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Abstract
Geographically Weighted Regression (GWR) is a seminal technique
with rich applications in geospatial data analysis. However, it has
critical drawbacks in the age of big data in terms of expressiveness,
i.e., predictive power, and scalability. This work proposes Aug-
mented GWR (A-GWR) that alleviates these drawbacks. A-GWR
adapts a novel technique, Stateless-MGWR or S-MGWR, that en-
riches the predictive power by allowing different training data
features to influence at different spatial scales. S-MGWR uses a cus-
tomized black-box optimization approach for discovering optimal
parameters in a fast and efficient way. In addition, A-GWR mod-
ularly combines S-MGWR with versatile models such as random
forest models. Moreover, A-GWR enables scalability by operat-
ing on partitioned data to adapt to tight computational budgets.
Our extensive experiments on various real and synthetic datasets
demonstrate the scalability and accuracy benefits of the proposed
techniques over state-of-the-art competitors.

CCS Concepts
• Computing methodologies → Machine learning algorithms; •
Information systems→ Information systems applications.
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1 Introduction
Regression is one of the most traditional and popular learning mod-
els in an excessive number of applications. In spatial applications,
regressionmodels of different types are used for various use cases [1,
2, 4, 11, 13, 26, 27, 33, 34, 38]. Geographically Weighted Regression
(GWR) [10] is one of the most popular spatially-varying coefficient
(SVC) models that are used to capture spatial non-stationarity in
spatial data. It has been widely adopted in many areas such as
climate science [1], health and health care [27], criminology [38],
transportation analysis [2], house price modeling [11], data analy-
sis and visualization [13]. GWR and its variations specifically are
popular and have been used recently for COVID-19 pandemic data
to analyze the spatio-temporal effects of its driving factors to limit
its spread worldwide [26]. SVC models are powerful alternatives
to most traditional methods of modeling data when dealing with
spatial data. In traditional methods, such as ordinary least squares,
the role of location is often neglected or is not properly captured.
Despite its efficacy, GWR has two major limitations: expressiveness
and runtime scalability. These limitations restrict utilizing GWR for
modern applications that involve diverse features and thousands
to millions of data points. We outline both limitations as follows:

(1) Expressiveness:GWR uses a single number, known as band-
width, to control the contribution of neighboring data around each
location. This bandwidth plays the role of the spatial influence
parameter, so a point in a location 𝐿 is only affected by other points
within 𝐿’s bandwidth but not beyond. GWR uses one bandwidth for
all features, which enforces the same spatial scale for the impact of
different features and reduces the expressive power of the model. In
reality, different features potentially have effects at different spatial
scales. For example, a feature representing wind speed might be spa-
tially correlated at a state level, while another feature that expresses
temperature is spatially correlated at a county level. Multiple works
[19, 25, 39] attempted to overcome this issue by providing a vector
of bandwidths , assigning a control knob to each of the features. One
of the recent notable advancements is Multiscale GWR (MGWR)
[12]. MGWR assigns different bandwidths for different features,
enabling each parameter surface to operate on a different locality.
MGWR uses the backfitting algorithm for calibration involving
many uni-variate GWR calibrations in each step which results in
considerably higher runtime than regular GWR. In addition, due
to the nature of backfitting, it is not possible to produce the same
results only using the learned bandwidth; the complete history of
bandwidths throughout the process is required.

Besides the limited expressiveness of using a single bandwidth,
GWR also ignores nonlinear feature interactions beyond location.
To overcome this, it is important to augment GWR with other
powerful supervised learning models, such as random forests and
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neural networks. These models can effectively capture nonlinear
feature interactions and have shown superiority in various modern
applications. While there have been attempts to combine GWRwith
other learning methods [21], previous works are often optimized
for a single problem. They do not provide a general method of using
other learning models with GWR.

(2) Scalability is arguably a core bottleneck of the GWR, as
training a GWR model has a quadratic time complexity in terms of
the training data size. Such quadratic growth implies that scalability
beyond a few tens of thousands of examples becomes highly chal-
lenging. This situation is exacerbated withMGWR-type approaches,
which require many iterations of GWR subproblems to optimize
bandwidths. For modern datasets, it is critical to develop resource-
aware algorithms to adapt to the computational constraints and
utilize resources efficiently. Even though there have been some
works on reducing the runtime of GWR [23] and MGWR [24], it is
still a major runtime bottleneck to handle large datasets.

Contributions: Towards addressing these challenges, this pa-
per proposes Augmented Geographically Weighted Regression (A-
GWR), a novel and scalable framework for applying regression
models to spatial data. A-GWR provides scalability for large spatial
datasets and benefits from the advantages of modern supervised
learning techniques to boost both accuracy and runtime efficiency.
A-GWR goes three steps beyond the existing GWR-related litera-
ture. First, it innovates a stateless version of MGWR [12], called
Stateless-MGWR (S-MGWR). S-MGWR eliminates the need for
the full history of bandwidth values to optimize the bandwidth
of different features. This allows S-MGWR to use various out-of-
the-box parameter optimization methods and enables faster, more
flexible, and accurate parameter tuning. Second, A-GWR augments
S-MGWR with a general-purpose model, e.g., random forest model,
to bring the benefits of supervised learning techniques into spa-
tial regression models. This enables spatial regression models to
capture non-linear interaction among different features and seam-
lessly integrates with modern machine learning techniques. Third,
A-GWR provides a framework that allows operating on smaller
chunks of data to process large datasets with limited computational
budgets. Therefore, A-GWR significantly enhances the scalability
and expressiveness of GWR-like models. Our novel contributions
are summarized as follows:

• We propose S-MGWR, a new adaptation of the MGWR that
adjusts each set of bandwidths independently rather than
sequentially, making it an ideal model to be compatible with
black-box optimization methods.

• We design a customized black-box optimization algorithm to
accelerate discovering an optimal set of feature bandwidths
for S-MGWR.

• We propose a framework for merging spatial regression
algorithms such as GWR and S-MGWR with fast machine
learning models via ensemble learning to improve accuracy.

• We propose a divide-and-conquer technique that splits the
data and operates on its partitions to adapt for tight compu-
tational resources.

• We provide an extensive experimental evaluation that shows
the superiority of our techniques in both accuracy and run-
time with up to 14.4 times faster runtime.

The remainder of the paper is organized as follows: Section 2
presents related work. Section 3 reviews the basics of the GWR and
MGWR and their drawbacks in more detail. Section 4 introduces
S-MGWR and Section 5 introduces our ensemble framework with
general machine learning models. The experiments and analysis
are presented in Section 6. The last section concludes the paper.

2 Related Work
This section outlines our related work that is mainly the literature of
geographically weighted regression (GWR) [10] and its variations.
In GWR, regression coefficients vary across space to capture the
spatial non-stationarity aspect of the data. However, GWR has
limitations in both computational scalability (quadratic complexity)
and expressiveness (using same spatial scale for all features). To
overcome these limitations, several efforts have been made. We
classify this literature into three main categories as follows.

Variable spatial scale models. To improve the GWR expressive-
ness over datasets with varying spatial scales for different features,
different models have been proposed in [12, 19, 20, 25, 39]. All of
these methods use a vector of bandwidths to express a different
spatial scale for each feature instead of a single bandwidth value.
To find that vector, they use an iterative method that adjusts the
state of coefficients until a convergence.

