
Exploring Weight Importance and Hessian Bias in Model Pruning

Mingchen Li∗ Yahya Sattar† Christos Thrampoulidis‡ Samet Oymak§

June 19, 2020

Abstract

Model pruning is an essential procedure for building compact and computationally-efficient machine
learning models. A key feature of a good pruning algorithm is that it accurately quantifies the relative
importance of the model weights. While model pruning has a rich history, we still don’t have a full
grasp of the pruning mechanics even for relatively simple problems involving linear models or shallow
neural nets. In this work, we provide a principled exploration of pruning by building on a natural notion
of importance. For linear models, we show that this notion of importance is captured by covariance
scaling which connects to the well-known Hessian-based pruning. We then derive asymptotic formulas
that allow us to precisely compare the performance of different pruning methods. For neural networks,
we demonstrate that the importance can be at odds with larger magnitudes and proper initialization is
critical for magnitude-based pruning. Specifically, we identify settings in which weights become more
important despite becoming smaller, which in turn leads to a catastrophic failure of magnitude-based
pruning. Our results also elucidate that implicit regularization in the form of Hessian structure has a
catalytic role in identifying the important weights, which dictate the pruning performance.

1 Introduction
Contemporary machine learning models such as deep neural networks often achieve good statistical accuracy
at the expanse of large model sizes. On the other hand, a growing list of application domains demand
compact and energy efficient machine learning models. Model pruning (i.e. sparsification) techniques are
critical for addressing the challenge of building models that are simultaneously accurate and efficient. In this
work, we investigate the fundamental principles of model pruning by exploring optimization dynamics and
high-dimensional behavior of pruning approaches.

Pruning methods have a rich history and the literature on neural network pruning goes back to 1980’s
[44, 37, 27]. A fundamental approach in pruning is the accurate quantification of importance of each weight
(i.e. connections) so that when a weight is removed, we can know how much the model will suffer. An intuitive
approach is pruning by the weight magnitude, i.e. removing the weights below a certain threshold. A more
principled approach is developing an importance (i.e. saliency) criteria which captures the sensitivity of the
loss with respect to the weights. For instance, Optimal Brain Damage (OBD) [37] and Optimal Brain Surgeon
[27, 28] calculate a Hessian-based importance criteria by adjusting the magnitudes. Despite its practical
significance, a statistical understanding of pruning presents interesting challenges. Deep networks are often
trained in an over-parameterized regime where the network size is well beyond what is necessary for achieving
zero training error. Thus, network weights can interpolate the data in many ways and it is not immediately
clear which weight gets the credit for learning. Pruning typically happens after training this large initial
network possibly without any `1, `2 regularization. Deep nets may also converge to different solutions under
different initialization or data preprocessing. These motivate a careful study of pruning mechanics: Which
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approach works when? What is the role of initialization? Does over-parameterization affect the outcome and
if so, can it be quantified?
Contributions: In this work, we explore model pruning, importance quantification and the role of Hessian
structure in the pruning performance. We study three different importance criteria and corresponding pruning
methods: (i) Hessian-based importance (HI) and pruning (HP), (ii) Magnitude-based importance (MI) and
pruning (MP), and a third notion, which we call (iii) Natural importance (NI) and pruning (NP). For linear
models and shallow neural-networks, we design a class of equivalent problems which enable us to assess the
role of Hessian structure on the robustness and performance of different importance measures. Our specific
contributions are as follows.
● Understanding covariance bias and pruning performance: For linear models, we introduce a class
of problems where Hessian, which corresponds to the feature covariance matrix, is varied using diagonal
scaling, while preserving target labels. We show that for over-determined problems HI and NI exhibit
scaling invariance, whereas, MI is highly brittle. For over-parameterized problems, we show that scaling
invariance no longer holds and the covariance/Hessian structure dictates the eventual pruning performance.
We introduce analytical performance formulas, precisely capturing these phenomena, revealing that implicit
bias (as enforced by the Hessian structure) can boost HP while hurting MP. Our approach also allows us to
quantify negative bias when principal covariance directions are mis-aligned with the important weights. To
the best of our knowledge, this is the first work that provides exact analytical formulas for the performance
of MP/HP.
● Understanding Hessian bias and the role of initialization: For two-layer ReLU networks, we tackle
the following question: If both layers are very large and can interpolate the training data, who contributes more
towards learning, who gets pruned eventually and at what cost? We study these questions via a simple, yet
insightful, network initialization model and show that the answers depend crucially on the Hessian structure
which governs the training dynamics. Our empirical study reveals that: (i) HI is invariant to Hessian bias
and (ii) as MI decreases, NI (which captures the training/test accuracy) increases. To explain this, we first
show that magnitudes of the weights and magnitudes of their Hessians move in opposing directions and
then establish a “larger Hessian wins more” theorem which accurately quantifies the relative contribution of
different weight groups (e.g. layers) during training in terms of the Hessian bias.

1.1 Related work
Our work relates to the literature on neural net pruning, implicit regularization and over-parameterization.
For analysis, we also use tools related to high-dimensional statistics [63, 51, 62, 29].
Implicit bias and over-parameterization: Contemporary deep networks often contain many more
parameters than the dataset size and there is a growing literature dedicated to understanding their optimiza-
tion/generalization properties and how over-parameterization can act as a catalyst. A key observation is that
gradient-based algorithms are implicitly guided by the problem structure towards certain favorable solutions
[3, 47]. For linear models, implicit bias phenomena is studied for various loss functions and algorithms
(e.g. logistic loss converging to max-margin solution on separable data) [34, 58, 45]. Recent works show
that such results continue to hold for nonlinear problems [23, 49, 5]. This line of works led to the more
recent generalization/optimization guarantees for deep networks and their connections to random features
[15, 2, 10, 8, 9, 40, 42]. A related line of work connects the benefits of over-parameterization to the double
descent phenomena [46, 7, 6, 29].
Neural network pruning: The large model sizes in deep learning led to a substantial interest in model
pruning/quantization [25, 27, 37]. The network pruning literature is diverse and involves various architectural,
algorithmic, and hardware considerations [60, 26]. Recent works [26, 20, 19] use magnitude-based pruning
criteria and achieve stellar performance. Related to over-parameterizarion, lottery ticket hypothesis [18]
shows that large neural networks contain a small subset of favorable weights (for pruning) which can achieve
similar performance as the original network when trained from same initialization. [66, 41] demonstrates that
these subsets may achieve good test performance even without any training. [64] theoretically connects lottery
tickets to over-parameterization. Various saliency-based approaches are proposed for neural net pruning
[27, 28, 37, 12]. [38, 65] prune the network before training by the connection sensitivity or preserving the
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gradient flow. [57] uses Jacobian-based pruning for recurrent networks. Furthermore, [1, 48, 35] uses `1
penalization for pruning and provides certain provable guarantees.

The rest of the paper is organized as follows. Section 2 sets the notation and introduces definitions on
importance and pruning. Section 3 studies pruning for linear models, characterizes covariance bias, and
introduces analytical performance formulas. Section 4 explores pruning for neural network and introduces
results on optimization and pruning dynamics and Section 5 provides a discussion.

2 Problem Setup
We first set the notation. For a vector v, we denote by ∥v∥`2 its Euclidean norm. ⊙ returns the Hadamard
(entrywise) product of two vectors. The (i, j)-th element of a matrix M is denoted by Mi,j . The minimum
singular value, spectral norm, and Frobenius norm of M is denoted by σmin(M), ∥M∥, ∥M∥F respectively.
Ik is the identity matrix of size k. The set {1, . . . , p} is denoted by [p]. Given ∆ ⊂ [p], ∆̄ = [p] −∆ and θ∆

denotes the vector obtained by setting the entries of θ over ∆̄ to zero. 1p denotes the all ones vector in Rp.
To proceed, we review definitions that will be discussed throughout. Our discussion will stem from the

following definition which captures the impact of a set of weights on the loss function.

Definition 2.1 (Natural importance (NI)) Given a loss function L(θ), a reference vector θR and set
of indices ∆ ⊆ [p], note that θR∆ + θ∆̄ is the vector obtained by replacing the entries of θ at indices ∆ by the
corresponding entries of θR. The NI of the weights of θ over ∆ with respect to (w.r.t) L is defined as

I
N
∆ (θ,θR) = L(θR∆ + θ∆̄) −L(θ).

When θR = 0, we will use the notation IN∆ (θ). NI quantifies the exact change in the loss and captures
the problem-dependent nature of pruning. The loss function in practice can be training (or test) loss or
classification error. Here, the vector θR aims to quantify the relative benefit of the change of weights of θ
with respect to a reference. For our purposes, we discuss two choices for the reference vector, which we call
pruning and init-pruning, respectively.

● (Regular) Pruning: This is the standard pruning where the goal is to obtain a sparse model, thus
the reference vector is θR = 0.
● Init-Pruning: Deep network training is often initialized from nonzero weights θ0 such as random
initialization or pre-trained weights. In this case, the contribution of different weights throughout the
optimization can be assessed with respect to the point of initialization by choosing θR = θ0.

We remark that, our characterization of the weight importance is similar to the saliency criterion which
is widely used in literature on model pruning/trimming [37, 38, 44, 59]. Besides Definition 2.1, we also
consider two other commonly-accepted importance criteria, which can be viewed as proxies for NI. To keep
the discussion focused, the next two definitions only consider regular pruning i.e. θR = 0.

Definition 2.2 (Magnitude- and Hessian-based Importance) Recall Def. 2.1. Suppose L is twice
differentiable with Hessian H(θ) = ∇2L(θ). The MI IM∆ (θ) and HI IH∆ (θ) are defined as

I
M
∆ (θ) = ∑

i∈∆

θ2
i and I

H
∆ (θ) = ∑

i∈∆

H(θ)i,iθ
2
i . (2.1)

Observe that our definition of HI is based on Optimal Brain Damage (OBD) [37]. Next, we define pruning
based on a given importance criteria. A pruning algorithm identifies a set of weights with the smallest
importance and sets them to zero.

