
Label-Imbalanced and Group-Sensitive Classification
under Overparameterization

Ganesh Ramachandra Kini1, Orestis Paraskevas1, Samet Oymak2, Christos Thrampoulidis3,1

1Department of Electrical and Computer Engineering, UC Santa Barbara
2Department of Electrical and Computer Engineering, UC Riverside

3Department of Electrical and Computer Engineering, University of British Columbia

March 2, 2021

Abstract

Label-imbalanced and group-sensitive classification seeks to appropriately modify standard
training algorithms to optimize relevant metrics such as balanced error and/or equal opportunity.
For label imbalances, recent works have proposed a logit-adjusted loss modification to standard
empirical risk minimization. We show that this might be ineffective in general and, in particular
so, in the overparameterized regime where training continues in the zero training-error regime.
Specifically for binary linear classification of a separable dataset, we show that the modified loss
converges to the max-margin SVM classifier despite the logit adjustment. Instead, we propose a
more general vector-scaling loss that directly relates to the cost-sensitive SVM (CS-SVM), thus
favoring larger margin to the minority class. Through an insightful sharp asymptotic analysis for
a Gaussian-mixtures data model, we demonstrate the efficacy of CS-SVM in balancing the errors
of the minority/majority classes. Our analysis also leads to a simple strategy for optimally tuning
the involved margin-ratio parameter. Then, we show how our results extend naturally to binary
classification with sensitive groups, thus treating the two common types of imbalances (label/group)
in a unifying way. We corroborate our theoretical findings with numerical experiments on both
synthetic and real-world datasets.

1 Introduction

1.1 Motivation
Equitable learning in the presence of imbalances in the data is a rather classical problem in the ML
community [HM19]. However, it has seen a surge of interest over the past few years as we aspire to
use ML algorithms to create automated decision rules in increasingly more applications that directly
involve people [BS16]. Two common types of imbalances that have attracted particular attention are
those present in label-imbalanced and group-sensitive classification. In the first type, examples from a
target class are heavily outnumbered by examples from the rest of the classes. The standard metric
of average classification error is insensitive to such long-tail label distributions and better classical
alternatives exist, e.g. see [JK19]. In our paper, we focus on the notion of balanced error. In the
second type, the broad goal is to ensure fairness with respect to a protected underrepresented group
(e.g. gender or race). There are several intuitive notions of fairness and [KMR16, FSV16] showed that
there is no universal fairness metric. Thus, here too, several fairness metrics have been proposed, e.g.
[CKP09, HPS16, ZVGRG17, WM19]. In our paper, we focus on Equal Opportunity which favors same
true positive rates across groups [HPS16].

Methods to cope with class/group imbalances are broadly categorized into data-level and algorithm-
level ones. Of interest to us are cost-sensitive methods within the latter category and specifically
approaches that modify the loss function during training to account for varying class/group penalties,
e.g. [DOBD+18, CWG+19] and references therein. For label-imbalanced classification, [MJR+20]
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considered the following logit-adjusted loss as a modification to cross-entropy:

`(y, f(x)) = ωy log(1 + ∑
y′≠y

eιyy′ ⋅ e(fy′(x)−fy(x))), (1)

In this paper, we ask: How does the classifier trained by optimizing the loss in (1) behave in the
overparameterized regime where training continues in the zero training-error regime? How effective is
the classifier in terms of balanced error in label-imbalanced settings? Finally,

Can we design a provably better loss for this regime?

We also study related questions for group-sensitive classification using the same set of tools. Specifically,
the loss in (1) admits a natural modification that makes it also relevant to this setting. We ask:
What are potential benefits of a more principled loss function in overparameterized group-sensitive
classification in terms of Equal Opportunity?

1.2 Contributions
This work focuses on binary label-imbalanced and group sensitive classification in the overparameterized
regime and makes multiple key contributions as summarized below.
● A new vector-scaling loss: We propose the following vector-scaling loss (VS-loss, in short):

`(y, f(x)) = ωy log(1 + ∑
y′≠y

eιyy′ e∆y(fy′(x)−fy(x))) (2)

= −ωy log e∆yfy(x)+ιy

∑y′∈[k] e∆yfy′(x)+ιy′
,

as a modification of standard cross-entropy loss appropriate for imbalanced k-class datasets. In
addition to the weights ωy and to the label-dependent offset parameters ιyy′ = ιy′ − ιy in (1), the
VS-loss in (2) introduces multiplicative scaling factors ∆y > 0 to the logits (in red for emphasis). Both
theoretically and empirically we demonstrate the beneficial role of these new parameters when training
continues in the zero training-error regime.
● Connection to cost-sensitive SVM: We focus on binary classification. For linear predictors and
separable datasets, we argue that optimizing the loss in (1) with gradient descent leads to a classifier
whose direction converges to the max-margin SVM solution irrespective of the choice of the parameters
ωy and ιy. Instead, the VS loss leads to the solution of another old friend: the cost-sensitive SVM
(CS-SVM) with margin-ratio parameter δ = ∆−1/∆+1; see (7).
● CS-SVM through a modern lens: For an insightful Gaussian mixtures model (GMM), we
present formulae that sharply predict the classification and balanced errors of CS-SVM (and thus, of
the VS-loss as well) in a high-dimensional separable regime. Our formulae are explicit in terms of
data geometry, class priors, parameterization ratio and tuning parameter δ. Additionally, we identify
a key structural property of CS-SVM that together with our asymptotic theory lead to an explicit
formula for the optimal margin ratio δ⋆ that minimizes the balanced error. For example, we show
that δ⋆ not only depends on the class priors, but is also sensitive to the parameterization ratio.
● Group-sensitive SVM: We propose natural modifications to (2) and to CS-SVM for classification
in the presence of sensitive groups. We then extend the GMM to the capture the presence of
imbalanced groups, and for binary labels we develop a sharp analysis of our algorithms under sufficient
overparameterization.
● Numerical experiments: We present numerical experiments that corroborate our findings above.
Also, using our sharp analysis we study key tradeoffs between balanced error / equal opportunity and
misclassification error.

1.3 Connections to related literature

Logit-adjusted loss: The idea of the weights ωy is rather old [XM89], but becomes ineffective under
overparameterization [BL19]. This deficiency together with the trend for overparameterized models
has led to the idea of the pairwise label-based offset parameters ιyy′ as seen in (1). These offset
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parameters enter (1) in an additive way with respect to the logits fy(x). For example, the following
choices for ιyy′ have been proposed: 1/P(y)1/4 [CWG+19], log P(y′) [TWL+20] and log P(y′)

P(y) [MJR+20].
The latter is shown by [MJR+20] to lead to a classifier that is Fisher consistent. However, Fisher
consistency is only relevant in the large sample size limit. Perhaps surprisingly, we argue that the
additive offsets ιyy′ might be ineffective when data are separable and propose the more general loss (2).
Relation to vector-scaling calibration: The multiplicative weighting in our loss is reminiscent
of the vector scaling (VS) [GPSW17], which inspired our naming. VS is a post-hoc procedure that
modifying the logits v of a neural net after training via v → ∆ ⊙ v + ι where ⊙ is the Hadamard
product. Related to us, [ZCO20] shows that VS can improve calibration for imbalanced classes. As
important distinctions of our VS-loss compared to VS calibration, note that the multiplicative scalings
in (2): (i) are part of the loss, thus they directly affect training; (ii) are applied to the margins and not
individually to the logits. Finally, (inspired by the more general matrix-scaled calibration [GPSW17]),
we can define a matrix-scaled loss modifying the margins as ∆yy′(fy′(x) − fy(x)) + iyy′ . Exploring
potential benefits of this is left for future work.
Blessings/curses of overparameterization: Overparameterization acts as a catalyst for state-of-
the-art deep neural networks [NKB+19]. In terms of optimization, [SHN+18, OS19, JT18, AH18] show
that gradient-based algorithms are implicitly biased towards certain min-norm type solutions. Such
solutions, are then analyzed in terms of generalization showing that they can in fact lead to benign
overfitting [BLLT20, HMRT19, MMN18, MRSY19]. While implicit bias is key to benign overfitting it
may also come with certain downsides. As an instance of this, we argue that the parameters ωy, ιyy′
in (2) can be ineffective in the interpolating regime in terms of balanced error/equal opportunity.
Related to us, [SRKL20] demonstrated the ineffectiveness of the weights ωy in learning withs groups.
Cost-sensitive SVM: [MSV10] arrived to CS-SVM by properly extending the SVM hinge-loss to
guarantee Fisher consistency. In Section 5.1 we give a different interpretation to CS-SVM by connecting
to our VS-loss. We also interpret CS-SVM as “post-hoc weight normalization" to SVM.

2 Problem setup

2.1 Data models
Let {(xi, gi, yi)}ni=1 be a sequence of n i.i.d. training samples from a distribution D over X × G × Y;
X ⊆ Rd is the input space, Y ∈ {±1} the set of binary labels and G = [K] refers to the group membership
among K ≥ 1 groups.
Gaussian mixtures model (GMM). For the purpose of our sharp asymptotic analysis and some
of our synthetic experiments, we further specify the following Gaussian-mixture type generative model
for the data distribution D. For the label y ∈ {±1}, we assume

P{y = +1} = 1 − P{y = −1} = π ∈ (0,1).

The group membership is decided conditionally on the label such that for all j ∈ [K],

P{g = j∣y = +1} = p+,j and P{g = j∣y = −1} = p−,j ,

with ∑j∈[K] p+,j = ∑j∈[K] p−,j = 1. Finally, within each class, each group is associated with a mean
vector µ±1,j ∈ Rd and the conditional of the feature x given its label y and group g is a multivariate
Gaussian of mean µy,g and covariance Σ, i.e.,

x∣(y, g) ∼ N(µy,g,Σ). (3)

For label-imbalances, we assume all examples belong to the same group (K = 1), and an imbalanced
setting in which π ≪ 1 − π. For imbalances with respect to group-membership, we focus on two groups
(K = 2) with equal priors for the positive and negative class labels, i.e. π = 1

2 , p+,j = p−,j = pj , j = 1,2
and imbalance p ∶= p1 ≪ p2 = 1 − p. See Figure 1 for a graphical illustration in R2.

2.2 Balanced error and Equal Opportunity measures
We consider linear classifiers parameterized by a decision hyperplane w ∈ Rd and an intercept/offset
b ∈ R. Given a new sample x we decide class membership ŷ ∈ {±1} as ŷ = sign(wTx+b). The (standard)
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Figure 1: Visualizing the Gaussian mixture model of Section 2.1 with K = 2 imbalanced groups in
the two-dimensional space (d = 2). Different colors (resp., markers) correspond to different class (resp.,
group) membership. Examples in the minority group correspond to cross markers (×). The means of
the majority / minority groups are depicted in white / green markers. The purple line illustrates our
group-sensitive SVM classifier (8) that forces larger margin to the minority group examples in relation to
standard SVM in green.

risk or misclassification error of such a classifier is

R ∶= R((w, b)) = P{ŷ ≠ y} .

This can be written as R = πR+ + (1 − π)R− in terms of the class-conditional risks

R± = P{ŷ ≠ y ∣y = ±1} ,

and as R = π∑j∈[K] p+,jR+,j + (1 − π)∑j∈[K] p−,jR−,j in terms of the group-conditional risks

R±,j = P{ŷ ≠ y ∣y = ±1, g = j} , j ∈ [K].

The misclassification error is a rather poor measure of performance in class/group imbalances. Here,
we focus on the following two popular alternatives for label- and group- imbalances, respectively. The
balanced error simply averages the conditional risks of the two classes:

Rbal ∶= (R+ +R− ) /2.

Assuming K = 2, the constraint of Equal Opportunity (EO) is satisfied [HPS16] if R+,1 = R+,2. More
generally, we consider the difference of equal opportunity (DEO)

Rdeo ∶= R+,1 −R+,2.

2.3 Overparameterization
We assume that the learning model (w, b) is overparameterized enough to perfectly fit the data such
that the training error Rtrain = 1

n ∑i∈[n] 1[sign(wTxi + b) ≠ yi] is zero. Equivalently, the training data
are linearly separable, i.e.

∃(w, b) ∈ Rd × R s.t. yi(wTxi + b) ≥ 1, ∀i ∈ [n]. (4)

Notation. We use PÐ→ to denote convergence in probability and let Q(⋅) be the tail distribution
function of the standard normal distribution. We define (x)− ∶= min{x,0}. We denote 1[E] the
indicator function of an event E . We let Sr2 denote the unit sphere in Rr. Finally, let [K] ∶= {1, . . . ,K}.

3 Algorithms
Below, we first present a more general version of the VS-loss that also applies to group-sensitive
classification and then we specialize it to binary problems, which is the focus of this paper. Also, we
recall the CS-SVM and introduce a natural extension to account for imbalanced groups.
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VS-loss. For binary classification (2) simplifies to

`(y, f(x)) = ωy ⋅ log (1 + eιy ⋅ e−∆yyf(x)) , (5)

for hyperparameters ι± ∈ R, ω± > 0,∆± > 0. For linear classification we set f(x) = wTx or f(x) = wTx+b.
The logit-adjusted loss is a special case of (5) with ∆± = 1. When the goal is to (additionally) ensure
fairness with respect to a sensitive group within the classes, we can naturally extend the VS-loss by
introducing in (2)/(5) parameters (∆y,g, ιy,g,wy,g) (rather than (∆y, ιy,wy)) that depend both on the
class and group membership (specified by y and g, respectively). For binary datasets, we simply have

`(y, f(x), g) = ωy,g ⋅ log (1 + eιy,g ⋅ e−∆y,gyf(x)) . (6)

CS-SVM. The cost-sensitive (hard-margin) SVM (CS-SVM for short) [MSV10] produces such a
classifier (ŵδ, b̂δ) as follows:

min
w,b

∥w∥2 sub. to
⎧⎪⎪⎨⎪⎪⎩

wTxi + b ≥ δ , yi = +1
wTxi + b ≤ −1 , yi = −1

, i ∈ [n], (7)

for some δ ∈ R+ that denotes the ratio of margins. Note that the “standard form" of hard-margin SVM
corresponds to (7) with δ = 1. Onwards, we refer to (7) with δ = 1 simply as SVM, while the acronym
CS-SVM is reserved for the general values of δ. The CS-SVM naturally allows tuning δ > 1 (resp.
δ < 1) to favor a larger margin δ/∥ŵδ∥2 for the minority class vs 1/∥ŵδ∥2 for the majority class, which
is an intuitive means to balance the error between the two. Thus, δ → +∞ (resp. δ → 0) corresponds
to the extreme scenario where the decision boundary starts right at the boundary of class y = −1 (resp.
y = +1).
Group-sensitive SVM. For simplicity, we focus on two protected groups K = 2 and leave (natural)
extensions to future studies. We propose the following group-sensitive version of CS-SVM, which we
refer to as (hard-margin) GS-SVM for short:

min
w,b

∥w∥2 s.t.
⎧⎪⎪⎨⎪⎪⎩

yi(wTxi + b) ≥ δ, gi = 1
yi(wTxi + b) ≥ 1, gi = 2

, i ∈ [n]. (8)

By tuning δ > 1, GS-SVM favors larger margin for the sensitive group g = 1. Once again, refined
versions of (8) are also possible for instances where the classes are also imbalanced themselves by
modifying the constraints to yi(wTxi + b) ≥ δyi,1 for gi = 1, and, yi(wTxi + b) ≥ δyi,2 for gi = 2 for
positive δ1,1, δ1,2, δ−1,1, δ−1,2. Both the hard-margin CS-SVM and GS-SVM are feasible if and only if
the data are linearly separable. However, we caution that the role of the hyper-parameters in GS-SVM
is in general harder to interpret as “margin-ratios" since its constraints may or may not be active
depending on the data geometry.