Non-linear models. Combining GWR weighting schemes with
artificial neural networks have been used to capture the non-linear
relation between data points [7, 14]. Even though thesemethods can
improve the accuracy, they need a tremendous amount of data to
train the neural net which, in many cases, is not possible. Also, these
approaches do not address the multiscale bandwidths and assign the
same locality to all the features [14]. Finally, besides prediction, the
GWR is a popular visualization tool to explore patterns in datasets
[42]. Given that interpretability is the Achilles’ heel of deep neural
networks [41], combining GWR with neural networks may hurt
the visualization and interpretability of GWR. Another approach to
capture the non-linearity is to use non-linear kernels on data and
extract features and then use a GWR on extracted features [21]. A
key downside of this approach is that, identifying good kernels is
task-specific and the kernel design can be challenging.

Parallel and grid models. Parallelization [23, 24] is one way to
improve the runtime of GWR. However, the resulting models are
still bounded to comparably small datasets as they do not reduce
the time complexity. Another approach is to develop grid infrastruc-
tures. In this approach, the data points are divided to different sec-
tions and different GWRmodel is trained over these sections [9, 16].

Distinguished from existing work, A-GWR is the first model that
simultaneously enables using variable spatial scales, capturing non-
linear feature interactions with customizable general-purpose mod-
els, and using both parallelization and grid-based modeling to sup-
port large datasets. First, our proposed Stateless-MGWR (S-MGWR)
model trains a stateless model to find a vector of bandwidths. This
enables better computational scalability for variable spatial scales
models, while maintaining the high model expressiveness. Sec-
ond, our A-GWR multi-stage framework enables combining GWR
variants with any general-purpose learning models so it effectively
visualizes the locality and captures the non-linear relations between
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features. A-GWR adapts to various spatial and general models and
it is fully customizable for use with a problem-specific kernel or
a completely general method. Third, A-GWR framework enables
using both parallelization and grid-based modeling. It uses grids
to split large data based on spatial locality. The grid system in A-
GWR is flexible to use various split criteria including equal-sized
cells, variable cells, and clusters. In addition, the bandwidth search
method of S-MGWR, which is the bottleneck, is also parallelizable.
Having all these features, A-GWR outperforms all existing models
as a generic model that supports various applications with high
computational scalability and model expressiveness.

3 Preliminaries
This section introduces the preliminaries of GWR [10] andMGWR [12].

GWR formulation: In GWR [10], the parameters can vary by
location. Assume that each observation 𝑖 is in the location (𝑢𝑖 , 𝑣𝑖 ).
Then the GWR model is

𝑦𝑖 =

𝑘∑
𝑗=0

𝛽 𝑗 (𝑢𝑖 , 𝑣𝑖 )𝑥𝑖, 𝑗 + 𝜖𝑖 .

𝛽 𝑗 (𝑢𝑖 , 𝑣𝑖 ) can be computed using the following equation:

𝛽 (𝑢𝑖 , 𝑣𝑖 ) = [𝑋𝑇𝑊𝑖𝑋 ]−1𝑋𝑇𝑊𝑖𝑦.

𝑊𝑖 in this equation is a diagonal matrix of weights assigned to each
data point based on its distance to the i-th observation. The main
idea is to assign more weight to data points closer to i-th obser-
vation as close data points tend to share more similarities. Matrix
𝑊𝑖 is calculated based on a specified kernel function. This kernel
function can be adjusted using an input variable. This variable,
known as bandwidth, is determined using a number of trials. In
each trial, a bandwidth is selected and then the kernel function
uses the bandwidth to construct the weights. GWR then uses these
weights to solve the equation. The bandwidth that produces the
least error is selected as the trained bandwidth value and is used
during the prediction. The problem with GWR is that it bounds the
locality of all features to a single bandwidth. That is, all the features
are assumed to have the same locality which limits the flexibility
of GWR in describing real-world datasets.

MGWR formulation: MGWR [12] tries to address the the sin-
gle locality issue by introducing a bandwidth for each feature. The
MGWR is formulated under Generalized Additive Model (GAM):

𝑦 =

𝑘∑
𝑗=0

𝑓𝑗 + 𝜖 (1)

Where 𝑓𝑗 is a smooth function estimated with covariate-specific
bandwidths and the 𝜖 is the i.i.d error. MGWR uses the backfitting
algorithm to determine the 𝑓𝑗 . To compute 𝑓𝑖 , the backfitting algo-
rithm interpolates the function in data points’ locations. For the
initial state, all the coefficients are assigned with an initial value.
Then, MGWR at the first iteration, fixes all the functions 𝑓𝑗≠1 and
considers them as constants, then, it solves a uni-variate GWR
for 𝑓1 and finds the optimum bandwidth for it. Using this optimal
bandwidth, the MGWR updates its state by the new coefficients
computed for function 𝑓1 interpolation. For the second iteration, all
the values of the updated state, except for the interpolated values
of the second function 𝑓2, are considered constants. This procedure

is then repeated for all the different features. After adjusting all the
features, MGWR starts to readjust 𝑓𝑖 with the updated state. The
process continues until a stopping criteria is reached.

MGWR allows each feature to have its own spatial scale, repre-
sented by a separate bandwidth. Due to the flexibility of locality
for each feature, MGWR fits the training data well and computes a
good estimate over the coefficients of training data which makes it
a good tool for data analysis. However, the backfitting algorithm
introduces a number of problems. The first problem in MGWR is its
running time. It solves a GWR for each feature until convergence.
The number of iterations for convergence can be large and there-
fore the runtime of the program can be very high. After computing
a set of bandwidths, MGWR cannot produce the same result using
only that set of bandwidths. During the training, each feature is
adjusted using the updated state. This means that for creating the
same results, a complete history of all the intermediate bandwidths
is required. Due to this problem, MGWR is bound to use iterative
methods and the bandwidth search method cannot be parallelized.

4 Stateless-MGWR
In this section, we propose Stateless-MGWR (S-MGWR), a stateless
variation of MGWR spatial model that assigns different localities
to different features. S-MGWR extends MGWR by eliminating the
need for a history of bandwidth values. Therefore, S-MGWR is able
to fit a set of bandwidths directly, hence, any search algorithm,
independent of being parallel or linear, can be used to find the
locality of each feature. S-MGWR can fit a model for a given vector
of bandwidths, using this ability, a search algorithm takes repeated
steps. In each step, a vector of bandwidths is generated and based
on the validation error over the trained model, the search algorithm
decides its next step. This is in contrast to MGWR where the band-
width search happens one feature at a time and the trained model
depends both on the bandwidth and the previous state of the model.