Definition 2.3 (Pruning) Given an importance criteria I (e.g. IN ,IM ,IH), a vector θ, and a target
sparsity s, the pruning algorithm returns an s-sparse model Πs(θ) (e.g. ΠN

s , ΠM
s , ΠH

s ) where

Πs(θ) = θ∆̄ , for ∆ = arg min
∣∆∣=p−s

I∆(θ).
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We will study and compare three different methods of pruning, namely, magnitude-based (MP), Hessian-
based (HP) and natural pruning (NP). While NI captures the “true importance”, NP is a combinatorially
challenging subset selection problem and HP and MP provides computationally-efficient alternatives. For
MP, this definition reduces to the hard-thresholding operation. Furthermore, MP and HP coincide when the
Hessian has equal diagonal entries. We will focus our attention on pruning the trained model. Thus, typically
we are interested in pruning the minimizer of the empirical (or population) loss. The following sections will
relate these pruning methods, compare their performances, and explore the role of implicit regularization in
pruning.

3 Importance and Covariance Bias for Linear Models
This section provides our results on pruning linear models and the role of feature covariance. Given a data
distribution D, we obtain a dataset S containing n i.i.d. samples S = (xi, yi)

n
i=1

i.i.d.
∼ D. Let (x, y) ∼ D be a

generic sample. We assume (x, y) ∈ (Rp,R) has finite second moments.
Covariance/Hessian structure: To understand the role of feature covariance (i.e. Hessian) on pruning,
we introduce a class of datasets where the input features are shaped by an invertible diagonal scaling matrix
Λ ∈ Rp×p while output label y is preserved. Here, a key motivation is modeling the properties of neural
networks where the Hessian spectrum is not flat and often low-rank [29, 54, 53, 42, 4]. The intuition is
that the importance of a weight captures the contribution of the corresponding input feature and should
be invariant to how the feature is scaled. Perhaps surprisingly, we will also show this intuition fails for
over-parameterized problems. To proceed, given Λ, we consider a distribution DΛ, with samples (xΛ, y) ∼ DΛ

distributed as (Λx, y). Similarly, given S, we generate a dataset SΛ = (xΛ
i , yi)

n
i=1 where xΛ

i = Λxi. We
gather the data in matrix notation via

XΛ = [xΛ
1 xΛ

2 . . . xΛ
n ]

T
∈ Rn×p and y = [y1 y2 . . . yn]

T
∈ Rn.

To proceed, using quadratic loss, we define the empirical (training) and population (test) losses,

L̂Λ(θ) ∶=
1

n

n

∑
i=1

(yi − θ
TxΛ

i )
2
=

1

n
∥y −XΛθ∥

2
`2 and LΛ(θ) ∶= E[(y − θTxΛ

)
2
]. (3.1)

Let θ̂Λ, θ̄Λ be the global minima of L̂Λ and LΛ respectively. Let Σ = E[xxT ] be the population covariance
and b = E[xy] be the cross-correlation. For simplicity, we assume Σ is full-rank. We will drop the subscript
Λ when Λ = Ip. The solutions θ̂Λ, θ̄Λ are given by

θ̂Λ =X†
Λy and θ̄Λ = Λ−1Σ−1b,

respectively, where † denotes the pseudo-inverse. The following lemma is instructive in understanding the
weight importance and invariance to feature scaling for the least-squares problem above (3.1).

Lemma 3.1 (Pruning with Population) Let θ̄Λ be the minimizer of population loss and fix ∆ ⊆ [p]. NI
IN∆ (θ̄Λ) and HI IH∆ (θ̄Λ) w.r.t. population loss LΛ are invariant under invertible diagonal Λ. If the covariance
Σ is also diagonal, then NI and HI are equal. In contrast, MI is Λ dependent via IM∆ (θ̄Λ) = ∑i∈∆ Λ−2

i,i θ̄
2
i

where θ̄ = θ̄Ip is the original model.

This lemma states that NI and HI are invariant to scaling and coincide when features are uncorrelated. On
the other hand, MI suffers from feature scaling. As the features get larger, the corresponding weight decreases
which results in an artificial decrease in importance. This highlights a fundamental shortcoming of MP
and necessity of feature normalization, which was previously discussed in the literature [56, 31, 33, 17]. In
Sections 3.1 and 4, we will see that MP fails as soon as the problem is not well-conditioned either in terms of
covariance spectrum or neural network initialization.
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Invariance to feature scaling is a property of over-determined problems (n > p) which admit unique
solution (population loss is a special case with n =∞). Focusing on training loss, suppose X ∈ Rn×p is not
rank deficient. Then, the minimum-norm solution θ̂Λ has the form

θ̂Λ =

⎧⎪⎪
⎨
⎪⎪⎩

Λ−1θ̂, when n ≥ p,

ΛXT (XΛ2XT )−1y, otherwise.
(3.2)

When n ≥ p, we trivially have (θ̂Λ)TxΛ = θ̂Tx, thus θ̂ and θ̂Λ achieve the exact same test/training loss. On
the other hand, for over-parameterized problems (n < p), which is the regime of interest for neural network
pruning, this is no longer the case, and we will see that Λ plays a critical role in the eventual test performance
as it dictates which solution the optimization problem selects.

3.1 Characterizing Pruning Performance and Covariance Bias
In this section, we provide analytical formulas which enable us to compare different pruning methods and
assess implicit covariance bias when n < p under a realizable dataset model. Suppose (xi)

n
i=1

i.i.d.
∼ N (0,Ip) so

that Σ = Ip and ΣΛ ∶= E[xΛ(xΛ)T ] = Λ2. Given a ground-truth vector θ̄ ∈ Rp (which corresponds to the
population minima), we generate the labels via y = xT θ̄ + z and

yi = x
T
i θ̄ + zi for 1 ≤ i ≤ n,

where z, (zi)ni=1
i.i.d.
∼ N (0, σ2) are the additive noise. We will study the minimum norm least-squares solution

(3.2) which is also the solution gradient descent converges when initialized from zero. To assess pruning
performance, we need to quantify the test loss of the pruned solution Πs(θ̂).
Connection to denoising: We accomplish this by relating the test loss of the pruned model to the risk
of a simple denoising problem. In essence, this denoising question is as follows: Given noisy measurements
θnsy = θ̄ + g of a ground-truth vector θ̄ with g ∼ N (0, σ2Ip), what is the pruning error E[∥Πs(θnsy) − θ̄∥

2
`2
]?

Note that this error typically doesn’t have a closed form answer as hard-thresholding is not a continuous
function, however, it greatly simplifies the original problem of solving least-squares. We also note that if one
uses soft-thresholding (i.e. shrinkage) operator for pruning, closed form solution is available. The fundamental
connection between denoising and linear inverse problems are studied for under-parameterized least-squares
and lasso regression [13, 14]. Our connection to denoising is established by connecting the distribution of the
θ̂Λ to an auxiliary distribution described below.

Definition 3.2 (Auxiliary distribution) Fix p > n ≥ 1 and set κ = p/n > 1. Given σ > 0, positive definite
diagonal matrix Λ and ground-truth vector θ̄, define the unique non-negative terms Ξ,Γ,ζ ∈ Rp and γ ∈ Rp

as follows

Ξ > 0 is the unique solution of 1 =
κ

p

p

∑
i=1

1

1 + (ΞΛ2
i,i)

−1
, (3.3)

Γ =
σ2 +∑

p
i=1 ζ

2
i θ̄

2
i

κ(1 − κ
p ∑

p
i=1 (1 + (ΞΛ2

i,i)
−1)−2)

,

ζi =
1

1 +ΞΛ2
i,i

and γi =
κ
√

Γ

1 + (ΞΛ2
i,i)

−1
for 1 ≤ i ≤ p.

Let h ∼ N (0, 1
p
Ip). Define the auxiliary vector θΛaux of the ground-truth θ̄ as

θΛaux = Λ−1
[(1p − ζ)⊙ θ̄ + γ ⊙h]. (3.4)

We remark that this definition can be adapted to asymptotic setup p →∞ assuming covariance spectrum
converges (e.g. discrete sum over entries converges to an integral). In the special case of identity covariance

5



(Σ = Ip), θaux reduces to θaux = 1
κ
θ̄ +

√

σ2

κ−1
+

(κ−1)∥θ̄∥2
`2

κ2 h. This distribution arises from applying Convex
Gaussian Min-Max Theorem (CGMT) [22, 21, 63, 51, 62] to over-parameterized least-squares. CGMT
provides a framework for predicting the asymptotic properties of optimization problems involving random
matrices by connecting them to simpler auxiliary optimizations involving random vectors (some example
applications [43, 11, 55, 52]). Thus, based on CGMT, θ̂Λ and the auxiliary vector θΛaux are expected to
have similar distributional properties and θΛaux can be used as a proxy to capture the properties of θ̂Λ. In
supplementary, we discuss to what extent this distributional similarity can be formalized (e.g. for Lipschitz
functions). Note that, after solving for ζ,γ in (3.3), we can sample from the auxiliary distribution which is a
noisy version of θ̄ which connects us to denoising. To proceed, our analytic formulas for the test error of an
s-sparse model via MP and HP takes the following form:

MP loss: Eh[∥ΛΠM
s (θΛaux) − θ̄∥

2
`2] + σ

2, HP loss: Eh[∥ΠM
s (ΛθΛaux) − θ̄∥

2
`2] + σ

2.