4 Vector-scaling loss: Motivational examples

4.1 Imbalanced classification of GMM
We start with an experiment on synthetic data in Figure 2. We generated a binary Gaussian-mixture
dataset of n = 100 examples in Rd=300 with data means sampled independently from the Gaussian
distribution and normalized such that ∥µ+1∥2 = 4, ∥µ−1∥2 = 2 and prior π = 0.1 for the minority class
+1. For varying model size values p ∈ [5 ∶ 5 ∶ 50 , 75 ∶ 25 ∶ 300] we trained linear classifier w ∈ Rp

using only the first p features, i.e. f(x) = wT x̃ with x̃ = x(1 ∶ p) ∈ Rp. This allows us to investigate
performance with a varying parameterization 1 ratio γ = p/n. We train the model w using loss
Ln(w) = ∑ni=1 `(yi,wT x̃i) with ` chosen to be either our proposed VS-loss or the logit-adgusted (LA)
loss. Specifically, we train the VS-loss in (5) for f(x) = wT x̃ and the following choice of parameters:

ω± = 1, ι± = 0 and ∆y = δ−1
⋆ 1[y = +1] + 1[y = −1].

1Simple models like this have been recently used in [HMRT19, BHX19, DKT19, KT20] for analytic studies of double
descent [BMM18, BRT19, MM19, NKB+19] in the misclassification error. Although it is not our focus here, Figure 2
reveals that the balanced error of the VS-loss undergoes a similar double descent.
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Figure 2: This figure highlights the benefits of our theory-inspired VS-loss (red markers) over the
logit-adjusted loss of [CWG+19](blue markers) and [MJR+20](black-markers). We trained a mismatched
linear model with varying model size p on a binary Gaussian-mixture dataset of n = 100 examples in
Rd=300. x-axis is the parameterization ratio p/n. The prior of the minority class is set to π = 0.1. The
other details are provided in Sec. 4.1. The shaded region highlights the transition to zero training error:
on the right side of it data become linearly separable. In this separable regime, we train additionally using
SVM (cyan plus marker) and cost-sensitive SVM (magenta cross). The inset displays the margin-ratio
parameter δ that we used to tune the VS-loss and CS-SVM. The solid lines depict theoretical predictions.

Here, δ⋆ > 0 was set to the value shown in the inset plot; see explanation later. As discussed, the
LA-loss is a special case of the VS-loss with ∆y = 1. Thus, for training with the LA-loss we used (5)
with

∆± = 1, ω± = 1 and ιy = π−1/41[y = +1] + (1 − π)−1/41[y = −1],
as suggested by [CWG+19] (see blue markers in the figure) and

∆± = 1, ω± = 1 and ιy = log (1 − π
π

)1[y = +1] + log ( π

1 − π
)1[y = −1],

as suggested by [MJR+20] (see black markers in the figure). In all cases, we ran (normalized) gradient
descent with a varying learning rate normalized by the gradient of the loss at each iteration (see
Appendix A.6 for details). For each value of p, we ran 25 independent experiments and reported
averages of the balanced test error on a test set of size 104 generated from the same distribution
as the training set. The reported values are shown in red/blue/black markers. We also plot the
(average) training error for each one of the loss. Observe that for all losses the training error is zero for
parameterization ratio ≳ 0.45. The shaded region highlights the transition to the overparameterized
regime where the data model size p is large enough to drive the training error to zero (eqv., to make
the training data separable).
VS-loss vs LA-loss. The experiment above reveals the following clear message:

Our VS-loss has better balanced-error performance compared to the logit-adjusted loss when both
trained to zero training error.

In addition to proposing the VS-loss, we will also give an analytical explanation for this behavior.
Our analysis will reveal the crucial role of the multiplicative scaling factors ∆y in (5). It will also
demonstrate that the particular choice of ι± above is irrelevant in the overparameterized regime: any
choice is as good as ι± = ±1 (i.e. standard logistic loss) when data are separable. We emphasize that
our conclusions hold for the overparameterized regime (i.e. Rtrain = 0). We see in Figure 2 that when
data are not separable, the LA-loss can outperform the VS-loss for the specific choice of parameters.
Thus, all three sets of hyperparameters are useful in the formulated VS-loss in (5): ω± and ι± help
balancing the minority/majority errors in the underparameterized regime, while ∆± is responsible for
good performance in the overparameterized regime.
An intuitive explanation via connection to max-margin classifiers. We see in Figure 2 that
for p ≥ 50 the model is large enough to separate the data. In this regime, we train additionally the
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SVM and the cost-sensitive (CS) SVM classifiers. Specifically, we solve the optimization in (7) for
b = 0 (no offset), for feature vectors x̃i of “reduced" size p, and, δ = 1 for SVM (cyan) and δ = δ⋆ for
CS-SVM (magenta). We observe the following:

When data are separable, the performance of the VS-loss matches the performance of CS-SVM.

Moreover, the performance of the logit-adjusted loss is the same as the performance of SVM. We will
formally explain this behavior in Section 5.1.
Tuning δ⋆. The inset plot shows the chosen values for the hyperparameter δ. Observe that the
value depends on the parameterization ratio p/n. These values of δ⋆ were chosen based on our sharp
asymptotic theory in Section 5.3. Our theory in the same section sharply predicts the generalization
behavior of CS-SVM for any δ > 0. The predictions for δ = 1 (SVM) and δ = δ⋆ (GS-SVM) are shown
in cyan and magenta solid lines respectively. Notice the perfect match with the numerical values of
the Monte Carlo simulations.

4.2 Group-sensitive classification

Figure 3: This figure highlights the benefit of our group-sensitive SVM over regular SVM in terms of
Equal Opportunity. For a Gaussian mixture model with a sensitive group of prior p = 0.05, it depicts
the trade-off between the misclassification error and DEO of a linear GS-SVM classifier with different
parameter values δ ≥ 1 and three distinct parameterization levels γ = d/n. In this setting, with appropriate
tuning of δ, GS-SVM can achieve zero DEO.

Our second example concerns a group-sensitive binary classification setting. Specifically, we
consider the GMM of Section 2.1 with ∥µy,g∥ = 3, y ∈ {±1}, g ∈ {1,2} and µ+,1 ⊥ µ+,2 ∈ Rd, sensitive
group prior p = 0.05 and equal class priors π = 1/2. Our goal is to investigate the effect of the parameter
δ of the group-sensitive SVM (8) in terms of the DEO (see Section 2.2). How much better is GS-SVM
compared to standard SVM?

We answer this question for the GMM model in Figure 3 by deriving the complete tradeoff between
DEO and misclassification error of GS-SVM as the parameter δ increases starting from 1 (for which
value it coincides with the SVM). To obtain this tradeoff, we establish in Section 6.1 sharp predictions
for the generalization performance of GS-SVM both in terms of DEO and misclassification error. We
observe that the largest DEO and the smallest misclassification error are achieved by the SVM (δ = 1).
Initially, the true-positive error of the minority group is much higher than that of the majority group.
But, with increasing δ, misclassification error is traded-off for reduction in absolute value of DEO
until a specific δ0 = δ0(γ) giving Rdeo = 0, before starting to increase again as the error in the majority
group now begins to grow larger. We also observe that the value of δ0 increases as a function of the
parameterization level γ = d/n in this example.

5 Label-imbalanced classification

5.1 Connection between VS-loss and CS-SVM
Let T = {(xi, yi)}i∈[n] be a collection of feature/vector pairs in a binary classification setting with
imbalance π = P(yi = +1) ≪ 1−π. (Here, the xi’s can be either raw features or outputs of some feature
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Figure 4: Convergence of gradient-descent iterates wt, t ≥ 1 on the loss in (5) with f(x) = wTx (i.e. no
intercept b = 0) for two set of parameter choices: (1) In red, ωy = 1, ιy = 0,∆y =

1
δ
1[y = 1] +1[y = −1]; (2)

In blue, ωy = 1, ιy = δ1[y = 1] + 1[y = −1],∆y = 1. In both cases we chose δ = 4. We plotted the angle
gap 1 − ŵTwt

∥wt∥2∥ŵ∥2
of wt to ŵ, for two values of ŵ: (1) In solid lines, ŵ is the CS-SVM solution in (7)

with parameter δ and b = 0; (2) In dashed lines, ŵ is the standard SVM solution with b = 0. Data were
generated from a Gaussian mixture model with µ1 = 2e1,µ2 = −3e1 ∈ R220, n = 100 and π = 0.2. The
learning rate of GD was set constant to 0.1 for all iterations t.

map xi = φ(zi) applied to raw features zi. ) Consider training a binary linear classifier with the
VS-loss in (5) with f(x) = wTx (aka no intercept b = 0). Suppose that the set T is linearly separable
and denote Ssep = {w ∶ ∥w∥2 = 1 and yi(wTxi) ≥ 1,∀i ∈ [n]} the set of unit-norm linear separators.
It is not hard to see that for any wsep ∈ Ssep the classifier w = twsep makes the loss in (5) approach
zero as t→∞. Which of these candidate solutions is preferred? To answer this, we consider solving a
sequence of norm-constrained loss-minimization problems —each one having a unique solution wR—
that approach the original unconstrained optimization by increasing the constraint threshold R > 0.
As R becomes large, we prove that the direction of wR converges to the direction of the CS-SVM
solution ŵδ for δ = ∆−/∆+.

Proposition 1 (Implicit bias of VS-loss) Consider the VS-loss Ln(w) ∶= ∑i∈[n] `(yi,wTxi) with
` defined in (5) for positive (but otherwise arbitrary) parameters ∆±, ω± ≥ 0 and arbitrary ι±. Assume
there is at least one example from each of the two classes. Define the norm-constrained optimal
classifier wR = arg min∥w∥2≤RLn(w). Assume that the training dataset is linearly separable. Let ŵδ be
the solution of (7) without intercept (i.e. b = 0) and δ = ∆−/∆+. Then, limR→∞ wR/∥wR∥2 = ŵδ/∥ŵδ∥2.

On the one hand, Proposition 1 makes clear that the values of the weights ωy and ιy for y ∈ {±1}
become irrelevant/ineffective in the separable regime as they all result in the same SVM solutions.
On the other hand, the incorporation of the additional parameters ∆± leads to the same classifier as
that of CS-SVM, thus favoring solutions that move the classifier towards the majority class. In our
comparison, we removed the intercept terms. Note that intercept can be accounted for by enlarging
the features via x → [x 1] and adjusting the objective in (7) to ∥w∥2

2 + b2. The proof of the proposition
is given in Appendix B.

For a numerical illustration of Proposition 1 refer to Figure 4 where we plot the angle gap
1 − ŵTwt

∥wt∥2∥ŵ∥2
between gradient-descent (GD) outputs wt, t = 1,2, . . . for either the VS-loss (in red) or

the LA-loss (in blue) and the solution ŵ to either the CS-SVM (in solid lines) or to the SVM (in
dashed lines). We observe that the GD outcomes for the VS-loss (resp., LA-loss) converge in direction
to the CS-SVM (resp., SVM) solution. From [SHN+18, JT18], where the authors studied the implicit
bias of GD for standard logistic regression (i.e,. ιy = 1 in the LA-loss), we know that it converges
to the SVM solution. Figure 4 reveals that the LA-loss with ι+1 = 4, ι−1 = 1 (the exact value chosen
arbitrarily here) converges to the same solution. We note that our Proposition 1 is suggestive of this
behavior of GD —and the result is similar in nature to those of [SHN+18, JT18, GLSS18, CB20]—
but it does not directly address the GD iterations, which is left for future work. Perhaps an even more
exciting future direction is investigating the algorithmic behavior / implicit bias of the multiclass
VS-loss. As a final remark, for the experiments in Figure 4 we kept a constant learning rate for all
iterations. Significantly faster convergence is observed when implementing a normalized GD scheme
at which the iterates are normalized with the (vanishing) norm of the gradient of the loss at previous
iterations; see [NLG+19] and the numerical study in Appendix A.6.
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5.2 Connection to post-hoc weight normalization.
The next lemma allows us to also view CS-SVM as an appropriate “post-hoc weight normalization"-
approach.

Lemma 1 Let (ŵ1, b̂1) be the hard-margin SVM solution. Fix any δ > 0 in (7) and define: ŵδ ∶=
( δ+1

2 ) ŵ1 and b̂δ ∶= ( δ+1
2 ) b̂1 + ( δ−1

2 ). Then, (ŵδ, b̂δ) is optimal in (7).

Thus, classification using (7) is equivalent to the following. First learn (ŵ1, b̂1) via standard hard-
margin SVM, and then simply predict: ŷ = sign((ŵT

1 x + b̂1) + δ−1
δ+1). The term δ−1

δ+1 can be seen as an
additive form of post-hoc weight normalization to account for class imbalances. In the literature this
post-hoc adjustment of the threshold b of standard SVM is often referred to as boundary-movement
SVM (BM-SVM) [STK99, WC03]. Here, we have shown the equivalence of CS-SVM to BM-SVM for
a specific choice of the boundary shift. The proof of Lemma 1 presented in Appendix C shows the
desired using the KKT conditions of (7).