Algorithm 1 gives the pseudo-code for the training phase of
S-MGWR model. S-MGWR initializes the model values with the
results of a GWR model fitted to the data. These values are stored
in 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑠 and are not re-computed again. Afterward, starting from
the 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑠 values, it proceeds to adjust the model based on the
bandwidths. To adjust the model, S-MGWR adjusts features based
on the vector of bandwidths one at a time. Starting from the first
feature, the rest of the coefficients are fixed as constants and up-
dates the dependent values accordingly. A weighted least squares
computes the adjusted coefficients of the feature and the algorithm
proceeds to the next feature. For each set of bandwidths generated
by the bandwidth search algorithm, using𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ sub-
routine, S-MGWR adjusts the model based on the bandwidths and
computes a validation error based on the adjusted model. The set
of bandwidths with minimum validation error is then selected as
the trained bandwidths for the S-MGWR model. This process is
repeated until a user-defined number of iterations are performed. In
each cycle of error computation, we set the number of iterations to
three as this is enough experimentally to adjust coefficients for the
best set of bandwidths in this cycle. However, stopping criteria of
error computation could also depend on a certain error difference
threshold or a combination of them.Algorithm 2 details 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑒𝑟𝑟𝑜𝑟 subroutine. The subroutine
takes two datasets of points, training and validation data, each point
consists of a triple (𝑋,𝑦, 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠), where 𝑋 is the features, 𝑦
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Algorithm 1: S-MGWR Training Phase
1 Input: 𝐿, training data 𝐷𝑡 , validation data 𝐷𝑣

2 Output: A vector of 𝑘 bandwidths

3 initials = GWR(𝐷𝑡 ∪ 𝐷𝑣 )
4 𝑏𝑤 = initials.bandwidth
5 // compute_error is detailed in Algorithm 2
6 error = compute_error(3, 𝑏𝑤 , 𝐷𝑡 , 𝐷𝑣 )
7 while number of iterations < L do
8 next_𝑏𝑤 = generate_bandwidth(𝑏𝑤 , error)
9 next_error = compute_error(3, next_𝑏𝑤 , 𝐷𝑡 , 𝐷𝑣 )

10 if next_error < error then
11 error = next_error
12 𝑏𝑤 = next_𝑏𝑤
13 end
14 end
15 return 𝑏𝑤

Algorithm 2: compute_error

1 Input:𝑇𝑐 , bandwidth vector 𝑏𝑤 , training data 𝐷𝑡 , validation
data 𝐷𝑣

2 // each 𝑑 ∈ 𝐷𝑡 or 𝐷𝑣 consists of (𝑋,𝑦, coordinates)
3 Output: validation error

4 // initials computed in Algorithm 1
5 coefficients = initials.coefficients
6 while number of iterations < 𝑇𝑐 do
7 foreach feature 𝑗 do
8 foreach observation 𝑖 in Dt do
9 𝑤𝑖 = get_weights(coordinatesi, 𝑏𝑤 j)

10 𝑥 ′ = 𝑋:, 𝑗
11 𝑦′ = 𝑦 − (𝑋 𝑗 × coefficients𝑇

𝑗
)

12 coefficients𝑖, 𝑗 = WLS(𝑥 ′, 𝑦′,𝑤𝑖 )
13 end
14 end
15 end
16 𝑦 = predict(𝑏𝑤 , coefficients, 𝐷𝑣 ) // see Algorithm 3
17 return residual error of 𝑦

is the dependent variable, and 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠 are the location coor-
dinates. Line 5 initializes the coefficients to the initial coefficients
values of GWR as computed in Algorithm 1. Then, for a user-defined
number of iterations, it adjusts coefficients of all features one by
one using each observation in the input training data. In particular,
for each regression point 𝑖 , 𝑔𝑒𝑡_𝑤𝑒𝑖𝑔ℎ𝑡𝑠 subroutine computes the
weights of other data point based on its distance to point 𝑖 . In the
next lines, 𝑋:, 𝑗 is the j-th column of 𝑋 , 𝑋:, 𝑗 (coefficients:, 𝑗 ) refers to
all the values in 𝑋 (coefficients) except for the values in column 𝑗 ,
and the ∗ operator is the sum of the rows of the Hadamard product:

𝑐 = 𝐴 ∗ 𝐵 ⇒ 𝑐𝑖 =
∑
𝑗

𝐴𝑖, 𝑗𝐵𝑖, 𝑗 . (2)

Figure 1: Adaptive bandwidth illustration. Points are
weighted based on a their distance from the regression point
by a fixed kernel in the left plane and by an adaptive kernel
in the right plane.

The subroutine𝑊𝐿𝑆 returns the value ofweighted least squares [6]
for the features vector and the dependent vector using the weights
𝑤𝑖 . The predict subroutine, that is called in Algorithm 2 line 16, is
the same subroutine that is used to predict new observation. We
detail the prediction procedure in Section 4.3.

S-MGWR and MGWR share the core idea of using distinct band-
widths for different features to enable multiple spatial scales. Also,
both techniques adjust the model one feature at a time using a
variation of weighted least squares. However, there are significant
differences between the two models. MGWR uses back-fitting to
adjust the coefficients which means for every iteration and every
feature, MGWR searches for the best bandwidth for that specific
feature and then updates its state based on the trained coefficients
calculated from the bandwidth. For example, based on the initial
values, MGWR finds 𝑏1 as the best bandwidth describing the first
feature. Then, based on this it will update all the other features.
When MGWR tries to readjust the first feature, it will use the up-
dated coefficients which were computed based on 𝑏1. Choosing a
different bandwidth in first iteration can greatly impact the second
iteration and the final result. This means, to produce the same result
as training MGWR needs the complete history of the bandwidths to
adjust the model. Generating the complete history where the length
of the sequence is not known extends the search space by orders
of magnitude making it very difficult to use a black-box optimiza-
tion algorithm. This problem does not exist in S-MGWR where the
bandwidths adjust the model independently from the values of past
bandwidths. In addition to the flexibility to use various optimization
algorithms, it also enables S-MGWR to search multiple bandwidths
simultaneously in parallel. Such parallelization facilitates running
more iterations to find the set of bandwidth that best describes
the data. So, it boosts both runtime scalability and accuracy of the
model without compromising the model expressiveness.

The remainder of this section detail different parts of the S-
MGWR technique. Section 4.1 explains the concepts of the weight
kernel used to compute the weights of data points in Algorithm 2.
Section 4.2 discusses different strategies to explore the bandwidth
space to find the optimal set of bandwidths. Section 4.3 explains
the prediction procedure for the validation as well as the test data.
To further improve the runtime performance of S-MGWR, we use
a Least Recently Used (LRU) cache for the computed weights that
is described in Section 4.4.

4.1 Spatial Weighting Scheme
The weight function can be any function that assigns weights to
the data points based on their distance to the regression point. The
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following equation is an example of computing weight of point
𝑘 based on regression point 𝑖 and bandwidth of feature 𝑗 using a
Gaussian weight function.

𝑤𝑖 [𝑘] = 𝑒𝑥𝑝 [−1
2
(
𝑑𝑖,𝑘

𝑏 𝑗
)2] . (3)

In Equation 3, 𝑑𝑖,𝑘 is the spatial distance between data point 𝑖 and
regression point 𝑘 . 𝑏 𝑗 is computed using the bandwidth parameter
related to the feature 𝑗 . The bandwidth value for each feature helps
indicate how local or global the impact of that feature is. We use
adaptive bandwidths in S-MGWR. For each bandwidth 𝑏 for feature
𝑗 and each regression point 𝑖 , the value 𝑏 𝑗 (Equation 3) is computed
based on the distance of 𝑏 nearest neighbors of data point 𝑖 . This
allows the weighting scheme to adjust the weight kernel based on
how dense or sparse the neighborhood of the regression point is.
Figure 1 is an illustration of fixed and adaptive kernels. In Figure 1,
the dark blue points represent the data points and the red points
represent the regression points. The left plane shows a fixed kernel
where for each regression point the same kernel is applied. Either
the locality is sparse or dense with data points, the same influence
range is used. The plane on the right represents the adaptive kernel
where different kernel functions are applied for points in dense
or sparse areas. Areas that are sparse and have fewer data points
use larger influence ranges to capture enough nearby points. On
the contrary, areas that are dense with data points use smaller
influence ranges as they will be enough to capture nearby points.
In both cases, the weight for distant points would be very small.
Therefore, in order to improve the speed, we introduced a cutoff
distance to our algorithm. For each 𝑏 𝑗 and cutoff number 𝑐 , any
point with a distance more than 𝑐 × 𝑏 𝑗 from the observation point
𝑗 is not considered and has a weight of zero. The example kernel of
Equation 3 will then change to:

𝑤𝑖 [𝑘] =
{
𝑒𝑥𝑝 [− 1

2 (
𝑑𝑖,𝑘
𝑏 𝑗

)2] 𝑑𝑖,𝑘 ≤ 𝑏 𝑗 × 𝑐

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(4)

Cutoff threshold reduces the search space by allowing the algorithm
to omit the data points that are far enough from the regression point.