Next, we verify our performance prediction and study the role of covariance structure Λ. We generate θ̄
with polynomially decaying entries, specifically θ̄i = 1/(1 + 4i/p)2, and then scale it to unit Euclidian norm.
Recall that original covariance is identity, thus initial larger entries of θ̄ are more important for population
risk. In our experiments, we parameterize Λ by a scalar λ and set it as

Λi,i =

⎧⎪⎪
⎨
⎪⎪⎩

λ if 1 ≤ i ≤ p/10,

1 if i > p/10.
(3.5)

This choice modifies the most important 10% weights of the problem. We consider λ ∈ {1/2,1,5}. As
formalized in Thm. 4.3, when λ > 1, we expect a positive covariance bias since important weights are aligned
with the principal directions of the covariance and are easier to learn. In Figures 1a and 1b, the lines are the
analytical predictions based on Definition 3.2 and the markers are performance of the actual least-squares
solution which nicely match for all pruning methods and λ. Figure 1a contrasts λ = 1 and λ = 5. For λ = 1,
MP and HP coincide as the Hessian is identity. However when λ = 5, HP performs much better than λ = 1 for
all sparsity levels. MP drastically fails for small sparsity levels as the initial weights of θ̂Λ are important but
small due to the λ-scaling thus MP inaccurately ignores them. Decreasing magnitudes with increasing λ is
more clear for under-parameterized case (via (3.2)) however Λ−1 dependence is also visible in (3.4). Fig 1b
additionally highlights λ = 1/2 which reduces the covariance and scales up the coefficients of the important
weights. This leads to a negative bias because covariance structure guides the solution away from important
weights. While both MP and HP performs worse than λ = 1 case, HP performs worse due to additional
penalization of the initial important weights. Finally, covariance bias is visualized in Figure 1c which displays
the test NI (for θ̄) and the training NI’s (for θ̂Λ) of the first s weights. When λ = 5, initial weights, which
are important for test, have a larger training NI. As λ gets smaller, remaining weights, which are not as
important for test, have larger say during training and pruning performance degrades. Our Theorem 4.3
formalizes these by quantifying the contributions of different weights during training.

4 Hessian Bias and the Role of Initialization for Neural Nets
This section extends our discussion of importance and pruning to another fundamental model class: neural
networks with one-hidden layer. Suppose input dimension is d, output dimension is K and the network has m
hidden units. Such a network with ReLU activation is given by fθ(x) = V ReLU(Wx), whereW ∈ Rm×d and
V ∈ RK×m are the input and output layers respectively and θ = (W ,V ) ∈ Rp=(d+K)m is the vector composed
of the entries of W ,V . Let ∆W and ∆V denote the index of the entries of W ,V in θ. Given a dataset
S = (xi, yi)

n
i=1 and loss `, we minimize

L(θ) =
1

n

n

∑
i=1

`(yi, fθ(xi)). (4.1)
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Figure 1: In (a) and (b), the lines are the analytical prediction from Def 3.2 and markers are the actual min-norm
solution. p = 1000, κ = p/n = 5/3 and σ = 0.1. (c) Natural importance associated with the first s weights. For λ = 5, (a)
HP achieves better performance and (c) training and test NI have a better match.

Equivalent networks: To study neural net pruning and initialization, we shall consider a class of networks
θλ = (λW , λ−1V ) generated from a base network θ1 = (W ,V ). Observe that all vectors θλ implement the
same function due to the linearity of ReLU however magnitudes of layers are varying. The following lemma
shows how the parameter λ affects MI, HI, and Hessian.

Lemma 4.1 Consider the loss (4.1) and class of networks (θλ)λ>0. For all λ > 0, MI, HI and partial
Hessians w.r.t. input/output layer weights W ,V obey

I
M
∆W

(θλ) = λ2
I
M
∆W

(θ1
) and I

M
∆V

(θλ) = λ−2
I
M
∆V

(θ1
),

I
H
∆W

(θλ) = IH∆W
(θ1

) and I
H
∆V

(θλ) = IH∆V
(θ1

), (4.2)

∂2

∂2W
L(θλ) = λ−2 ∂2

∂2W
L(θ1

) and
∂2

∂2V
L(θλ) = λ2 ∂2

∂2V
L(θ1

). (4.3)

In words, increasing λ increases MI, preserves HI, and decreases the Hessian magnitude for the input layer
and has the reverse effect on the output layer. Suppose we train the network from initializations θλ on
(4.1). What happens at the end of the training as a function of λ? Does eventual MI and HI exhibit similar
behavior to initialization? What about NI?

To answer these, in Figure 2, we conduct an empirical study on MNIST by training a one-hidden layer
network with cross-entropy loss. Here m = 1024, d = 784 and K = 10. We set θ1

init = (Winit,Vinit) with
He normal initialization [30]. We then train networks with λ-scaled initializations θλinit = (λWinit, λ

−1Vinit).
Let θ(λ)final = (W

(λ)
final,V

(λ)
final) be the final model obtained by training until interpolation to training data (or

maximum 150 epochs). Figures 2a and 2b display MI, HI, and NI for input and output layers respectively.
Here, for NI, we use Init-Pruning and quantify importance of a layer (e.g. W (λ)

final) with respect to its initial
weights (e.g. W λ

init = λWinit). Observe that, regular pruning is not informative as setting a layer to zero kills
the network output.
Understanding MI and HI: Figures 2a and 2b show that initial and final MI exhibit a near perfect match.
The initial HI stays constant as predicted by Lemma 4.1. Final HI increases with λ for both layers, however
it can be verified that the ratio of HI between input and output layers is approximately preserved. Perhaps
surprisingly, Lemma 4.1 seems to predict not only the initial importance but also the MI/HI of the final
network. Fortunately, this can be mostly explained by the optimization dynamics of wide and large networks
where gradient descent finds a global optima close to initialization and final weights (and Hessian) do not
deviate much from initial ones [10, 4, 50, 16, 32, 2, 39].

In Figures 3a and 3b, we first prune θ(λ)final to a fixed nonzero fraction and then retrain the pruned weights
from the same initialization (i.e. [20]). MP is only competitive with HP when λ = 1 where input and output
layer entries have similar magnitude due to He initialization. In Fig. 3a, as λ grows output layer becomes
small and gets fully pruned. As λ gets smaller, eventually input layer is fully pruned. Here, what is rather
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Figure 2: (a) and (b) show the comparison of importance criterias for input and output layers when training with
a shallow network with cross entropy and with initializations θλinit = (λWinit, λ

−1Vinit). (c) shows the NI w.r.t. test
classification error and loss obtained by setting one of the layers to its initialization.

remarkable is the robustness of HP for full range of λ choices which arises from (4.2). Arguably, HI being
invariant to λ makes it more attractive than NI as it avoids the issue of layer death i.e. all of the weights
in a layer getting pruned. Figure 3c visualizes the fraction of unpruned weights in input and output layers
for various λ. HP (solid) curves are stable whereas MP (dotted) curves are highly volatile and easily hit
zero except a narrow region. We note that, an alternative way of avoiding layer death is pruning layers
individually. Supplementary provides further experiments on this for completeness.
Understanding NI and optimization dynamics: If our shallow network is sufficiently wide, each layer
(or large groups of weights) can individually fit the training dataset. This can be viewed as a competition
between the layers and a natural question is how much a layer contributes to the learning. This question is
answered by NI. In Figure 2a orange line displays the change in input layer NI (with L of Def. 2.1 is training
loss) which demonstrates that NI is decreasing function of λ and moves in the opposite direction to MI. Figure
2c verifies the same NI behavior for test loss and test error. Specifically, for large λ, input layer is responsible
for most of the test accuracy and for small λ, it is the output layer. Our key technical contribution in this
section is providing a theoretical explanation to this NI behavior and relating it to optimization dynamics.
In essence, we will connect NI to the only feature in Lemma 4.1 that exhibit similar behavior, the Hessian.
Below we state our result on the Hessian and NI relation in terms of Polyak-Lojasiewicz (PL) condition [36].

Definition 4.2 (Partial PL and Smoothness (PPLS)) Let L(θ) be a loss function satisfying minθ L(θ) =
0. Given an index set ∆ ⊂ [p], we say that PPLS holds with parameter L ≥ µ ≥ 0 if partial derivative ∂

∂θ∆
L(θ)

is L-Lipschitz function of θ∆ and obeys ∥ ∂
∂θ∆
L(θ)∥2

`2
≥ 2µL(θ).

While PL allows for non-convex optimization, when specialized to strong convexity, Partial PL condition
provides a lower bound on the submatrix of Hessian induced by the set ∆. Regular PL condition guarantees
global convergence of gradient descent, thus if PPLS holds over ∆, training only over ∆ is sufficient to achieve
zero loss. A good example of PPLS is linear regression with two feature sets X1 ∈ R

n×p1 and X2 ∈ R
n×p2

with p1, p2 ≥ n where we fit

L(θ) = min
θ=[θ1 θ2]

0.5∥y −X1θ1 −X2θ2∥
2
`2 . (4.4)

L satisfies PPLS over [p1] = {1, . . . , p1} with parameters L1 = ∥X1∥
2 and µ1 = σmin(X1)

2. For randomly
initialized over-parameterized networks, each layer solves a kernel regression and would satisfy PPLS under mild
conditions on the dataset [10, 16, 32, 2, 50] . Specifically, linearized neural network dynamics on θ = (W ,V )

connects to the regression task (4.4) via the Taylor expansion around initialization where input and output
layers have linearized features arising from the Jacobian map given by XW = [

∂f(x1)

∂W
. . . ∂f(xn)

∂W
]T ∈ Rn×md

and XV = [
∂f(x1)

∂V
. . . ∂f(xn)

∂V
]T ∈ Rn×Km. The following theorem provides a theoretical explanation of NI

behavior via PPLS by quantifying relative contributions of different sets of weights.
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Figure 3: In (a) and (b), we first apply MP and HP on the network weights θ(λ)final for varying pruning levels s/p
where p = (K + d)m. We then retrain the pruned network from same initial nonzeros (lottery initialization of [20])
and display the test accuracy. HP is more stable compared to MP under λ-scaled initializations. (c) Visualization of
the remaining fractions of nonzero weights in input (red) and output (blue) layers after pruning the network to 1%
sparsity. Nonzero counts in both layers are stable under HP but rapidly change in MP as a function of λ.

Theorem 4.3 (Larger Hessian Wins More) Suppose the entries of θ ∈ Rp are union of D non-intersecting
sets (∆i)

D
i=1 ⊂ [p] and PPLS holds over ∆i with parameters Li ≥ µi ≥ 0 for all i. Set µ = ∑

D
i=1 µi and L = ∑

D
i=1Li.