5.3 Sharp asymptotics for CS-SVM
The structural results in Proposition 1 and Lemma 1 regarding CS-SVM hold for arbitrary binary
linearly-separable training datasets {(xi, yi)}i∈[n]. In this section, under additional distributional
assumptions, we establish a sharp theory for CS-SVM in the large-system limit.
Data model: We consider the GMM in Section 2.1 with K = 1 and priors (π,1 − π) for the two
classes. We let π < 1 − π, so that class +1 is the minority class. We consider the case Σ = Id in (3)
however supplementary explains further extensions. Let M = [µ+ µ−] be the matrix of means and
consider the eigen-decomposition of its Grammian:

MTM = VS2VT , S ≻ 0r×r,V ∈ R2×r, r ∈ {1,2}, (9)

with S an r × r diagonal positive-definite matrix and V an orthonormal matrix obeying VTV = Ir.
Finally, let e1 = [1 , 0]T and e2 = [0 , 1]T be the standard basis vectors in R2.
Learning regime: Our results hold in the large-system limit. Specifically, we study the proportional
high-dimensional regime in which both n and d grow to infinity at a fixed rate γ = d/n. As mentioned
earlier, we focus on a regime in which the system is sufficiently overparameterized such that the
training error Rtrain is zero (equivalently data are linearly separable). For the data model above,
it turns out that linear separability undergoes sharp phase-transition. Specifically, there exists
γ⋆ ∶= γ⋆(V,S, π) ≥ 1/2 such that the training data are linear separable as per (4) with probability
approaching one provided that γ > γ⋆. We defer the formal statement of this result and the explicit
definition of γ⋆ in terms of the problem parameters V,S and π to Appendix E.4. The result is a
small extension to a setting with possibly different class means µ+ ≠ µ− of similar phase transitions
established recently in [DKT19, KA20] (also [CS+20, MRSY19] for related results for discriminative
models). Onwards, we assume that γ > γ⋆; thus, CS-SVM is feasible with probability approaching 1
for all δ > 0.

Now that we have described the data model and the asymptotic regime, we are ready to present our
precise characterization of the balanced error of CS-SVM. For this, we will also need a few definitions
as follows. For an arbitrary δ > 0, define random variables as follows.

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

G ∼ N(0,1)
Y symmetric Bernoulli with P{Y = +1} = π
EY = e11[Y = 1] − e21[Y = −1]
∆Y = δ ⋅ 1[Y = +1] + 1[Y = −1]

With these further define function ηδ ∶ R≥0 × Sr2 × R→ R:

ηδ(q̃, ρ̃, b̃) ∶= E[(G +ETY VSρ̃ + b̃Y −∆Y

q̃
)2
−] − (1 − ∥ρ̃∥2

2)γ.

Theorem 1 (Balanced error of CS-SVM) Consider the Gaussian mixture data model with K = 1,
priors (π,1 − π) for the two classes and eigen-decomposition of Grammian matrix as in (9). Let

9



Rbal = R++R−

2 be the balanced error of the CS-SVM classifier in (7) with a fixed margin-ratio δ > 0.
Let (qδ,ρδ, bδ) be the unique triplet satisfying

ηδ(qδ,ρδ, bδ) = 0 and (ρδ, bδ) ∶= arg min
∥ρ̃∥2≤1,b̃∈R

ηδ(qδ, ρ̃, b̃). (10)

With these define

R+ ∶= Q (eT1 VSρδ + bδ/qδ) and R− ∶= Q (−eT2 VSρδ − bδ/qδ) .

Then, in the limit of n, d→∞ with d/n = γ > γ⋆, it holds that R+
PÐ→R+ and Ri

PÐ→R−. In particular,
the balanced error Rbal converges in probability as follows: Rbal

PÐ→Rbal ∶= (R+ +R−)/2.

Theorem 1 characterizes the asymptotic classification performance of CS-SVM in terms of three
key parameters (qδ,ρδ, bδ) which can be found by numerically solving (10). Note that the function ηδ
is parameterized in terms of the margin ratio δ, the prior probability π, the parameterization ratio
γ and the eigenstructure of the Gram matrix of the means in (9). The theorem’s proof reveals the
following specific role of the three key parameters (qδ,ρδ, bδ):

(∥ŵδ∥2,
ŵT
δ µ+

∥ŵδ∥2
,
ŵT
δ µ−

∥ŵδ∥2
, b̂δ)

PÐ→ (qδ,eT1 VSρδ,eT2 VSρδ, bδ).

Thus, bδ is the asymptotic value of the intercept, q−1
δ is the asymptotic value of the classifier’s margin

1
∥wδ∥2

to the majority class, and ρδ characterizes the asymptotic alignment of the classifier’s hyperplane
with the class means. The proof of the theorem uses the convex Gaussian min-max theorem (CGMT)
framework [Sto13a, TOH15]; see Appendix E for background, related works and the proof. We remark
that, as discussed in supplementary (a) our results lead to simpler expressions when the means are
antipodal (±µ) and (b) our theory allows for extending results to general covariance model (Σ ≠ I).

5.3.1 Optimal δ-tuning

The parameter δ in (7) aims to shift the decision space towards the majority class so that it better
balances the conditional errors of the two classes. But, how to best choose δ to achieve that? That
is, how to find arg minδR+(δ) +R−(δ) where R±(δ) ∶= R±((ŵδ, b̂δ))? Thanks to Theorem 1, we can
substitute this hard, data-dependent parameter optimization problem with an analytic form that
only depends on the problem parameters π, γ and M. Specifically, we seek to solve the following
optimization problem

arg min
δ>0

Q(eT1 VSρδ + bδ/qδ) +Q(−eT2 VSρδ − bδ/qδ)

sub. to (qδ,ρδ, bδ) defined as (10). (11)

Compared to the original data-dependent problem, the optimization above has the advantage that it is
explicit in terms of the problem parameters. However, as written, the optimization is still cumbersome
as even a grid search over possible values of δ requires solving the non-linear equation (10) for each
candidate value of δ. Instead, we can exploit the structural property of CS-SVM given in Lemma (1)
to rewrite (11) in a more convenient form. Specifically, we can show (see Appendix D for details) that
(11) is equivalent to the following explicit minimization:

arg min
δ>0

Q(`+ + (δ − 1
δ + 1

)q−1
1 ) +Q(`− − (δ − 1

δ + 1
)q−1

1 ), (12)

where we defined `+ ∶= eT1 VSρ1 + b1/q1, `− ∶= −eT2 VSρ1 − b1/q1, and, (q1,ρ1, b1) are as defined in
Theorem 1 for δ = 1. In other words, (q1,ρ1, b1) are the parameters related to the standard hard-margin
SVM, for which the balanced error is then given by (Q(`+) +Q(`−)) /2. To summarize, we have shown
that one can optimally tune δ to minimize the asymptotic balanced error by minimizing the objective
in (12) that only depends on the parameters (q1,ρ1, b1) characterizing the asymptotic performance of
SVM. In fact, in Appendix D we obtain explicit formulas for the optimal value δ⋆ in (12) as follows

δ⋆ ∶= (`− − `+ + 2q−1
1 )/(`+ − `− + 2q−1

1 )+, (13)
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where it is understood that when the denominator is zero (i.e. `+ − `− + 2q−1
1 ≤ 0) then δ⋆ →∞. When

`+ − `− + 2q−1
1 > 0, setting δ = δ⋆ in (7) not only achieves minimum balanced error among all other

choices of δ, but also it achieves perfect balancing between the conditional errors of the two classes,
i.e. R+ = R− = Q( `−+`+2 ).

6 Group-sensitive classification
Recall from Section 2.1 that we focus on K = 2 with equal prior probabilities for the positive and
negative labels p+,1 = p−,1 = p, p+,2 = p−,2 = 1−p. and an imbalance p≪ 1−p. Our results here naturally
extend to K > 2. We consider a setting with only group imbalances. Hence, we may use the VS-loss in
(6) with ∆y,g = ∆g for g = 1,2. In particular, since we are interested on separable data, we will focus
on the GS-SVM in (8) (where similar to Proposition 1 for label imbalances, we map δ = ∆2/∆1).

6.1 Sharp asymptotics for the GS-SVM
In this section, we characterize the DEO of GS-SVM for data generated from the GMM. Thanks to
our unifying approach, the analysis is at a high level similar to that of Section 5.3, but there are
differences to account for (both in the phase-transition threshold and the generalization formulas)
since now each class itself is a mixture of Gaussians.
Data model: For the feature distribution, we let

x ∣ (y, g) ∼ N(yµg, Id)

where (for simplicity) ±µg are the means of groups g = 1,2 with positive/negative labels. As in
Section 5.3, let M = [µ1 µ2] be the matrix of means of the two groups and assume the eigenvalue
decomposition MTM = VS2VT ,S ≻ 0r×r,V ∈ R2×r, r ∈ {1,2}.
Learning regime: The learning regime is similar to the setting of Sec. 5.3. Again, there exists a
phase transition threshold γ̃⋆ ∶= γ⋆(V,S, π, p) ≥ 1/2 such that the training data are separable if and
only if γ > γ̃⋆ (see Appendix F.2 for exact statements). We assume this for feasibility of (8).

Before stating the main result of this section, we need the following definitions. Fix δ > 0. Define
G,Y,S,∆S ∈ R, and ES ∈ R2×1 as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

G ∼ N(0,1)
Y symmetric Bernoulli with P{Y = +1} = π
S takes values 1 or 2 with probabilities p and 1 − p, respectively
ES = e11[S = 1] + e21[S = 2]
∆S = δ ⋅ 1[S = 1] + 1 ⋅ 1[S = 2].

With these define function η̃δ ∶ R≥0×Sr×R→ R as ηδ(qδ,ρδ, bδ) ∶= E(G+ETSVSρ̃+ b̃Y −∆S

q̃
)2
−−(1−∥ρ̃∥2

2)γ.

Theorem 2 (Equal Opportunity of GS-SVM) Consider the GMM with feature distribution and
priors as specified in the ‘Data model’ above. Let (q̃δ, ρ̃δ, b̃δ) be the unique triplet satisfying (10) but
with ηδ replaced with the function η̃δ above. Then, in the limit of n, d→∞ with d/n = γ > γ̃⋆ it holds
for i = 1, 2 that R±,i

PÐ→ Q(eTi VSρ̃δ ± b̃δ/q̃δ). In particular, the difference of equal opportunity (DEO)
satisfies in the same limiting regime: Rdeo

PÐ→ Q(eT1 VSρ̃δ + b̃δ/q̃δ) −Q(eT2 VSρ̃δ + b̃δ/q̃δ).

The theorem directly implies sharp formulas for both the DEO and the misclassification error by
expressing them in terms of the conditional errors as in Sec. 2.2. Using these sharp characterizations
allowed us to study the tradeoff between EO and accuracy in Figure 3. In view of the formulas,
the requirement for EO translates to finding a parameter δ0 such that Q(eT1 VSρ̃δ0 + b̃δ0/q̃δ0) =
Q(eT2 VSρ̃δ0 + b̃δ0/q̃δ0). While, we cannot find an explicit formula (as we did for δ⋆ in (13)), we can
search for δ0 numerically. Interestingly, Figure 3 shows that such values exist in our setting even though
the GS-SVM does not directly impose EO constraints as several related works, e.g. [OA18, DOBD+18].
The proof of Theorem 2, which is similar to that of Theorem 1, is presented in Appendix F.

11



1 2 3 4 5
10

-4

10
-3

10
-2

10
-1

b
a
la

n
c
e
d
 e

rr
o
r

SVM

CS-SVM,  = 1

CS-SVM,  = 1/4

SVM, resampling

CS-SVM, 
*

CS-SVM, 
*
 data

m
is

c
la

s
s
if
ic

a
ti
o
n
 e

rr
o
r

Figure 5: Balanced (Left) and misclassification (Right) errors as a function of the parameterization
ratio γ = d/n for the following algorithms: SVM with and without majority class resampling, CS-SVM
with different choices of δ = ( 1−π

π
)
α
, π = 0.05 and δ = δ⋆ (cf. Eqn. (13)) plotted for different values

of γ = d/n. Solid lines show the theoretical values thanks to Theorem 1 and the discrete markers
represent empirical errors over 100 realizations of the dataset. Data were generated from a GMM with
µ+ = 4e1,µ− = −µ+ ∈ R500, and π = 0.05. SVM with resampling outperforms SVM without resampling in
terms of balanced error, but the optimally tuned CS-SVM is superior to both in terms of both balanced
and misclassification errors for all values of γ.

Figure 6: DEO and misclassification error of SVM and GS-SVM with different choices of δ = (
1−p
p

)
α

for minority group prior p = 0.05 plotted against γ = d/n. Solid lines show the theoretical values and the
discrete markers represent empirical errors over 100 realizations of the dataset. Data generated from a
GMM with µ+,1 = 3e1,µ+,2 = 3e2 ∈ R500. While SVM has the least misclassification error, it suffers from
a high DEO. By trading off misclassification error, it is possible to tune GS-SVM (specifically, α = 0.75)
so that it achieves DEO close to 0 for all the values of γ considered here.

7 Numerical experiments
Our numerical results presented in this section corroborate and further justify our theoretical results
presented in the previous sections.

7.1 Validity of theoretical performance analysis
In Figures 5 and 6, we demonstrate how our Theorems 1 and 2 provide remarkably precise prediction
of the GMM performance even when dimensions are in the order of hundreds. Moreover, both figures
demonstrate the clear advantage of CS/GS-SVM over regular SVM and naive resampling strategies in
terms of balanced error and equal opportunity, respectively.

In both figures, solid lines show theoretical values and the discrete markers represent simulated
error probabilities. For the simulations we fixed d = 500. The reported values for the misclassification
error and the balanced error / DEO were computed over 105 test samples drawn from the same
distribution as the training examples by taking simple average of the class-conditional test errors. The
empirical probabilities were computed by averaging over 100 independent realizations of the training
and test datasets.

