], and ϕ = [ψ1, . . . ,ψL] ∈ Φ = ΨK1
1 × . . .ΨKL

L . f̂ := (ĥ, α̂, ϕ̂) is the empirical
solution of (M2TL) and f⋆ := (h⋆,α⋆,ϕ⋆) is the population solution of (M2TL) when each task has infinite i.i.d training
samples (N = ∞). Let F denote the hypothesis set of functions f . Since multitask problem is task-aware, that is, the task
identification of each data is given during training and test, we can rewrite samples in St as {(xi, yi, ti ≡ t)}tNi=1+(t−1)N and
the overall multitask training dataset can be seen as Sall = {(xi, yi, ti)}NTi=1. Letting f(x, t) = ft(x) = ht ◦ ϕαt(x), the loss
functions can be rewritten by L̂Sall(f) = 1

NT

∑NT
i=1 ℓ(f(xi, ti), yi) and LD̄(f) = E[L̂Sall(f)]. In the following, we drop the

subscript D̄ and Sall for cleaner notations. Then we have

L(f̂)− L(f⋆)︸ ︷︷ ︸
RM2TL(f̂)

= L(f̂)− L̂(f̂)︸ ︷︷ ︸
a

+ L̂(f̂)− L̂(f⋆)︸ ︷︷ ︸
b

+ L̂(f⋆)− L(f⋆)︸ ︷︷ ︸
c

, (11)

where b ≤ 0 because of the fact that f̂ is the empirical risk minimizer of L̂(f). Then, following the proof of Theorem 3.3 of
(Mohri, Rostamizadeh, and Talwalkar 2018), we make two observations: 1) Their Equation (3.8) in the proof still holds when we
restrict N i.i.d samples in each task instead of NT i.i.d. samples over distribution D̄. Therefore, the symmetrization augment
does not change, and this theorem holds under our setting. 2) The identical results hold for any function set mapping to [−1, 1]. In
this work, based on these two observations, following Assumption 2 and Theorem 11.3 in (Mohri, Rostamizadeh, and Talwalkar

2018), we have that with probability at least 1− δ/2, a, c ≤ 2ΓRNT (F) +
√

log(2/δ)
2NT . Therefore, we can conclude that with

probability at least 1− δ,

RM2TL(f̂) ≤ 4ΓRNT (F) +

√
2 log 2

δ

NT
, (12)

and similarly, RM2TL(f̂) ≤ 4ΓR̂X(F) + 3

√
2 log 4

δ

NT
, (13)

where R̂X(F) is the empirical complexity with respect to the inputs X and RNT (F) is the Rademacher complexity with
respect to the sample size NT . Exercise 5.5 in (Wainwright 2019) shows that Rademacher complexity can be bounded in terms
of Gaussian complexity, that is R̂X(F) ≤

√
π
2 ĜX(F) andRNT (F) ≤

√
π
2GNT (F). Combining them together, we have that

with probability at least 1− δ,

RM2TL(f̂) ≤ 6ΓGNT (F) + 2

√
log 2

δ

NT
, and RM2TL ≤ 6ΓĜX(F) + 6

√
log 4

δ

NT
. (14)



In what follows, we will move to Gaussian complexity instead. Now, it remains to decompose the Gaussian complexity of a set of
composition functions F into basic function setsH, A and {Ψℓ}Lℓ=1. We will first bound the empirical Gaussian complexity with
respect to any training inputsX , which turns to be worst-case Gaussian complexity defined in Definition 1. Then, population
complexity is simply bounded by the worst-case Gaussian complexity.

Inspired by (Tripuraneni, Jordan, and Jin 2020), we use the Dudley’s entropy integral bound showed in (Wainwright 2019)
(Theorem 5.22) to derive the upper bound. Define Zf := 1√

NT

∑NT
i=1 gif(xi, ti) where f ∈ F and gis are standard random

Gaussian variables. Sine Zf has zero-mean, we have ĜX(F) = 1√
NT

Eg[supf∈F Zf ] ≤ 1√
NT

Eg[supf ,f ′∈F (Zf − Zf ′)].

Following Definition 4, let ρX(f ,f ′) =
√

1
NT

∑NT
i=1(f(xi, ti)− f ′(xi, ti))2. Define DX = supf ,f ′∈F ρX(f ,f ′)≤ 2DX .

Following Theorem 5.22 in (Wainwright 2019), we have that for any ε ∈ [0, DX ],

Eg

[
sup

f ,f ′∈F
(Zf − Zf ′)

]
≤ 2 Eg

 sup
f ,f ′∈F

ρX (f,f′)≤ε

(Zf − Zf ′)

+ 32
∫ DX

ε/4

√
logN (u;F , ρX)du, (15)

where N (u;F , ρX) is the u-covering number of function set F with respect to metric ρX(·, ·) following Definition 3.

The first term in the right hand side above is easy to bound. As shown in proof of Theorem 7 in (Tripuraneni, Jordan, and Jin
2020), we have Eg[supρX (f ,f ′)≤ε(Zf − Zf ′)] ≤ Eg[sup∥v∥2≤ε g

⊤v] ≤ Eg[sup∥v∥2≤ε ∥g∥2∥v∥2] =
√
NTε. Next, it remains

to bound the integral term. Here, since f ∈ F is a sophisticated function composed with ψkℓ ∈ Ψℓ, αt ∈ A and ht ∈ H,
its covering number is not well-defined. Hence, instead, we relate the cover of F to the covers of basic function sets, Ψℓ,
A and H. To this end, we need to decompose the distance metric ρX into distances over basic sets. Since A is a discrete
set with cardinality |A|. Let Fα ⊂ F be the function set given pathways of all tasks α. Then we have logN (u;F , ρX) ≤
T log |A|+ maxα∈AT logN (u;Fα, ρX). For any f ,f ′ ∈ Fα, we have

ρX(f ,f ′) =

√√√√ 1
NT

NT∑
i=1

(f(xi, ti)− f ′(xi, ti))2 =

√√√√ 1
NT

T∑
t=1

N∑
i=1

(
ht ◦ ϕαt

(xti)− h′
t ◦ ϕ′

αt
(xti)

)2

≤

√√√√ 1
NT

T∑
t=1

N∑
i=1

(ht ◦ ϕαt
(xti)− h′

t ◦ ϕαt
(xti))2

︸ ︷︷ ︸
d

+

√√√√ 1
NT

T∑
t=1

N∑
i=1

(
h′
t ◦ ϕαt

(xti)− h′
t ◦ ϕ′

αt
(xti)

)2

︸ ︷︷ ︸
e

.

To proceed, let us introduce some notations. For any function ϕ with inputsX = {x1, . . . ,xn}, define output set w.r.t. the inputs
X by ϕ(X) = {ϕ(x1), . . . , ϕ(xn)}. In the multipath setting, since different tasks have different pathways, different modules
are chosen by different set of tasks. Given α, the task clustering methods in different layers are determined. Let Ikℓ denote the
union of task IDs who select (ℓ, k)’th module, and Ikℓ , ℓ ∈ [Kℓ] are disjoint sets satisfying

⋃Kℓ

k=1 Ikℓ = [T ]. What’s more, let Zkℓ
denote the latent inputs of (ℓ, k)’th module, where we have

Zkℓ =
⋃
t∈Ik

ℓ

ψαt

ℓ−1 · · · ◦ ψ
αt
1 (Xt), 1 < ℓ ≤ L, (16)

and Zk1 =
⋃
t∈Ik

1
Xt. In short, (ℓ, k)’th module (whose function is ψkℓ ) is utilized by tasks Ikℓ with latent inputs Zkℓ . The inputs

of heads are

ZtH = ψαt

L · · · ◦ ψ
αt
1 (Xt) = ϕαt

(Xt), ∀ t ∈ [T ].



Then we can obtain that

(d) =

√√√√ 1
T

T∑
t=1

1
N

N∑
i=1

(ht ◦ ϕαt(xti)− h′
t ◦ ϕαt(xti))

2 ≤

√√√√ 1
T

T∑
t=1

ρ2
Zt

H
(ht, h′

t),

(e) ≤ Γ

√√√√ 1
NT

T∑
t=1

N∑
i=1

∥∥ϕαt
(xti)− ϕ′

αt
(xti)

∥∥2

≤ Γ
L∑
ℓ=1

ΓL−ℓ

√√√√√ 1
Kℓ

Kℓ∑
k=1

1
|Zkℓ |

∑
zi∈Zk

ℓ

∥∥∥ψkℓ (zi)− ψ′k
ℓ (zi)

∥∥∥2

≤
L∑
ℓ=1

ΓL−ℓ+1

√√√√ 1
Kℓ

Kℓ∑
k=1

ρ2
Zk

ℓ

(ψkℓ , ψ′k
ℓ ).

Here |Zkℓ | = |Ikℓ |N is the number of samples used in training (ℓ, k)’th module. The result follows the fact that all functions
h ∈ H, ψkℓ ∈ Ψℓ, ℓ ∈ [L], k ∈ [Kℓ] are Γ-Lipschitz, and it also applies an implicit chain rule for composition Lipschitz functions.
Now, we decompose distance (d) into distances of each head function ht, t ∈ [T ], with inputs ZtH, and decompose distance (e),
which captures the distance of composition functions ϕ and ϕ′, into distances of module functions ψkℓ , ψ

′k
ℓ , ℓ ∈ [L], k ∈ [Kℓ],

w.r.t. inputs of ψkℓ , Zkℓ . Combining them together and assuming ρZt
H

(ht, h′
t) ≤ ε′ and ρZk

ℓ
(ψkℓ , ψ′k

ℓ ) ≤ ε′ for all t ∈ [T ], ℓ ∈ [L]
and k ∈ [Kℓ], we can obtain

ρX(f ,f ′) ≤

√√√√ 1
T

T∑
t=1

ρ2
Zt

H
(ht, h′

t) +
L∑
ℓ=1

ΓL−ℓ+1

√√√√ 1
Kℓ

Kℓ∑
k=1

ρ2
Zk

ℓ

(ψkℓ , ψ′k
ℓ ) ≤

(
1 +

L∑
ℓ=1

ΓL−ℓ+1

)
ε′ := Γ†ε′.

