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Abstract—Cross-entropy is the de-facto loss function in modern
classification tasks that involve distinguishing hundreds or even
thousands of classes. To design better loss functions for new
machine learning tasks, it is critical to understand what makes
a loss function suitable for a problem. For instance, what makes
the cross entropy better than other alternatives such as quadratic
loss? In this work, we discuss the role of loss functions in
learning tasks with a large number of classes. We hypothesize
that different loss functions can have large variability in the
difficulty of optimization and that simplicity of training is a key
catalyst for better test-time performance. Our intuition draws
from the success of over-parameterization in deep learning: As
a model has more parameters, it trains faster and achieves
higher test accuracy. We argue that, effectively, cross-entropy loss
results in a much more over-parameterized problem compared
to the quadratic loss, thanks to its emphasis on the correct
class (associated with the label). Such over-parameterization
drastically simplifies the training process and ends up boosting
the test performance. For separable mixture models, we provide
a separation result where cross-entropy loss can always achieve
small training loss, whereas quadratic loss has diminishing
benefit as the number of classes and class correlations increase.
Numerical experiments with CIFAR 100 corroborate our results.
We show that the accuracy with quadratic loss disproportionately
degrades with a growing number of classes; however, encouraging
quadratic loss to focus on the correct class results in a drastically
improved performance.

Index Terms—cross entropy, multiclass classification, quadratic
loss, over-parameterization, deep neural networks

I. INTRODUCTION

Modern machine learning problems involve complex tasks
where one has to make the optimal decision given hundreds or
thousands of possible actions. Hence multiclass classification
lies at the heart of various application domains such as recom-
mender systems, robotics, search engines, and computer vision.
In state-of-the-art supervised learning problems, practitioners
typically use large capacity deep neural networks together with
cross-entropy loss [1], [2]. It is known that the true posterior
probability is a global minimum for both the cross-entropy (CE)
and quadratic (i.e. squared) loss (QL) [3], [4], [5]. Hence these
loss functions are Bayes consistent and can implement Bayes
optimal classification when combined with expressive models
such as deep networks [6], [7]. However, QL is rarely used for
multiclass problems. Our goal in this paper is to understand
the role of the loss function on the classifier performance and

to shed light on what makes one loss function perform better
than another.

Our key intuition is that the performance of modern classi-
fiers is highly connected to the optimization landscape. Indeed
in practice, deep neural networks are typically trained until
they achieve 100% accuracy on the training data [8] and the
network size is much larger than the size of the training dataset,
i.e., the problem is over-parameterized. We have a growing
understanding of the benefits of over-parameterization and how
it simplifies the training process while often maintaining the
accuracy [9], [10], [11], [12].

In this paper, we build on the importance of optimization
landscape with an emphasis on loss functions. Via empirical
observations and theoretical arguments, we argue that loss
functions that are easier to train also generalize better.
Over-parameterization is a crucial catalyst of simpler and faster
training; however, it has been only studied in the context of
a model having more parameters. We argue that different
loss functions have different levels of effective overparam-
eterization, which greatly affects the final performance. For
instance, QL is inherently more over-determined (less over-
parameterized) compared to CE. This results in an unfavorable
optimization landscape and less tractable optimization problems.
Intuitively, this stems from the fact that QL focuses on fitting
all classes, whereas CE focuses on only the correct class
(associated with the label), while maximizing the margin to
the remaining classes.
Contributions. This paper makes the following contributions:
● We contrast the QL and CE for a mixture model with K
components using linear classifiers. We show that CE can
achieve arbitrarily small loss whereas QL has vanishing benefit
as the class sizes and correlations increase. Normalized QL
loss is lower bounded by 1− r/K (compared to a reference of
1) where r is the subspace induced by the component centers.
● Numerical experiments on CIFAR 100 confirm the theory
and demonstrate that increased number of classes hurts QL
disproportionately. In particular, stochastic gradient descent
(SGD) is unable to properly optimize QL with 100 classes
despite over-parameterization.
● To highlight the importance of relaxing the loss function
and over-parameterization, we propose a simple variant of
QL which is encouraged to focus on the correct class, rather



than all classes as by default. This loss function consistently
outperforms the default QL and can achieve full training
accuracy and competitive test performance on CIFAR 100.
Related work. Classification loss functions have a long history
in statistics and machine learning [4], [13]. CE and QL have
been compared in several interesting works [14], [15], [16];
however these works do not focus on the optimization landscape
and large number of classes. Extreme multiclass problems with
huge number of classes have been studied by [17], [18], [19].
For datasets with separable classes, recent works show that
gradient descent converges to the max-margin solution with
CE loss [20], [21]. Designing good loss functions is an active
research topic [22], [23], [24].