Additionally, Figure 5 validates the explicit formula that we derived in (13) for δ⋆ minimizing
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Figure 7: Scatter plots of the trade-off between the misclassification error and error imbalance (R+−R−)
and the trade-off between the misclassification error and balanced error achieved by CS-SVM as a
function of δ for different values of γ, for GMM data with ∥µ+∥ = 3,µ− = −µ+ and π = 0.05. δ is varied in
the region δ ≥ 1. See text for details.

the balanced error. In Figure 5, observe that the CS-SVM with δ = δ⋆ (‘×’ markers) not only does it
minimize the balanced error (as predicted in Section 5.3.1), but it also leads to better misclassification
error compared to SVM (‘○’ markers) for all depicted values of γ. The figure also shows the performance
of a classifier that uses a data-dependent heuristic of computing δ⋆ (‘△’ markers); see Appendix A.3.1
for details. The heuristic appears to be accurate for small values of γ and is still better in terms
of balanced error compared to the other two heuristic choices of δ = ( 1−π

π
)α, α = 1/4,1. Finally, in

addition to the δ-tuned CS-SVM and SVM, we compare with a naive but popular scheme of training
a standard max-margin SVM after randomly subsampling the majority class examples to retain equal
number of examples for both the classes. The error performance analysis of such a scheme is a
straightforward extension of our analysis and is discussed in Appendix A.4. Observe that SVM with
resampling outperforms SVM without resampling in terms of balanced error, but the optimally tuned
CS-SVM is superior to both.

7.2 Tradeoffs
In Figure 3 we discussed tradeoffs of GS-SVM via Theorem 2. Here, in Figure 7 we use our Theorem
1 to present a detailed study of tradeoffs between Rbal and R+ −R− vs misclassification error R for
GMM binary data as we increase the margin-ratio parameter δ starting from 1 for three values of
γ = d/n. Focusing on the right subfigure note that both Rbal and R vary in a way that there are
unique δs minimizing each (shown in green and magenta, respectively). Interestingly, R is minimized
at some non-trivial δ ≠ 1. The values minimizing Rbal coincide with our formula in (13). We also
confirm in the left subplot that at δ⋆ it holds that R+ = R− exactly as predicted in Section 5.3.1.

7.3 Tuning of δ

The theoretical formula (13) for δ⋆ was derived for a GMM and also evaluating it requires knowledge
of the true means. In Appendix A.3.1, we describe a data-dependent heuristic inspired by the analytic
formula (13) and we examine the heuristic’s performance on a synthetic example (see triangle markers
in Fig. 5) and on an instance of the MNIST dataset (see Appendix A.3). More generally, we propose
tuning δ with a train-validation split by creating a balanced validation set from the original training
data which would help assess balanced risk. Since there is only a single hyperparameter we expect this
approach to work well with a fairly small validation data (without hurting the minority class sample
size). However, to keep exposition coherent, in our experiments we employed our theoretically-inspired
tuning strategy and leave further investigations to future.

7.4 Implications for datasets with spurious correlations
Our results on group-sensitive classification are also relevant in settings when there are spurious
correlations in the data, such as strong associations between label and background in image classification,
e.g. [SKHL19, SRKL20, XEIM20]. Such a setting is easy to understand in the Waterbirds dataset
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Figure 8: Figures showing the benefit of GS-SVM compared to SVM in achieving smaller worst-group
error without significant loss on the misclassification error, in the Waterbirds dataset [SRKL20] where
there are spurious correlations in the data. See text for details.

by [SKHL19, SRKL20], where the goal is to classify images portraying either ‘waterbirds’ or ‘land-
birds’, while their background —either ‘water background’ or ‘land background’— can be spuriously
correlated with the type of birds. In other words, there can be images in the training/test sets
depicting ’waterbirds’ in ‘land background’ and ‘land-birds’ in ‘water background’. Formally, the
label y of an example in the Waterbirds dataset belongs to Y = {+1,−1} ≡ {waterbird, landbird}.
Also, each example belongs to a group g = (y, a) where a is an attribute taking values in A =
{+1,−1} ≡ {water background, land background}. Thus, we have a total of four groups. Out of
these, the groups (+1,−1), (−1,+1) correspond to the minority groups. Specifically, letting p̂(y,a)
denote the empirical probability of each group (y, a) calculated over the training data set (i.e.
p(y,a) = 1

n ∑i∈[n] 1[(yi, ai) = (y, a)]), we computed:

p+1,+1 = 0.22 p+1,−1 = 0.012 p−1,+1 = 0.038 and p−1,−1 = 0.73.

In their study, [SRKL20] demonstrated that overparameterization exacerbates such spurious
correlations. Specifically, they showed for weighted logistic regression, that while it reduces the
misclassification error, it results in a large worst-group error in the overparameterized regime (e.g.,
see Fig. 3 in [SRKL20]). In their analysis, they observed that this is because weighted logistic loss in
the separable regime behaves like SVM, which is insensitive to groups.

Motivated by our results, we repeat the experiment of [SRKL20] and compare the worst-group
error performance (i.e., Rworst ∶= maxy∈{±1},a∈{±1}{R(y,a)} where R(y,a) is the conditional risk of group
g = (y, a)) of standard SVM to that of our GS-SVM. Specifically, we trained the following instance of
GS-SVM:

min
w

∥w∥2 sub. to yi(xTi w + b) ≥ δgi , i ∈ [n]. (14)

where δgi = δ(yi,ai) = ( 1
p̂(y,a)

)4 and xi, i ∈ [n] are N -dimensional random projections of the ResNet18
features used in [SRKL20]. Here, n = 4795, N took a range of values from 500 to 10000 and the raw
feature dimension was d = 512. The curves show the average value of errors over 10 realizations of the
random projection matrix along with standard deviations depicted using shaded error-bars. Figure
8 confirms that GS-SVM consistently outperforms standard SVM in the overparameterized regime
in terms of a fairness metric such as the worst-group error. In fact, we observe that this gain comes
without significant losses on the misclassification error.

7.5 Additional results
Additional numerical experiments are presented in Appendix A:

(i) further details on Figure 2

(ii) numerical comparisons of the VS-loss vs the LA-loss on a group-sensitive GMM

(iii) experiments showing that VS-loss/CS-SVM outperform the LA-loss/SVM on a binary classifica-
tion instance of the MNIST dataset
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(iv) conditional group errors of SVM, GS-SVM (14), and, SVM with subsampling for the Waterbirds
dataset

(v) further numerical illustrations supporting Proposition 1 and discussing faster convergence of
normalized GD [NLG+19] compared to GD with fixed step-size.

8 Future Work
We presented a unified study of learning from imbalanced data where imbalances can be across different
groups or classes. To optimize key metrics of interest, we proposed new loss functions and provided
insightful theoretical analysis to shed light on the interplay of problem variables.

This work opens up a wealth of exciting future research opportunities. For instance, we suspect our
proposed vector-scaling loss can benefit a diverse range of practical applications in NLP and computer
vision. All these applications also motivate a theoretical understanding for multiclass problems. What
can be said about algorithmic convergence and performance of the multiclass VS-loss? When it comes
to group-sensitive learning, it is of broad interest to extend our theory to other fairness metrics of
interest beyond equal opportunity. Ideally, our precise asymptotic theory could help contrast different
definitions and assess their pros/cons.
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A Additional numerical results

A.1 VS-loss vs LA-loss for a label-imbalanced GMM (Additional results
on the experiment of Figure 2)

In Figure 9 we have implemented the same experiment as in Figure 2 detailed in Section 4.1.
Additionally to the balanced error, we present results for the misclassification error and the two
conditional errors. Moreover, we ran simulations for one more set of parameters for the LA-loss.
Specifically, we use the suggestion of [MJR+20] and set ιy = log 1−πy

πy
. As promised by Proposition 1 the

specific choice of the additive offset parameters ιy are irrelevant in the separable regime: for all choices
the performance is eventually the same as that of SVM. While the performance of the VS-loss is
clearly better in terms of balanced error compared to the LA-loss in the separable regime, the offsets ιy
improve the performance in the non-separable regime. Specifically, the figure confirms experimentally
the superiority of the tuning of the LA-loss in [MJR+20] compared to that in [CWG+19] (but only in
the underparameterized regime).

In all cases, we report both the results of Monte Carlo simulations, as well as, the theoretical
formulas predicted by Theorem 1. As promised, the theorem sharply predicts the conditional error
probabilities of both the minority and the majority class. Note the almost perfect match with the
numerical averages despite the relatively small problem dimension (d = 300).

As noted in Section 4.1, we observe in the ‘Top Left’ of the figure that the VS-loss results in
a better balanced error in the separable regime (where Rtrain = 0) compared to the LA-loss. This
naturally comes at a cost, as the role of the two losses is reversed in terms of the misclassification
error (see ‘Top Right’). The two bottom figures explain these observations showing that VS-loss
sacrifices the error of majority class for a significant drop in the error of the minority class. All types
of errors decrease with increasing overparameterization ratio γ due to the mismatch model; see also
[HMRT19, DKT19].

For the numerical experiments in Figure 9 we minimized the VS-loss and the LA-loss in the
separable regime using normalized gradient descent. Specifically, we use an in increasing learning
rate that is appropriately normalized by the norm of the loss gradient for faster convergence. Please
refer to Figure 14 and Section A.6 for a discussion on the advantage of this over a constant learning
rate. In the experiments of Figure 9 we ran normalized GD until the norm of the gradient of the loss
becomes less than 10−8. We observed empirically that the GD on the LA-loss reaches the stopping
criteria faster compared to the VS-loss.
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Figure 9: Performance of the VS-loss vs the Logit-adjusted loss for a label-imbalanced GMM with
missing features. The experiment confirms that the specific choice of the offset parameters ιy in the
LA-loss are irrelevant in the separable regime: for all choices the performance is eventually the same as
that of SVM. Instead, our VS-loss has the same improved balanced-error performance as the CS-SVM.
The experimental setting is identical to that of Figure 2. Top Left: balanced error Rbal. Top Right:
misclassification error R. Bottom Left: majority class error R−. Bottom Right: minority class error R+.
Solid lines correspond to theoretical formulas obtained thanks to Theorem 1.

A.2 VS-loss vs LA-loss for a group-sensitive GMM
In Figure 10 we test the performance of our theory-inspired VS-loss against the logit-adjusted (LA)-loss
in a group-sensitive classification setting with data from a Gaussian mixture model with a minority
and and a majority group. Specifically, we generated synthetic data from the model of Section 6
with class prior π = 1 − π = 1/2, minority group membership prior p = 0.05 (for group g = 1) and
µ1 = 3e1,µ2 = 3e2 ∈ R500. We trained homogeneous linear classifiers based on a varying number of
training sample n = d/γ. For each value of n (eqv. γ) we ran normalized gradient descent (see Sec.
A.6) on

• our VS-loss `(y,wTx, g) ∶= log(1 + e−∆gy(wTx)) with ∆g = δ01[g = 1] + 1[g = 2].

• the LA-loss modified for group-sensitive classification `(y,wTx, g) ∶= log(1 + eιgey(wTx)) with
ιg = p−1/41[g = 1] + (1− p)−1/41[g = 2]. This value for ι is inspired by [CWG+19], but that paper
only considered applying the LA-loss in label-imbalanced settings.

For γ > 0.5 where data are necessarily separable, we also ran the standard SVM and the GS-SVM in
(8) with δ = δ0.

Here, we chose the parameter δ0 such that the GS-SVM achieves zero DEO. To do this, we used
the theoretical predictions of Theorem 2 for the DEO of GS-SVM for any value of δ and performed a
grid-search giving us the desired δ0; see Figure 10 for the values of δ0 for different values of γ.

Figure 10(a) verifies that the GS-SVM achieves DEO (very close to) zero on the generated data
despite the finite dimensions in the simulations. On the other hand, SVM has worse DEO performance.
In fact, the DEO of SVM increases with γ, while that of GS-SVM stays zero by appropriately tuning
δ0.

The figure further confirms the message of Theorem 3: In the separable regime, GD on logit-
adjusted loss converges to the standard SVM performance, whereas GD on our VS-loss converges to the
corresponding GS-SVM solution, thus allowing to tune a suitable δ that can trade-off misclassification
error to smaller DEO magnitudes. The stopping criterion of GD was a tolerance value on the norm
of the gradient. The match between empirical values and the theoretical predictions improves with
increase in the dimension, more Monte-Carlo averaging and a stricter stopping criterion for GD.
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Figure 10: This figure highlights the benefits of our theory-inspired VS-loss and GS-SVM over regular
SVM and logit-adjusted loss in a group-sensitive classification setting. We trained a linear model with
varying number n of examples in Rd=100, of a binary Gaussian-mixture dataset with two groups. x-axis
is the parameterization ratio d/n. Data were generated from a GMM with prior p = 0.05 for the minority
group. For γ > 0.5, we train additionally using SVM (cyan plus marker) and group-sensitive SVM
(magenta cross). The plot (c) displays the parameter δ = δ0 that we used to tune the VS-loss and
GS-SVM. These values were obtained through a grid search from the theoretical prediction such that the
theoretical Rdeo (cf. Theorem 2) produced by the corresponding GS-SVM is 0. The solid lines depict
theoretical predictions obtained by Theorem 2. The empirical probabilities were computed by averaging
over 25 independent realizations of the training and test data.

A.3 Experiments on the MNIST dataset
We complement our experiments on synthetic GMM data with additional results on the MNIST
dataset.

Specifically, we designed an experiment where we perform binary one-vs-rest classification on the
MNIST dataset to classify digit 7 from the rest. Specifically, we split the dataset in two classes, the
minority class containing images of the digit 7 and the majority class containing images of all other
digits. To be consistent with our notation we assign the label +1 to the minority class and the label
−1 to the majority class. Here, d = 784 and π = 0.1 is the prior for the minority class. All test-error
evaluations were performed on a test set of 1000 samples. The results of the experiments were averaged
over 200 realizations and the 90% confidence intervals for the mean are shown in Figure 11 as shaded
regions.