It shows that given pathway assignments α and inputs X , ε′-covers of all heads and modules result in (Γ†ε)-cover of Fα.
Recalling that logN (u;F , ρX) ≤ T log |A|+ maxα∈AT logN (u;Fα, ρX), we have

logN
(
Γ†ε′;F , ρX

)
≤ T log |A|+ max

α∈AT
logN

(
Γ†ε′;Fα, ρX

)
(17)

≤ T log |A|+ max
α∈AT

(
T∑
t=1

logN
(
ε′;H, ρZt

H

)
+

L∑
ℓ=1

Kℓ∑
k=1

logN
(
ε′; Ψℓ, ρZk

ℓ

))
. (18)

Till now, we have decomposed the covering number of Fα into product of covering numbers of all basic function sets
H,Ψℓ, ℓ ∈ [L]. Next, following (Tripuraneni, Jordan, and Jin 2020), and the Sudakov minoration theorem (Theorem 5.30) and
Lemma 5.5 in (Wainwright 2019), and recalling Definition 1, we have that for any ε′ > 0,

max
α∈AT

T∑
t=1

logN
(
ε′;H, ρZt

H

)
≤ max

α∈AT

T∑
t=1

(
2
√
N

ε′ ĜZt
H

(H)
)2

≤ T

(
2
√
N

ε′ G̃
XH
N (H)

)2

,

max
α∈AT

Kℓ∑
k=1

logN
(
ε′; Ψℓ, ρZk

ℓ

)
≤ max

α∈AT

Kℓ∑
k=1

2
√
|Zkℓ |
ε′ ĜZk

ℓ
(Ψℓ)

2

≤ max
α∈AT

Kℓ∑
k=1

2
√
|Zkℓ |
ε′ G̃XΨℓ

|Zk
ℓ

|(Ψℓ)

2

≤ Kℓ

(
2
√

2NT
ε′ G̃XΨℓ

NT (Ψℓ)
)2

,

where the input spaces for H and Ψℓ are XH = ΨL ◦ . . .Ψ1 ◦ X , XΨℓ
= Ψℓ−1 ◦ . . .Ψ1 ◦ X for ℓ > 1 and XΨ1 = X . The

last inequality is drawn from Lemma 3, which shows
√
|Zkℓ |G̃

XΨℓ

|Zk
ℓ

|(Ψℓ) ≤
√

2NTGXΨℓ

NT (Ψℓ). Since Definition 1 eliminates the
input(X)-dependency, the inequalities hold for any valid inputsX . In what follows, we drop the superscripts from the worst-case
Gaussian complexities for cleaner exposition as they are clear from context. Then, setting ε′ = u

Γ† , applying triangle inequality,
we can obtain that for anyX ,√

logN (u;F , ρX) ≤
√
T log |A|+ 2Γ†

√
NT

u
G̃N (H) +

L∑
ℓ=1

2Γ†√2KℓNT

u
G̃NT (Ψℓ). (19)



Now it is time to combine everything together! Recall (14), (15) and (19). Since, DX≤ 2DX for any inputs X , choosing
ε = 8DX

NT , we can obtain that with probability at least 1− δ,

RM2TL(f̂) ≤ 6ΓGNT (F) + 2

√
log 2

δ

NT

≤ 12Γ
(
ε+ 32DX

√
log |A|
N

+ 32Γ†

(
G̃N (H) +

L∑
ℓ=1

√
2KℓG̃NT (Ψℓ)

)∫ 2DX

ε/4

1
u
du

)
+ 2

√
log 2

δ

NT

≤ 768Γ
(
DX

NT
+DX

√
log |A|
N

+ Γ† logNT
(
G̃N (H) +

L∑
ℓ=1

√
KℓG̃NT (Ψℓ)

))
+ 2

√
log 2

δ

NT
.

Till now, we have obtained the result for general f̂ . Finally, consider the case that f̂ might not utilize all the modules in the
supernet. Let K̂ℓ ≤ Kℓ be the number of modules used by the empirical solution f̂ . Applying Lemma 4, we can now replace Φ
with Φused which replaces Kℓ with K̂ℓ for ℓ ∈ [L], which concludes our final result.

• Developing an input-dependent bound. In Theorem 1, we present the bound of Multipath MTL problem based on the
worst-case Gaussian complexity. However, as shown in Definition 1, it computes the complexity of a function set by searching for
the worst-case latent inputs, which ignores the data distribution and how the data collected as tasks. In the following argument,
we present an input-based guarantee that bounds the excess risk of Multipath MTL problem tightly. To begin with, recall that
X = {Xt}Tt=1 and Xt = {xti}Ni=1 denote the actual raw feature sets. Given inputs in T tasks, we can define the empirical
worst-case Gaussian complexities ofH and Ψℓ, ℓ ∈ [L] as follows.

CH
X = max

t∈[T ]
sup

Z∈Zt

ĜZ(H), where Zt = ΨL ◦ . . .Ψ1 (Xt) ,

CΨℓ

X = max
I⊂[T ]

sup
Z∈ZI

√
|I|
T
ĜZ(Ψℓ), where ZI =

⋃
t∈I

Ψℓ−1 ◦ . . .Ψ1 (Xt) ,

where ĜZ(H) and ĜZ(Ψℓ) are empirical Gaussian complexities and input spaces of H and Ψℓ are corresponding to the raw
inputX . Then, such statement provide another method to bound (18). That is, we have for any ε′ > 0,

max
α∈AT

T∑
t=1

logN
(
ε′;H, ρZt

H

)
≤

T∑
t=1

(
2
√
N

ε′ max
α∈AT

ĜZt
H

(H)
)2

≤ T

(
2
√
N

ε′ CH
X

)2

,

max
α∈AT

Kℓ∑
k=1

logN
(
ε′; Ψℓ, ρZk

ℓ

)
≤

Kℓ∑
k=1

(
2
√
NT

ε′ max
α∈AT

√
|Zkℓ |
NT
ĜZk

ℓ
(Ψℓ)

)2

≤ Kℓ

(
2
√
NT

ε′ CΨℓ

X

)2

.

The statements provided to prove Theorem 1 utilize the worst-case Gaussian complexity, and it bounds both empirical and
population Gaussian complexities. Here, CH

X and CΨℓ

X depend on the inputX , and by construction, they are larger than their
corresponding empirical complexities, however there is no guarantee that they will be larger than the corresponding population
Gaussian complexities. Combining the result with (14), we can obtain that with probability at least 1− δ,

RM2TL(f̂) ≤ 384Γ
(
DX

NT
+DX

√
log |A|
N

+ Γ† logNT
(
CH

X +
L∑
ℓ=1

√
KℓC

Ψℓ

X

))
+ 6

√
log 4

δ

NT
, (20)

where DX = supf ,f ′∈F ρX(f ,f ′). Here we consider complexity of each task-specific head separately and bound it using the
task with the largest head complexity (CH

X ). As for the complexity of each layer, in the general case (as shown in Theorem 1), all
the modules in the same layer share the same input space XΨℓ

by assuming raw input space X , and because of Lemma 3, the
sample complexity of ℓth layer is bounded by O

(√
KℓG̃NT (Ψℓ)

)
. When given actual training dataX , we need to search to find

the worst-case cluster method of ℓth layer, which results in CΨℓ

X .
Below, we extend our theoretical result of Multipath MTL to two specific settings, vanilla MTL and hierarchical MTL.

Corollary 2 (Vanilla MTL) Given the same data setting described in Section 2, consider a vanilla MTL problem as depicted in
Figure 4a, which can be formulated as follows.

{ĥt}Tt=1, ϕ̂ = arg min
ht∈H,ϕ∈Φ

1
NT

T∑
t=1

N∑
i=1

ℓ(ht ◦ ϕ(xti), yti).



SupposeH, Φ are sets of Γ-Lipschitz functions with respect to Euclidean norm, and ℓ(·, y) : R× R→ [0, 1] is also Γ-Lipschitz
with respect to Euclidean norm. Define DX = supx∈X ,h∈H,ϕ∈Φ |h ◦ ϕ(x)| <∞. Let L({ht}Tt=1, ϕ) = ED̄[ℓ(ht ◦ ϕ(x), y)] and
L⋆ = minht∈H,ϕ∈Φ ED̄[ℓ(ht ◦ ϕ(x), y)]. Then we have that with probability at least 1− δ,

L({ĥt}Tt=1, ϕ̂)− L⋆ ≤ 384Γ
(
DX

NT
+ (Γ + 1) logNT

(
G̃N (H) + GNT (Φ)

))
+ 2

√
log 2

δ

NT
.

Here, the input space forH is Ψ×X .
This corollary is consistent with (Tripuraneni, Jordan, and Jin 2020), and it can be simply deduced following the statement of

Theorem 5, by setting L = 1, K1 = 1. Since there is only one pathway selection, |A| = 1 and log |A| = 0. Here, the input space
for representation Φ is X , and its complexity is shown in Gaussian complexity fashion.
Corollary 3 (Hierarchical MTL) Consider the hierarchical MTL problem depicted in Fig. 4c and consider a hierarchical
supernet with degree K. Follow the same settings in Section 2. Suppose Assumptions 1&2 hold. Let f̂ be the empirical solution
of (M2TL). Let DX = supx∈X ,h∈H,ϕ∈Φ,α∈A |h ◦ ϕα(x)| <∞ and Γ† =

∑L
ℓ=0 Γℓ. Then, with probability at least 1− δ, the

excess test risk in (2) obeys

RM2TL(f̂) ≤ 768Γ
(
DX

NT
+DX

√
(L− 1) logK

N
+ Γ† logNT

(
G̃N (H) +

L∑
ℓ=1

K
ℓ−1

2 G̃NT (Ψℓ)
))

+ 2

√
log 2

δ

NT
.