4.2 Bandwidth Search Strategies
The bandwidth should reflect the rate that regression weights decay
around a certain location. Using a sensible weighting function, if
the bandwidth is small, weights decrease quickly as the distance
between a data point and the regression point increases. On the
other hand, using big bandwidths should create a smoother surface
and the weights would decline slowly as the distance increases.
S-MGWR uses adaptive bandwidths. That means S-MGWR uses
the number of neighbors as bandwidths and computes the locality
based on the distance of its neighbors. Adaptive bandwidth gives
S-MGWR the ability to adjust the locality based on the sparsity of
the neighborhood around an observation.

The bandwidth search space is extremely large. If𝑛 is the number
of observations and 𝑚 is the number of features, then the band-
width space size is 𝑛𝑚 . Thus, a smart algorithm is necessary to
explore the huge search space effectively. We have implemented
Hyperband [22], Simulated Annealing, Bayesian Optimization[35],
Simultaneous Perturbation Stochastic Approximation (SPSA) [36],
and Hill Climbing to search for the best set of bandwidths. We

also created a combination of these algorithms to benefit from the
strength of each algorithm. Our approach uses a combination of
SPSA, Bayesian Optimization, and Hill Climbing methods. This
combination is founded on studying the effect of each method on
error improvement over time and its speed of convergence to the
best error, as outlined in Appendix A and Figure 6. SPSA method
is used to explore the space as broadly as possible in a short time
frame. After that, the Bayesian Optimization is performed to explore
the space around the SPSA’s result. Finally, to find a local optima,
our algorithm performs the Hill Climbing search. The details of
implementation for these methods are discussed in Appendix A.

4.3 Prediction Procedure
To predict the dependent value for a new sample, similar to the train
process, the algorithm computes the coefficients of this sample. Al-
gorithm 3 shows the prediction procedure. For each feature of each
new sample, the weight matrix is generated based on the location of
the new sample and the training data. After computing the weight
matrix, a weighted least squares will compute the coefficient which
is used to compute the predicted dependent value of the sample.

Algorithm 3: predict (S-MGWR Prediction Phase)
1 Input: bandwidth vector 𝑏𝑤 , trained_coefficients, dataset 𝐷
2 Output: prediction values

3 m = |D|
4 k = number of features of 𝑑 ∈ 𝐷

5 X =𝑚 × 𝑘 matrix of feature values of 𝐷
6 coords =𝑚 × 2 matrix of location coordinates of 𝐷
7 coefficients = [0]𝑚 × 𝑘

8 foreach observation 𝑖 in 𝐷 do
9 foreach feature 𝑗 do
10 𝑤𝑖 = get_weights(coords𝑖 , 𝑏𝑤 𝑗 )
11 𝑥 ′ = 𝑋:, 𝑗
12 𝑦′ = 𝑦 − (𝑋 𝑗 × trained_coefficients𝑇

𝑗
)

13 coefficients = WLS(𝑥 ′, 𝑦′,𝑤𝑖 )
14 end
15 end
16 predictions = coefficients × 𝑋

17 return predictions

4.4 Accelerating Weight Computation
For each bandwidth value, a weight vector with size 𝑛 is computed
for each observation point 𝑖 where 𝑛 is the number of training data
points. Thus, for each bandwidth, we can store all the weights of
all observations on a 𝑛 × 𝑛 matrix. Since S-MGWR uses adaptive
bandwidth, the bandwidth can only be a positive integer number
smaller than 𝑛. Therefore, all the possible weights would require
O(𝑛3) space. Since most generated bandwidths have at least one
value in common with previous bandwidths, storing the values of
previously computed weights can be helpful to reduce the runtime
of S-MGWR. In our implementation, we use a cache with least
recently used (LRU) replacement policy. If the cache stores 𝑐 (a
constant number) bandwidths at a time, then the memory usage will
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(a) Equal Height Grid (b) Equal Count Grid (c) k-means Splitting

Figure 2: Splitting a sample data into eight sections using
grid and k-means methods.

be O(𝑐×𝑛2) → O(𝑛2). The impact of cache is noticeable, especially
when using the Hill Climbing algorithm for the bandwidth search.
In Hill Climbing, only one of the bandwidths changes each time.
Hence, the rest of the weights can be read from the cache. We
evaluate the caching impact in our experimental evaluation.

5 Augmented GWR (A-GWR)
S-MGWR provides a multi-bandwidth spatial regression model that
does not need a full history of bandwidth values for computations.
Hence, it has eliminated the dependency problem among the con-
secutive iterations of adjusting the model parameters. To make use
of such significant advancement in improving the accuracy and re-
ducing the runtime, we propose augmented GWR (A-GWR) model.
A-GWR divides data into different sections. Then, a combination of
S-MGWR and a general-purpose supervised learning model is used
for each section. S-MGWR, as a spatial model, captures the spatial
relationships of the data and the other model captures nonlinear
interactions. To combine the models, we use two different methods,
namely, pipeline and ensemble, that apply models in a different or-
der. A great advantage of A-GWR is that it is generalizable to other
spatial regression models as well. This gives flexibility for spatial
applications to choose the best models according to their needs
and data characteristics. This is also applicable for the general-
purpose supervised model, which can be a simple least-squares
algorithm or a complex neural network. However, for specificity,
and without loss of generality, we discuss A-GWR in the rest of this
section using S-MGWR as a spatial model and Random Forest as
a general-purpose learning model. The rest of the section discusses
data splits, model integration, and computational complexity.

5.1 Data Splitting
In order to divide the data, we use two methods that can be applied
to different applications.

• Grid Splitting: Dividing data into grid cells is a popular method
which is also used in [9, 16]. In the grid splitting, the data is divided
into grid cells where the number of rows and columns are defined
by the user. The grid either divides the space into equal-height cells,
by dividing the space to equal height rows and then dividing the
rows to equal width sections, as in Figure 2a. Another grid option
is to divide the space into varying size cells where each of them
contains the same number of training data points, as in Figure 2b.
For a new point, its corresponding grid cell is located. Then, the
result of the model associated with that grid cell is reported.

• Cluster Splitting: Using randomly generated k-means centers, we
perform k-means clustering for training data points. Each cluster

Figure 3: Ensemble model integration order (general-
purpose model first).

represents a section of data containing all the training data points
in that cluster. For a new point, after finding its designated cluster,
the result of the model associated with that cluster is reported. An
example of this method is shown in Figure 2c.