We ran two experiments. In the first one depicted in Figure 11(a), we trained linear classifiers
using the standard SVM (blue), the CS-SVM with a heuristic value δ = ( 1−π

π
) 1

4 (orange), and the
CS-SVM with our heuristic data-dependent estimate of the optimal δ̃⋆ (green). We compute such an
estimate based on a recipe inspired by our exact expression in (13) for the GMM; see Section A.3.1
for details. We compute the three classifiers on training sets of varying sizes n = d/γ for a range of
values of γ and report their balanced error. We observe that CS-SVM always outperforms SVM (aka
δ = 1) and the heuristic optimal tuning of CS-SVM consistently outperforms the choice δ = ( 1−π

π
) 1

4 .
Next, in Figure 11(b) for the same dataset we trained a Random-features classifier. Specifically,

for each one of the n = 300 training samples xi ∈ Rd=784 we generate random features x̃i = ReLU(Axi)
for a matrix A ∈ RN×d which we sample once such that it has entries IID standard normal and is
then standardized such that each column becomes unit norm. In this case we control γ by varying
the number N = γn of rows of that matrix A. Observe here that the balanced error decreases as
γ increases (an instance of benign overfitting, e.g. [HMRT19, BLLT20, MM19] and that again the
estimated optimal δ⋆ results in tuning of CS-SVM that outperforms the other depicted choices.

In Figure 12 we repeat the experiment of Figure 11(a) only this time additionally to training
CS-SVM for δ = 1 and for δ = δ̃⋆ we also train using the LA-loss and our VS-loss. For the VS loss we
use (5) with the following choice of parameters: ω± = 1, ι± = 0 and ∆y = δ̃−1

⋆ 1[y = +1] + 1[y = −1] (see
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(a) Linear classifier (b) Random-features classifier

Figure 11: A comparison of CS-SVM balanced error against the overparameterization ratio γ, for the
standard hard margin SVM (δ = 1), for a heuristic δ = ( 1−π

π
)

1
4 and for our approximation of the optimal

δ (δ = δ̃⋆) obtained by the data-dependent heuristic in Section A.3.1. The experiment is performed on
the MNIST dataset in a one-vs-rest classification task where the goal is to separate the minority class
containing images of the digit 7 from the majority class containing images of all other digits. See text for
details.

Figure 12: In the overparameterized regime, our VS loss converges to the CS-SVM classifier, while the
LA-loss converges to the inferior —in terms of balanced-error performance— SVM. The experiment was
performed on the MNIST dataset in a one-vs-rest classification task where the goal is to separate the
minority class containing images of the digit 7 from the majority class containing images of all other
digits. See text for details.

Section A.3.1 for δ̃⋆). In a similar manner, LA-loss is defined using the same formula (5), but with
parameters ∆± = 1, ω± = 1 and ι+ = π−1/4, ι− = (1 − π)−1/4 (as suggested in [CWG+19]).

The figure confirms our theoretical expectations: training with gradient descent on the LA and
VS losses asymptotically (in the number of iterations) converge to the SVM and CS-SVM solutions
respectively.

The training is performed over 200 epochs and for computing the gradient we iterate through the
dataset in batches of size 64. The results are averaged over 200 realizations and the 90% confidence
intervals are plotted as shaded regions for the CS-SVM model and as errorbars for the VS loss.

A.3.1 Data-dependent heuristic to estimate δ⋆
In Section 5.3 we derived an explicit expression for the optimal δ = δ⋆ that minimizes the error of
CS-SVM for a GMM. The optimal value of δ⋆ in Eqn. (13) not only relies on a GMM but also its
computation requires knowledge of the correlation of the SVM classifier with the true means of the
classes. In this section, we propose a data-dependent heuristic to estimate δ⋆.

Recall from (13) the formula δ⋆ ∶= (`− − `+ + 2q−1
1 )/(`+ − `− + 2q−1

1 )+, where `+ ∶= eT1 VSρ1 + b1/q1
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and `− ∶= −eT2 VSρ1 − b1/q1. Also, according to Theorem 1 and for δ = 1 it holds that

(∥ŵ1∥2, ŵT
1 µ+/∥ŵ1∥2, ŵT

1 µ−/∥ŵ1∥2, b̂1)
PÐ→ (q1,eT1 VSρ1,eT2 VSρ1, b1). (15)

The first key observation here is that ŵ1, b̂1 are the solutions to SVM, thus they are data-dependent
quantities to which we have access. Hence, we can run SVM on the data and estimate q1 and b1 using
(15). Unfortunately, to estimate ρ1 it appears from (15) that we also need knowledge of the data
means. When this is not available, we propose approximating the data means by a simple average of
the features, essentially pretending that the data follow a GMM.

Concretely, our recipe for approximating the optimal δ is as follows. First, using the training set
we calculate the empirical means for the two classes, µ̃+ and µ̃−. Ideally we want to do that on a
balanced validation set that we create by splitting the training data. After that, we train an instance
of the CS-SVM model with δ = 1 (aka standard SVM) on the same set of data and keep track of the
coefficients ŵ1 and the intercept b̂1. Then, we can reasonably approximate the optimal δ as:

δ̃⋆ ∶= ( ˜̀− − ˜̀+ + 2∥ŵ1∥−1
2 )/( ˜̀+ − ˜̀− + 2∥ŵ1∥−1

2 )+, with ˜̀+ ∶=
ŵT

1 µ̃+ + b̂1
∥ŵ1∥2

, ˜̀− ∶= −
ŵT

1 µ̃− + b̂1
∥ŵ1∥2

. (16)

We expect this data-dependent theory-driven heuristic to perform reasonably well on data that
resemble the GMM. For example, this is confirmed by our experiments in Figures 11 and 5. More
generally, we propose tuning δ with a train-validation split by creating a balanced validation set
from the original training data which would help assess balanced risk. Since there is only a single
hyperparameter we expect this approach to work well with a fairly small validation data (without
hurting the minority class sample size). However, to keep exposition coherent, in all our experiments
we employed our theoretically-inspired tuning strategies and leave further investigations to future.

A.4 Max-margin SVM with random majority class undersampling
A popular technique that learns a linear classifier aiming at good balanced error when the training
data in label-imbalanced datasets is to randomly undersample the examples from the majority class,
followed by max-margin SVM. The asymptotic performance of this scheme under a GMM can be
analyzed using Theorem 1 as we explain below.

Suppose the majority class is randomly undersampled to ensure equal size of the two classes. This
increases the effective overparameterization ratio by a factor of 1

2π (in the asymptotic limits). In
particular, the conditional risks converge as follows:

R+,undersampling(γ, π)
PÐ→R+,undersampling(γ, π) = R+(

γ

2π
,0.5)

R−,undersampling(γ, π)
PÐ→R−,undersampling(γ, π) = R+,undersampling(γ, π). (17)

Above, R+,undersampling and R−,undersampling are the class-conditional risks of max-margin SVM after
random undersampling of the majority class to ensure equal number of training examples from
the two classes. The risk R+( γ

2π ,0.5) is the asymptotic conditional risk of a balanced dataset with
overparameterization ratio γ

2π . This is computed as instructed in Theorem 1 for the assignments
γ ← γ

2π and π ← 1/2 in the formulas therein.
Our numerical simulations in Figure 5 verify the above formulas.

A.5 Further results on the Waterbirds dataset

In Section 7.4 we presented numerical results showing that GS-SVM (14) with δ(y,a) = ( 1
p(y,a)

)4

consistently outperforms standard SVM in terms of worst-group error without significant losses in
misclassification error. In [SRKL20] the authors further compared the performance of weighted
empirical risk minimization (ERM) (aka SVM in the separable regime) against ERM with subsampling.
Specifically, they demonstrated that the latter achieves a low worst-group error. In this section,
we show numerical results for conditional group errors of SVM, GS-SVM, as well as, SVM with
subsampling (corresponding to ERM with subsampling). For the latter, we subsampled the training
data such that the resulting set has equal number of examples from every group. In particular, we
chose 56 examples from every group, as this is the size of the smallest group Group-2. For the purpose
of demonstration, we arbitrarily subsampled the training set once. Now, we run standard SVM on the
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Figure 13: Figures showing misclassification errors and conditional group errors achieved by SVM
(blue), GS-SVM with heuristic tuning δ(y,a) = ( 1

p(y,a)
)

4 (red), and, SVM with subsampling (green) for
the Waterbirds dataset of [SRKL20] with spurious correlations. The GS-SVM has lower worst-case error
(see Group-2, subfigure (d)) compared to the SVM without significant increase on the misclassification
error (see subfigure (a)). The SVM with subsampling has the best worst-group error performance, but
the price paid is a an up to 5-fold increase in the errors of the majority Group-0 (see subfigure (b)). This
also leads to a significant increase of the misclassification error in subfigure (a). See text for more details.

resulting (smaller) dataset, which does not possess group-imbalance. Recall, in the original dataset,
Group-0 and Group-3 were the majority groups with 3498 and 1057 examples respectively, while
Group-1 and Group-2 were the minority groups with 184 and 56 examples, respectively. The worst
group errors shown in Figure 8 corresponded to Group-2.
Our results are shown in Figures 13. Similar to the observation in [SRKL20], SVM with subsampling
achieves low worst group error, lower than both SVM and GS-SVM with δ(y,a) = ( 1

p(y,a)
)4. Specifically,

note the low errors for Groups 2 (Figures 13(b) and 13(c) in ) and 3 (minority groups) with SVM
with subsampling. However, this happens at a significant cost paid by the majority Groups- 1 and 3
(Figures 13(a) and 13(d) in ). This results in the misclassification error increasing by a factor close
to 5 in comparison to the standard SVM without subsampling (Figure 13(a)). We expect that, with
better tuning of the parameters δ(y,a), the GS-SVM on the full dataset can help achieve even lower
group errors for the minority groups without hurting the majority group errors significantly. We leave
this such investigations to future work.

A.6 Implicit bias of the VS-loss (Numerical illustration of Proposition 1)
Figure 14 complements 4 in demonstrating numerically the validity of Proposition 1. The proposition
establishes a connection between the norm-constrained VS-loss and the CS-SVM in the limit of
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(a) VS-loss vs CS-SVM (b) LA-loss vs SVM

Figure 14: Convergence properties of gradient-descent (blue) and normalized gradient-descent (red)
iterates wt, t ≥ 1 on: on the loss in (5) with f(x) = wTx (i.e. no intercept b = 0) for two set of
parameter choices: (a) ωy = 1, ιy = 0,∆y = δ1[y = 1] + 1[y = −1] (aka VS-loss) with δ = 20; (b)
ωy = 1, ιy = π−1/41[y = 1] + (1 − π)−1/41[y = −1],∆y = 1 (aka LA-loss). We plotted the angle gap
1 − ŵTwt

∥wt∥2∥ŵ∥2
and norm gap ∥

wt
∥wt∥2

− ŵ
∥ŵ∥2

∥2 of wt to ŵ, for two values of ŵ for the two subfigures as
follows: (a) ŵ is the CS-SVM solution in (7) with parameter δ; (b) ŵ is the standard SVM solution
with b = 0. Data were generated from a Gaussian mixture model with µ1 = 2e1,µ2 = −3e1 ∈ R220,
n = 100 and π = 0.1. For (standard) GD we used a constant rate ηt = 0.1. For normalized GD, we used
ηt =

1√
t∥∇L(wt)∥2

as suggested in [NLG+19].

increasing model weights. In order to empirically demonstrate this, we solve the unconstrained VS-loss
in (5) using gradient descent (GD). Specifically, we generate data from a GMM with class imbalance
π = 0.1 and we run two experiments for two choices of parameters in (5) corresponding to our VS-loss
(with non-trivial multiplicative weights) and the LA-loss (cf. (1)); see the figure’s caption for details.
For each iterate outcome wt of GS, we report the (i) angle and (ii) vector-norm gap to CS-SVM and
SVM for the VS-loss and LA-loss, respectively, as well as, the (iii) value of the loss L(wt) and the (iv)
norm of the weights ∥wt∥2 at current iteration.

The experiment confirms that the VS-loss converges (aka angle/norm gap vanishes) to the CS-
SVM solution, while the LA-loss converges to the SVM. In both cases, the loss L(wt) is driven
to zero and the norm of the weights ∥wt∥2 to infinity with increasing t. Several recent works
[SHN+18, JT18, GLSS18, CB20] have studied in detail the convergence properties of GD on standard
logistic loss. We suspect that a formal analysis is also possible for the VS-loss using similar tools, but
we leave such investigations to future work.

In Figure 14, we also study (curves in red) the convergence properties of normalized GD. Following
[NLG+19], we implement a version of normalized GD that uses a variable learning rate ηt at iteration
t normalized by the gradient of the loss as follows: ηt = 1

∥∇L(w̃)∥2
√
t+1 . [NLG+19] demonstrated that

this normalization speeds up the convergence of standard logistic loss to SVM. Figure 14 suggests
that the same is true for convergence of the VS-loss to the CS-SVM.

B Connection of VS-loss to CS-SVM

B.1 A more general version of Proposition 1
We will state and prove a more general theorem to which Proposition 1 is a corollary. The new
theorem also shows that the group-sensitive adjusted VS-loss in (6) converges to the GS-SVM, which
we analyzed in Section 6.

As in Section 2.1, let {(xi, gi, yi)}ni=1 be a sequence of n i.i.d. training samples from a distribution
D over X × G × Y.

Consider the VS-loss empirical risk minimization

L(w) ∶= ∑
i∈[n]

`(yi,wTxi, gi) ∶= ωi log (1 + eιi ⋅ e−∆iyi(wTxi)) . (18)
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for strictly positive (but otherwise arbitrary) parameters ∆i, ωi > 0 and arbitrary ιi. For example,
setting ωi = ωyi,gi ,∆i = ∆yi,gi and ιi = ιyi,gi recovers the general form of our binary VS-loss in (6).

Also consider the following general cost-sensitive SVM (to which both the CS-SVM and the
GS-SVM are special instances)

ŵ ∶= arg min
w

∥w∥2 subject to yi(wTxi) ≥ 1/∆i. (19)

The following theorem connects (18) to (19).