Here, the input spaces forH and Ψℓ are XH = ΨL ◦ . . .Ψ1 ◦ X , XΨℓ
= Ψℓ−1 ◦ . . .Ψ1 ◦ X for ℓ > 1, and XΨ1 = X . Now if

we consider a two-layer hierarchical representations as depicted in Fig. 1b, we can immediately obtain the result by setting
L = 2 (Γ† = 1 + Γ + Γ2). Then with probability at least 1− δ,

RM2TL(f̂) ≤ 768Γ
(
DX

NT
+DX

√
logK
N

+ Γ† logNT
(
G̃N (H) + GNT (Ψ1) +

√
KG̃NT (Ψ2)

))
+ 2

√
log 2

δ

NT
.

The result is consistent with Section 5, and proof can be immediately done by setting |A| = KL−1 and Kℓ = Kℓ−1 in
Theorem 5. Here we observe that if the complexity of Ψℓ decreasing exponentially as comp(Ψℓ) ∝ K− ℓ

2 , then each layer has a
constant complexity. We believe this and similar bounds can potentially provide guidelines on how we should design hierarchical
supernets.

B.3 Proof of Lemma 1
Lemma 5 (Lemma 1 restated) Recall f̂ is the solution of (M2TL) and f̂t = ĥt ◦ ϕ̂α̂t

is the associated task-t hypothesis.
Define the excess risk of task t asRt(f̂t) = Lt(f̂t)− L⋆t where Lt(f) = EDt

[L̂t(f)] is the population risk of task t and L⋆t is
the optimal achievable test risk for task t over F . With probability at least 1− δ − P(L̂Sall(f̂) ̸= 0), for all tasks t ∈ [T ],

Rt(f̂t) ≲ G̃N (H) +
L∑
ℓ=1
G̃N (Ψℓ) +

√
log(2T/δ)

N
. (21)

Proof Let FIND be the hypothesis class of a single task induced by a pathway in the supernet. Since modules are same, FIND is
same regardless of pathway. First, applying our main theorem (Thm 1) for a single supernet with Kℓ = 1 (i.e. on FIND), for a
single task t, we end up with the uniform concentration guarantee, for all f ∈ FIND, with probability at least 1− δ,

|L̂St(f)− Lt(f)| ≲ G̃N (H) +
L∑
ℓ=1
G̃N (Ψℓ) +

√
log(2/δ)

N
.

Union bounding, for all ft ∈ FIND, t ∈ [T ], with probability at least 1− δ, we obtain

|L̂St(ft)− Lt(ft)| ≲ G̃N (H) +
L∑
ℓ=1
G̃N (Ψℓ) +

√
log(2T/δ)

N
. (22)

Let us call this intersection event Eall. Intersecting this with the events minft∈FIND L̂St
(ft) = 0 for t ∈ [T ], we exactly end up

with (21). Thus, the statement is indeed what one would obtain by union bounding individualized training.
To proceed, we argue that same bound holds when solving (M2TL). We know (22) holds for all ft chosen from FIND,

therefore it holds for f̂t, t ∈ [T ]. Consider its intersection with the event P(L̂Sall(f̂) ̸= 0). Given that L̂St
(f̂t) = 0, we obtain

Rt(f̂t) ≤ Lt(f̂t) upper bounded by the RHS of (22).



B.4 Proof of Theorem 2
Theorem 6 (Theorem 2 restated) Suppose Assumptions 1&2 hold. Let supernet ϕ̂ be the solution of (M2TL) and f̂ϕ̂ be the

empirical minima of (TLOP) with respect to supernet ϕ̂. Let DX = supx∈X ,α∈A,h∈HT
|h◦ ϕ̂α(x)| <∞. Then with probability

at least 1− δ,

RTLOP(f̂ϕ̂) ≤ BiasT (ϕ̂) + 768Γ
(
DX

M
+DX

√
log |A|
M

+ logM · G̃M (HT )
)

+ 2

√
log 2

δ

M
,

where input space of G̃M (HT ) is given by {ϕ̂α ◦ X
∣∣ α ∈ A}.

Proof For short notation, letH := HT . We consider the transfer learning problem over a target task, with distribution DT and
training dataset ST = {(xi, yi)}Mi=1 with M samples i.i.d. drawn from DT . Let ϕ̂ and ϕ⋆ denote the empirical and population
solution of (M2TL). Then, we can recap the excess transfer learning risk

RTLOP(f̂ϕ̂) = LT (f̂ϕ̂)− L⋆T = LT (f̂ϕ̂)− LT (f⋆
ϕ̂

)︸ ︷︷ ︸
variance(a)

+ LT (f⋆
ϕ̂

)− L⋆T︸ ︷︷ ︸
supernet bias (b)

.

Following Definition 2, b = BiasT (ϕ̂), and it remains to bound variance (a). Let f̂ϕ̂ := (ĥϕ̂, α̂ϕ̂) and f⋆
ϕ̂

:= (h⋆
ϕ̂
, α⋆

ϕ̂
). For short

notations, we remove the subscript ϕ̂, and we assume supernet ϕ̂ is implied. Following the similar statements in Appendix B.2,
we can decompose variance as follows.

a = LT (f̂)− LT (f⋆) = LT (f̂)− L̂T (f̂)︸ ︷︷ ︸
c

+ L̂T (f̂)− L̂T (f⋆)︸ ︷︷ ︸
d

+ L̂T (f⋆)− LT (f⋆)︸ ︷︷ ︸
e

where LT (f) = EDT [ℓ(h ◦ ϕ̂α(x), y)] and L̂T (f) = 1
M

∑M
i=1 ℓ(h ◦ ϕ̂α(xi), yi) where f = (h, α) and (xi, yi) ∈ ST . Since f̂

minimizes the training loss given ϕ̂, d ≤ 0. LetX denote the input dataset, that is,X = {xi}Mi=1. Same as Inequality (14) in
Appendix B.2, we derive the similar result that with probability at least 1− δ,

RTLOP(f̂) ≤ BiasT (ϕ̂) + 6ΓGM (H ◦ ϕ̂(A)) + 2

√
log 2

δ

M
,

and RTLOP(f̂) ≤ BiasT (ϕ̂) + 6ΓĜX(H ◦ ϕ̂(A)) + 6

√
log 2

δ

M
,

where ĜX(H ◦ ϕ̂(A)) = Eg

[
suph∈H,α∈A

1
M

∑M
i=1 gih ◦ ϕ̂α(xi)

]
and GM (H ◦ ϕ̂(A)) = EDT

[
ĜX(H ◦ ϕ̂(A))

]
. Following

the Definition 4, let D = suph,h′∈H,α,α′∈A ρX(h ◦ ϕ̂α, h′ ◦ ϕ̂α′) ≤ 2DX . By applying the Dudley’s theorem, and following
the same statements in Appendix B.2, we obtain that given any ε ∈ [0, D]

ĜX(H ◦ ϕ̂(A)) ≤ 2ε+ 32√
M

∫ D

ε/4

√
logN

(
u;H ◦ ϕ̂(A), ρX

)
du.

Now we need to decompose the covering number ofH ◦ ϕ̂(A) into the covering numbers of separate hypothesis setsH and A.
For short notations, letH(A) := H ◦ ϕ̂(A) andH(α) := H ◦ ϕ̂α, and we omit the subscriptX from ρ. Since pathway set A is
discrete with cardinality |A|, the covering number ofH(A) is the product of covering number ofH(α) for all α ∈ A, and can be
bounded by the |A| times product of the worst-case covering number ofH(α), that isN (u;H(A), ρ) = Πα∈AN (u;H(α), ρ) ≤
maxα∈AN |A|(u;H(α), ρ). Logarithm of it results in logN (u;H(A), ρ) ≤ log |A|+ maxα∈AN (u;H(α), ρ). Now let Zα =
ϕ̂α(X) = {ϕ̂α(xi) : xi ∈X}, which is the set of latent inputs of prediction head. Then for any given α ∈ A,

ρX(h ◦ ϕ̂α, h′ ◦ ϕ̂α) =

√√√√ 1
M

M∑
i=1

(
h ◦ ϕ̂α(xi)− h′ ◦ ϕ̂α(xi)

)2
=

√√√√ 1
M

M∑
i=1

(h(zi)− h′(zi))2 = ρZα
(h, h′),

where zi = ϕ̂α(xi) and then Zα = {z1, . . . ,zM}. Such equality states that if pathway α is fixed, u-cover of head H results
in u-cover of the prediction function, and simply, N (u;H(α), ρX) = N (u;H, ρZα

). Next, following the same statements



in Appendix B.2, if we utilize the Sudakov minoration theorem in (Wainwright 2019), we obtain
√

logN (u;H, ρZα) ≤
2

√
M
u ĜZα

(H). Finally, combining all we have together obtains

ĜX(H(A)) ≤ 2ε+ 32√
M

∫ D

ε/4

√
logN (u;H(A), ρX)du ≤ 2ε+ 32D

√
log |A|
M

+ 64 max
α∈A
ĜZα

(H)
∫ D

ε/4

1
u
du

≤ 2ε+ 32D
√

log |A|
M

+ 64 log 4D
ε

max
α∈A
ĜZ′

α
(H) ≤ 64

(
D

M
+D

√
log |A|
M

+ logM max
α∈A
ĜZα

(H)
)
,

by choosing ε = 4D
M .

• Input-dependent bound. If we define the worst case empirical Gaussian complexity based on the raw input dataX and given
supernet ϕ̂, that is CH

X := maxα∈A ĜZα
(H), where Zα shows as above with respect to ϕ̂ and α, we have that with probability

at least 1− δ,

RTLOP(f̂ϕ̂) ≤ BiasT (ϕ̂) + 384Γ
(
D

M
+D

√
log |A|
M

+ logM · CH
X

)
+ 6

√
log 4

δ

M
.