Using k-means and grid splitting methods focus more on pre-
serving the spatial neighborhood, which is more in accordance
with Tobler’s first law of geography, i.e., “everything is related
to everything else, but near things are more related than distant
things” [37]. Our empirical evaluation has confirmed the advantage
of these splitting methods.

5.2 Model Integration
This section discusses integrating the two models employed by
A-GWR: S-MGWR and Random Forest. We apply these to different
data sections using two different orders. The first order, ensemble,
employs the Random Forest model first, while the second order,
pipeline, employs S-MGWR first. We outline each of them below.

• Ensemble (general-purpose model first): In this method, for
each section 𝑖 , first, we train a Random Forest (RF) model on all
the training data except for the data in section 𝑖 . Then, using the
trained model, we predict dependent values for the data in section 𝑖 .
Since this data was not in the training process, the model does
not overfit the data in section 𝑖 . Using the true dependent values
and the predicted ones, we compute the residual errors. In the last
step, an S-MGWR model is fitted to the data and the residuals. This
model captures the spatial relation between data that the RF model
fails to capture. In addition, due to running the spatial model on a
fraction of data, the runtime is improved.

Figure 3 demonstrates the ensemble process on𝐶 sections of data.
For Section i, first, a random forest model is trained over all the data
in the dataset except for data in section i to create model i. Then,
the data of Section i is passed to Model i to compute the residual
errors. These residuals are then passed to the spatial S-MGWR
model to capture the spatial relativity of the data in each section.
For predicting a new sample, if the data splitting method is k-means
or grid data, then the new sample is homed into a corresponding
data section. Afterward, the data is passed to the corresponding
S-MGWR and RF models of that section. The result is the sum of
the two outputs. Another option is to run through all the models
and then combine the result based on the distance of each section
to the point. This can be measured by the distance of the grid center
or cluster center of that section to the point.

• Pipeline (spatialmodel first): In this method, we feed the train-
ing data to the spatial S-MGWR model first. Then, the residual data
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Figure 4: Pipeline model integration order (spatial model
first).

computed from the spatial model is passed to the RF model. The
prediction is the same as the ensemble method. After determining
the section, the sum of results from both spatial and fast models is
reported as the result. Figure 4 shows the pipeline method on𝐶 data
sections. For each section, a spatial model is trained and then the
residual errors are passed to the RF model. The spatial model might
overfit the data preventing the RF model to completely capture the
global relations between data. However, when using models such
as S-MGWR where the base is using less complex methods such as
least squares, this is not the issue and the pipeline method provides
great improvements on accuracy.

5.3 Computational Complexity
Assuming a training dataset of 𝑛 observations and 𝑘 features, in
Algorithm 1, we perform 𝐿 iterations, each iteration performs band-
width for the 𝑘 features (in O(𝑘)) and residual error computation,
which is more expensive than the bandwidth search as detailed in
Algorithm 2. So, the overall complexity is 𝐿 multiplied by the cost
of error computation. The error computation involves 𝑇 iterations,
each goes over each feature and each training observation to get
weights and compute coefficients. According to Algorithm 2, this
performs a total of O(𝑇𝑘𝑛) iterations, each computes weights in
O(𝑛) (Line 9), which gives an error computation complexity of
O(𝑇𝑘𝑛2). So, the overall complexity of training is O(𝐿𝑇𝑘𝑛2).

A-GWR breaks data into different sections, each section contains
a constant number of observations 𝐶 , so it operates on 𝑛

𝐶
sections.

At each section, the training cost is O(𝐿𝑇𝑘𝐶2). For all sections, the
overall complexity is O(𝐿𝑇𝑘𝐶2) × 𝑛

𝐶
= O(𝐿𝑇𝑘𝐶𝑛). Having L, T,

and C as constants, then the overall complexity is O(𝑘𝑛).
This complexity analysis does not consider parallel processing.

However, our techniques are parallelizable as different sections
are independent and can be trained in parallel using 𝐽 threads,
which reduces the overall time by a factor of 𝐽 , where each thread
complexity is O(𝐿𝑇𝑘𝐶2). Thus, with constant 𝐿,𝑇 ,𝐶 , the overall
time would scale as O(𝑘𝑛/𝐽 ). Also, the bandwidth search process
is parallelizable, thanks to the stateless nature of S-MGWR, so it is
possible to independently validate each set of bandwidths.

6 Experimental Evaluation
We have implemented A-GWR using Python programming lan-
guage and we use PySAL library [32] modules to run MGWR and
GWR techniques with Gaussian kernel and CV criterion for the
search method. For Random Forest (RF) learning model, we use
scikit-learn Python library with 60 as the number of estimators
and default values for the rest of the model parameters. We report

results on the pipeline model integration. For the multiprocessing,
we used the multiprocessing Python library. We set the number of
learners to the minimum value of the number of sections and the
number of CPU threads. The number of learners indicates the num-
ber of pools to create. Each pool is responsible for a data section.
For the spatial data, features are separated from location attributes,
and these two properties are passed to the spatial model. For the
random forest, the features and locations are concatenated and used
as the training data.

All techniques run on an Intel(R) Xenon Silver 4214 machine
with CPU @ 2.20GHz and 32 GB of RAM. We evaluate the perfor-
mance using a total of eight different datasets, six real datasets,
and two synthetic datasets. Unless mentioned otherwise, by default
each data section contains one thousand data points. Our perfor-
mance measures include training runtime and prediction accuracy.
The scripts to A-GWR and S-MGWR are available at Github [40].
Prediction accuracy are measured on the test data using [1 − (𝑅2)]
error measure:

1 − 𝑅2 =

∑
𝑖 (𝑦𝑖 − 𝑦𝑖 )2∑
𝑖 (𝑦𝑖 − 𝑦)2

Evaluation datasets. We use eight datasets, six of which is real and
two is synthetic. Four out of the six real datasets are obtained from
PySAL library [32], and these datasets are the standard ones that
are used to evaluate various variations of GWR and MGWR tech-
niques [17, 29, 30] . Below is the description of different datasets.

• PySAL datasets: We use four of the datasets provided in the
PySAL library, originally hosted by the Spatial Analysis Research
Center of the Arizona State University that provided GWR and
MGWR software. The datasets represent the socio-economic vari-
ables for counties of Georgia, Tokyo Mortality data, the clearwater
dataset, and Prenzlauer Berg neighborhood AirBnB data [8]. The
dataset sizes are 159, 262, 239, and 2203 respectively. Due to the
small size of these standard datasets, we solicited the other two
large datasets that are described below.

• New York City Airbnb Open Data: This dataset, denoted as
NYCAirBnb, is Airbnb data for the NewYork city [5]. After removing
rows with missing data, we use the room type, minimum nights that
a guest can stay, number of reviews, reviews per month, amount
of listing per host, and the availability of the unit along with the
location to predict the listing price. The price in this dataset is
skewed and therefore we use the logarithm of the price. The dataset
has 38782 listings after clean up.

• House Sales in King County, USA: This dataset, denoted as
kingHousePrices, has the house sale prices for King County [15].
After removing instances with missing values, we select the number
of bedrooms, number of bathrooms, square footage of the apart-
ment’s interior living space, number of floors, house condition, and
grade, the year built, and the location as our features to predict the
price of the house. In total, the dataset has 18708 house sales.