Our insights relate to the recent literature on the benefits of
over-parameterization. Recent works show that large-capacity
deep networks have the ability to fit essentially any training
dataset for both QL and CE loss [9], [25], [26]. This work
highlights the loss function as an additional “control knob” and
argues that QL is relatively less over-parameterized than CE.

II. PROBLEM SETUP

We first define the notation. We denote the number of classes
by K. Let v[i] denotes the ith entry of a vector v ∈ RK .
Given an integer k obeying 1 ≤ k ≤ K, we define a one-
hot encoding one-hot(k) as follows: one-hot(k)[k] = 1 and
one-hot(k)[`] = 0 for ` ≠ k. The softmax operator is denoted
by sftmx(v) with entries sftmx(v)[k] = ev[k]/∑

K
i=1 e

v[i]. IK
denotes the identity matrix of dimensions K ×K.

We consider the supervised classification problem with
multiple classes. The joint distribution of the data is denoted
by D. Given (x, y) ∼ D, we assume that the input vector obeys
x ∈ Rd and label y ∈ {1,2, . . . ,K} is an integer corresponding
to the true class assignment to one of the K classes.

Let f ∶ Rd → RK be a multiclass classifier (e.g.,a deep neural
network) that maps an input to a K dimensional vector of
class predictions. At an input x, f outputs a hard decision
argmax1≤k≤K f(x)[k]. Hence test accuracy is given by:

L0−1(f,D) = Ex,y[y = arg max
1≤k≤K

f(x)[k]].

In the population limit (i.e., infinitely many training samples),
QL is defined as:

LQL(f,D) =
1

2
Ex,y[∥one-hot(y) − f(x)∥2`2].

Cross-entropy loss is calculated after the application of the
softmax layer and is given by:

LCE(f,D) = −Ex,y[log(sftmx(f(x))[y])]

Note that QL attempts to fit all classes, i.e., it sets the
correct class to one and other classes to zero. In contrast,
CE focuses mostly on the correct class and is more ignorant
of the predictions made on other classes. The impact of all
remaining class predictions are summarized using a single
number in softmax given by ∑i≠y e

f(x)[i]. Hence, CE inher-
ently aims to maximize the margin between the correct class
and the remaining classes, where the margin is defined as

marginf(y,x) = f(x)[y] −maxi≠y f(x)[i]. In particular, as
soon as all training examples achieve positive margins, CE
training loss can be pushed to zero by using the scaled classifier
αf and letting α →∞.

Towards demonstrating the benefit of focusing on the correct
class, we will also consider a modification of QL which puts
more emphasis on the correct class. We call this Correct-Class
Quadratic-Loss (CCQL), defined as:

LCCQL(f,D) = LQL(f,D) +
w

2
E[(1 − f(x)[y])2] (II.1)

This modified QL is parameterized by w which controls the
amount of emphasis on the correct class. In the extreme scenario
of w → ∞, CCQL ignores all other classes and reduces to
minimizing E[(1 − f(x)[y])2]. Note that this is not a good
idea as a non-informative classifier always predicting the all
ones vector would achieve zero loss. We will use CCQL in
our experiments to demonstrate that emphasizing correct class
does indeed help training.

Finally, our analysis in the next section will consider a linear
classifier parameterized by Θ ∈ RK×d, i.e.m f(x) = f(x,Θ) =

Θx. We remark that technical arguments can potentially be
extended to kernels or even neural nets [9], [25], [26] by using
high-dimensional feature maps x → φ(x) and studying the
linear classifier in the feature space, i.e., f(x) = Θφ(x).

III. COMPARISON OF LOSS FUNCTIONS ON MIXTURE
MODELS

This section presents results comparing CE, QL and CCQL
on a simple distribution (mixture model) from a theoretical
point of view. Our mixture model has K classes as described
below.

Definition 3.1 (K-class Mixture): A sample (x, y) ∼ D from
a mixture model distribution D is generated as follows. Let
(µk)

K
k=1 be the K component centers satisfying ∥µk∥`2 = 1

and, for some γ > 0, let:

∣µTi µj ∣ ≤ 1 − 3γ for any i ≠ j

Each label y is equally likely, i.e., E[y = k] = 1/K. Conditional
distribution x−µy satisfies E[x−µy] = 0 and E[(x−µy)(x−
µy)

T ] = σ2Id. If we additionally have ∥x −µy∥`2 ≤ γ, then
D is called a Bounded Mixture Model.
● CE Loss: We first consider a linear classifier with the CE
loss. Leveraging the margin γ between the classes, it is fairly
straightforward to show that CE loss can be made arbitrarily
small. The following results provide two regimes with small
CE loss (for different mixture variance and tail decay).