Furthermore, let input space be X . If we define the worst case Gaussian complexity independent to the specific training dataset
and supernet, that is, G̃XH

M (H) := supZ∈X M
H
ĜX(H), where XH = {ϕ̂α ◦ X |α ∈ A}, then we have that

GM (H(A)) ≤ 64
(
DX

M
+DX

√
log |A|
M

+ logM · G̃XH
M (H)

)
,

which leads to the result that with probability at least 1− δ,

RTLOP(f̂ϕ̂) ≤ BiasT (ϕ̂) + 384Γ
(
DX

M
+DX

√
log |A|
M

+ logM · G̃M (H)
)

+ 2

√
log 2

δ

M
.

Here input space ofH is given by XH = {ϕ̂α ◦ X |α ∈ A}.

B.5 End-to-End Transfer Learning
In this section, we present an end-to-end transfer learning guarantee based on task diversity. We start with two useful definitions:
supernet distance and task diversity. Here, supernet distance has been mentioned in Section 3.2 and following provides the
intact definition. It measures the performance gap of two supernets. Similar to the previous work (Chen et al. 2021; Tripuraneni,
Jordan, and Jin 2020; Xu and Tewari 2021), we define task diversity in Definition 6. It captures the similarity of target task to
source tasks over a supernet by comparing their representation distance over it. Finally, using the task diversity argument, we can
immediately obtain the theoretical guarantee for transfer learning risk.

Definition 5 (Supernet Distance) Consider a transfer learning with optimal pathway (TLOP) problem. Recall the definitions
DT andHT stated in Section 2. Given two supernets ϕ and ϕ′, define the supernet/representation distance of ϕ from ϕ′ for a
target T as

DistT (ϕ;ϕ′) = BiasT (ϕ)− BiasT (ϕ′) = min
h∈HT ,α∈A

LT (h ◦ ϕα)− min
h∈HT ,α∈A

LT (h ◦ ϕ′
α).

Here, we do not restrict the supernet distance to target task T only. Given source task t ∈ [T ], we can still define the corresponding
supernet distance of ϕ from ϕ′ as

Distt(ϕ;ϕ′) = min
h∈H,α∈A

Lt(h ◦ ϕα)− min
h∈H,α∈A

Lt(h ◦ ϕ′
α), (23)

and the hypothesis set for head isH instead.

Definition 6 (Task Diversity) For any supernets ϕ and ϕ′, given T source tasks with distribution (Dt)Tt=1 and a target task
with distribution DT , we say that the source tasks are (ν, ϵ)-diverse over the target task for a supernet ϕ′ if for any ϕ ∈ Φ,

DistT (ϕ;ϕ′) ≤
(

1
T

T∑
t=1

Distt(ϕ;ϕ′)
)
/ν + ϵ,

where we assume that head hypothesis setsH,HT are implied for source and target distances.



Theorem 7 (End-to-end transfer learning) Suppose Assumption 1&2 hold. Let supernet ϕ̂ and ϕ⋆ be the empirical and
population solutions of (M2TL) and f̂ϕ̂ be the empirical minima of (TLOP) with respect to supernet ϕ̂. Assume the source tasks
used in Multipath MTL phase are (ν, ϵ)-diverse over target task T for the optimal supernet ϕ⋆. Then with probability at least
1− 2δ,

RTLOP(f̂ϕ̂) ≲ BiasT (ϕ⋆) + 1
ν

(
G̃N (H) +

L∑
ℓ=1

√
K̂ℓG̃NT (Ψℓ) +

√
log |A|
N

)
+
√

log |A|
M

+ G̃M (HT ) + 1
ν

√
log 2

δ

NT
+

√
log 2

δ

M
+ ϵ.

Here, the input spaces forH, Ψℓ andHT are same to the statements in Theorem 1 and Theorem 2.

Proof Recall Theorem 6. To state end-to-end transfer learning risk, we need to bound supernet bias BiasT (ϕ̂). Following
Definition 5, we have that BiasT (ϕ̂) = DistT (ϕ̂;ϕ⋆) + BiasT (ϕ⋆). Next, from Definition 6, since we assume source tasks are
(ν, ϵ)-diverse over target task T for the supernet ϕ⋆, we can obtain DistT (ϕ̂;ϕ⋆) ≤

(
1
T

∑T
t=1 Distt(ϕ̂;ϕ⋆)

)
/ν + ϵ. To process,

following (23), we have

1
T

T∑
t=1

Distt(ϕ̂;ϕ⋆) = 1
T

T∑
t=1

(
min

h∈H,α∈A
Lt(h ◦ ϕ̂α)− min

h∈H,α∈A
Lt(h ◦ ϕ⋆α)

)

≤ 1
T

T∑
t=1

(
Lt(ĥt ◦ ϕ̂α̂t

)− Lt(h⋆t ◦ ϕ⋆α⋆
t
)
)

= LD̄(f̂)− L⋆D̄ = RM2TL(f̂).

Here, ({ĥt, α̂t}Tt=1, ϕ̂) and ({h⋆t , α⋆t }Tt=1,ϕ
⋆) are the empirical and population solutions of (M2TL), and we set f̂ :=

({ĥt, α̂t}Tt=1, ϕ̂). The inequality term holds from the fact that: 1) minh∈H,α∈A Lt(h ◦ ϕ̂α) ≤ Lt(ĥt ◦ ϕ̂α̂t
), and 2)

minh∈H,α∈A Lt(h ◦ ϕ⋆α) = Lt(h⋆t ◦ ϕ⋆α⋆
t
) since h⋆t and α⋆t can be seen as the optimal solutions given supernet ϕ⋆. Com-

bining them together with Theorem 1 and Theorem 2 completes the proof.

C Multipath MTL under Subexponential Loss Functions
The goal of this section is proving an MTL result under unbounded loss functions (e.g. least-squares). The high-level proof
strategy is essentially a simplified version of proof of Theorem 1, where we use a more naive covering argument for parametric
classes that have O (log(1/ε)) covering numbers. For this reason, we will make some simplifications in the proof to avoid
repetitions. Instead, we will highlight key differences such as how the concentration argument changes due to unbounded losses.
We first make the following assumptions.
Assumption 7 For any task distribution (x, y) ∼ Dt and for any task hypothesis ft ∈ Ft (induced by αt, ht,ϕ), we have that
ℓ(y, ft(x)) is a Ξ subexponential random variable for some Ξ > 0. Additionally, assume loss is a Γ > 0 Lipschitz function of
ŷ = ft(x).
We also assume a standard covering assumption. Note that, unlike the proof of Theorem 1, we focus on parametric classes and
use data-agnostic covers.
Assumption 8 All modules ψkℓ ∈ Ψℓ are Γ Lipschitz and map ψkℓ : Rpℓ−1 → Rpℓ . For the sake of simplicity assume ψkℓ (0) = 0
(e.g. neural net layer with ReLU activation). Additionally, for any Euclidean ball of radius R, the covering dimension of Ψℓ

follows the parametric classes, namely,

N (ε; Ψℓ, R) ≤ dℓ log(3R
ε

),

where dℓ is the covering dimension of Ψℓ. Verbally, there exists a cover Ψε
ℓ , |Ψε

ℓ | ≤ N (ε; Ψℓ, R), such that for any ∥x∥ ≤ R
and for any ψ ∈ Ψℓ, there exists ψ′ ∈ Ψε

ℓ such that ∥ψ′(x)− ψ(x)∥ ≤ ε. Additionally, let headH be Γ Lipschitz and dH be the
covering dimension forH.

Theorem 8 Suppose X ⊂ Bp(R) and Assumptions 7 and 8 hold. Suppose we have a (M2TL) problem with Ntot samples in
total where all training samples are independent, however, task sample sizes are arbitrary1. Note that, in the specific setting
of Theorem 1, we have Ntot = NT with identical sample sizes. Assume that Ntot ≳ DoF(F) log(Ntot) + T log |A|. Declare
population risk LD̄(f) = E[L̂Sall(f)]. We have that with probability at least 1− δ, for all Multipath hypothesis f ∈ F

|L̂Sall(f)− LD̄(f)| ≲ Ξ

√
L · DoF(F) + T log |A|+ log(2/δ)

Ntot
. (24)

1In words, tasks don’t have to have N samples each. We will simply control the gap between empirical and population. If tasks have
different sizes, then their population weights will similarly change.



The right hand side bounds similarly hold for the excess riskRM2TL(f̂) where f̂ is the ERM solution. ≲ subsumes the logarithmic
dependence on R,Γ, L,Ntot. The exact bound is below (39). Finally, if we solve (M2TL) with fixed pathway choices (rather than
searching over A), with same probability and assuming Ntot ≳ DoF(F) log(Ntot) we have the simplified bound

|L̂Sall(f)− LD̄(f)| ≲ Ξ

√
L · DoF(F) + log(2/δ)

Ntot
. (25)

The theorem is automatically applicable to loss functions bounded by Ξ > 0. Also note that, this theorem avoids exponential
depth dependence compared to Theorem 1. This is primarily because of the strong coverability of parametric classes which
(essentially) applies a log operation to the Lipschitz constant of F .
Proof Let R0 = R and note that, at the ℓth layer, the input(output) space has radius Rℓ−1(Rℓ) where Rℓ = ΓℓR. Let Ψℓ denote
the hypothesis set of the modules of ℓth layer. Fix an ε cover Fε for the sets (ΨKℓ

ℓ )Lℓ=1,HT and AT , such that Ψℓ is covered
according to its input space radius Rℓ−1 with resolution εℓ = ε

ΓL−ℓ+1 , where ℓ is layer depth and prediction head is layer L+ 1.
This implies that

log |Fε| ≤ TdH log 3RL
ε

+ T log |A|+
L∑
ℓ=1

Kℓdℓ log 3Rℓ−1

εℓ
(26)

= (TdH +
L∑
ℓ=1

Kℓdℓ) log 3RL
ε

+ T log |A| (27)

≤ DoF(F) log 3RL
ε

+ T log |A| (28)

= DoF(F)
(

log 3R
ε

+ L log Γ
)

+ T log |A|. (29)

• Step 1: Union bound over the cover. We now show a uniform concentration argument over this cover. Since each sample is
independent of others and each loss is Ξ subexponential, using subexponential Bernstein inequality (e.g. Prop 5.16 of (Vershynin
2010)), we have that

P

(
|L̂Sall(f)− LD̄(f)| ≥ t√

Ntot

)
≤ 2 exp

(
−cmin

{
t2

Ξ2 ,
t
√
Ntot

Ξ

})
Let ε = 1

Γ(L+1)Ntot
, and recall that we assumed Ntot ≳ log |Fε|+ τ . Now, setting t ∝

√
log |Fε|+ τ and union bounding over

all f ∈ Fε, we find that, uniformly over Fε,

P

|L̂Sall(f)− LD̄(f)| ≥ Ξ

√
log |Fε|+ τ

Ntot

 ≤ 2e−τ . (30)

• Step 2: Perturbation analysis. Now that covering analysis is done, we proceed with controlling the perturbation. Let f ∈ F
be a Multipath MTL hypothesis. We choose f ′ ∈ Fε such that:

• f ′ chooses the same pathways.