Theorem 3 (On implicit bias of the VS-loss: General result) Define the norm-constrained op-
timal classifier

wR = arg min
∥w∥2≤R

L(w),

with the loss Ln is defined in (18). Assume that the training dataset is linearly separable, i.e. ∃w such
that yi(wTxi) ≥ 1 for all i ∈ [n]. Then, (7) is feasible. Moreover, letting ŵ be the solution of (7), it
holds that

lim
R→∞

wR/∥wR∥2 = ŵ/∥ŵ∥2. (20)

Proof of Proposition 1. Before proving Theorem 3, note that Proposition 1 follows as a corollary
by choosing ωi = ωyi , ιi = ιyi and ∆i = ∆yi . Indeed for this choice the loss in (18) reduces to (5).
Also, (19) reduces to (7). The latter follows from the equivalence of the following two optimization
problems:

{arg min
w

∥w∥2 subject to wTxi ≥
⎧⎪⎪⎨⎪⎪⎩

1/∆+ yi = +1
1/∆− yi = −1

}

= {arg min
v

∥w∥2 subject to vTxi ≥
⎧⎪⎪⎨⎪⎪⎩

∆−/∆+ yi = +1
1 yi = −1

},

which can be verified simply by a change of variables v/∆− ↔w and ∆− > 0.
The case of group-sensitive VS-loss. As an immediate corollary of Theorem 3 we get an analogue
of Proposition 1 for the group-imbalance data setting of Section 6. Specifically, under the setting
of Section 6, with only group imbalances and K = 2, we may use the VS-loss in (18) with margin
parameters ∆i = ∆g, g = 1, 2. Then, from Theorem 3, we know that in the separable regime and in the
limit of increasing weights, the classifier wR (normalized) will converge to the solution of the GS-SVM
in (8) with δ = ∆2/∆1.

B.1.1 Proof of Theorem 3

There are two statements to prove and we show them in the order in which they appear in the
theorem’s statement.
Linear separability Ô⇒ feasibility of (19). Assume w such that yi(wTxi) ≥ 1 for all i ∈ [n],
which exists by assumption. Define M ∶= maxi∈[n] 1

∆i
> 0 and consider w̃ =Mw. Then, we claim that

w̃ is feasible for (19). To check this, note that

yi = +1 Ô⇒ xTi w̃ =M(xTi w) ≥M ≥ 1/∆i since xTi w ≥ 1,
yi = −1 Ô⇒ xTi w̃ =M(xTi w) ≤ −M ≤ −1/∆i since xTi w ≥ 1.

Thus, yi(xTi w̃) ≥ 1/∆i for all i ∈ [n], as desired.
Proof of (20). First, we will argue that for any R > 0 the solution to the constrained VS-loss
minimization is on the boundary, i.e.

∥wR∥2 = R. (21)

We will prove this by contradiction. Assume to the contrary that wR is a point in the strict interior
of the feasible set. It must then be by convexity that ∇L(wR) = 0. Let w̃ be any solution feasible in
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(19) (which exists as shown above) such that yi(xTi w̃) ≥ 1/∆i. On one hand, we have w̃T∇L(ŵ) = 0.
On the other hand, by positivity of ωi,∆i,∀i ∈ [n]:

w̃T∇L(wR) = ∑
i∈[n]

−ωi∆i

1 + eιie−∆iyixTi wR

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
<0

yiw̃Txi
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶

>0

< 0,

which leads to a contradiction.
Now, suppose that (20) is not true. This means that there is some ε > 0 such that there is always

an arbitrarily large R > 0 such that wT
Rŵ

∥wR∥2∥ŵ∥2
≤ 1 − ε. Equivalently, (in view of (21)):

wT
Rŵ

R∥ŵ∥2
≤ 1 − ε. (22)

Towards proving a contradiction, we will show that, in this scenario using ŵR = R ŵ
∥ŵ∥`2

yields a
strictly smaller VS-loss (for sufficiently large R > 0), i.e.

L(ŵR) < L(wR), for sufficiently large R. (23)

We start by upper bounding L(ŵR). To do this, we first note from definition of ŵR the following
margin property:

yiŵT
Rxi =

R

∥ŵ∥2
yiŵTxi ≥

R

∥ŵ∥2
(1/∆i) =∶

R̄

∆i
, (24)

where the inequality follows from feasibility of ŵ in (19) and we set R̄ ∶= R/∥ŵ∥2. Then, using (24) it
follows immediately that

L(ŵR) =
n

∑
i=1
ωi log (1 + eιie−∆iyiŵT

Rxi)

≤
n

∑
i=1
ωi log (1 + eιie−

R̄
∆i

∆i)

=
n

∑
i=1
ωi log (1 + eιie−R̄)

≤ ωmaxne
ιmax−R̄. (25)

In the first inequality above we used (24) and non-negativity of ωi,∆i ≥ 0. In the last line, we have
called ωmax ∶= maxi∈[n] ωi > 0 and ιmax ∶= maxi∈[n] ιi > 0 .

Next, we lower bound L(wR). To do this, consider the vector

w̄ = ∥ŵ∥`2
R

wR = wR/R̄.

By feasibility of wR (i.e. ∥wR∥2 ≤ R), note that ∥w̄∥2 ≤ ∥ŵ∥2. Also, from (22), we know that w̄ ≠ ŵ.
Indeed, if it were w̄ = ŵ ⇐⇒ ŵ/∥ŵ∥2 = wR/R, then

ŵTwR

R∥ŵ∥2
= 1,

which would contradict (22). Thus, it must be that w̄ ≠ ŵ. From these and strong convexity of the
objective function in (19), it follows that w̄ must be infeasible for (7). Thus, there exists at least one
example xj , j ∈ [n] and ε > 0 such that

yjw̄Txj ≤ (1 − ε)(1/∆i).

But then

yjwT
Rxj ≤ R̄(1 − ε)(1/∆i), (26)
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which we can use to lower bound L(wR) as follows:

L(wR) ≥ ωj log (1 + eιj−∆jyjwT
Rxj)

≥ ωj log (1 + eιyj−R̄∆j
(1−ε)
∆j )

≥ ωmin log (1 + eιmin−R̄(1−ε)) . (27)

The second inequality follows fron (26) and non-negativity of ∆±, ω±.
To finish the proof we compare (27) against (25). If ε ≥ 1, clearly L(ŵR) < L(wR) for sufficiently

large R. Otherwise e−R̄(1−ε) → 0 with R →∞. Hence,

L(wR) ≥ ωmin log (1 + eιmin−R̄(1−ε)) ≥ 0.5ωmine
ιmin−R̄(1−ε).

Thus, again

L(ŵR) < L(wR) ⇐Ô ωmaxne
ιmax−R̄ < 0.5ωmine

ιmin−R̄(1−ε) ⇐⇒ eR̄ε > 2nωmax

ωmin
eιmax−ιmin ,

because the right side is true by picking R arbitrarily large.

C Structural property of CS-SVM: Proof of Lemma 1

From optimality of (ŵ1, b̂1), convexity of (7) and the KKT-conditions, there exist dual variables
βi, i ∈ [n] such that:

ŵ1 = ∑
i∈[n]

yiβixi, ∑
i∈[n]

yiβi = 0, (28)

∀i ∈ [n] ∶ βi(xTi ŵ1 + b̂1) = βiyi, βi ≥ 0.

Let (ŵδ, b̂δ) defined as in the statement of the lemma and further define εi ∶= ( δ+1
2∥ŵ1∥2

), i ∈ [n]. Then,
it can be checked using (28) that the following conditions hold

ŵ2 = ∑
i∈[n]

yiεixi, ∑
i∈[n]

yiεi = 0, (29)

∀i ∈ [n] ∶ εi(xTi ŵ2 + b̂2) = εi ⋅
⎧⎪⎪⎨⎪⎪⎩

δ , if yi = +1
−1 , if yi = −1

, εi ≥ 0.

It can also be verified that (29) are the KKT conditions of the CS-SVM with parameter δ. This proves
that (ŵ2, b̂2) is optimal in (7) as desired.

D On optimal tuning of CS-SVM: Appendix for Section 5.3.1
We state, prove and further discuss the following result on optimality of δ⋆ originally presented in
Section 5.3.1.

Proposition 2 (Optimal tuning of CS-SVM) Fix γ > γ⋆. Let Rbal(δ) denote the asymptotic
balanced error of the CS-SVM with margin-ratio parameter δ > 0 as specified in Theorem 1. Further
let (q1,ρ1, b1) the solution to (10) for δ = 1. Finally, define

`+ ∶= eT1 VSρ1 + b1/q1, `− ∶= −eT2 VSρ1 − b1/q1,

Then, for all δ > 0 it holds that
Rbal(δ) ≥ Rbal(δ⋆)

where δ⋆ is defined as

δ⋆ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

`−−`++2q−1
1

`+−`−+2q−1
1

if `+ + `− ≥ 0 and `+ − `− + 2q−1
1 > 0,

→∞ if `+ + `− ≥ 0 and `+ − `− + 2q−1
1 ≤ 0,

→ 0 if `+ + `− < 0.
(30)

Specifically, if `+ + `− ≥ 0 and `+ − `− + 2q−1
1 > 0 hold, then the following two hold: (i) Rbal(δ⋆) =

Q ((`− + `+) /2), and, (ii) the asymptotic conditional errors are equal, i.e. R+(δ⋆) = R−(δ⋆).
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(c) π = 0.0001

Figure 15: Graphical illustration of the result of Proposition 2: Balanced errors of CS-SVM against
the margin-ratio parameter δ for a GMM of antipodal means with ∥µ+∥ = ∥µ−∥ = 4 and different minority
class probabilities π. The balanced error is computed using the formulae of Theorem 1. For each case, we
studied three different values of γ. The value δ⋆ at which the curves attain (or approach) their minimum
are predicted by Proposition 2. Specifically, note the following for the three different priors. (a) For
all values of γ, the minimum is attained (cf. first branch of (30)). (b) For γ = 2,5 the minimum is
approached in the limit δ →∞ (cf. second branch of (30)), but it is attained for γ = 0.5 (c) The minimum
is always approached as δ⋆ →∞.
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Figure 16: An example showing the dependence of δ⋆ on the data geometry. The above figure is similar
to Fig 15 but with a smaller ∥µ+∥ = ∥µ−∥ = 1, and for π = 0.1. While in Fig 15, the value of δ⋆, whenever
finite, can be seen to increase with increase in γ, for the current setting, it is observed to decrease. Note
also that δ⋆ →∞ for γ = 0.5, but finite for γ = 2,5.

D.1 Proof of Proposition 2
As discussed in Section 5.3.1 the proof proceeds in two steps:

(i) First, starting from (11), we prove (12).
(ii) Second, we analytically solve (12) to derive the explicit expression for δ⋆ in (30).

D.1.1 Proof of (12)

Fix any δ > 0. From Lemma 1,

ŵδ = (δ + 1
2

)ŵ1 and b̂δ = (δ + 1
2

)b̂1 + (δ − 1
2

). (31)

Recall from Theorem 1 that ∥ŵδ∥2
PÐ→ qδ, ∥ŵ1∥2

PÐ→ q1, b̂δ
PÐ→ bδ, b̂1

PÐ→ b1, and, for i = 1,2:
ŵT
δ µi

∥ŵδ∥2

PÐ→ eTi VSρδ and ŵT
1 µi

∥ŵ1∥2

PÐ→ eTi VSρ1. Here, qδ, ρδ, bδ and q1, ρ1, b1 are as defined in Theorem 1.
Thus, from (31) we find that

ρδ = ρ1, qδ = (δ + 1
2

)q1 and bδ = (δ + 1
2

)b1 + (δ − 1
2

). (32)

Hence, it holds:
Q (eT1 VSρδ + bδ/qδ) = Q(eT1 VSρδ + b1/q1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=`+

+δ − 1
δ + 1

q−1
1 ).

A similar expression can be written for the conditional error of class −1. Putting these together shows
(12), as desired.

D.1.2 Proof of (30)

Recall from (12) that we now need to solve the following constrained minimization where for convenience
we call a = `+, b = `− and c = q−1

1 :

min
δ>0

Q(a + δ − 1
δ + 1

c) +Q(b − δ − 1
δ + 1

c) .
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We define a new variable x = δ−1
δ+1c. The constraint δ > 0 then writes x ≤ c. This is because the function

δ ∈ (0,∞) ↦ δ−1
δ+1 is onto the interval (−1,1).

Thus, we equivalently need to solve

min
−c<x<c

f(x) ∶= Q(a + x) +Q(b − x).

Define function f(x) = Q(a + x) +Q(b − x) for some a, b ∈ R. Direct differentiation gives df
dx =

1√
2π (e−(b−x)

2/2 − e−(a+x)
2/2) . Furthermore, note that limx→±∞ f(x) = 1. With thes and some algebra

it can be checked that f(⋅) behaves as follows depending on the sign of a + b. Denote x⋆ = (b − a)/2.

• If a + b ≥ 0, then 1 > f(x) ≥ f(x⋆) and x⋆ is the unique minimum.

• If a + b < 0, then 1 < f(x) ≤ f(x⋆) and x⋆ is the unique maximum.

Thus, we conclude with the following:

arg inf
−c<x<c

f(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x⋆ if a + b ≥ 0 and b − a < 2c,
c if a + b ≥ 0 and b − a ≥ 2c,
−c if a + b < 0.

Equivalently,

arg inf
δ>−1

Q(`+ +
δ − 1
δ + 1

q−1
1 ) +Q(`− −

δ − 1
δ + 1

q−1
1 ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

`−−`++2q−1
1

`+−`−+2q−1
1

if `+ + `− ≥ 0 and `+ − `− + 2q−1
1 > 0,

∞ if `+ + `− ≥ 0 and `+ − `− + 2q−1
1 ≤ 0,

0 if `+ + `− < 0.

This shows (30). The remaining statement of the proposition is easy to prove requiring simple
algebra manipulations.

E Asymptotic analysis of CS-SVM

E.1 Proof of Theorem 1: Preliminaries
The main goal of this section is proving Theorem 1. Recall the data model of Section 5.3. Also, for
fixed δ > 0, let (ŵ, b̂) be the solution to the CS-SVM in (7). In the following sections, we will prove
the following convergence properties for the solution of the CS-SVM:

(∥ŵ∥2,
ŵTµ+

∥ŵ∥2
,
ŵTµ−

∥ŵ∥2
, b̂) PÐ→ (qδ,eT1 VSρδ,eT2 VSρδ, bδ). (33)

where qδ,ρδ and bδ are as defined in the theorem’s statement. In this section, we show how to use
(33) to derive the asymptotic limit of the conditional class probabilities.