• Synthetic Dataset 1: We create a synthetic dataset, denoted as
synthData1, of 1296 points that is very close to what is described
in MGWR [12]. We define five different surfaces for covariates
and randomly generate the values for features and compute the
dependent values based on them. The synthetic dataset is defined
by the pair (𝑙, 𝑏) where 𝑙 is the size of the grid and 1 ≤ 𝑏 ≤ 5 is
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Method 1 - 𝑅2 (×10−3)
Hyperband 3.475
SPSA 2.570
Simulated Annealing 2.535
Bayesian Optimization 2.347
Hill Climbing 2.023
Fibonacci Hill Climbing 2.022
Combined Search 1.955

Table 1: Error value of different bandwidth search methods

the number of surface functions to use. We define the dependent
values using the following equation:

𝑦𝑖 = 𝜖𝑖 +
𝑏−1∑
𝑗=0

𝛽 𝑗 (𝑢𝑖 , 𝑣𝑖 )𝑥𝑖, 𝑗 (5)

Where 𝑢𝑖 and 𝑣𝑖 are the horizontal and vertical location of each
point in the grid, 0 ≤ 𝑢, 𝑣 < 𝑙 . The definition of The covariate
surface functions (𝛽0 to 𝛽4) are explained in more detail in the
Appendix B.4. Figure 7 is an illustration of the surface functions.
For all the points in an 𝑙 × 𝑙 grid, we generate 𝑥1 to 𝑥𝑏 randomly
from a normal distribution N(0, 1) and combine it with the error
term 𝜖𝑖 that is randomly generated from N(0, 0.5).

• Synthetic Dataset 2: We created a second synthetic dataset
with (𝑙, 𝑏)=(40, 5), denoted as synthData2, of 1600 points that is
similar in structure to the first synthetic dataset. However, one
feature is developed in a way that cannot be computed with a
simple regression over neighboring data points. The rationale of
this dataset is to test different techniques for capturing nonlinear
interactions among features (as we will evaluate in Table 3 later in
the section). The dependent value for this dataset is computed as:

𝑦𝑖 = 𝜖𝑖 +
3∑
𝑗=0

𝛽 𝑗 (𝑢𝑖 , 𝑣𝑖 )𝑥𝑖, 𝑗 +
(

1
4
𝑥𝑖, 𝑗𝑥𝑖, 𝑗−1

)2
𝛽4 (𝑢𝑖 , 𝑣𝑖 ).

6.1 Model Tuning
We performed a series of experiments to compare different band-
width search methods and tune the data section size and show their
impact on accuracy and runtime.

Bandwidth search method. To choose the best strategy to
search the bandwidth space, we applied each method over the syn-
thData1 dataset for the same amount of time and compared the
results. Due to the random nature of the algorithms, we performed
each experiment five times and reported the average error value in
Table 1. The Fibonacci version is similar to the ordinary versions but
the bandwidths are forced to be Fibonacci values. Using Fibonacci
numbers limits the searching space and increases the cache hits.
The combined search strategy uses SPSA, Bayesian Optimization,
and Hill Climbing enabling it to search globally and locally for the
optimum set of bandwidths. As shown in Table 1, the combined
search strategy gives the lowest error compared to other strate-
gies. This shows the superiority of our proposed combined search
strategy. Therefore, this strategy is used as the default strategy for
bandwidth search in other experiments.

Data section size. In A-GWR, one of the most important factors
that affect accuracy and runtime is how many data sections the
training data is divided to, and hence the size of each data section.

(a) Runtime based on different
number of sections

(b) 𝑅2 error for different section
sizes

Figure 5: Accuracy and runtime over synthData1 and king-
HousePrices datasets

There is a trade-off between runtime and accuracy. If there are too
many sections, each section contains a few data points and cannot
necessarily capture the relations among the data points which re-
duces the accuracy. If each section has too many points, the runtime
will be slow. Figure 5 shows the result of different division sizes over
two different datasets, synthData1 (SD1) and kingHousePrices (KGP).
We use GWR as the spatial module and Random Forest (RF) as the
general learning module. Figure 5b represents the error values for
different section sizes. Cell (𝑎, 𝑏) in Figure 5b is the error value
if we divide the dataset to 𝑎 × 𝑏 sections. The figure shows that
by dividing the data to more sections, the runtime of the pipeline
integration method will drop (Figure 5a) and the error rate will gen-
erally increase (Figure 5b). The pipeline integration method relies
on the spatial module as the first model and when the section size
is too small, the spatial module cannot capture the relation between
data points. For the ensemble integration method, the runtime in-
creases after a certain point (10 data sections in Figure 5a), this is
because the increase rate of runtime of the Random Forest model
is higher than the decrease rate in the runtime of GWR. As the
number of sections increases, the training data fed to the Random
Forest model increases. Since Random Forest is the first module of
ensemble, it captures most of the relation between data points. Thus,
more sections and consequently more data increase the accuracy.

6.2 Model Performance
We perform a series of experiments to evaluate the performance
of A-GWR, showing the separate impact of S-MGWR as well as
the impact of combining it with the other parts of A-GWR frame-
work. In all datasets except for the largest two (kingHousePrices,
NYCAirBnb), we average the results over 5 independent train-test
splits of the original training data (80%-20%). This is important
to ensure reproducibility as we observed that accuracy has large
variability for small datasets. See Appendix for further details.

Evaluating S-MGWR performance. To compare the perfor-
mance of S-MGWR with MGWR and GWR, we use the synthData1
dataset. We have the true values of coefficients for this dataset and
we can compute how good each method is computing the coeffi-
cient. For a generated dataset we split the data to train and test
sections and train the S-MGWR, MGWR, and GWR over the train
section. We then report the 1−𝑅2 error over the test section and the
root mean square error (RMSE) of the coefficients of training points.
Since the dataset is generated randomly, we generated ten different
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synthData1 synthData2 kingHousePrices NYCAirBnb
Time (s) 1 - 𝑅2 Time (s) 1 - 𝑅2 Time (s) 1 - 𝑅2 Time (s) 1 - 𝑅2

GWR 1.5558 0.0121 5.0826 0.9101 512.0763 0.1441 2064.8780 0.4284
A-GWR w\GWR 4.3137 0.0031 9.7359 0.1962 138.563 0.1288 345.7216 0.3932
MGWR 35.7843 0.0016 58.3185 0.8868 80501.9860 0.1378 103713.3542 0.4378
A-GWR w\MGWR 41.0223 0.0016 63.8316 0.1830 5574.1644 0.1143 21460.6177 0.4125

Table 2: Evaluating A-GWR as a framework.

pGeorgia pTokyo pClrwatr pBerlin synthData1 synthData2 kingHousePrices NYCAirBnb
1 - 𝑅2 1 - 𝑅2 1 - 𝑅2 1 - 𝑅2 1 - 𝑅2 1 - 𝑅2 1 - 𝑅2 1 - 𝑅2

A-GWR (pipelined) 0.4161 0.0164 0.9226 0.6821 0.0137 0.0610 0.1109 0.4181
MGWR 0.4913 0.0226 0.9622 0.6965 0.0139 0.0999 0.1341 0.4378
GWR 0.3914 0.0215 0.9265 0.6876 0.0805 0.1168 0.1295 0.4284
Random Forest 0.3878 0.0352 0.9276 0.5825 0.1788 0.1240 0.1216 0.3927
XGBoost 0.6229 0.0359 1.0304 0.6942 0.1634 0.1042 0.1165 0.4092

Table 3: Performance of A-GWR, MGWR, GWR, and Random Forest over different datasets