• f ′ chooses heads (h′
t)Tt=1 and modules ((ψ′k

ℓ )Kℓ

k=1)Lℓ=1 such that these hypotheses are ε close over their respective input
spaces to the hypotheses of f denoted by (ht)Tt=1 and modules ((ψkℓ )Kℓ

k=1)Lℓ=1.

Fix an arbitrary x ∈ X and task t ∈ [T ]. Set the short-hand notation ψ̃ℓ = ψαt

ℓ and ψ̃′
ℓ = ψ′αt

ℓ . Along the pathway αt, define the
functions

f ℓt (x) =


ft(x) if ℓ = L+ 1,
f ′
t(x) if ℓ = 0,
h′
t ◦ ψ̃′

L ◦ . . . ψ̃′
ℓ+1 ◦ ψ̃ℓ ◦ · · · ◦ ψ̃1(x) if 1 ≤ ℓ ≤ L.

Let xℓ = ψ̃ℓ ◦ · · · ◦ ψ̃1(x). Recall that, Ψℓ is covered with resolution εℓ. Now, through a standard perturbation decomposition,



we find that

|ft(x)− f ′
t(x)| ≤

L∑
ℓ=0
|f ℓ+1
t (x)− f ℓt (x)| (31)

≤
L∑
ℓ=0
|h′
t ◦ ψ̃′

L ◦ . . . ψ̃ℓ+1(xℓ)− h′
t ◦ ψ̃′

L ◦ . . . ψ̃′
ℓ+1(xℓ)| (32)

≤
L∑
ℓ=0

ΓL−ℓεℓ+1 (33)

= (L+ 1)ε. (34)

This establishes that if tasks choose the same pathways, proposed ε cover ensures that for all x ∈ X and task t, Fε is an
(L+ 1)ε cover of F . To conclude, using Γ Lipschitzness of the loss function, we obtain

LD̄(f)− LD̄(f ′) ≤ sup
x,t
|ℓ(y, ft(x))− ℓ(y, f ′

t(x))| ≤ sup
x,t

Γ|ft(x)− f ′
t(x)| ≤ Γ(L+ 1)ε (35)

L̂Sall(f)− L̂Sall(f ′) ≤ sup
x,t
|ℓ(y, ft(x))− ℓ(y, f ′

t(x))| ≤ sup
x,t

Γ|ft(x)− f ′
t(x)| ≤ Γ(L+ 1)ε. (36)

Combining with uniform concentration, we found that, for all f ∈ F , with probability 1− δ,

|L̂Sall(f)− LD̄(f)| ≲ Ξ

√
log |Fε|+ log(2/δ)

Ntot
+ Γ(L+ 1)ε (37)

≲ Ξ

√
DoF(F)

(
log 3R

ε + L log Γ
)

+ T log |A|+ log(2/δ)
Ntot

+ Γ(L+ 1)ε. (38)

Recall that ε = 1
Γ(L+1)Ntot

, then we obtain the advertised uniform concentration guarantee

|L̂Sall(f)− LD̄(f)| ≲ Ξ

√
DoF(F) (log(3RΓ(L+ 1)Ntot) + L log Γ) + T log |A|+ log(2/δ)

Ntot
. (39)

We get the simplified statement (24) after ignoring the log factors. Finally, (25) arises by repeating above argument step-by-step
while ignoring |A| term in (26).

D Proofs in Section 4
D.1 A direct corollary of Theorem 1 to linear representations
We start with a lemma that controls the worst-case Gaussian complexity of linear models. The proof is standard and stated for
completeness.

Lemma 6 (Linear models) Let B ⊂ Rd×p be a set of matrices with operator norm bounded by a constant C > 0 and let
X ⊂ Bp(R) (subset of ℓ2 ball of radius R) . Then

G̃X
n (B) ≤ CR

√
dp

n
.

Proof Set Xε =
∑n
i=1 xig

⊤
i = X⊤G where X ∈ Rn×p is dataset and G i.i.d.∼ N (0, 1) ∈ Rn×d. Applying Cauchy-Schwarz,

we write

G̃X
n (B) = 1

n
sup

X∈X n

E

[
sup
B∈B

n∑
i=1

g⊤
i Bxi

]
= 1
n

sup
X∈X n

E

[
sup
B∈B

trace(XεB)
]

(40)

≤ C
√
p

n
sup

X∈X n

E[∥Xε∥F ] ≤ C
√
p

n
sup

X∈X n

√
E[∥X⊤G∥2

F ] ≤ CR
√
dp

n
. (41)



Corollary 4 Suppose Assumptions 2&3 hold and input set X ⊂ Bp(c√p)2 for a constant c > 0. Let f̂ be empirical solution of
(4). Then, with probability at least 1− δ,

RM2TL(f̂) ≲
√
p · DoF(F)

NT
+
√

log |A|
N

+ log(2/δ)
NT

,

where DoF(F) = T · pL +
∑L
ℓ=1 Kℓ · pℓ · pℓ−1 is the total number of trainable parameters in F .

Proof This proof is immediately done by following Theorem 1 and Lemma 6. Since X ⊂ Bp(c√p), and we assume Ψℓ, ℓ ∈ [L]
have bounded operator norm C, for each layer, the input space XΨℓ

⊂ Bpℓ−1(Cℓ−1c
√
p) and then following Lemma 6,

G̃NT (Ψℓ) ≤ Cℓc
√
p
√

pℓpℓ−1
NT , ℓ ∈ [L]. Since H = BpL(C) and XH ⊂ BpL(CLc√p), we have G̃N (H) ≤ CL+1c

√
p
√

pL

N .
Then we obtain

G̃N (H) +
L∑
ℓ=1

√
KℓG̃NT (Ψℓ) ≲ c

√
p ·

√
CL+1 · T · pL +

∑L
ℓ=1 C

ℓ ·Kℓ · pℓ · pℓ−1

NT
.

Combining it with Theorem 1 finishes the proof.

D.2 Proof of Theorem 3
Corollary 4 directly follows by applying Theorem 1 to the linear representation setting, and therefore ≲ subsumes dependencies
on logNT and ΓL. Instead in Theorem 3 we establish a tighter bound for parametric hypothesis classes and the sample
complexity is only logarithmic in the input space radius R (R = c

√
p in Corollary 4) and linearly dependent on the number of

layers L.
Proof The theorem is a direct application of Theorem 8 after verifying the assumptions. First, bounded loss function ℓ :
R× R→ [0, 1] implies it is sub-exponential, which verifies Assumption 7. Second, all module/head functions have bounded
spectral/Euclidean norms, which verifies Assumption 8. One remark (compared to Theorem 8) is that, since the loss function is
bounded, by applying Hoeffding’s inequality, (30) holds without enforcing a lower bound constraint on Ntot.

D.3 The Need for Well-Populated Source Tasks in Assumption 5
Lemma 7 Consider a weaker version of Assumption 5 where we enforce Σα ⪰ cIpL

over all clusters with two or more tasks3

(i.e. only when γα ≥ 2/pL). Then, there exists a ((M2TL), (TLOP)) problem pair such that the excess transfer learning risk
obeysRTLOP(f̂ϕ̂) ≥ 1 as soon as N ≥ p.

Proof The idea is packing supernet with isolated MTL tasks that are uncorrelated with target while achieving zero MTL risk. We
consider a simple supernet construction where T tasks will be processed in parallel and all layers have exactly Kℓ = T modules.
Specifically, task t will use the pathway αt = [t, t, . . . , t] by selecting tth module from each layer. This way each task will use a
unique pathway and supernet will be fully occupied. Set noise level σ = 0. Observe that as soon as N ≥ p, θ⋆t minimizes both
empirical and population risks. Consequently, for any ∥h̄t∥ = 1,Bαt

= ht(θ⋆t )⊤ is a valid (and minimum norm) minimizer of
empirical and population risks. Here, we highlight the minimum norm aspect because this solution is what gradient descent
would converge during MTL phase (while we acknowledge the existence of infinitely-many solutions) (Ji and Telgarsky 2018).
To wrap up the proof, suppose transfer task is orthogonal to all source tasks and observe that, regardless of the transfer prediction
head ĥT and pathway choice t, we have

RTLOP(f̂ϕ̂) = E
[
(y − f̂ϕ̂(x))2

]
= E

[
(θ⊤

T x− ĥ⊤
T ht(θ⋆t )⊤x)2

]
≥ ∥θT − (ĥ⊤

T ht)θ⋆t ∥2 ≥ ∥θT ∥2 = 1.