Consider the class conditional R+ = P{(xT ŵ + b) < 0 ∣ y = +1}. Recall that conditioned on y = +1,
we have x = µ+ + z for z ∼ N(0, 1). Thus, the class conditional can be expressed explicitly in terms of
the three summary quantities on the left hand side of (33) as follows:

R+ = P{(xT ŵ + b̂) < 0 ∣ y = +1} = P{zT ŵµT+ ŵ + b̂ < 0 ∣ y = +1}
= P{zT ŵ > µT+ ŵ + b̂}

= PG∼N(0,1) {G∥ŵ∥2 > µT+ ŵ + b̂} = PG∼N(0,1) {G > µT+ ŵ
∥ŵ∥2

+ b̂

∥ŵ∥2
}

= Q(µT+ ŵ
∥ŵ∥2

+ b̂

∥ŵ∥2
) .

Then, the theorem’s statement follows directly by applying (33) in the expression above.
In order to prove the key convergence result in (33) we rely on the convex Gaussian min-max

theorem (CGMT) framework. We give some necessary background before we proceed with the proof.
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E.2 Background and related literature
Related works: Our asymptotic analysis of the CS-SVM fits in the growing recent literature on sharp
statistical performance asymptotics of convex-based estimators, e.g. [DMM11, BM12, Sto13a, Sto13b,
Sto13c, OTH13, EK18, BBEKY13, DM16, DM15, TAH15, TAH18, TXH18, SAH18, MM18, SAH19,
MLC19, WWM19, CM19, ASH19, WWM19]. The origins of these works trace back to the study
of sharp phase transitions in compressed sensing [Don06, RV06, Sto09b, Sto09a, DJM11, DMM11,
DT05, ALMT14, OT17, CRPW12, Sto13d] and performance analysis of the LASSO estimator for
sparse signal recovery. That line of work led to the development of two analysis frameworks: (a)
the approximate message-passing (AMP) framework [BM11, DMM09, RV18, ESAP+20], and, (b) the
convex Gaussian min-max theorem (CGMT) framework [Sto13a, Sto13c, TOH15]. More recently,
these powerful tools have proved very useful for the analysis of linear classifiers [SAH19, MRSY19,
DKT19, KT20, MKL+20, LS20, TPT20b, CS+20, AKLZ20, TPT20a]. Theorems 1 and 2 rely on
the CGMT and contribute to this line of work. Specifically, our results are most closely related to
[DKT19, MRSY19] who first studied max-margin type classifiers.
CGMT framework: Specifically, we rely on the CGMT framework. Here, we only summarize the
framework’s essential ideas and refer the reader to [TOH15, TAH18] for more details and precise
statements. Consider the following two Gaussian processes:

Xw,u ∶= uTAw + ψ(w,u), (34a)
Yw,u ∶= ∥w∥2hTnu + ∥u∥2hTd w + ψ(w,u), (34b)

where: A ∈ Rn×d, hn ∈ Rn, hd ∈ Rd, they all have entries iid Gaussian; the sets Sw ⊂ Rd and Su ⊂ Rn

are compact; and, ψ ∶ Rd × Rn → R. For these two processes, define the following (random) min-max
optimization programs, which are refered to as the primary optimization (PO) and the auxiliary
optimization (AO) problems:

Φ(A) = min
w∈Sw

max
u∈Su

Xw,u, (35a)

φ(hn,hd) = min
w∈Sw

max
u∈Su

Yw,u. (35b)

According to the first first statement of the CGMT Theorem 3 in [TOH15] (this is only a slight
reformulation of Gordon’s original comparison inequality [Gor85]), for any c ∈ R, it holds:

P{Φ(A) < c} ≤ 2 P{φ(hn,hd) < c} . (36)

In other words, a high-probability lower bound on the AO is a high-probability lower bound on the
PO. The premise is that it is often much simpler to lower bound the AO rather than the PO. However,
the real power of the CGMT comes in its second statement, which asserts that if the PO is convex
then the AO in can be used to tightly infer properties of the original PO, including the optimal cost
and the optimal solution. More precisely, if the sets Sw and Su are convex and bounded, and ψ is
continuous convex-concave on Sw × Su, then, for any ν ∈ R and t > 0, it holds [TOH15]:

P{∣Φ(A) − ν∣ > t} ≤ 2 P{∣φ(hn,hd) − ν∣ > t} . (37)

In words, concentration of the optimal cost of the AO problem around q∗ implies concentration of the
optimal cost of the corresponding PO problem around the same value q∗. Asymptotically, if we can
show that φ(hn,hd)

PÐ→ q∗, then we can conclude that Φ(A) PÐ→ q∗.
In the next section, we will show that we can indeed express the CS-SVM in (7) as a PO in the

form of (35a). Thus, the argument above will directly allow us to determine the asymptotic limit of
the optimal cost of the CS-SVM. In our case, the optimal cost equals ∥ŵ∥2; thus, this shows the first
part of (33). For the other parts, we will employ the following “deviation argument" of the CGMT
framework [TOH15]. For arbitrary ε > 0, consider the desired set

S ∶= {(v, c) ∣ max {∣∥v∥2 − qδ ∣ , ∣
vTµ+

∥v∥2
− eT1 VSρδ∣, , ∣

vTµ−

∥v∥2
− eT2 VSρδ∣ , ∣c − bδ ∣} ≤ ε} . (38)

Our goal towards (33) is to show that with overwhelming probability (w, b) ∈ S. For this, consider the
following constrained CS-SVM that further constraints the feasible set to the complement Sc of S:

ΦSc(A) ∶= min
(w,b)∈Sc

∥w∥2 sub. to
⎧⎪⎪⎨⎪⎪⎩

wTxi + b ≥ δ , yi = +1
wTxi + b ≤ −1 , yi = −1

, i ∈ [n], (39)
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As per Theorem 6.1(iii) in [TAH18] it will suffice to find costants φ̄, φ̄S and η > 0 such that the
following three conditions hold:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(i) φ̄S ≥ φ̄ + 3η
(ii) φ(hn,hd) ≤ φ̄ + η with overwhelming probability
(iii) φSc(hn,hd) ≥ φ̄S − η with overwhelming probability,

(40)

where φSc(hn,hd) is the optimal cost of the constrained AO corresponding to the constrained PO in
(39).

To prove these conditions for the AO of the CS-SVM, in the next section we follow the principled
machinery of [TAH18] that allows simplifying the AO from a (random) optimization over vector
variables to an easier optimization over only few scalar variables, termed the “scalarized AO".

E.3 Proof of Theorem 1: Proof of (33)

Let (ŵ, b̂) be solution pair to the CS-SVM in (7) for some fixed margin-ratio parameter δ > 0, which
we rewrite here expressing the constraints in matrix form:

min
w,b

∥w∥2 sub. to
⎧⎪⎪⎨⎪⎪⎩

wTxi + b ≥ δ, yi = +1
−(wTxi + b) ≥ 1, yi = −1

, i ∈ [n] = min
w,b

∥w∥2 sub. to Dy(Xw + b1n) ≥ δy,

(41)

where we have used the notation

XT = [x1 ⋯ xn] , y = [y1 ⋯ yn]
T
,

Dy = diag(y) and δy = [δ1[y1 = +1] + 1[y1 = −1] ⋯ δ1[yn = +1] + 1[yn = −1]]T
.

We further need to define the following one-hot-encoding of the labels:

yi = e11[yi = 1] + e21[yi = −1], and YT
n×2 = [y1 ⋯ yn] .

where recall that e1,e2 are standard basis vectors in R2.
With these, notice for later use that under our model, xi = µyi + zi = Myi + zi, zi ∼ N(0, 1). Thus,

in matrix form with Z having entries N(0,1):

X = YMT +Z. (42)

Following the CGMT strategy [TOH15], we express (41) in a min-max form to bring it in the form
of the PO as follows:

min
w,b

max
u≤0

1
2
∥w∥2

2 + uTDyXw + b(uTDy1n) − uT δy

=min
w,b

max
u≤0

1
2
∥w∥2

2 + uTDyZw + uTDyYMTw + b(uTDy1n) − uT δy. (43)

where in the last line we used (42) and DyDy = In. We immediately recognize that the last optimization
is in the form of a PO (cf. (35a)) and the corresponding AO (cf. (35b)) is as follows:

min
w,b

max
u≤0

1
2
∥w∥2

2 + ∥w∥2uTDyhn + ∥Dyu∥2hTd w + uTDyYMTw + b(uTDy1n) − uT δy. (44)

where hn ∼ N(0, In) and hd ∼ N(0, Id).
In order to apply the CGMT in [TOH15], we need boundedness of the constraint sets. Thus, we

restrict the minimization in (44) and (43) to a bounded set ∥w∥2
2 + b2 ≤ R for (say) R ∶= 2 (q2

δ + b2δ).
This will allow us to show that the solutions ŵR, b̂R of this constrained PO satisfy ŵR

PÐ→ qδ and
b̂R

PÐ→ bδ. Thus, with overwhelming probability, ∥ŵR∥2
2 + b̂2R < R. From this and convexity of the

PO, we can argue that the minimizers ŵ, b̂ of the original unconstrained problem satisfy the same
convergence properties. Please see also Remark 4 in App. A of [DKT19].

33



For the maximization, we follow the recipe in App. A of [DKT19] who analyzed the standard
SVM. Specifically, combining Remark 3 of [DKT19] together with (we show this next) the property
that the AO is reduced to a convex program, it suffices to consider the unconstrained maximization.

Thus, in what follows we consider the one-sided constrained AO in (44). Towards simplifying this
auxiliary optimization, note that Dyhn ∼ hn by rotational invariance of the Gaussian measure. Also,
∥Dyu∥2 = ∥u∥2. Thus, we can express the AO in the following more convenient form:

min
∥w∥2

2+b2≤R
max
u≤0

1
2
∥w∥2

2 + ∥w∥2uThn + ∥u∥2hTd w + uTDyYMTw + b(uTDy1n) − uT δy. (45)

We are now ready to proceed with simplification of the AO. First we optimize over the direction of u
and rewrite the AO as

min
∥w∥2

2+b2≤R
max
β≥0

1
2
∥w∥2

2 + β (∥( ∥w∥2hn +DyYMTw + bDy1n − δy )−∥2
− hTd w)

= min
∥w∥2

2+b2≤R

1
2
∥w∥2

2 sub. to ∥( ∥w∥2hn +DyYMTw + bDy1n − δy )−∥2
≤ hTd w.

Above, (⋅)− acts elementwise to the entries of its argument.
Now, we wish to further simplify the above by minimizing over the direction of w in the space

orthogonal to M. To see how this is possible consider the SVD MT = VSUT and project w on the
columns of U = [u1 u2] ∈ Rd×2 as follows:

w = u1(uT1 w) + u2(uT2 w) +w⊥,

where w⊥ = U⊥w, U⊥ is the orthogonal complement of U. For simplicity we will assume here that M
is full column rank, i.e. S ≻ 02×2. The argument for the case where M is rank 1 is very similar.

Let us denote uTi w ∶= µi, i = 1,2 and ∥w⊥∥2 ∶= α. In this notation, the AO becomes

min
µ2

1+µ2
2+∥w⊥∥2

2+b2≤R

1
2
(µ2

1 + µ2
2 + α2)

sub. to ∥(
√
µ2

1 + µ2
2 + α2hn +DyYVS [µ1

µ2
] + bDy1n − δy )−∥2

≤ µ1(hTd u1) + µ2(hTd u2) + hTd U⊥w⊥.

At this point, we can optimize over the direction of w⊥ which leads to

min
µ2

1+µ2
2+α2+b2≤R

1
2
(µ2

1 + µ2
2 + α2)

sub. to ∥(
√
µ2

1 + µ2
2 + α2hn +DyYVS [µ1

µ2
] + bDy1n − δy )−∥2

≤ µ1(hTd u1) + µ2(hTd u2) + α∥hTd U⊥∥2.

As a last step in the simplification of the AO, it is convenient to introduce an additional variable
q =

√
µ2

1 + µ2
2 + α2. It then follows that the minimization above is equivalent to the following

min
q≥

√
µ2

1+µ2
2+α2

q2+b2≤R

1
2
q2 (46)

sub. to ∥( qhn +DyYVS [µ1
µ2

] + bDy1n − δy )−∥2
≤ µ1(hTd u1) + µ2(hTd u2) + α∥hTd U⊥∥2.

In this formulation it is not hard to check that the optimization is jointly convex in its variables
(µ1, µ2, α, b, q). To see this note that: (i) the constraint q ≥

√
µ2

1 + µ2
2 + α2 ⇐⇒ q ≥ ∥ [µ1 µ2 α] ∥2

is a conic second-order cone constraint, and, (ii) the function

Ln(q, µ1, µ2, α, b) ∶=
1√
n
∥( qhn +DyYVS [µ1

µ2
] + bDy1n − δy )−∥2

− µ1
hTd u1√

n
− µ2

hTd u2√
n

− α
∥hTd U⊥∥2√

n
(47)

is also convex since ∥(⋅)−∥2 ∶ Rn → R is itslef convex and is composed here with an affine function.
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Now, by law of large numbers, notice that for fixed (q, µ1, µ2, α, b), Ln converges in probability to

Ln(q, µ1, µ2, α, b)
PÐ→ L(q, µ1, µ2, α, b) ∶=

¿
ÁÁÀE(qG +ETY VS [µ1

µ2
] + bY −∆Y )2

− − α
√
γ, (48)

where the random variables G,EY , Y,∆Y are as in the statement of the theorem. But convergence of
convex functions is uniform over compact sets as per Cor. II.I in [AG82]. Therefore, the convergence
in (48) is in fact uniform in the compact feasible set of (46).

Consider then the deterministic high-probability equivalent of (46) which is the following convex
program:

min
q≥

√
µ2

1+µ2
2+α2

q2+b2≤R
L(q,µ1,µ2,α,b)≤0

1
2
q2.

Since q is positive and the constraint q ≥
√
µ2

1 + µ2
2 + α2 must be active at the optimum, it is convenient

to rewrite this in terms of new variables ρ = [ρ1
ρ2

] ∶= [µ1/q
µ2/q

] as follows:

min
q2+b2≤R,q>0,∥ρ∥2≤1

1
2
q2 (49)

sub. to E[(G +ETY VSρ + bY −∆Y

q
)2
−] ≤ (1 − ∥ρ∥2

2)γ.