Lemma 3.2 (Small loss with CE): Fix a target loss ε > 0 and
pick Euclidian norm constraint R ≥ γ−1 log(K/ε). Let D be
a bounded mixture model as in Def. 3.1. Then the CE loss
obeys:

min
∥Θ∥F ≤R

√

K
LCE(Θ,D) ≤ ε.

Proof We will explicitly construct a model achieving small
loss. Pick Θ such that the kth column of Θ is equal to Rµk.
Clearly ∥Θ∥F = R

√

K. Additionally, for any training sample



(x, y) with y = k and any i ≠ k, defining x̂ = Θx, we have
that

x̂k = RxTµk = R(x −µk +µk)µk ≥ R(1 − γ)

x̂i = RxTµi = R(x −µk +µk)µi ≤ R(1 − 2γ).

Following this, we find

ex̂k

∑
K
i=1 x̂i

≥
eR(1−γ)

eR(1−γ) + (K − 1)eR(1−2γ)
=

1

1 + (K − 1)e−Rγ

Hence LCE(Θ, (x, y)) ≤ log(1+(K−1)e−Rγ) ≤ (K−1)e−Rγ .
Since this is true for all samples, overall loss obeys the same
upper bound.

This lemma is pessimistic for distributions with light-tail and
it can be refined when a class centered distribution x −µy is
sub-Gaussian.

Lemma 3.3 (Sub-Gaussian CE bound): Let c,C > 0 be
absolute constants and R, ε > 0 be as in Lemma 3.2. Let D be
as in Def. 3.1 and suppose conditional distribution x −µy has
sub-Gaussian norm (see Def. 5.7 of [27]) upper bounded by
Cσ. Consider a finite dataset S = (xi, yi)

n
i=1

i.i.d.
∼ D and define

the empirical loss:

LCE(Θ,S) = −
1

n

n

∑
i=1

log(sftmx(Θxi)[yi]).

Then with probability at least 1 −Kn exp(−cγ2/σ2), we have
that min

∥Θ∥F ≤R
√

K LCE(Θ,S) ≤ ε.
Proof We use the construction of Lemma 3.2 and show that
it still satisfies the margin requirements. We need to make sure
that for any (x, y) ∈ S, defining

x̂k = RxTµk = R(x −µk +µk)µk ≥ R(1 − γ)

x̂i = RxTµi = R(x −µk +µk)µi ≤ R(1 − 2γ).

This is satisfied by ensuring ∣(x − µk)
Tµi∣ ≤ γ for all i.

Note that ∣(x −µk)
Tµi∣ is sub-Gaussian with norm γ hence

∣(x−µk)
Tµi∣ ≤ γ with probability 1− exp(−Cγ2/σ2). Union

bounding over all classes and samples, we find the result with
probability 1 −Kn exp(−Cγ2/σ2).

Observe that this result allows for a wider range of variance
level σ ≲ γ/

√
logK + logn, which can be viewed as σ ≲ γ

ignoring logarithmic terms. On the other hand, Lemma 3.2
requires σ ≤ γ/

√
d (since bounded mixture model enforces

∥x −µy∥`2 ≈ σ
√
d ≤ γ). In both cases, CE can achieve a small

loss using sufficiently large model weights, i.e., Θ.
● QL: Given a K-class dataset S = (xi, yi)

n
i=1, observe that

QL attempts to fit K × n equations to a model Θ with K × d
parameters. This problem is inherently over-determined in the
regime n > d. Secondly, observe that problem mostly makes
sense when n ≥ K because we should better sample each
class at least once to ensure the (finite sample) problem has
K-classes. Hence, when n ≥K ≫ d, QL optimization cannot
be expected to achieve small loss.

Besides the problem dimensions, class correlations also affect
the loss. Let M ∈ RK×d be the matrix of component centers
defined as M = [µ1 . . . µK]T . At the minimum, we wish

to correctly predict the component centers (even if not every
(x, y) ∼ D). Hence we wish to argue that the residual error
matrix IK−ΘMT is small where the kth column of this matrix
corresponds to how well the center µk maps to the correct
label one-hot(k). Since IK is full-rank, we are guaranteed to
have:

1

K
∥IK −ΘMT

∥
2
F ≥ 1 −

rank(M)

K
, (III.1)

The following lemma provides a more refined bound in terms
of the eigenvalues of MTM .