This concludes the proof. We note that, if σ ̸= 0 same argument would work as N →∞. Additionally, through same argument
with σ = 0, it can be observed that, a more general lower bound on excess transfer risk is mint∈[T ] ∥θT − θ⋆t ∥2/2.

2Observe that, this input space is rich enough to capture a random vector with O (1) subgaussian norm. For instance, a standard normal
vector would fall into this set with exponentially high probability as soon as c > 1.

3The relaxation is not enforcing anything on pathways containing a single task.



D.4 Proof of Theorem 4 and Supporting Results
We start with a useful lemma to show excess risk of linear least squares problem with dependent noise.

Lemma 8 (Linear least squares risk with dependent noise) Let S = (xi, yi)ni=1
i.i.d.∼ D where y = θ⊤x + z where x is

O (1) subgaussian vector with isotropic covariance and z is O (σ) subgaussian noise. Here, we assume that x&z can be
dependent, however, orthogonal (i.e. E[xz] = 0). LetX = [x1 · · · xn]⊤ ∈ Rn×p andX† be the Moore-Penrose pseudoinverse
of X . Let ∧ be the minimum symbol. For n ≥ Cp for a sufficiently large constant C ≥ 1, the excess least squares risk and
population-empirical risk gap of θ̂ = X†y is given by

LD(θ̂)− σ2 ≤ Cσ2 p+ t

n
with probability at least 1− e−cn − 2e−

√
tn∧t (42)

LD(θ̂)− L̂S(θ̂) ≤ Cσ2

(
p

n
+
√
t

n

)
with probability at least 1− 2e−cn − 4e−

√
tn∧t. (43)

Proof Let z = [z1 . . . zn]⊤ and σmin(·), σmax(·) return the smallest and biggest singular value of a matrix. We can write

LD(θ̂)− E[z2] = ∥θ − θ̂∥2 = ∥(X⊤X)−1X⊤z∥2 ≤ ∥X
⊤z∥2

σmin(X)4 .

Following (Vershynin 2010), we have
√

2n ≥ σmax(X), σmin(X) ≥
√
n/2 each with probability at least 1− e−cn. The crucial

term of interest is ∥X⊤z∥. To control this, observe thatX⊤z =
∑n
i=1 zixi. Since zixi is O (σ)-subexponential (multiplication

of two subgaussians), the summand X⊤z has a mixed subgaussian/subexponential tail. Specifically, it obeys (Oymak 2018,
Lemma D.7)

P
(
∥X⊤z∥2 ≳ σ2(p+ t)n

)
≤ 2e−

√
tn∧t.

Combining both, with advertised probability we establish the first claim.

∥X⊤z∥2

σmin(X)4 ≲ σ2 p+ t

n
.

For the second claim, observe that

L̂S(θ̂)− 1
n
∥z∥2= 1

n
∥y − ŷ∥2 − 1

n
∥z∥2 = 1

n
[∥(I −XX†)z∥2 − ∥z∥2] (44)

= 1
n
∥XX†z∥2 ≤ σmax(X)2

n
∥(X⊤X)−1X⊤z∥2 (45)

≤ 2∥(X⊤X)−1X⊤z∥2 ≲ σ2 p+ t

n
. (46)

Here, the first and second inequalities of last line hold with respective probabilities at least 1− e−cn and 1− e−cn − 2e−
√
tn∧t.

Additionally, since z2 isO
(
σ2)-subexponential, | 1n∥z∥

2−E[z2]| ≲ σ2
√
t/n with probability at least 1−2e−

√
tn∧t. Combining

all provides the final equation bounding the gap between empirical and population risks.

Then we present the following lemma that converts an MTL guarantee into a transfer learning guarantee on a single subspace.

Lemma 9 Let B ∈ Rr×p be a matrix with orthonormal rows and fix {ht}Tt=1 ∈ Rr with unit covariance and declare
distributions (x, y) ∼ Dt obeying y = h⊤

t Bx+ z with E[z2] = σ2 and E[xx⊤] = Ip. Form H = [h1 . . . ht]⊤ and assume
C 1
rIr ⪰

1
TH

⊤H ⪰ c 1
rIr. Now, for some ε > 0, suppose that f̂ = (B̂, {ĥt}Tt=1) with orthonormal B̂ achieves small

population risk in average that is

LD̄(f̂)− LD̄(f⋆) = 1
T

T∑
t=1

EDt
[(h⊤

t Bx− ĥ⊤
t B̂x)2] ≤ ε

whereLD̄(f⋆) = σ2 is the optimal risk achieved by f⋆ = (B, {ht}Tt=1). LetDT be a new distribution with y = h⊤
TBx+z where

x, z are independentO (1) ,O (σ) subgaussian respectively and E[xx⊤] = Ip. With probability at least 1− e−cM − 2e−
√
tM∧t,

the transfer learning risk on B̂ with M samples is bounded as

LT (f̂)− σ2 ≲ rε ∧ 1 + C
r + t

M
.



where ∧ is the minimum symbol. Additionally, if target task vector hT is uniformly drawn from unit Euclidean sphere, in
expectation over hT and in probability over target training datasets (with probability at least 1− e−cM − 2e−

√
tM∧t), we have

the tighter bound

EhT [LT (f̂)]− σ2 ≲ ε+ C
r + t

M
.

Finally, in both cases, population-empirical transfer gaps |LT (f̂)−L̂ST (f̂)|, EhT [|LT (f̂)−L̂ST (f̂)|] are bounded byO
(
r+t
M

)
with same probability.

Proof Let θt = B⊤ht and θ̂t = B̂⊤ĥt. We first observe that task t risk is simply

Lt(θ̂t) = EDt
[(y − ĥ⊤

t B̂x)2] = σ2 + EDt
[(θtx− θ̂tx)2] = σ2 + ∥θ̂t − θt∥2.

Thus, the excess MTL risk is simply

LD̄(f̂)− LD̄(f⋆) = 1
T
∥Θ− Θ̂∥2

F ≤ ε,

where Θ, Θ̂ ∈ RT×p are the concatenated task vectors.
Now, we aim to obtain the transfer learning risk over B̂. We first write the target regression task (y,x) ∼ DT with

y = x⊤θT + z (for some h) as

y = x⊤B̂⊤h+ z + x⊤ΠB̂⊥(θT ). (47)

Here set x′ = B̂x and z′ = x⊤(I − B̂⊤B̂)θT , and then y = h⊤x′ + z + z′. Note that

E[x′z′] = E[B̂xx⊤(I − B̂⊤B̂)θT ] = 0,

verifying that we can treat the representation mismatch as a dependent but orthogonal subgaussian noise. Combined with
Lemma 8, with probability 1− e−cM − 2e−

√
tM∧t (conditioned on B̂) this leads to a transfer learning risk of

LT (f̂)− σ2 ≤ ∥ΠB̂⊥(θT )∥2 + C
r + t

M
.

Following the proof of Lemma 8, the σ2 term on the right hand side of (42) is related to the inputs (x′) and noise (z + z′) levels,
which are O (1).

To proceed, observe that E[z′2] = ∥ΠB̂⊥(θT )∥2 = ∥BθT ∥2 − ∥B̂θT ∥2 = θ⊤
T (B⊤B − B̂⊤B̂)θT . In the worst case, this

risk is equal to
sup

∥θ∥=1,B⊤Bθ=θ

∥ΠB̂⊥(θ)∥2 = ∥B⊤B − B̂⊤B̂∥.

Recall that we are given 1
T ∥Θ − Θ̂∥2 ≤ 1

T ∥Θ− Θ̂∥2
F ≤ ε. Additionally, Θ⊤Θ/T is a well-conditioned matrix over the

subspace Range(B) with minimum nonzero eigenvalue at least c/r > 0 and condition number upper bounded by C/c (equal to
that ofH). If ε ≤ c/2r, this also implies λmin(Θ̂⊤Θ̂/T ) ≥ c/2r and condition number at most 3C/c. Consequently, applying
Davis-Kahan theorem (Yu, Wang, and Samworth 2015) on Θ, Θ̂ pair implies that the eigenspacesB, B̂ of Θ, Θ̂ obey

∥B⊤B − B̂⊤B̂∥ ≤ O
(

ε

c/r

)
= O (rε) .

If εr ≥ c/2, we can simply use the tighter estimate ∥B⊤B − B̂⊤B̂∥ ≤ 1, which completes the proof of first part of the lemma.
Secondly, consider the average case scenario where hT ∼ unif_over_sphere. In this case, we observe that, the target-averaged

transfer risk follows

EθT [min
h
∥θT − B̂⊤h∥2] = E[∥(I − B̂⊤B̂)θT ∥2] = 1

2r∥B
⊤B − B̂⊤B̂∥2

F . (48)

This time, Davis-Kahan theorem yields the tighter estimate (for our purposes) 1
2r∥B

⊤B − B̂⊤B̂∥2
F ≲ 1

T ∥Θ− Θ̂∥2
F ≤ ε. To

proceed, we find that, the expected transfer learning risk over task distribution obey the tighter guarantee (with probability at
least 1− e−cM − 2e−

√
tM∧t)

EhT [LT (f̂)]− σ2 ≲ ε+ C
r + t

M
.

The final claim arises as a direct result of our application of Lemma 8 in (47).

The following corollary is a Multipath MTL guarantee for least-squares regression obtained by specializing the more general
Theorem 8.



Corollary 5 Suppose X ⊂ Bp(R), ℓ(ŷ, y) is quadratic, and Assumptions 3&4 hold. Solving (M2TL) with the fixed choice of
ground-truth pathways and NT ≳ DoF(F) log(NT ), with probability at least 1− δ, we have that

RM2TL(f̂) ≲
√
L · DoF(F) + log(2/δ)

NT
. (49)

Proof We need to verify the assumptions of Theorem 8. Observe that x, z are subgaussian and ground-truth model ∥θ⋆t ∥ ≤ 1 and
all feasible task hypothesis θ obeys ∥θ∥ ≤ CL+1 which we treat as a constant (i.e. fixed depth L). Consequently, subexponential
norm obeys ∥(y − θ⊤x)2∥ψ1 = ∥(z + x⊤(θ − θ⋆))2∥ψ1 ≤ O

(
C2(L+1)) which verifies O (1) subexponential condition.