Model Time (s) Coeff. RMSE 1 - 𝑅2 (×10−3)
GWR 1.18 3651.77 9.5
MGWR 42.88 467.75 1.2
S-MGWR 28.69 742.42 1.7
S-MGWR* - 468.20 1.2

Table 4: Performance of S-MGWR, GWR, and MGWR. S-MGWR*
is the S-MGWRmodel with bandwidth computed by MGWR.

datasets and report in Table 4 the average values of runtime, 1 − 𝑅2

error, and the coefficients RMSE over the ten simulations.
Table 4 shows that S-MGWR fills the gap between GWR and

MGWR. It fits the data more accurately than GWR due to its flex-
ibility and it has a better runtime than MGWR due to the ability
to use advanced black-box optimization algorithms. Also, running
S-MGWR with the bandwidths computed by MGWR (denoted as
S-MGWR*) shows a small difference in coefficients RMSE while
maintaining the best 1 − 𝑅2 error value. The table does not report
runtime for S-MGWR* as it has no training phase and uses the
bandwidths computed by MGWR directly. S-MGWR* shows that
given a good bandwidth selection method, being stateless does not
affect the accuracy. This shows even though S-MGWR does not
have the access to MGWR bandwidth history, its performance is
comparable to MGWR. This makes it a perfect candidate to be used
as part of high-level models such as A-GWR or parallelized models.

Evaluating A-GWR framework. This experiment shows the
benefits of A-GWR as a framework that could adapt different spatial
models and learning models. We study A-GWR with pipeline model
integration where we explore both MGWR and GWR as the spa-
tial model and Random Forest (RF) as the general learning model.
The primary motivation behind using pipeline over ensemble is to
promote the spatial model to do most of the prediction. Secondly,
since RF is more prone to overfitting, residuals after first fitting
with RF may be too small or lose their spatial relation reducing the
benefits of the subsequent spatial model. We consider four datasets:
synthData1, synthData2, kingHousePrices, and NYCAirBnb. Each
dataset is divided into sections so that each section contains at
most 1000 data points. The synthetic dataset sections are divided
into two columns with equal number of points. The kingHouse-
Prices dataset is split using a grid to 4×5 grid with equal number of
points. Finally, the NYCAirBnb dataset is split to a 6×7 grid with

Time (s)
Cache synthData1 synthData2
Enabled 1133.2258 764.5523
Disabled 1612.3177 1070.3291

Table 5: Runtime of S-MGWR with and without cache

equal number of points. The result of A-GWR with MGWR and
A-GWR with GWR along with the ordinary versions are shown in
Table 2. Both A-GWR versions of GWR and MGWR outperform
the ordinary versions in accuracy. In addition, the A-GWR models
are considerably faster than the ordinary versions on real datasets.
The A-GWR with MGWR performs up to 14.4× faster than MGWR
and A-GWR with GWR performs up to 5.9× faster than GWR.

Finally, we compare A-GWR with S-MGWR as a spatial module
and Random Forest (RF) as the general learning model with MGWR,
GWR, Random Forest, and XGBoost [3]. We use scikit-learn library
[31] Table 3 shows the error rate of these methods over different
datasets where A-GWR outperforms all other techniques for most
of the datasets. As expected MGWR and A-GWR both perform very
well on the synthetic dataset 1 thanks to the GWR-friendly construc-
tion in (5). However, due to the nonlinearity in synthetic dataset 2,
A-GWR performs much better than MGWR. In our experiments, we
use Random Forest implemented in the scikit-learn library [31]. For
our GWR and MGWR models, we use a slightly modified version
of the mgwr package provided in PySAL[29]. The modified version
is made available on our Github page [40]. For Random Forest we
tuned its hyper-parameters using a random search algorithm to find
the best combination of number of estimators, max features, max
depth, min samples split, min samples leaf, and bootstrap setting.
For the XGBoost model, we used the default values of the library.

Evaluating cache impact. To evaluate the impact of the LRU
cache, we compare the runtime of A-GWR over the two synthetic
datasets. Runtimes that are listed in Table 5 shows around 30%
improvement in time when using cache to store weights. For large
datasets, this percentage is considerable and contributes towards
faster training phases of A-GWR models.
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7 Conclusions
This paper has introduced Augmented Geographically Weighted
Regression (A-GWR), a spatial regression framework that gener-
alizes MGWR with stateless training, augmented general-purpose
learning models, and parallelization features to handle large and
complex spatial datasets. A-GWR introduces Stateless-MGWR (S-
MGWR) that is a flexible spatially-varying coefficient (SVC) model
with distinct bandwidths for individual features to adjust spatial
scale based on the feature impact. S-MGWR is combined with state-
of-the-art black-box optimization techniques to find the optimum
set of bandwidths efficiently. A-GWR framework achieves higher
expressiveness by augmenting powerful machine learning models
with spatial models to capture both spatial and non-spatial aspects
of the data. In addition, A-GWR achieves scalability by intelligently
diving data to smaller sections while preserving the spatial relations
between points. Extensive empirical evaluation on eight real and
synthetic datasets has shown that A-GWR is a fast, flexible, and
scalable algorithm to model spatial data. It achieves better accuracy
while performing up to 14.4 times faster than existing models.
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Appendix
A S-MGWR Bandwidth Search Strategies
As discussed in Section 4.2, S-MGWR can use different bandwidth
search strategies to explore the huge bandwidth search space. This
appendix briefly discusses each of these methods.

⋄ Hyperband: Hyperband [22] is an extension of successive
halving algorithms [18] where a number of different bandwidths are
generated and then evaluated using a fraction of training data. Then
the top performing combinations are selected and evaluated using a
bigger fraction of training data. This method takes three parameters,
starting_configs,min_budget, and 𝜂. The starting_configs determines
the number of different combinations to start from. Themin_budget
determines the minimum number of points for evaluating each set
of bandwidths. The 𝜂 controls the proportion of configurations
discarded in each round of successive halving [22].

⋄ Simulated Annealing: Simulated annealing is a well-known
probabilistic optimization algorithm that simulates temperature-
like heating and cooling moves in the search space. It takes parame-
ters T, 𝛼 , steps, updates, 𝜇, and 𝜎 . T and 𝛼 determine the temperature.
The neighboring states are generated based on a normal distribu-
tion 𝑁 (𝜇, 𝜎). For each state, the number of steps is reduced by one.
If the new state is better than the best state found so far, the number
of updates is reduced by one. The algorithm returns the best value
when steps or updates reach zero.

⋄ Hill Climbing: Starting from an arbitrary solution, at each
iteration of the Hill Climbing method, only one of the features’
bandwidth is changed. If the new combination has a better valida-
tion result, it is replaced as the answer so far. This method is very
similar to the Simulated Annealing method. The only difference is
in the way of generating neighboring states.

⋄ Bayesian Optimization: It is a black-box optimization algo-
rithm. It creates a probabilistic model (called surrogate model) of
the objective function; with each new point, the surrogate model is
updated. To pick a new point for evaluating, an acquisition function
is used. At each step, the next point is determined by the acquisi-
tion function and after evaluating that point the model is updated.
We use the BayesianOptimization library for python [28] and pass
the random_count and iter_count to it. When the is_local variable
is true, only values in the locality_range of best answer so far is
considered.