Lemma 3.4 (Large loss with QL): Set f(x,Θ) = Θx and
let M = [µ1 . . . µK]T ∈ RK×d be the matrix of component
centers. Let (λk)

K
k=1 be the eigenvalues of MTM . Then

argmin
Θ
LQL(Θ) =M(MTM + σ2IK)

−1,

so that min
Θ
LQL(Θ) =

K

∑
k=1

σ2

Kσ2 + λk
.

Proof Population loss of BMM

E[(1 − θT (µ + σg))2] = 1 − 2θTµ + (θTµ)2 + σ2
∥θ∥2`2

= 1 − 2γ + γ2 + σ2γ2.

Population loss of multiclass BMM at class k is given by

E[(ek −Θ(µk + σg))
2
] = 1 − 2ekΘµk + (Θµk)

2
+ σ2

∥Θ∥
2
F .

(III.2)

Differentiating with respect to Θ, we find

di(Θ) =
K

∑
k=1

−ekµ
T
k +Θµkµ

T
k + σ

2Θ. (III.3)

Let M = [µ1 . . . µK]T ∈ RK×d. Setting all derivarives di(Θ)

to 0 yields the optimal parameter to be

−M+ΘMTM+Kσ2Θ = 0 Ô⇒ M(MTM+σ2KI)−1 = Θ

Substituting optimal Θ in (III.2) and adding up over 1 ≤ k ≤K,
this yields the population loss at optimal Θ to be

KL(Θ) =K − 2trace(MTΘ)

+ trace(ΘMTMΘT
) +Kσ2trace(ΘTΘ).

Next, define C =MTM , Cσ =MTM +Kσ2I to find

KL(Θ) =K − 2trace(CC−1σ )

+ trace(C−1σ CC
−1
σ C) +Kσ2trace(C−1σ CC

−1
σ ).

Suppose the eigenvalues of C are λ1 ≥ λ2 ⋅ ⋅ ⋅ ≥ λK . Then the
loss can be decomposed along eigendirections and is given by

KL(Θ) =
K

∑
k=1

1 − 2
λ

λ +Kσ2
+

λ2

(λ +Kσ2)2
+

Kσ2λ

(λ +Kσ2)2

=
K

∑
k=1

K2σ4

(λ +Kσ2)2
+

Kσ2λ

(λ +Kσ2)2
=

K

∑
k=1

Kσ2

λ +Kσ2
.

This concludes the proof after cancelling out the K terms.

This lemma recovers the earlier discussion (III.1) as
a special case since loss is lower bounded by 1 −



(a) Test and Training Accuracy (b) Test and Training loss

Fig. 1: K = 25 classes randomly chosen from CIFAR 100
dataset. (a) shows test (dashed lines) and training (solid)
accuracy for CE, QL, CCQL. (b) shows test and training loss.
CCQL performs better than QL and achieves smaller loss.

(# of zero eigenvalues)/K regardless of variance σ. As soon
as K ≥ d/ε, QL loss is bounded below by (1 − ε)/2. This
should be compared to the reference loss of 1/2 achieved
when Θ = 0, σ = 0.
● CCQL: Finally, we discuss how CCQL may simplify the op-
timization landscape over QL. Note that setting Θ =M always
predicts 1 at the correct class location, i.e., (Mµk)[k] = 1.
This would set the left-hand side of the CCQL loss (II.1) to
zero. The next lemma provides a bound via this observation.

Lemma 3.5 (CCQL upper bound): Consider the K-class
mixture setup of Lemma 3.4. Picking Θ =M , we have that:

min
Θ
LQL(Θ) ≤min

Θ
LCCQL(Θ) ≤

∥MMT − IK∥2F

K
+Kσ2.

Proof Suppose σ = 0. Setting Θ =M , for any (x, y) with
y = k, we have that Θµk[k] = 1 hence we suffer zero loss
at the correct class. For the other classes, we suffer a loss
of ∑i≠k(µ

T
i µk)

2. Summing these up and averaging, we find
1
K
∥MMT − IK∥2F . Noise costs an extra ∥M∥2Fσ

2 =Kσ2.