Similarly, loss function is Lipschitz with Γ = supy,x |y − ft(x)| ≤ 2CL+1R. Together, these verify Assumption 7. Note that,
Theorem 8 has logarithmic dependence on Γ which is subsumed within ≲. Finally, each module is C Lipschitz (due to spectral
norm bounds) and log-covering number of d × p matrices with C-bounded spectral norm obeys dp log(3CR/ε). These two
verify Assumption 8.

Finalizing the Proof of Theorem 4 Following the discussion above, we provide a proof of Theorem 4. The result below is a
formal restatement of the theorem with a few caveats. First, we state two closely-related guarantees. First guarantee is when
target head hT is arbitrary (worst-case) and second one is for when it is uniformly distributed over unit sphere (average case).
The latter shaves a factor of pL in the MTL risk term. Second, the probability term in Theorem 4 is chosen to be approximate for
notational simplicity. Namely, we ignored the log(1/δ)/NT term and second order effects. We state the full dependence here
which is a bit more convoluted.

Theorem 9 Suppose Assumptions 3–6 hold and ℓ(ŷ, y) = (y − ŷ)2. Additionally assume input space is Bp(c√p) andHT =
RpL 4. Solve MTL problem (M2TL) with the knowledge of ground-truth pathways (ᾱt)Tt=1 to obtain a supernet ϕ̂ and assume
NT ≳ DoF(F) log(NT ). Solve transfer learning problem (TLOP) with ϕ̂ to obtain a target hypothesis f̂ϕ̂. Then, with
probability at least 1− 3e−cM − 4δ, excess target risk (3) of TLOP obeys

EαT [RTLOP(f̂ϕ̂)] ≲ pL
M

+ pL

√
L · DoF(F) + log(2/δ)

NT
+
[√

log(2|A|/δ)
M

]
+

. (50)

Here, the probability is over the source datasets and the (input, noise) pairs of the target dataset i.e. (xT
i , z

T
i )Mi=1, and we used

the short hand [x]+ = x+ x2. Additionally, if target distribution follows the same generative model with prediction head hT
drawn uniformly at random over the unit sphere, we obtain the tighter bound

EαT ,hT [RTLOP(f̂ϕ̂)] ≲ pL
M

+
√
L · DoF(F) + log(2/δ)

NT
+
[√

log(2|A|/δ)
M

]
+

. (51)

Remark. Note that, above, we split probability space into three independent variables. Source datasets Sall, (input, noise) pairs
of the target dataset i.e. (xT

i , z
T
i )Mi=1, and finally target path αT . The result is with high probability over the former two and

expectation over the latter.
Proof In this proof, we aim to reduce the Multipath MTL guarantee to a Vanilla MTL scenario so that we can utilize Lemma 9.
Assumptions 5 and 6 will be critical towards this goal. Recall that, we have the Multipath MTL guarantee from Corollary 5 so
that, with probability 1− δ,

RM2TL(f̂) ≲
√
L · DoF(F)

NT
+
√

log(2/δ)
NT

.

Let us call this event E1. Here, we omitted the log |A|/N term because our transfer guarantee will require the knowledge of
ground-truth pathways for sources (even if it is not required for the target). The main idea is to show that smallRM2TL(f̂) implies
that target will fall on a pathway with small source-averaged risk. This way, we can apply Lemma 9 to provide a guarantee for
the target. To proceed, we gather all unique ground-truth pathways via Γ = {γi}Si=1. Additionally, let C(γ) be the number of
tasks that chooses pathway γ.

Finally let L′
i(f) be the excess task-averaged population risk over γi, that is L′

i(f) = 1
C(γi)

∑
ᾱt=γi

{Lt(ft)− σ2}. With this
definition, we can write MTL excess risk as

1
T

S∑
i=1

C(γi)L′
i(f) ≲

√
L · DoF(F)

NT
+
√

log(2/δ)
NT

.

4We make this assumption (no norm constraint unlike MTL phase) since during transfer learning, we simply solve least-squares. Thanks to
this, we achieve faster rates.



To proceed, we will view each L′
i as a vanilla MTL problem over pathway γi. Following Assumption 6, we draw the random

pathway αT of the target task and it is equal to αT = γi ∈ Γ. Note that this event happens with probability P(αT = γi) =
C(γi)/T . Conditioned on this, let us control the transfer risk.

Note that during TLOP we will search over all pathways α ∈ A. Denote B̄α, B̂α ∈ RpL×p are the ground-truth and empirical
weights of the linear model induced by α. Denote the transfer learning model over B̂α via f̂α. For any choice of α, applying

Lemma 8, we know that empirical-population transfer gap LDT (f̂α)− L̂ST (f̂α) is bounded by O

(
pL

M +
[√

log(2/δ)
M

]
+

)
with

probability at least 1− 2e−cM − 2δ. This is over the input/noise distribution of target samples (arbitrary αT = γi and associated
ground-truth θT ). Union bounding over all potential pathways target task may use, we obtain that,

sup
α∈A
|LDT (f̂α)− L̂ST (f̂α)| ≤ O

(
pL
M

+
[√

log(2|A|/δ)
M

]
+

)
.

Consequently, empirical risk minimization over all pathways will choose a target model f̂ϕ̂ guaranteeing with probability at least
1− 2e−cM − 2δ

RTLOP(f̂ϕ̂) ≤ min
α
RTLOP(f̂α) +O

(
pL
M

+
[√

log(2|A|/δ)
M

]
+

)
(52)

≤ RTLOP(f̂γi) +O
(
pL
M

+
[√

log(2|A|/δ)
M

]
+

)
. (53)

The latter line is reasonable because we know that ground-truth pathway αT = γi is a great candidate for being population
minima. Applying Lemma 9 again over the path γi, with probability 1− e−cM − δ, we obtain

RTLOP(f̂γi
) ≤ pLL′

i(f) ∧ 1 + C
pL
M

+
[

log(2/δ)
M

]
+
.

Combining with above, with probability 1− 3e−cM − 3δ, the ERM solution over all pathways obeys

RTLOP(f̂ϕ̂) ≤ pLL′
i(f) ∧ 1 +O

(
pL
M

+
[√

log(2|A|/δ)
M

]
+

)
.

Note that above holds for worst-case prediction head hT . Additionally, applying Lemma 9 again and assuming hT is generated
uniformly over the unit sphere, on the same event, we find

EhT [RTLOP(f̂ϕ̂)] ≤ L′
i(f) +O

(
pL
M

+
[√

log(|A|/δ)
M

]
+

)
. (54)

Now, for fixed MTL dataset, taking expectation over αT , with same probability over the input/noise distribution

EαT [RTLOP(f̂ϕ̂)] ≤
S∑
i=1

C(γi)
T

pLL′
i(f) ∧ 1 +O

(
pL
M

+
[√

log(2|A|/δ)
M

]
+

)
(55)

≤ pLRM2TL(f̂) ∧ 1 +O
(
pL
M

+
[√

log(2|A|/δ)
M

]
+

)
. (56)

Let us call this event E2 which is independent of αT . Union bounding E1 and E2 (both independent of αT ), we obtain the
advertised bound (50). We obtain (51) through same argument following the average-case control (54).

E Not All Optimal MTL Pathways are Good for Transfer Learning
Ideally we would like to prove Theorem 4 without assuming that MTL phase is solved with the knowledge of ground-truth
pathways. While we believe this may be possible under stronger assumptions, here, we discuss why this problem is pretty
challenging with a simple example on linear representations.
Setting: Suppose we have a single layer linear supernet with K = 2 modules each with size 2R× p. This corresponds to the
Cluster MTL model where we simply wish to group the tasks into two clusters and train vanilla MTL over individual clusters.
This simple setting will already highlight the issue.
• Source tasks: Consider four groups of tasks (Θi)4

i=1 where Θi = (θij)T/4
j=1. We assume that T/4 task vectors from Θi

perfectly span an R dimensional subspace Si (at least T ≥ 4R). Additionally, set (Si)4
i=1 to be perfectly orthogonal over Rp.

Also assume that the tasks are linear and noiseless i.e. yij = x⊤
ijθij .



Lemma 10 Suppose representation modulesB1,B2 ∈ R2R×p are constrained to have orthonormal rows. Define the ground-
truth pathways where Θ1,Θ2 are on pathway 1 and Θ3,Θ4 are on pathway 2. Now, assume that transfer learning task θT is
drawn uniformly at random from the 2R dimensional subspace of one of these pathways. Assume target is linear & isotropic:
(x, y) ∼ DT obeys y = x⊤θT + z where E[xx⊤] = Ip and x, z are orthogonal. Then, regardless of the source sample/task
sizes N,T and target sample size M , there exists an MTL solution such that, excess transfer risk of final target hypothesis f̂T
obeys

EθT [RTLOP(f̂T )] ≥ c.
for some absolute constant c > 0. Additionally,RTLOP(f̂T ) ≥ 0.5 almost surely as R→∞.
Proof As the reader might have noticed, the argument is straightforward. Create the following MTL solution: Let B1 be an
orthonormal basis for Θ1,Θ3 and letB2 be an orthonormal basis for Θ2,Θ4. Without losing generality, forB1, let us set it so
that first R rows are assigned to Θ1 and last R assigned to Θ3 (same for B2). Note that, we simply swapped Θ2 with Θ3 in
pathway assignments.