⋄ SPSA: SPSA is a stochastic approximation algorithm that is
capable of finding the global optimum. At each step, it approximates
the gradient by measuring the objective function at only two points.
Then, it moves in the direction that minimizes the error. The fact
that SPSA is independent of the dimension of the features makes
it a great choice for our application where data have more than
one feature and computing the gradient for all these takes a lot
of time. SPSA takes three parameters, alpha_decay, gamma_decay,
and steps. The details for this method are presented in Algorithm 4.

⋄ Combined Search Strategy: Our approach uses a combina-
tion of all the methods discussed. SPSA method is used to explore
the space as broadly as possible in a short time frame. After that, the
Bayesian Optimization is performed to explore the space around the
SPSA’s result. Finally, to find a local optima, our algorithm performs

Algorithm 4: SPSA method
1 Input: steps, gamma_decay, alpha_decay
2 Output: A vector of bandwidths
3 while iter < steps do
4 𝑐𝑖𝑡𝑒𝑟 = 1

10 (gamma_decay(𝑖𝑡𝑒𝑟+1) )
5 if base is None then
6 𝑎𝑖𝑡𝑒𝑟 = 1

max(𝑏𝑒𝑠𝑡_𝑒𝑟𝑟𝑜𝑟,10−5) (alpha_decay
(𝑖𝑡𝑒𝑟+1) )

7 else
8 𝑎𝑖𝑡𝑒𝑟 = 1

max(𝑏𝑎𝑠𝑒,10−5) (alpha_decay
(𝑖𝑡𝑒𝑟+1) )

9 end
10 Δ = a random perturbation vector
11 𝑔𝑖𝑡𝑒𝑟 = 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒 (𝑠𝑡𝑎𝑡𝑒+𝑐𝑖𝑡𝑒𝑟Δ)−𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒 (𝑠𝑡𝑎𝑡𝑒−𝑐𝑖𝑡𝑒𝑟Δ)

2𝑐𝑖𝑡𝑒𝑟Δ
12 if base is None then
13 base = max value in 𝑔𝑖𝑡𝑒𝑟 vector
14 end
15 state = state - (𝑎𝑖𝑡𝑒𝑟 × 𝑔𝑖𝑡𝑒𝑟 )
16 end
17 return state

Figure 6: Timeline of error reduction for different band-
width search methods.

the Hill Climbing search. Combining different bandwidth search
methods is founded by analyzing the error improvement of each
method over time. Figure 6 shows the error reduction for different
methods over 100 seconds of time. The x-axis represents a timeline,
from 𝑡 = 0 to 𝑡 = 100, and the y-axis represents the error value. The
figure shows GWR as the fixed upper bound (at error 1.15𝑥10−2)
and MGWR as the fixed lower bound (at error 0.16𝑥10−2), and ev-
ery method starts with error equals GWR error and converges to
an error close to MGWR. It is noticeable that different methods
converge to the best error (MGWR error) at different speeds. This
guides the combined search strategy to use the faster convergence
methods first.
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B Implementation Notes
B.1 Library Notes
For the multiprocessing, we used the multiprocessing library in
Python. We set the number of learners to the minimum value of the
number of sections and the number of CPU threads. The number
of learners indicates the number of pools to create. Each pool is
responsible for a data section. For the spatial data, features are
separated from location attributes and these two properties are
passed to the spatial model. For the random forest, the features and
locations are concatenated and used as the training data.

PySAL implementation of GWR does not allow multiple predic-
tion calls. This is specifically problematic for the pipeline method
where a prediction call happens during the training (to compute
the residuals) and one prediction call for the test data. Due to this
problem, if GWR is passed as the spatial module, after the predic-
tion is done in the training process, we train the spatial module
again. This does not affect the accuracy as GWR is deterministic and
produces the same result given the same input. However, the time
reported for A-GWR using GWR module can be further improved
using another implementation.

B.2 S-MGWR Notes
S-MGWR evaluates the bandwidths using 𝑘-fold cross-validation.
For the 𝑘-fold cross-validation, where 𝑘 > 1, for each set of band-
widths, the validation error is computed and the mean of 𝑘 values is
reported as the error for the bandwidths set. There is also a feature
called information sharing that can be enabled or disabled when
S-MGWR is employed within A-GWR. If information sharing is
enabled, different sections can interact and pass information to
each other. In essence, this warm starts the bandwidth search and
accelerates the optimization. For example, when a section finds
the best set of bandwidths, any section that has not started the
search process can use that set of bandwidths as the initial search
point. This helps a faster convergence as for the same dataset, dif-
ferent data sections are expected to have similar localities. We used
Manager module from the multiprocessing library in Python for
communication between our different processes.

B.3 Experiments Notes
We used different settings and search algorithms in S-MGWR
for different experiments. The following indicates the parame-
ter values of bandwidth search algorithms for different exper-
iments. For Table 1 we use 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑_𝑎𝑛𝑛𝑒𝑎𝑙𝑖𝑛𝑔 (3, 0.97, 180,
125, 0, 0.2), ℎ𝑖𝑙𝑙_𝑐𝑙𝑖𝑚𝑏𝑖𝑛𝑔 (185, 110, 0, 0.1), ℎ𝑦𝑝𝑒𝑟𝑏𝑎𝑛𝑑 (243, 64,
3), 𝑆𝑃𝑆𝐴 (60), 𝑓 𝑖𝑏𝑜𝑛𝑎𝑐𝑐𝑖_ℎ𝑖𝑙𝑙_𝑐𝑙𝑖𝑚𝑏𝑖𝑛𝑔 (200, 115, 0, 0.1), and
𝑏𝑎𝑦𝑒𝑠𝑖𝑎𝑛_𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 (true, 10, 15, 20). For our combined search
strategy method, we use 𝑆𝑃𝑆𝐴 (9), 𝑏𝑎𝑦𝑒𝑠𝑖𝑎𝑛_𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 (false,
-, 60, 60), ℎ𝑖𝑙𝑙_𝑐𝑙𝑖𝑚𝑏𝑖𝑛𝑔 (75, 45, 0, 0.1). For Table 5, that shows
the caching experiment, we use the following combination:
ℎ𝑦𝑝𝑒𝑟𝑏𝑎𝑛𝑑 (27, 64, 3), 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑_𝑎𝑛𝑛𝑒𝑎𝑙𝑖𝑛𝑔 (3, 0.97, 20, 15, 0, 2),
and ℎ𝑖𝑙𝑙_𝑐𝑙𝑖𝑚𝑏𝑖𝑛𝑔 (100, 50, 0,1).

Figure 7: Illustration of the covariate functions. 𝛽0 to 𝛽4 are
displayed from left to right, respectively
B.4 Dataset Notes
The covariate surface functions (𝛽0 to 𝛽4) for Equation 5 are defined
as follows:
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Where 𝑢𝑖 and 𝑣𝑖 are the horizontal and vertical location of each
point in the grid, 0 ≤ 𝑢, 𝑣 < 𝑙 . Figure 7 is an illustration of the
surface functions.
For the large datasets (New York City Airbnb Open Data and House
Sales in King County, USA) we split the data randomly to train and
test splits. Training dataset contains 80 percent of the data and the
rest are assigned to the test set. For other datasets, due to their small
size, we created 5 different random splits with the same 80%-20%
ratio. For each set, we used a different preset random seed (seeds
from 1 to 5 were used) and for each seed, the data is randomly
divided into the train and the test set. The results reported on these
datasets is the mean of the results over each different split. We also
verified that the standard errors are reasonably small.
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