Starting from a point θ0, and using a learning rate η ≤ 1/L, run gradient iterations θτ+1 = θτ − η∇L(θτ). For
all iterates τ , the loss obeys L(θτ) ≤ (1 − ηµ)τL(θ0). Furthermore, setting κ = Li/µ, the following bounds
hold for ∆i and ∆̄i = [p] −∆i for all τ ≥ 0

∥θ∆i,τ − θ∆i,0∥
2
`2 ≤ 8κL(θ0)/µ, (4.5)

I
N
∆i

(θτ ,θ0)/L(θ0) ≤ 8κ2
+ 4κ(1 − ηµ)τ/2, (4.6)

I
N
∆̄i

(θτ ,θ0)/L(θ0) ≥ 1 − 8κ2
− 4κ − (1 − ηµ)τ . (4.7)

In words, this theorem captures the NI of a subset of weight throughout the training via the upper and
lower bounds (4.6) and (4.7). For the experiments in Fig. 2, based on (4.3) of Lemma 4.1, PPLS parameters
(µW , LW ) of the input layer decay as λ−2 and output layer parameters grow as λ2. Thus, assuming λ ≥ 1,
for output layer we have κ = LW /(µW + µV ) ∼ λ−4 and, using (4.6) with τ =∞, NI is expected to decay as
κ2 ∼ λ−8 (e.g. for quadratic loss). Similarly, NI of the input layer is lower bounded via (4.7) which grows as
1 −O(λ−4). Finally, for small λ, we have the reversed upper/lower bounds. In summary, our Theorem 4.3
successfully explains the empirical NI behavior in Fig. 2.

(4.5) generalizes the “short distance from initialization” results of [49, 24] by controlling individual subsets
of weights and also provides a bound on MI when θ0 = 0. As explained in supplementary, this theorem is tight
up to local (Li/µi) and global (L/µ) condition numbers and accurately captures the relative contributions of
the weights (θ∆i)

D
i=1. Observe that this theorem considers the Init-Pruning (w.r.t. θ0) which is better suited

for assessing optimization dynamics.
Note that the bounds of Thm 4.3 greatly simplify at the global minima (τ →∞). As mentioned earlier,

training NI of Figure 1c can be explained by Thm 4.3. In essence, scaling up a set of features increase their
covariance (and PPLS parameter µ) increasing the NI w.r.t. training loss.

5 Conclusion
We provided a principled exploration of model pruning for linear models and shallow networks. Our work
reveals and formalizes the importance of Hessian/covariance structure for pruning over-parameterized models.
We found that magnitude-based pruning is very brittle and requires good normalization whereas Hessian-based
pruning is robust to problem structure. We also derived the first analytical performance formulas exactly
capturing pruning for linear models which enabled us to do a thorough comparison between different methods.
There are several interesting open directions. Can we derive similar sharp performance bounds for pruning

9



random features or neural networks? What are the optimal initialization strategies for deep nets to enable
ideal pruning performance?
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Organization of the Supplementary Material
Supplementary material is organized as follows.

1. Appendix A derives Auxiliary Distribution (Definition 3.2). We also provide the relevant background
and supporting results on Convex Gaussian Min-Max Theorem (CGMT) and discuss how distributional
similarity based on Def. 3.2 can be formalized.

2. Appendix B proves Theorem 4.3. In Appendix B.2 (see Proposition B.2), we also provide theoretical
results proving the tightness of the bounds provided in Theorem 4.3.

3. Appendix C proves Lemmas 3.1 and Lemma 4.1.

4. Appendix D provides further numerical results on Section 4. Appendix D provides results on layer-wise
pruning, where pruning is done on each layer individually, and compares to Section 4 which uses
standard pruning.

5. Appendix E provides further technical results supporting Appendix A.

A Auxiliary Distribution for Pruning Linear Models

A.1 Technical Background on Convex Gaussian Min-Max Theorem
CGMT framework is proposed by [63] and allows for accurate analysis of a large class of optimization problems
involving random matrices. The key idea is relating the original problem (Primary Optimization PO) to an
Auxiliary Optimization (AO) problem. Given compact convex set S ∈ Rp, regularization parameter λ > 0 and
continuous convex function ψ(⋅) ∶ Rp → R, define the functions

Φλ(X) = min
w∈S

max
∥a∥`2≤λ

aTXw + ψ(w) = min
w∈S

λ∥Xw∥`2 + ψ(w) (A.1)

φλ(g,h) = min
w∈S

max
∥a∥`2≤λ

∥w∥`2g
Ta − ∥a∥`2h

Tw + ψ(w) (A.2)

= min
w∈S

λ(∥w∥`2∥g∥`2 −h
Tw)+ + ψ(w) (A.3)

Suppose X ∈ Rn×p,g ∈ Rn,h ∈ Rp
i.i.d.
∼ N (0,1). Then, CGMT yields the following inequality for any

µ ∈ R, t > 0,

P(∣Φλ(X) − µ∣ > t) ≤ 2P(∣φλ(g,h) − µ∣ > t). (A.4)

In words, the right and left-hand side objectives are probabilistically equal.
Relation to ridge regression: Observe that (A.1) can easily be related to ridge regression which solves

min
θ
Lλ(θ) = min

θ
λ∥y −Xθ∥`2 + ∥θ∥`2 . (A.5)

Recalling y =Xθ̄ + σz with z i.i.d.
∼ N (0,1) and applying the change of variable w = θ̄ − θ, we find

Lλ(w) = λ∥[X z] [
w
σ
]∥`2 + ∥θ̄ −w∥`2 .

Observe that X ′ = [X z] ∈ Rn×(p+1) i.i.d.
∼ N (0, 1) thus setting ψ(w) = ∥θ̄ −w∥`2 , minimization over L(w) has

the exact same form as (A.1) and CGMT is applicable with

Φλ(X
′
) = min

w
λ∥X ′

[
w
σ
]∥`2 + ∥θ̄ −w∥`2
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Covariance on the design matrix can be handled as well as described in Appendix A.3.
Over-parameterized Least-Squares: In Section 3.1 we study over-parameterized least-squares which
interpolates the training labels perfectly rather than using ridge regularization. Specifically, we solve the min
Euclidian norm problem

arg min
θ

∥θ∥`2 subject to y =Xθ.

Note that this corresponds to solving (A.5) with λ→∞. Using the same change of variable, we end up with
the primary optimization

Φ∞(X ′
) = min

w
∥θ̄ −w∥`2 subject to X ′

[
w
σ
] = 0.

Unfortunately, CGMT framework for our scenario has two drawbacks due to technical issues. First, it only
handles the regularization term and doesn’t allow for random matrix constraints. Secondly, as mentioned
earlierin (A.1), w has to lie on a compact set S. Even w ∈ Rp has to be addressed with care. We first have
the following theorem which circumvents these issues. The following result is a corollary of Theorem E.1 and
allows for equality constraints on X and replaces compactness on S with closedness.

Theorem A.1 (CGMT with constraints) Given a closed S and a continuous function ψ satisfying
lim∥v∥`2→∞

ψ(v) =∞, define the PO and AO problems

Φ∞(X) = min
w∈S,Xw=0

ψ(w) (A.6)

φ∞(g,h) = min
w∈S,∥w∥`2∥g∥`2≤h

Tw
ψ(w). (A.7)

Suppose X ∈ Rn×p,g ∈ Rn,h ∈ Rp
i.i.d.
∼ N (0,1). Then, for any t > 0 and µ ∈ R, we have that

• P(Φ∞(X) < t) ≤ 2P(φ∞(g,h) ≤ t).

• If S is convex, we additionally have P(Φ∞(X) > t) ≤ 2P(φ∞(g,h) ≥ t).

A.2 Using CGMT to Infer the Properties of the Solution
In this section, we provide a discussion of how CGMT can be used to infer the properties of the solution of
(A.1) by studying the solution of (A.3). This is already the topic of several interesting papers on random
matrix theory and high-dimensional statistics [61, 63, 62]. Below, we formalize the distributional similarity of
the solution of the primary problem (A.1) and auxiliary problem (A.3) in terms of subsets of Rp for which
auxiliary solution concentrates on.

Lemma A.2 (AO solution to PO solution) Let X ∈ Rn×p,g ∈ Rn,h ∈ Rp
i.i.d.
∼ N (0, 1). Suppose we have

two loss functions LPO(w;X) and LAO(w;g,h) as a function of w1. Given a set S, define the objectives

ΦS(X) = min
w∈S
LPO(w;X) and φS(g,h) = min

w∈S
LAO(w;g,h). (A.8)

Suppose Φ and φ satisfies the following conditions for any closed set S and t

• P(ΦS(X) < t) ≤ 2P(φS(g,h) ≤ t).

• Furthermore, if S is convex, P(ΦS(X) > t) ≤ 2P(φS(g,h) ≥ t).

Define the set of global minimaM = {w ∣ L(w;X) = Φ(X)}. For any closed set S, we have that

P(M ∈ S
c
) ≥ 1 − 2 min

t
(P(φRp(g,h) ≥ t) +P(φS(g,h) ≤ t)). (A.9)

1
L(w,a) can account for additional set constraints of type w ∈ C by adding the indicator penalty maxλ≥0 λ1w/∈C .
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Proof Let w∗ ∈M. Suppose the events ΦRp(g,h) ≤ t and ΦS(g,h) > t hold. These two imply that w∗ /∈ S

henceM ⊆ Sc. To proceed, for any choice of t

P(M ∈ S
c
) ≥ P({ΦRp(g,h) ≤ t} ∩ {ΦS(g,h) > t}) (A.10)
≥ 1 −P(ΦRp(g,h) > t) −P(ΦS(g,h) ≤ t) (A.11)
≥ 1 −P(ΦRp(g,h) > t) − lim

t′→t+
P(ΦS(g,h) < t

′
) (A.12)

≥ 1 − 2P(φRp(g,h) ≥ t) − 2 lim
t′→t+

P(φS(g,h) ≤ t
′
). (A.13)

Since this holds for all t and cumulative distribution function is continuous, we get the advertised bound
(A.9).

Note that assumptions of this lemma on the loss functions (A.8) holds for over-parameterized least-squares
based on Theorem A.1. In words, this lemma states that, if we can identify a set S such that S-constrained
auxiliary cost φS(g,h) is larger than the unconstrained cost φRp(g,h), then, the solution of the primary
problem provably lies on the complement Sc.

Then, if we wish to prove the global minimaM of the primary problem satisfies some property P, the
line of attack is as follows.

• Let S be the set of vectors not satisfying P.