Observe that B1 and B2 achieves zero MTL risk because they contain all task vectors Θi = (θij)T/4
j=1 in their range and

problems are noiseless. What remains to show is that B1,B2 assignments are poor choices for the target task drawn from either
B⋆

1 induced by Θ1,Θ2 orB⋆
2 induced by Θ3,Θ4. Without losing generality, suppose θT is drawn fromB⋆

1 . Observing θT lies
on the combined range ofB1,B2, and using properties of linear regression with isotropic features, we bound the target transfer
risk via

LT (f̂T )− E[z2] = min
i∈{1,2}

LT (B⊤
i ĥT )− E[z2]

= min
i∈{1,2}

∥B⊤
i ĥT − θT ∥2

≥ min
i∈{1,2}

min
h
∥B⊤

i h− θT ∥2

= min
i∈{1,2}

∥B3−iθT ∥2 = min
i∈{1,2}

∥BiθT ∥2

= min
i∈{1,2}

∥ProjSi
(θT )∥2.

The last line highlights the fact that Si lies on Bi and projection of θT on Bi is exactly equal to its projection on Si by
pathway assignments. Since θT is uniformly drawn, the last line is equivalent to X(g, g′) = ∥g∥2

∥g∥2+∥g′∥2 ∧ ∥g′∥2

∥g∥2+∥g′∥2 for

g, g′ i.i.d.∼ N (0, IR). Observing ∥g∥2, ∥g′∥2 are Chi-squared, it is clear that, for all R and for some constant c0 > 0, we have
P(0.5 ≤ ∥g∥2

R ≤ 1.5) ≥ c0. On these events on g, g′, we have X(g, g′) ≥ 1/4 and E[X(g, g′)] ≥ c = c2
0/4. Finally, as

dimension R→∞, we have ∥g∥2/∥g′∥2 → 1 almost surely, which similarly implies X(g, g′)→ 0.5.

F Experimental Details on Section 5
We provide further details on the experiments in Section 5 as well as incorporate additional experiments.

F.1 Algorithms for Vanilla MTL, Cluster MTL, and Multipath MTL
To facilitate faster and more stable convergence of all three algorithms, we used a conventional approach from nonconvex
optimization literature which has also been proposed in the context of linear representation learning (Kong et al. 2020a; Sun et al.
2021; Bouniot et al. 2020; Tripuraneni, Jin, and Jordan 2021). Specifically, linear representation learning with Vanilla MTL has a
bilinear form similar to matrix factorization. Thus, first-order method to solve Vanilla MTL benefits from proper initialization of
the representation. In our experiments, we use such a two-step procedure:
• Initialization: At the start of MTL, build an initialization for the representation.
• Alternating least-squares (ALS): Train prediction heads and representation layers through alternating least-squares.
Here, we note that ALS is same as alternating gradient descent (AGD) however we are essentially running infinitely many

gradient iterations before alternating. The reason we use this procedure for all three algorithms is to provide a fair comparison
without the worry of tuning learning rates for each algorithm individually. Initialization plays a useful role in further stabilizing
ALS.

While prior works provide initialization methods for MTL, we will also develop a novel initialization algorithm for Multipath
MTL. We believe this may be an interesting future direction for providing provable computational guarantees for Multipath
MTL.
Initialization procedures: We first revise the procedure for Vanilla MTL. Suppose we are given T tasks with dataset Sall where
input features have isotropic covariance. We will use the procedure discussed in (Sun et al. 2021) where the authors claim
improvement over (Tripuraneni, Jin, and Jordan 2021; Kong et al. 2020b).
• Vanilla MTL: initialization is a method-of-moments procedure as follows:
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Figure 5: We evaluate (Vanilla) MTL, Cluster-MTL and Multipath-MTL using imbalanced data in a linear regression setting (half
tasks have more, half have less data resources). In both experiments, there are K = 20 clusters in total. In Fig. 5a, all clusters
have T̄ = 10 tasks. Then, we fix the sample size of the tasks in 10 of the clusters (N2 = 33), and change the sample size in the
other 10 clusters (N1) from 1 to 33. Then we solve the three MTL (Vanilla, Cluster, Multipath) problems. Solid/Dashed curves
show the test risk of the tasks who have fewer/more samples. In Fig. 5b, instead we fix the sample size of each task (N = 10). In
10 of the clusters, we set the number of tasks T̄2 = 50. While in the other clusters, the number of tasks is varied from 2 to 50.
Again, we run experiments under all the three settings and plot the test risk of fewer/more tasks in solid/dashed curves. The
curves in both figures show the median risks and the shaded regions highlight the first and third quantile risks. Each marker is
average of 20 independent runs.

1. Form the θ̂t estimates via θ̂t = 1
N

∑N
i=1 ytixti.

2. Form the moment matrixM =
∑T
t=1 θ̂tθ̂

⊤
t .

3. Set B̂0 ∈ RR×p to be the top R eigenvectors ofM .

At this point, we can start running our favorite choice of first order method starting from the initialization B̂0. In our implementa-
tion, we run ALS where we estimate {ĥt}Tt=1 (by fitting LS given B̂), then re-estimate B̂ and keep going.
• Cluster MTL: In our experiments, we assumed clusters (i.e. pathways) are known. This is in order to decouple the challenge

of task-clustering from the comparisons in Figure 2. We note that task clustering has been studied by (Fifty et al. 2021; Kumar
and Daume III 2012; Kang, Grauman, and Sha 2011) (Leveraging relations between tasks are explored even more broadly
(Zhuang et al. 2020).) however these works don’t come with comparable statistical guarantees. In our setup, Cluster MTL simply
runs K Vanilla MTL algorithms in parallel over individual clusters using ground-truth pathways.
•Multipath MTL: We propose an initialization algorithm which is inspired from the Vanilla MTL algorithm as follows.

Again, we assume knowledge of clustering/pathways.

1. Estimate shared first layer B̂1 ∈ RR×p via Vanilla MTL initialization using all data.

2. Estimate cluster-specific representations ( ˜̂
Bk

2 )Kk=1 ∈ Rr×p via Vanilla MTL initialization over each cluster data.

3. Estimate the second layer (B̂k
2 )Kk=1 ∈ Rr×R by projecting ˜̂

Bk
2 onto the R-dimensional first layer as follows

B̂k
2 = ˜̂

Bk
2 B̂

⊤
1 .

We then run ALS where we go in the order: Prediction heads, second layers, first layer (repeat).
Remark on unknown clusters: We note that a simple approach to identifying clusters when they are unknown is by solving
Vanilla MTL and then clustering the resulting weight vectors {θ̂t}Tt=1 of the Vanilla MTL solution (e.g. via K-means). The
reason is that, the ground-truth weights {θ⋆t }Tt=1 are simply points that lie on r-dimensional latent cluster-subspaces that we
would like to recover. Naturally, the (random) points on the same subspace will have higher correlation. This viewpoint (restricted
to linear setting) also connects well with the broader subspace clustering literature where each learning task is a point on a
high-dimensional subspace (Vidal 2011; Parsons, Haque, and Liu 2004; Elhamifar and Vidal 2013). The challenge in our setting
is we only get to see the points through the associated datasets. Figure 3 shows our results assuming unknown source pathways.

In the next section, we discuss a few more experiments comparing these three approaches.

F.2 Additional Numerical Experiments
In Figure 5, we conduct more experiments to see how tasks with less data resources perform in MTL when trained together with
other tasks which have more resources. Here, by resources we either mean a task having more samples N or a task having other



(related) tasks along its pathway/cluster. Thus, our experiments involve imbalanced training data. We consider two experimental
settings to show how Multipath MTL benefits accuracy compared to the other two MTL models: Vanilla MTL and Cluster MTL.
Experimental settings: Consider the same Vanilla MTL, Cluster MTL and Multipath MTL problems in linear regression regime
as discussed in Section 5 and follow the same algorithm in Section F.1. In the experiments, same as Section 5, we set p = 32,
R = 8, and r = 2. We consider MTL problem with K = 20 clusters. Here, data is noisy. In Fig. 5a, there are 10 tasks in each
cluster. In half of the clusters, each task has fixed sample size, N2 = 33 (more resource); while in the remaining 10 clusters,
the sample size (N1) varies from 1 to 33 (less resource). Solid curves display the test risk of the tasks with N1 samples and
dashed curves present the test risk of tasks with N2 samples. Rather than changing number of samples, in experiments shown in
Figure 5b, we create another scenario where number of tasks per cluster is varied (as a measure of data resource). Here, instead
all tasks contain N = 10 samples. For 10 of the total clusters, there are fixed T̄2 = 50 tasks in each cluster. However, the other
10 contain only T̄1 tasks in each cluster, and we compare the performance with different T̄1 selections. We change T̄1 from 2
to 50 and results are displayed in Fig 5b. Similar, solid curves present the results of the clusters who contain fewer tasks (less
resource), to the contrary, dashed curves present the test risk of clusters with fixed T̄2 = 50 tasks (more resource).

In both figures, Multipath-MTL performs better than the other two models, which again shows that the sample complexity of
hierarchical model is smaller than the vanilla and clustering models. When there are fewer samples or fewer tasks, all the three
methods fail at learning a good representation. The three dashed curves in Fig. 5a behave in line with expectations: They follow
from the fact that tasks with more samples can learn decent representations by themselves. The solid curve of Cluster MTL
decreases slower, and it is because other than the other two methods where clusters are correlated and representations are shared,
in Cluster MTL setting (as depicted in Fig. 4b), clusters are separately trained. Therefore, there is no benefit across the clusters.
In Fig. 5b, firstly, the evidence that orange and blue dashed curves are above the green one again shows the sample efficiency of
Multipath MTL. Here, when there are only 2 tasks for the 10 resource-poor clusters, the Cluster MTL has the worst performance
because there is no representation sharing across clusters. Test risk of Vanilla MTL does not change too much even the task
number increases. It is because MTL representation of vanilla model is larger and tasks don’t have enough samples to train their
prediction heads. For instance, blue solid curve hits blue dashed curve at very beginning, which shows that the model is already
trained well and adding more tasks cannot help too much (both more resource tasks and less resource tasks are doing similar).