Now, recall the definition of the function ηδ in the statement of the theorem and observe that the
constraint above is nothing but

ηδ(q,ρ, b) ≤ 0.

Thus, (49) becomes

min{q2 ∣ 0 ≤ q ≤
√
R and min

b2≤R−q2,∥ρ∥2≤1
ηδ(q,ρ, b) ≤ 0} . (50)

We will prove that

the function f(q) ∶= min
b,∥ρ∥2≤1

ηδ(q,ρ, b) is strictly decreasing. (51)

Let qδ be as in the statement of the theorem such that f(qδ) = 0. Then, we have the following relations

f(q) ≤ 0 ⇒ f(q) ≤ f(qδ) ⇒ q ≥ qδ.

Thus, the minimizers in (50) are (qδ,ρδ, bδ), where we also recall that we have set R > q2
δ + b2δ .

With all these, we have shown that the AO converges in probability to q2
δ (cf. condition (ii) in

(40)). From the CGMT, the same is true for the PO. Now, we want to use the same machinery to
prove that the minimizers (ŵ, b̂) of the PO satisfy (33). To do this, as explained in the previous
section, we use the standard strategy of the CGMT framework , i.e., to show that the PO with the
additional constraint (w, b) ∈ Sc for the set S in (38) has a cost that is strictly larger than q2

δ (i.e.
the cost of the unconstrained PO). As per the GCMT this can be done again by showing that the
statement is true for the correspondingly constrained AO (i.e. show condition (iii) in (40)). With
the exact same simplifications as above, the latter program simplifies to (46) with the additional
constraints:

∣q − qδ ∣ > ε , ∣µi/q − ρδ,i∣ > ε, i = 1,2 , ∣b − bδ ∣ > ε.

Also, using the uniform convergence in (48), it suffices to study the deterministic equivalent (50) with
the additional constraints above. Now, we can show the desired (cf. condition (i) in (40)) again by
exploiting (51). This part of the argument is identical to Section C.3.5 in [DKT19] and we omit the
details.

To complete the proof, it remains to show (51). We do so by combining the following three
observations to show that df

dq < 0.
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First,

∂ηδ
∂q

= 2
q2 E[(G +ETY VSρ + bY −∆Y

q
)− ⋅∆Y ] − 2b

q2 E[(G +ETY VSρ + bY −∆Y

q
)− ⋅ Y ]

< −2b
q2 E[(G +ETY VSρ + bY −∆Y

q
)− ⋅ Y ] (52)

where for the inequality we observed that (⋅)− is always non-positive, its argument has non-zero
probability measure on the negative real axis, and ∆Y are positive random variables.

Second, letting ρ⋆ ∶= ρ⋆(q) and b⋆ ∶= b⋆(q) the minimizers of ηδ(q,ρ, b), it follows from first-order
optimality conditions that

∂ηδ
∂b

= 0 ⇐⇒ E[(G +ETY VSρ + bY −∆Y

q
)− ⋅ Y ] = 0. (53)

Third, by the envelope theorem

df
dq

= ∂ηδ
∂q

∣
ρ⋆,b⋆

. (54)

The desired inequality df
dq < 0 follows directly by successively applying (54), (52) and (53).

We show how Theorem 1 for the isotropic case can still be applied in the general case. Assume Σ ≻ 0.
Write xi = yiµyi +Σ1/2hi for hi ∼ N(0, Id). Consider whitened features zi ∶= Σ−1/2xi = yiΣ−1/2µyi +hi.
Let

(ŵ, b̂) = arg min
w,b

1
n
∑
i∈[n]

`(yi(xTi w + b)),

(v̂, ĉ) = arg min
w,b

1
n
∑
i∈[n]

`(yi(zTi v + c)).

Clearly, ŵ = Σ−1/2v̂ and b̂ = ĉ. Thus,

R+ ((ŵ, b̂)) = P{(xT ŵ + b̂) < 0 ∣ y = +1} = P{µT+ ŵ + ŵTΣ1/2h + b̂ < 0} = Q( µT+ ŵ + b̂
∥Σ1/2ŵ∥2

)

= Q(µT+Σ−1/2v̂ + ĉ
∥v̂∥2

) = P{(zT v̂ + ĉ) < 0 ∣ y = +1}

= R+ ((v̂, ĉ))

Similar derivation holds for R−. This completes the proof of the claim.

E.4 Phase transition of CS-SVM
Here, we present a formula for the threshold γ⋆ such that the CS-SVM of (7) is feasible (resp.,
infeasible) with overwhelming probability provided that γ > γ⋆ (resp., γ < γ⋆). The first, simple but
key, observation is that the phase-transition threshold γ⋆ of feasibility of the GS-SVM is the same as
the threshold of feasibility of the standard SVM for the same model; see Section B.1.1. The feasibility
threshold of the standard SVM under the data model of Section 5.3 can be derived immediately from
[KT21] who studied separability phase-transitions for the more general multiclass Gaussian mixture
model. Specifically, the result below is a small extension to a setting with possibly different class means
µ+ ≠ µ− of similar phase transitions established recently in [DKT19, MKL+20] (also [CS+20, MRSY19]
for related results for discriminative models).

Proposition 3 ([KT21]) Consider the same data model and notation as in Theorem 1 and define
the event

Esep,n ∶= {∃(w, b) ∈ Rd × R s.t. yi(wTxi + b) ≥ 1, ∀i ∈ [n]} .

Define threshold γ⋆ ∶= γ⋆(V,S, π) as follows:

γ⋆ ∶= min
t∈Rr,b∈R

E [(
√

1 + ∥t∥2
2G +ETY VSt − bY )

2

−
] . (55)
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Then, the following hold:

γ > γ⋆ ⇒ lim
n→∞

P(Esep,n) = 1 and γ < γ⋆ ⇒ lim
n→∞

P(Esep,n) = 0.

In words, the data are linearly separable (with overwhelming probability) if and only if γ > γ⋆.
Furthermore, if this condition holds, then CS-SVM is feasible (with overwhelming probability) for any
value of δ > 0.

F Asymptotic analysis of GS-SVM
The theorem below is a slightly more general version of Theorem 2 allowing for different noise variances
for the minority/majority groups. Specifically, assume that for y ∈ {±1} and g ∈ {1,2},

x ∣ (y, g) ∼ N(yµg, σgId), (56)

for σ2
1 , σ

2
2 the noise variances of the minority and the majority groups, respectively.

Theorem 4 (Sharp asymptotics of GS-SVM: different noise levels) Consider the GMM with
feature distribution and priors as specified in the ‘Data model’ above. Fix δ > 0. Define G,Y,S,∆S ,ΣS ∈
R, and ES ∈ R2×1 as follows: G ∼ N(0,1); Y is a symmetric Bernoulli with P{Y = +1} = π;
S takes values 1 or 2 with probabilities p and 1 − p, respectively; ES = e11[S = 1] + e21[S = 2];
∆S = δ ⋅ 1[S = 1] + 1 ⋅ 1[S = 2] and ΣS = σ11[S = 1] + σ21[S = 2]. With these define function
η̃δ ∶ R≥0 × Sr × R→ R as

η̃δ(q,ρ, b) ∶= E(G +Σ−1
S E

T
SVSρ +

bΣ−1
S Y −Σ−1

S ∆S

q
)2
− − (1 − ∥ρ∥2

2)γ.

Let (q̃δ, ρ̃δ, b̃δ) be the unique triplet satisfying (10) but with ηδ replaced with the function η̃δ above.
Then, in the limit of n, d→∞ with d/n = γ > γ̃⋆ it holds for i = 1, 2 that R±,i

PÐ→ Q(eTi VSρ̃δ ± b̃δ/q̃δ),

F.1 Proof of Theorem 4
The proof of Theorem 4 also relies on the CGMT framework and is very similar to the proof of
Theorem 1. To avoid repetitions, we only present the part that is different. As we will show the PO is
slightly different as now we are dealing with a classification between mixtures of mixtures of Gaussians.
We will derive the new AO and will simplify it to a point from where the same steps as in Section E.3
can be followed mutatis mutandis.

Let (ŵ, b̂) be solution pair to the GS-SVM in (8) for some fixed parameter δ > 0, which we rewrite
here expressing the constraints in matrix form:

min
w,b

∥w∥2 sub. to
⎧⎪⎪⎨⎪⎪⎩

yi(wTxi + b) ≥ δ, gi = 1
yi(wTxi + b) ≥ 1, gi = 2

, i ∈ [n] = min
w,b

∥w∥2 sub. to Dy(Xw + b1n) ≥ δg,

(57)

where we have used the notation

XT = [x1 ⋯ xn] , y = [y1 ⋯ yn]
T
,

Dy = diag(y) and δg = [δ1[g1 = 1] + 1[g1 = 2] ⋯ δ1[gn = 1] + 1[gn = 2]]T
.

We further need to define the following one-hot-encoding for group membership:

gi = e11[gi = 1] + e21[gi = 2], and GT
n×2 = [g1 ⋯ gn] .

where recall that e1,e2 are standard basis vectors in R2. Finally, let

Dσ = diag( [σg1 ⋯ σgn] ).

With these, notice for later use that under our model, xi = yiµgi + σgizi = yiMgi + σgizi, zi ∼ N(0, 1).
Thus, in matrix form with Z having entries N(0,1):

X = DyGMT +DσZ. (58)
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As usual, we express (8) in a min-max form to bring it in the form of the PO as follows:

min
w,b

max
u≤0

1
2
∥w∥2

2 + uTDyXw + b(uTDy1n) − uT δg

=min
w,b

max
u≤0

1
2
∥w∥2

2 + uTDyDσZw + uTGMTw + b(uTDy1n) − uT δg. (59)

where in the last line we used (58) and DyDy = In. We immediately recognize that the last optimization
is in the form of a PO and the corresponding AO is as follows:

min
w,b

max
u≤0

1
2
∥w∥2

2 + ∥w∥2uTDyDσhn + ∥DyDσu∥2hTd w + uTGMTw + b(uTDy1n) − uT δg. (60)

where hn ∼ N(0, In) and hd ∼ N(0, Id).
As in Section E.3 we consider the one-sided constrained AO in (60). Towards simplifying this

auxiliary optimization, note that Dyhn ∼ hn by rotational invariance of the Gaussian measure. Also,
∥DyDσu∥2 = ∥Dσu∥2. Thus, we can express the AO in the following more convenient form:

min
∥w∥2

2+b2≤R
max
u≤0

1
2
∥w∥2

2 + ∥w∥2uTDσhn + ∥Dσu∥2hTd w + uTGMTw + b(uTDy1n) − uT δg

= min
∥w∥2

2+b2≤R
max
v≤0

1
2
∥w∥2

2 + ∥w∥2vThn + ∥v∥2hTd w + vTD−1
σ GMTw + b(vTD−1

σ Dy1n) − vTD−1
σ δg,

where in the second line we performed the change of variables v↔Dσu and used positivity of the
diagonal entries of Dσ to find that u ≤ 0 ⇐⇒ v ≤ 0.

Notice that the optimization in the last line above is very similar to the AO (45) in Section E.3.
Following analogous steps, omitted here for brevity, we obtain the following scalarized AO:

min
q≥

√
µ2

1+µ2
2+α2

q2+b2≤R

1
2
q2 (61)

sub. to 1√
n
∥( qhn +D−1

σ GVS [µ1
µ2

] + bD−1
σ Dy1n −D−1

σ δg )−∥2
− µ1

hTd u1√
n

− µ2
hTd u2√

n
− α

∥hTd U⊥∥2√
n

≤ 0.

where as in Section E.3 we have decomposed the matrix of means M = USVT and µ1, µ2, α above
represent uT1 w, uT1 w and ∥w⊥∥2. Now, by law of large numbers, notice that for fixed (q, µ1, µ2, α, b),
the functional in the constraint above converges in probability to

L̄(q, µ1, µ2, α, b) ∶=

¿
ÁÁÀE(qG +Σ−1

S E
T
SVS [µ1

µ2
] + bΣ−1

S Y −Σ−1
S ∆S)

2
− − α

√
γ, (62)

where the random variables G,ES , Y,∆S and ΣS are as in the statement of the theorem. Thus, the

deterministic equivalent (high-dimensional limit) of the AO expressed in variables ρ = [ρ1
ρ2

] ∶= [µ1/q
µ2/q

]

becomes (cf. Eqn. (49)):

min
q2+b2≤R,q>0,∥ρ∥2≤1

1
2
q2 (63)

sub. to
¯

E(G +Σ−1
S E

T
SVSρ +

bΣ−1
S Y −Σ−1

S ∆S

q
)2
− ≤ (1 − ∥ρ∥2

2)γ.

Now, recall the definition of the function η̃δ in the statement of the theorem and observe that the
constraint above is nothing but

η̃δ(q,ρ, b) ≤ 0.
Thus, (63) becomes

min{q2 ∣ 0 ≤ q ≤
√
R and min

b2≤R−q2,∥ρ∥2≤1
η̃δ(q,ρ, b) ≤ 0} . (64)

The remaining steps of the proof are very similar to those in Section E.3 and are omitted.
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F.2 Phase transition of GS-SVM
The phase-transition threshold γ̃⋆ of feasibility of the GS-SVM is the same as the threshold of feasibility
of the standard SVM for the same model; see Section B.1.1. The feasibility threshold of the standard
SVM under the data model of Section 6 can be derived from [KT21], who study the separability
question for the more general case of a multiclass mixture of mixtures Gaussian model. We give their
result characterizing γ̃⋆ below.

Proposition 4 Consider the same data model and notation as in Theorem 2 and consider the event

Esep,n ∶= {∃(w, b) ∈ Rd × R s.t. yi(wTxi + b) ≥ 1, ∀i ∈ [n]} .

Define threshold γ⋆ ∶= γ⋆(V,S, π) as follows:

γ̃⋆ ∶= min
t∈Rr,b∈R

E [(
√

1 + ∥t∥2
2G +ETSVSt − bY )

2

−
] . (65)

Then, the following hold:

γ > γ̃⋆ ⇒ lim
n→∞

P(Esep,n) = 1 and γ < γ̃⋆ ⇒ lim
n→∞

P(Esep,n) = 0.

In words, the data are linearly separable with overwhelming probability if and only if γ > γ̃⋆. Furthermore,
if this condition holds, then GS-SVM is feasible with overwhelming probability for any value of δ > 0.
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