• Show that φS(g,h) > φRp(g,h) with high probability.

In our application, we wish to argue that pruned auxiliary distribution ΠM
s (θaux) achieves the same test

error as the pruned primary solution ΠM
s (θ̂). Thus, the undesired set S can be defined as the set of vectors

whose test error after pruning does not deviate much from the expected test error of pruned auxiliary solution
θaux = θ̄ −waux i.e. (assuming Σ = I, the test error simplifies to Euclidian distance to the ground-truth θ̄)

S = {w ∣ ∣∥ΠM
s (θ̄ −w) − θ̄∥`2 −E ∥ΠM

s (θaux) − θ̄∥`2 ∣ ≤ ε},

where ε > 0 is a knob which can approach 0 asymptotically. Setting γ = E ∥ΠM
s (θaux) − θ̄∥`2 and f(w) =

∥ΠM
s (θ̄ −w) − θ̄∥`2 , this can be simplified to

S = {w ∣ ∣f(w) − γ∣ ≤ ε},

Technical Challenge in Pruning Analysis: Here, the technical challenge is analyzing the auxiliary
problem over S which is a highly non-convex set due to the hard-thresholding operator. Even showing the
concentration of the auxiliary error ∥ΠM

s (θaux) − θ̄∥`2 around its expectation γ is not trivial. If f(w) is
a Lipschitz function of w, S is a more manageable set and it is typically relatively easy to show that its
elements are bounded away from zero (in Euclidian norm). Once S is bounded away from zero, what remains
is showing optimization over S leads to a strictly larger loss since the set doesn’t include global minima in
it with high probability. We again remark that using soft-thresholding based pruning would be an easier
path to theoretical guarantees and fully formalizing the pruning formulas as the soft-thresholding operator
shrinkT (x) = max(x − T,0) is Lipschitz.

Finally, the next subsection derives the auxiliary distribution of Definition 3.2 by solving the auxiliary
problem associated with the over-parameterized least-squares.

A.3 Deriving the Auxiliary Distribution (Definition 3.2)
A.3.1 Over-parameterized Least-Squares with Diagonal Covariance

Let us first set the exact problem we are analyzing. Let X ∈ Rn×p have zero-mean and normally distributed
rows with a diagonal covariance matrix Σ = E[xxT ]. Given ground-truth vector θ and labels y =Xθ + σz,
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we consider the least-squares problem subject to the minimum Euclidian norm constraint (as κ = p/n > 1)
given by

min
θ′

∥θ′∥`2 subject to y =Xθ′. (A.14)

Next subsection A.3.2 will adapt the analysis of this subsection to obtain Def. 3.2. Using change of variable
θ′ = θ −w, optimization problem (A.14) leads to

Φ(X) = min
w

∥θ −w∥`2 subject to Xw + σz = 0. (A.15)

Write X = X̄
√
Σ where X̄ i.i.d.

∼ N (0,1). Noticing ∥Xw + σz∥`2 = ∥X̄
√
Σw + σz∥`2 , and recalling the

constrained CGMT forms (A.6) and (A.7), the auxiliary problem takes the form

φ(g,h) = min
w

∥θ −w∥`2 subject to ∥g∥`2∥
√
Σw σ∥`2 ≤ h

T
√
Σw + σh. (A.16)

where g ∼ N (0,In), h ∼ N (0,Ip), h ∼ N (0,1). Set h̄ = h/
√
p. Letting p→∞ and setting κ = p/n a constant,

observe that h/∥g∥`2 → 0, h/∥g∥`2 =
√
κh̄, and we have pointwise convergence (over w) to the problem

φ(g,h) = min
w

∥θ −w∥`2 subject to ∥
√
Σw σ∥`2 ≤

√
κh̄T

√
Σw. (A.17)

Taking the squares of both sides, we find the equivalent optimization (which preserves the minima)

φ(g,h) = min
w

∥θ −w∥
2
`2 subject to ∥

√
Σw σ∥2

`2 ≤ κ(h̄
T
√
Σw)

2, (A.18)

Set S(w) = h̄T
√
Σw = ∑

p
i=1 h̄iwi

√
Σi,i. The optimization above can alternatively be written in the entrywise

decomposed form

φ(g,h) = min
w

p

∑
i=1

(θi −wi)
2 subject to σ2

+

p

∑
i=1

Σi,iw
2
i ≤ κS(w)

2. (A.19)

Considering the Lagrangian form, we find

φ(g,h) = min
w

max
Ξ≥0

p

∑
i=1

(θi −wi)
2
+Ξ[σ2

+

p

∑
i=1

Σi,iw
2
i − κS(w)

2
]. (A.20)

We will decompose entries of wi as a term dependent on h̄i and an independent bias term via

wi =
γi

√
Σi,i

h̄i + ζiθi. (A.21)

Also set the variable

Γ = (
1

p

p

∑
i=1

γi)
2.

Using Law of Large Numbers, we have

lim
p→∞

S(w) = E[h̄T
√
Σw] = E[

p

∑
i=1

γih̄
2
i ] =

√
Γ,

and

lim
p→∞

p

∑
i=1

(θi −wi)
2
= E[

p

∑
i=1

(θi −wi)
2
] =

p

∑
i=1

(1 − ζi)
2θ2
i +

γ2
i

pΣi,i
,

and

lim
p→∞

p

∑
i=1

Σi,iw
2
i = E[

p

∑
i=1

Σi,iw
2
i ] =

p

∑
i=1

Σi,iζ
2
i θ

2
i +

γ2
i

p
.
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Thus, we rewrite the problem (A.20) as

φ(g,h) = min
ζ,γ

max
Ξ≥0

p

∑
i=1

(1 − ζi)
2θ2
i +

γ2
i

pΣi,i
+Ξ[σ2

+

p

∑
i=1

Σi,iζ
2
i θ

2
i +

γ2
i

p
− κΓ]. (A.22)

Differentiating with respect to γi and ζi, and recalling the definition of Γ, we obtain the equations

γi
pΣi,i

+Ξ(
γi
p
−
κ
√

Γ

p
) = 0 ⇐⇒ γi =

κ
√

Γ

1 + (ΞΣi,i)
−1

(A.23)

(ζi − 1)θ2
i +ΞΣi,iθ

2
i ζi = 0 ⇐⇒ ζi =

1

1 +ΞΣi,i
. (A.24)

Using the definition of Γ, we find that, Ξ > 0 has to satisfy

√
Γ =

1

p

p

∑
i=1

γi =
1

p

p

∑
i=1

κ
√

Γ

1 + (ΞΣi,i)
−1
⇐⇒ (A.25)

1 =
κ

p

p

∑
i=1

1

1 + (ΞΣi,i)
−1
. (A.26)

Finally, since Ξ > 0, we need to satisfy the complementary slackness i.e. the term multiplying Ξ has to be
zero. This implies the equality

σ2
+

p

∑
i=1

γ2
i

p
+Σi,iζ

2
i θ

2
i = κΓ. (A.27)

In summary, following (A.21), we found that the solution to auxiliary problem (A.16) has the form

w(g,h) = ζ ⊙ θ +Σ−1/2γ ⊙ h̄,

where γ,ζ ∈ Rp are given by solving the following equations.

• Ξ satisfies (A.26). Note that there is a unique positive Ξ solving this equation because when Ξ = 0
right side is p/n which is larger than one and the right side is strictly decreasing function of Ξ thus
mean-value theorem implies unique solution,

• ζi satisfies (A.24),

• γi satisfies (A.23),

• Finally Γ satisfies (A.27) which leads to (after substituting γi definition)

σ2
+

p

∑
i=1

κ2Γ

p(1 + (ΞΣi,i)
−1)2

+Σi,iζ
2
i θ

2
i = κΓ ⇐⇒ σ2

+

p

∑
i=1

Σi,iζ
2
i θ

2
i = κΓ(1 −

κ

p

p

∑
i=1

(1 + (ΞΣi,i)
−1

)
−2

),

which yields

Γ =
σ2 +∑

p
i=1 Σi,iζ

2
i θ

2
i

κ(1 − κ
p ∑

p
i=1(1 + (ΞΣi,i)

−1)−2)
. (A.28)

Finally, the parameter distribution of the axuiliary problem is given by reversing the change of variable
i.e.

θaux = θ −w(g,h) = (1p − ζ)⊙ θ −Σ−1/2γ ⊙ h̄, (A.29)

where h̄ ∼ N (0,Ip/p).
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A.3.2 Obtaining the Auxiliary Distribution of Definition 3.2

The setup in Section 3 can be mapped to the previous section as follows.

• Feature covariance is Σ = Λ2 for some diagonal matrix Λ,

• The ground-truth vector is θ = Λ−1θ̄ (as Λ−1θ̄ is the population minima of LΛ).

Plugging these into (A.24), (A.23), (A.26), (A.28) and finally the equation of the auxiliary solution (A.29)
leads to Definition 3.2. Specifically, the terms are stated in terms of Λ rather than Σ and we also remark
that Γ,θaux terms slightly differ due to the ground-truth vector mapping θ↔ Λ−1θ̄.

B Larger Hessian Wins More
This section proves Theorem 4.3 and explains the tightness of its bounds. The following lemma is a standard
result under smoothness (Lipschitz gradient) condition.

Lemma B.1 Suppose L has L-Lipschitz gradients and minθ′ L(θ
′) ≥ 0. Then, we have that

∥∇L(θ)∥`2 ≤
√

2LL(θ).

Proof L-smoothness of the function implies

L(a) ≤ L(b) + ⟨∇L(b),a − b⟩ +
L

2
∥a − b∥2

`2 .

Setting a = b −∇L(b)/L, we find the desired result via

∥∇L(b)∥2
`2

2L
≤ L(b) −L(a) ≤ L(b) −min

θ′
L(θ′) ≤ L(b).

B.1 Proof of Theorem 4.3
Proof Step 1: Proving (4.5): Our proof will be accomplished by carefully keeping track of the gradient
descent dynamics for both parameters. Observe that if PPLS holds, then the full gradient satisfies PL
condition with parameter µ = ∑

D
i=1 µi since

∥∇L(θ)∥2
`2

D

∑
i=1

∥
∂

∂θ∆i

L(θ)∥2
`2 ≥ 2

D

∑
i=1

µiL(θ) = 2µL(θ).