To guide the discussion, let us set σ = 0 above. Recalling (II.1),
note that at Θ = 0, we have a reference loss LCCQL = (w+1)/2.
Hence, applying a normalization 2

w+1
LCCQL(Θ), Lemma 3.5

shows CCQL can achieve vanishing normalized loss as w
grows, and the optimization problem becomes guided towards
the correct class (as opposed to remaining K−1). Hence CCQL
effectively reduces the number of equations from K × n to n
gradually. As w → ∞, a degenerate classifier predicting the
all-ones vector achieves minimum loss.

IV. NUMERICAL EXPERIMENTS

In this section, we numerically compare CE, QL, and CCQL
on the CIFAR 100 benchmark dataset. All experiments are run
for 200 epochs using the SGD optimizer and use the same
learning rate schedule, where the learning rate is divided by 4
at the end of epochs 50, 80, 110, 150, and 170. THe initial
learning rate is hand-tuned to achieve maximum accuracy in
each experiment. All experiments use the WideResNet 28-10
model [28]. We note that despite 100 classes, the problem with
quadratic loss is heavily over-parameterized, as we have K×n =

100×50,000 = 5 million equations, whereas WideResNet model
contains 36.5M parameters. To assess the role of number of
classes, we pick K out of 100 classes uniformly at random

(a) Test and Training Accuracy (b) Training Loss

Fig. 2: Full CIFAR 100 data (K = 100). (a) shows test (dashed
lines) and training (solid) accuracy for CE, QL, CCQL. (b)
shows training loss. QL optimization fails whereas CCQL
performs competitively with CE.

(without replacement), unless otherwise specified. As CCQL
loss, we picked w =

√
K − 1 − 1. The logic behind this choice

is as follows: CCQL essentially assigns a total weight of w + 1
on the correct class and K − 1 on all other classes. We picked
w + 1 to be polynomial in K − 1. The square-root performed
consistently better than linear (w = K − 2). Note that when
K = 2, CCQL reduces to QL.

Role of class size: In our first set of experiments, we
randomly sampled K = 25 classes from CIFAR 100. Figure
1 compares the CE loss, QL, and CCQL. All three losses
are optimized to nearly zero training loss and perfect training
accuracy. CE performs the best. CCQL outperforms QL both
on training speed and test accuracy. While training loss of
QL is nearly zero, consistent with Lemma 3.4 (with large K),
the test loss of QL is fairly close to (the starting point) 1.
In contrast, normalized loss of CCQL is significantly lower,
which is consistent with Lemma 3.5.

In Figure 2, we consider the full CIFAR 100 dataset and set
K = 100. In this case, CE is the only loss that can achieve 100%
training accuracy. QL doesn’t converge properly with SGD and
stagnates below 20% test accuracy, despite our aggressively
searching for the best initial learning rate and learning rate
schedule. This highlights a drastic performance change in QL
when we move from 25 classes to 100 classes. In stark contrast,
CCQL achieves above 90% training accuracy and around 65%
test accuracy, which places its performance much closer to
CE compared to QL. While not shown here, we also verified
that if w of (II.1) is chosen to be very large, CCQL accuracy
essentially drops to random guessing and the network starts
predicting trivial outputs (i.e., the all ones vector).

Role of class correlation: Finally, we wish to assess the role
of class correlation on accuracy. Towards this goal, we fixed
K = 25 classes but along with randomly sampling classes, also
constructed an alternative dataset by gathering related classes.
Specifically, we focused on 25 classes of mammals obtained
by aggregating the following five superclasses [29]: (a) aquatic
mammals, (b) small mammals, (c) medium-sized mammals, (d)
large carnivores, (e) large omnivores and herbivores. Here each
superclass contains five classes. In light of Lemma 3.4, which
states that class correlations increases the test loss, Figure 3
compares the randomly selected classes with the mammal



Fig. 3: Comparison of 25 random classes and 25 mammal-
related classes with QL. The increased class correlations slows
down the optimization and reduces the test accuracy, consistent
with Lemma 3.4.

classes for QL. We find that in both cases, WideResNet
manages to achieve 100% training accuracy. However training
with mammals dataset (rather than random classes) lead to
slower training and worse test accuracy.

V. CONCLUSIONS

This work provided a theoretical and empirical comparison
of cross-entropy (CE) and quadratic loss (QL). Using a mixture
model, we argued that QL results in a more over-determined
optimization problem and leads to a less favorable optimization
landscape. To mitigate these drawbacks, we introduced CCQL
which modifies QL to encourage over-parameterization by
focusing on the correct class. We showed that CCQL achieves
competitive accuracy in CIFAR 100 in stark contrast with QL.
As future work, we intend to quantify the over-parameterization
of the problem in terms of the loss function and design more
advanced loss functions to better guide the training process.
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