With this observation, the statement

L(θτ) ≤ (1 − ηµ)τL(θ0) (B.1)

on linear convergence is standard knowledge on PL inequality. Denote the ith partial derivative via ∇iL(θτ).
Using properties of Hessian and Li-Lipschitzness of partial gradient with respect to θ∆i , note that overall
function is L = ∑

D
i=1Li-smooth using positive-semidefiniteness of Hessian and upper bounds on its block

diagonals. Secondly using PL condition and Lemma B.1, we have that

∥∇iL(θτ)∥`2
∥∇L(θτ)∥`2

≤

√
LiL(θτ)

√
µL(θτ)

≤
√
Li/µ.
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Thus, we can write

∥θ∆i,τ+1 − θ∆i,0∥`2 ≤ ∥θ∆i,τ − θ∆i,0∥`2 + η∥∇iL(θτ)∥`2 (B.2)

≤ ∥θ∆i,τ − θ∆i,0∥`2 + η
√
Li/µ∥∇L(θτ)∥`2 . (B.3)

For any η ≤ 1/L, L-smoothness and PL condition guarantees

L(θτ+1) ≤ L(θτ) −
η

2
∥∇L(θτ)∥

2
`2 Ô⇒ (B.4)

√
L(θτ+1) ≤

√
L(θτ) −

η

4
√
L(θτ)

∥∇L(θτ)∥
2
`2 (B.5)

√
L(θτ+1) ≤

√
L(θτ) − η

√
µ/8∥∇L(θτ)∥`2 . (B.6)

Define the Lyapunov function

Vτ =
√
L(θτ) + max

1≤i≤D
Ci∥θ∆i,τ − θ∆i,0∥`2 .

We will find proper Ci’s such that Vτ is non-increasing. Observe that

Vτ+1 − Vτ ≤ Ciη
√
Li/µ∥∇L(θτ)∥`2 − η

√
µ/8∥∇L(θτ)∥`2 ≤ 0,

when Ci = µ/
√

8Li. Thus we pick

Vτ =
√
L(θτ) + max

1≤i≤D

µ
√

8Li
∥θ∆i,τ − θ∆i,0∥`2 .

Since Lyapunov function is non-increasing, for all τ ≥ 0, we are guaranteed to have

∥θ∆i,τ − θ∆i,0∥
2
`2 ≤

8Li
µ2
L(θ0).

What remains is upper bounding the contribution of θi to the objective function which is addressed next.
Step 2: Proving (4.6): Using the bound on L(θτ) and Li-smoothness of the partial derivative with

respect to θ∆i and Lemma B.1, we find

∥
∂

∂θ∆i

L(θτ)∥`2 ≤
√

2Li(1 − ηµ)τL(θ0). (B.7)

At iteration τ , define θ(t) = tθτ + (1 − t)θ̄τ for 0 ≤ t ≤ 1. Observe that, via line integration, we can bound

∣L(θτ) −L(θ̄τ)∣ ≤ sup
0≤t≤1

∥
∂

∂θ∆i

L(θ(t))∥`2∥θ∆i,τ − θ∆i,0∥`2 . (B.8)

For the right-hand side, we use the earlier upper bound

∥θ∆i,τ − θ∆i,0∥`2 ≤ R.

Next, using (B.7) and Li-smoothness again, we also bound the gradient norm via

∥
∂

∂θ∆i

L(θ(t))∥`2 ≤ ∥
∂

∂θ∆i

L(θτ)∥`2 +Li∥θτ − θ̄τ∥`2 (B.9)

≤ RLi +
√

2Li(1 − ηµ)τL(θ0). (B.10)
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Recalling (B.8) and substituting R, we find

∣L(θτ) −L(θ̄τ)∣ ≤ R
2Li +R

√
2Li(1 − ηµ)τL(θ0) (B.11)

≤ L(θ0)(8L
2
i /µ

2
+ 4(Li/µ)(1 − ηµ)

τ/2
) (B.12)

≤ L(θ0)(8κ
2
+ 4κ(1 − ηµ)τ/2). (B.13)

This yields our bound (4.6).

Step 3: Proving (4.7): Throughout the remaining proof, let θ̃τ = [θ∆̄i,0 θ∆i,τ ] be the θ∆̄i
-ablated vector

which sets the entries θ∆̄i,τ of the τ ’th iterate to their initial state θ∆̄i,0. Similarly, let θ̄τ = [θ∆̄i,τ θ∆i,0] be
the θ∆i ablated vector. By construction

I
N
∆̄i

(θτ ,θ0) = L(θ̃τ) −L(θτ), I
N
∆i

(θτ ,θ0) = L(θ̄τ) −L(θτ).

Set the distance parameter R =
√

8LiL(θ0)/µ ≥ ∥θ∆i,τ∥`2 as a short hand notation.
Applying Lemma B.1 on θ∆i , for any θ(t) = tθ0 + (1 − t)θ̃τ , we have that

∥
∂

∂θ∆i

L(θ(t))∥`2 ≤
√

2LiL(θ0) +RLi.

Consequently, using line integration bound and ∥θ0 − θ̃τ∥`2 = ∥θ∆i,τ∥`2 ≤ R, we get

L(θ0) −L(θ̃τ) ≤ ∣L(θ0) −L(θ̃τ)∣ ≤ R(
√

2LiL(θ0) +RLi) (B.14)

≤ L(θ0)(4Li/µ + 8L2
i /µ

2
) (B.15)

≤ L(θ0)(8κ
2
+ 4κ). (B.16)

Combining this with (B.1), we obtain the second bound (4.7) via

L(θ̃τ) −L(θτ)

L(θ0)
≥ 1 − 8κ2

− 4κ − (1 − ηµ)τ .

B.2 Theorem 4.3 is Tight
To demonstrate the tightness of Theorem 4.3, we consider an over-parameterized linear regression setup
similar to (4.4). Consider D feature sets (Xi)

D
i=1 ∈ R

n×pi with pi ≥ n where we fit

L(θ) = min
θ=(θi)Di=1

0.5∥y −
D

∑
i=1

Xiθi∥
2
`2 . (B.17)

Let ∆i be the set of entries corresponding to θi. PPLS holds over ∆i with parameters µi = σmin(Xi)
2 and

Li = ∥Xi∥
2. The overall problem is a regression with the design matrix X = [X1 . . . XD] ∈ Rn×p where

p = ∑
D
i=1 pi and X satisfies the PL and smoothness bounds with µ = ∑

D
i=1 µi and L = ∑

D
i=1Li. To proceed,

we have the following proposition that proves the tightness of Theorem 4.3 up to condition numbers Li/µi
and L/µ. Specifically, this proposition provides bounds sharply complementing Theorem 4.3 by using the
properties of the minimum `2 norm solution to (B.17) which is the solution gradient descent converges to
starting from zero initialization.

Proposition B.2 Let θ⋆ = (θ⋆i )
D
i=1 be the solution found by gradient descent on the loss (B.17) starting from

an initialization θ0 (with learning rate η ≤ 1/L). Set κ̃ = µi/L. Then, θ⋆i satisfies the following bounds

∥θ∆i,τ − θ∆i,0∥
2
`2 ≥ 2κ̃L(θ0)/L, (B.18)

I
N
∆i

(θτ ,θ0)/L(θ0) ≥ κ̃
2, (B.19)

I
N
∆̄i

(θτ ,θ0)/L(θ0) ≤ 1 − κ̃2
− 2κ̃ when n = 1. (B.20)
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In short, the bounds of this proposition perfectly complements the bounds of Theorem 4.3 after accounting
for the local condition number Li/µi and global condition number L/µ associated with PL condition and
smoothness. Specifically, we simply replace κ = Li/µ with κ̃ = µi/L and the converse bounds hold on κ̃ up
to very small constants. We remark that (B.18) and (B.19) holds generally whereas we show (B.20) for the
special case of n = 1. Note that κ

κ̃
= Li
µi

L
µ
which is the multiplication of the local and global condition numbers.

Thus, Theorem 4.3 is tight up to these condition numbers and very small constants as claimed in the main
body.
Proof Let θ† be the pseudo-inverse solution given by

θ†
=X†y =XT

(XXT
)
−1ỹ

where ỹ = y − y0 and y0 = Xθ0. Gradient descent solution on linear least-squares converges to minimum
Euclidian distance solution given by θ⋆ = θ0 + θ

†. Observe that L(θ0) = ∥ỹ∥2
`2
/2 and

∥θ†
∆W

∥
2
`2 = ∥XT

i (XXT
)
−1ỹ∥2

`2 ≥
σmin(Xi)

2

∥X∥4
∥ỹ2

∥`2 ≥ κ̃(2L(θ0))/L.

This proves the first statement of (B.18). To show the second statement, note that at θ⋆, the loss is equal to
zero thus, the ∆i pruned vector θp = θ⋆

∆̄i
+ θ0,∆i achieves a loss of

L(θp) = 0.5∥Xiθ
†
∆i

∥
2
`2 ≥ 0.5∥XiX

T
i (XXT

)
−1ỹ∥2

`2 ≥ κ̃
2
L(θ0),

yielding (B.19). Finally, we look at the ∆̄i pruned vector θp = θ⋆∆i
+ θ0,∆̄i

. In this case, we wish to show that
loss function L(θp) is upper bounded. We have that

2L(θp) = ∥ỹ −Xiθ
†
∆i

∥
2
`2 (B.21)

= ∥ỹ −XiX
T
i (XXT

)
−1ỹ∥2

`2 (B.22)

= ∥(In −XiX
T
i (XXT

)
−1

)ỹ∥2
`2 . (B.23)

To proceed, note that, when n = 1, In ⪰XiX
T
i (XXT )−1 ⪰ (µi/L)In = κ̃In. Consequently,

2L(θp) ≤ (1 − κ̃)2
∥ỹ∥2

`2 = 2(1 − κ̃)2
L(θ0),

concluding the proof of (B.20).

C Proofs of Lemmas 3.1 and 4.1

C.1 Proof of Lemma 3.1
Proof The least-squares loss evaluated at a point θ with design covariance Σ is given by

E[(y −xTθ)2
] = E[y2

] − 2bTθ + θTΣθ.

We first show that HI and NI is invariant to the scaling Λ regardless of the covariance Σ. Observe that the
covariance of xΛ is ΣΛ

= ΛΣΛ and θ̄Λ = Λ−1θ̄. Consequently, we find that

I
H
∆ (θ̄Λ) = ∑

i∈∆

ΣΛ
i,i(θ̄

Λ
i )

2
= ∑
i∈∆

Λ2
i,iΣi,i(Λ

−1θ̄)2
i = I

H
∆ (θ̄).

For NI, observing bΛ = Λb and accounting for the Λ cancellations, we similarly have

LΛ(θ̄Λ∆̄) −LΛ(θ̄Λ) = [−2bΛ
T
θ̄Λ∆̄ + (θ̄Λ∆̄)

TΣΛθ̄Λ∆̄] − [−2bΛ
T
θ̄Λ + (θ̄Λ)

TΣΛθ̄Λ] (C.1)

= [−2bT θ̄∆̄ + (θ̄∆̄)
TΣθ̄∆̄] − [−2bT θ̄ + (θ̄)TΣθ̄] (C.2)

= 2bT θ̄∆ + θ̄T∆̄Σθ̄∆̄ − θ̄TΣθ̄, (C.3)
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which is independent of Λ. To proceed, we focus on diagonal covariance matrix Σ. For HI/NI, we only need
to show the result for Λ = Ip and establish IN∆ (θ̄) = IH∆ (θ̄). We can then apply the Λ invariance result above.
The least-squares loss for diagonal covariance evaluated at a point θ can be written as

E[(y −xTθ)2
] = E[y2

] − 2
p

∑
i=1

biθi +Σi,iθ
2
i .

Note that θ̄i = bi/Σi,i. Thus, recalling the definition of θ̄∆̄, we establish the desired HI equal to NI bound as
follows

I
N
∆ (θ̄) = L(θ̄∆̄) −L(θ̄) = 2∑

i∈∆

biθ̄i −Σi,iθ̄
2
i = ∑

i∈∆

b2
i

Σi,i
= ∑
i∈∆

Σi,iθ̄
2
i = I

H
∆ (θ̄).

Finally, magnitude-based importance with diagonal covariance is simply given by IM∆ (θ̄Λ) = ∑i∈∆(θ̄Λi )2 =

∑i∈∆(Λ−1θ̄)2
i = ∑i∈∆ Λ−2

i,i θ̄
2
i .

C.2 Proof of Lemma 4.1
Proof The first statement on MI immediately follows from the definition of MI and the construction of
θλ. For the remaining statements, we analyze the gradient and Hessian as a function of λ. Since Hessian
and gradient are linear, we can focus on a single example (x, y). To prevent notational confusion, let
us denote the point of evaluation by (W0,V0) and the input/output layer variables by (W ,V ). Thus,
suppose θ1 = (W0,V0) and θλ = (λW0, λ

−1V0). Use shorthand f = fθλ(x) which is invariant to λ. Let
L1 = ∇f `(y, f) ∈ R

K and L2 = ∇2
f `(y, f) ∈ R

K×K . Let input layer have pI = m × d parameters and output
layer has pO =K ×m parameters. Also denote the partial first and second order derivatives of input layer
w.r.t. prediction f via FW1,λ = ∇W fθλ(x) ∈ R

pI×K and FW2,λ = ∇2
W fθλ(x) ∈ R

pI×pI×K . Similarly denote the
partial derivatives of the output layer by FV1,λ = ∇V fθλ(x) ∈ R

pO×K and FV2,λ = ∇
2
V fθλ(x) ∈ R

pO×pO×K . First,
focusing on gradient (of the vectorized input/output layers), we have the size pI , pO partial gradients

∇W `(y, fθλ(x)) = F
W
1,λL1 (C.4)

∇V `(y, fθλ(x)) = F
V
1,λL1. (C.5)

Let µ(⋅) be the step function which will correspond to the activation pattern. To proceed, observe that
ReLU(λW0x) = λReLU(W0x) and µ(λW0x) = µ(W0x).

FW1,λ = ∇W=λW0(λ
−1V0ReLU(Wx)) = ∇W=W0(λ

−1V0ReLU(Wx)) (C.6)

= λ−1
∇W=W0(V0ReLU(Wx)) (C.7)

= λ−1FW1,1 (C.8)

FV1,λ = ∇V =λ−1V0
(V ReLU(λW0x)) = ∇V =V0(V ReLU(λW0x)) (C.9)

= λ∇V =V0(V ReLU(W0x)) (C.10)

= λFV1,1. (C.11)

which are the advertised results on gradient.
We next proceed with the Hessian analysis and show similar behavior to gradient. Let us use ⊗ to denote

the tensor-vector multiplication which multiplies an a × b × c tensor with a size c vector along the third mode
to find an a × b matrix. Note that

∇
2
W `(y, fθλ(x)) = F

W
2,λ⊗L1 + F

W
1,λL2F

W
1,λ

T
(C.12)

= FW2,λ⊗L1 + λ
−2FW1,1L2F

W
1,1

T
(C.13)

∇
2
V `(y, fθλ(x)) = F

V
2,λ⊗L1 + F

V
1,λL2F

V
1,λ

T
(C.14)

= FV2,λ⊗L1 + λ
2FV1,1L2F

V
1,1

T
. (C.15)
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Figure 4: This figure compares layer-wise pruning with standard pruning. Figures (a), (b) and (c) are the same
figures in Fig. 3. We use the same setup on (d), (e) and (f) except we use layer-wise pruning instead of standard
pruning. Compared to standard MP, layer-wise MP dose not suffer from a full layer dying but the performance is
worse when λ = 1. Moreover, standard HP outperforms layer-wise HP except in the extremely sparse regime (nonzero
≤ 0.2%). In this regime, both approaches result in lackluster accuracy.

Thus, to conclude with the proof of (4.3), we will show that FV2,λ = 0 and FW2,λ = λ
−2FW2,1 . For the input layer,

we use the fact that second derivative of ReLU is the Dirac δ function which satisfies δ(x/C) = Cδ(x) for
C > 0. Thus, we find

FW2,λ = ∇
2
W=λW0

(λ−1V0ReLU(Wx)) (C.16)

= λ−1
∇

2
W=λW0

(V0ReLU(Wx)) (C.17)

= λ−1
∇

2
W=W0

(λ−1V0ReLU(Wx)) (C.18)

= λ−2
∇

2
W=W0

(V0ReLU(Wx)) = λ−2FW2,1 . (C.19)

Similarly, fθλ is a linear function of the output layer thus

FV2,λ = ∇
2
V =λ−1V0

(V ReLU(λW0x)) = 0.

This proves that Hessian exhibits the advertised behavior (4.3). Finally, (4.2) follows from the fact that the
diagonal entries of the Hessian of the input layer decays with λ2 whereas its entries grow with λ so that HI
remains unchanged (and similar story for the output layer).

D Further Experiments and Comparison to Layer-wise Pruning
In Section 4 we used standard network pruning which prunes the whole set of weights to a certain sparsity
level regardless of which layer they belong. We observed that MP can completely prune a layer when we

24



apply very large or small λ-scaling in Fig 3a. We also showed HP significantly mitigates this problem as it
is inherently invariant to λ. Layer-wise pruning prunes the exact same fraction of the parameters in each
layer individually and it is an alternative way to avoid the layer death problem. Thus, in this section, we
compare standard pruning with layer-wise pruning and display the results in Fig. 4. Fig. 4a and 4d show
that layer-wise MP mitigates the layer death problem under λ-scaling because it keeps the same fraction
of nonzero parameters in each layer. However when λ = 1 the performance of layer-wise MP is worse than
standard MP. Note that there is nothing special about λ = 1 except the fact that input dimension (784) and
number of hidden nodes (1024) are close to each other and He initialization results in input and output
weights of similar magnitudes.

Fig. 4b and 4e compare standard HP with layer-wise HP showing that standard HP outperforms layer-wise
HP except when the network is extremely spares (fraction of nonzero ≤ 0.2%). Our explanation for this
behavior is as follows: The weights of certain layers (specifically output layer) are more important, in average,
than others (specifically input layer). The standard HP fully takes this into account by jointly pruning
the complete set of weights based on importance. In Figure 4c it can be seen that, for 1% sparsity target,
standard HP keeps around 50% of the output layer whereas layer-wise HP keeps exactly the target value 1%
(Fig 4f). However the fact that standard HP favors the output layer weights results in input layer getting
overly pruned in the extremely sparse regime and in this regime layer-wise pruning has a slight edge. However
both methods lead to lackluster accuracy (∼ 40% accuracy on MNIST) in this regime, thus for practical
purposes, it is plausible to say standard HP is better than or equal to layer-wise in all sparsities.

E Relaxing Conditions on Convex Gaussian Min-Max Theorem
The following lemma replaces the compactness constrained with the closedness in CGMT. It also applies to
problems with random equality constraints (which is of interest for over-parameterized least-squares) besides
regularized form.

Theorem E.1 (Flexible CGMT) Let ψ be a function obeying lim∥w∥`2→∞
ψ(w) =∞. Given a closed set

S, define

Φλ(X) = min
w∈S

λ∥Xw∥`2 + ψ(w) (E.1)

φλ(g,h) = min
w∈S

λ(∥w∥`2∥g∥`2 −h
Tw)+ + ψ(w), (E.2)

and

Φ∞(X) = min
w∈S,Xw=0

ψ(w) (E.3)

φ∞(g,h) = min
w∈S,∥w∥`2∥g∥`2≤h

Tw
ψ(w). (E.4)

For all λ ∈ [0,∞) ∪ {∞}, we have that

• P(Φλ(X) < t) ≤ 2P(φλ(X) ≤ t).

• If S is additionally convex, we additionally have that P(Φλ(X) > t) ≤ 2P(φλ(X) ≥ t). Combining with
the first statement, this implies that for any µ, t > 0

P(∣Φλ(X) − µ∣ > t) ≤ 2P(∣φλ(X) − µ∣ ≥ t)

Proof As an application of Theorem 3 of [63] and Lemma E.2 and Lemma E.3, these two statements hold
for a compact S and compact convex S respectively. We remark that Theorem 3 of [63] does not explicitly
state P(Φλ(X) > t) ≤ 2P(φλ(X) ≥ t). However it is explicitly stated in the proof of this theorem (see Proof
of Eq (13) in pg 22). Our goal is extending the proof to closed sets rather than compact. To achieve this, we
consider a sequence of problems with the sets

Sr = {x ∣ ∥x∥`2 ≤ r} ∩ S.
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Sr is compact thus the advertised inequalities hold for Sr. The remaining argument is showing pointwise
convergence and applying the Dominated Convergence Theorem as in the proofs of Lemma E.2 and Lemma
E.3. We will argue the result for λ = ∞. Finite λ follows essentially the identical argument. Define
Φr
λ(X) = minw∈Sr,Xw=0 ψ(w) and φrλ(g,h) = minw∈Sr,∥w∥`2∥g∥`2≤h

Tw ψ(w). Fix a matrix X and define the
indicator Erλ = 1Φr

λ
(X)<t. We claim that limr→∞Erλ = Eλ. To see this consider the two cases: Case 1: If

original problem is infeasible and Φλ(X) = ∞ then Φr
λ(X) = ∞ as well thus limr→∞Erλ = Eλ = 0. Case

2: Φλ(X) is finite. By the divergence assumption on ψ, the set of optimal solutions w∗ of the original
problem achieving Φλ(X) lie on a bounded `2 set. Thus for sufficiently large r, Erλ = Eλ (note that Φrλ is a
non-increasing function of r). To proceed, applying Dominated Convergence Theorem, this yields

lim
r→∞

E[Erλ] = E[Eλ] ⇐⇒ P(Φλ(X) < t) = lim
r→∞

P(Φrλ(X) < t).

Applying the same argument to φrλ we obtain the desired bound

P(Φλ(X) < t) = lim
r→∞

P(Φrλ(X) < t) (E.5)

≤ 2 lim
r→∞

P(φrλ(g,h) ≤ t) (E.6)

≤ 2P(φλ(g,h) ≤ t). (E.7)

Repeating the identical/very similar arguments for the convex case and finite λ (omitted for avoiding
repetitions), we conclude the proof. Finally, the combination of upper and lower bounds yield the two sided
bound by observing

P(∣Φλ(X) − µ∣ > t) = P(Φλ(X) > µ + t) +P(Φλ(X) < µ − t).

E.1 Proof of Constrained CGMT
E.1.1 Proof for the convex case

Lemma E.2 Given a convex and compact S, define the PO and AO problems

Φ∞(X) = min
w∈S,Xw=0

ψ(w) (E.8)

φ∞(g,h) = min
w∈S,∥w∥`2∥g∥`2≤h

Tw
ψ(w). (E.9)

Suppose X,g,h
i.i.d.
∼ N (0,1). Then, we have that

P(Φ∞(X) > t) ≤ 2P(φ∞(g,h) ≥ t). (E.10)

Proof Using convex-concavity of LPO(w, a) = a∥Xw∥`2 + ψ(w) we have that

Φ∞(X) = min
w∈S,Xw=0

ψ(w) (E.11)

= max
a≥0

min
w∈S

a∥Xw∥`2 + ψ(w) (E.12)

= lim
λ→∞

max
0≤a≤λ

min
w∈S

a∥Xw∥`2 + ψ(w) (E.13)

= lim
λ→∞

min
w∈S

max
0≤a≤λ

a∥Xw∥`2 + ψ(w) (E.14)

= lim
λ→∞

Φλ(X). (E.15)
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Note that if the problem is infeasible, both sides yield ∞. Similarly using convex-concavity of LAO(w, a) =
a(∥w∥`2∥g∥`2 +h

Tw)+ + ψ(w), we have

Φ∞(g,h) = lim
λ→∞

φλ(g,h).

Now that we connected the equality constrained problems Φ∞ and φ∞ to regularized problems, we proceed
with establishing a probabilistic bound using CGMT. We remark that Theorem 3 of [63] does not explicitly
state P(Φλ(X) > t) ≤ 2P(φλ(X) ≥ t). However it is explicitly stated in the proof of this theorem (see Proof
of Eq (13) in pg 22). Define the indicator function Eλ = 1Φλ(X)>t. Observe that, for any choice of X,

lim
λ→∞

Eλ = lim
λ→∞

1Φλ(X)>t = 1Φ∞(X)>t.

Note that, if the problem is infeasible, then limλ→∞Eλ = E∞ = 1. To proceed, we are in a position to apply
Dominated Convergence Theorem to find

lim
λ→∞

E[Eλ] = E[E∞] ⇐⇒ P(Φ∞(X) > t) = lim
λ→∞

P(Φλ(X) > t). (E.16)

Applying the identical argument on φg,h to find P(φ∞(g,h) ≥ t) = limλ→∞P(φλ(g,h) ≥ t), we obtain the
desired relation

P(Φ∞(X) > t) = lim
λ→∞

P(Φλ(X) > t) (E.17)

≤ 2 lim
λ→∞

P(φλ(g,h) ≥ t) (E.18)

= 2P(φ∞(g,h) ≥ t). (E.19)

E.1.2 Proof for the general case

Lemma E.3 Given a compact set S, define the PO and AO problems as in Lemma E.2. We have that

P(Φ∞(X) < t) ≤ 2P(φ∞(g,h) < t). (E.20)

Proof The proof is similar to that of Lemma E.2. For a general compact set S, application of Gordon’s
theorem yields the one-sided bound

P(Φλ(X) < t) ≤ 2P(φλ(g,h) ≤ t). (E.21)

To move from finite λ to infinite, we make use of Lemma E.4. Define the indicator function Eλ = 1Φλ(X)≤t.
Using Lemma E.4, for any choice of X, limλ→∞Eλ = limλ→∞ 1Φλ(X)<t = 1Φ∞(X)<t. Note again that, if the
problem is infeasible, then limλ→∞Eλ = E∞ = 0. To proceed, we are in a position to apply Dominated
Convergence Theorem to find

lim
λ→∞

E[Eλ] = E[E∞] ⇐⇒ P(Φ∞(X) < t) = lim
λ→∞

P(Φλ(X) < t). (E.22)

Applying the identical argument on φg,h to find P(φ∞(g,h) ≤ t) = limλ→∞P(φλ(g,h) ≤ t), we obtain the
desired relation

P(Φ∞(X) < t) = lim
λ→∞

P(Φλ(X) < t) (E.23)

≤ 2 lim
λ→∞

P(φλ(g,h) ≤ t) (E.24)

= 2P(φ∞(g,h) ≤ t). (E.25)
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Lemma E.4 Let S be a compact set and ψ(⋅) be a continuous function and f(w) be a non-negative continuous
function. Then

lim
λ→∞

min
w∈S

λf(w) + ψ(w) = min
w∈S,f(w)=0

ψ(w)

Thus, setting f(w) = ∥Xw∥`2 and f(w) = ∥w∥`2∥g∥`2 −h
Tw, we have that

lim
λ→∞

Φλ(X) = Φ∞(X)

lim
λ→∞

φλ(g,h) = φ∞(g,h).

Proof Since f is continuous, it has closed sub-level sets. Suppose {w ∈ S ∣ f(w) = 0} = ∅. Since S is
compact, both sides are infinity and the equality holds. To proceed, we assume the problem is feasible. If
minw∈S ψ(w) = minw∈S,f(w)=0 ψ(w) again both sides are equal to minw∈S ψ(w) thus we assume the right-hand
side objective is strictly larger than minw∈S ψ(w). Define the sublevel sets Cα = S ∩ {w ∣ f(w) ≤ α}.

Let cλ = minw∈S λf(w) + ψ(w) and c∞ = minw∈S,f(w)=0 ψ(w). Let wλ = arg minw∈S λf(w) + ψ(w) and
w∞ = arg minw∈S,f(w)=0 ψ(w) be optimal solutions of regularized and constrained problems achieving cλ, c∞
respectively. If the claim is wrong, then for some ε > 0 and all λ > 0, cλ ≤ c∞ − ε. Since f is nonnegative, this
also implies that ψ(wλ) ≤ ψ(w∞) − ε.

Since ψ is a continuous function, ψ uniformly converges on S. Uniform convergence implies that for
any ε > 0, there exists δ > 0 such that for all pairs ∥w − v∥`2 < δ, we have ∣ψ(w) − ψ(v)∣ < ε. Conversely, if
∣ψ(w) − ψ(v)∣ ≥ ε, we have that ∥w − v∥`2 ≥ δ. In our context, this means that, for all λ ≥ 0

dist(wλ,C0) ≥ δ.

Set Γ = ψ(w∞) − minw∈S ψ(w) > 0. For any λ ≥ 0, λf(wλ) ≤ Γ Ô⇒ f(wλ) ≤ Γ/λ Ô⇒ wλ ∈ CΓ/λ. This
implies that for any choice of α > 0 (via α↔ Γ/λ), Cα contains points that are δ away from C0. Note that
Cα is a non-decreasing sequence of sets (i.e. Cα1 ⊆ Cα2 whenever α1 ≤ α2). Via Bolzano–Weierstrass theorem
(wλ)λ≥Γ contains a convergent subsequence. Index this subsequence by (wλi)

∞
i=1 and suppose w̄ = limi→∞wλi .

Clearly dist(w̄,C0) ≥ δ as distance is a continuous function. Note that w̄ ∈ Cα for any α > 0 since Cα is
non-decreasing and compact thus Cα contains all the elements of (wλi)

∞
i=1 after a certain point including its

limit. Finally, define C̄ = limα→0+ Cα = ⋂α>0 Cα. Clearly w̄ ∈ C̄. This means that C̄ contains the element w̄
which is not inside C0. Finally, this leads to contradiction since C̄ ⊆ C0. Specifically, if w̄ ∈ C̄, then this implies

f(w̄) ≤ α for all α > 0 Ô⇒ f(w̄) = 0 Ô⇒ w̄ ∈ C0.

This concludes the proof.
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