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Abstract— The increasing penetration of distributed en-
ergy resources (DERs) necessitates advanced hosting ca-
pacity (HC) assessments to ensure reliable grid operation.
Traditional static HC methods and Dynamic Operating En-
velopes (DOEs) often rely on instantaneous voltage con-
straints, leading to overly conservative estimates. In this
paper, we first propose a deterministic hosting capacity
optimization model with a novel voltage violation duration
constraint. Then, we build a graph convolutional recurrent
network (GCRN)-based stochastic hosting capacity opti-
mization (S-HC) framework. Finally, we propose a Surro-
gate Lagrangian Relaxation (SLR)-based temporal decom-
position scheme to improve solving efficiency. Numerical
results demonstrate the framework’s effectiveness in en-
hancing operational HC assessment and maximizing DER
integration.

Index Terms— Hosting capacity, dynamic operating en-
velop, stochastic optimization, surrogate Lagrangian relax-
ation.

[. INTRODUCTION

The integration of distributed energy resources (DERs),
such as solar photovoltaic (PV) systems, has introduced new
challenges and opportunities in the operation and planning
of distribution systems. Central to understanding the impact
of DERs is the concept of hosting capacity (HC), which is
multifaceted and can be interpreted differently depending on
the context. From a planning perspective, hosting capacity
refers to the maximum installed capacity of DERs that the
grid can physically accommodate, considering infrastructure
constraints such as thermal ratings and equipment limits. From
an operational perspective, hosting capacity focuses on the
maximum accommodated capacity, i.e., the amount of DER
generation the grid can handle under specific operating condi-
tions without causing adverse impacts like voltage violations,
thermal overloads, or instability.

In planning applications, hosting capacity assesses the ca-
pacity of DERs that can be installed under various scenarios,
primarily through offline calculations [1]. While this approach
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is valuable for grid reinforcement and expansion planning, it
may fail to capture the temporal and stochastic variability of
DER generation and load profiles in near real-time. To address
these limitations, Dynamic Operating Envelopes (DOEs) have
emerged in recent years as a solution, providing a real-time
framework for managing DER integration while also facilitat-
ing demand-side participation in future electricity markets [2].
DOE:s can be viewed as a real-time adaptation of hosting ca-
pacity, designed to capture fluctuations in network conditions
over short timescales [3]. They define operational boundaries
within which DERs can function safely during a given period,
mitigating adverse grid impacts [4]. In this context, dynamic
operational HC can be viewed as the upper bound of feasible
DER integration under real-time grid conditions.

Several methods for calculating DOEs and assessing the HC
have been developed in recent years. Liu et al. [3] introduced
a deterministic approach to compute robust DOEs, specifically
addressing uncertainties in unbalanced distribution networks to
support reliable integration of DERs. Additionally, unbalanced
three-phase optimal power flow (UTOPF)-based techniques,
as explored by Petrou et al. [5] and Liu et al. [6], have been
developed to enhance DOE calculations and improve network
capacity utilization. Mahmoodi et al. [7] further developed a
hierarchical framework aimed at computing dynamic operating
envelopes for unbalanced distribution networks. This method
ensures compliance with network constraints while enabling
consumers to autonomously manage their DERs, balancing
grid security with flexibility in DER operation. Expanding
the scope to HC forecasting, Islam et al. [8] introduced a
sensitivity-enhanced recurrent neural network that dynamically
incorporates exogenous and temporal factors, achieving supe-
rior predictive accuracy. In parallel, Santos et al. [9] com-
bined optimized Volt—Var control with network reconfiguration
to cost-effectively maximize DER hosting capacity while
minimizing system losses. Addressing real-time operational
challenges, Trinh and Chung [10] proposed coordinated active
and reactive power control strategies that mitigate overvoltage
and thermal violations, reducing DER curtailment and further
expanding hosting limits.

Traditional static HC assessments [11] and DOEs stud-
ies usually use instantaneous voltage limits based on ANSI
C84.1-2016 [12]. However, this standard defines voltage limits
based on a 10-minute moving average, making instantaneous
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evaluations overly conservative. To address this limitation, a
dynamic HC analysis method was introduced in [13], which
explicitly considers the duration of voltage violations, ensuring
a more realistic and compliance-driven assessment. While this
approach is based on yearly quasi-static time-series (QSTS)
simulations and is primarily designed for planning-level HC
assessments, it may not be directly applicable to dynamic op-
erational HC assessments, which require real-time adaptability
to changing grid conditions.

The first factor influencing operational HC is the reactive
power support provided by the smart inverters of DERs.
According to IEEE 1547-2018 standard [14], DERs equipped
with smart inverters are required to inject or absorb reac-
tive power to assist with voltage regulation, which can lead
to a reduction in real power output. Other active network
management (ANM) techniques, such as dynamic network
reconfiguration (DNR) [15], [16] and tap-changing voltage
regulators (VRs) [17], [18], can provide voltage support,
thereby reducing DER curtailment. Recent studies have ex-
plored the joint optimization of DNR, VR tap settings, and
DER reactive power control, demonstrating their potential
to improve HC and grid stability [19], [20]. Various Al-
ternating Direction Method of Multipliers (ADMM) decom-
position methods have been investigated to solve inverter-
based Volt-Var Control (VVC) problems within distribution
system optimization. Daniel et al. [21] proposed a multi-period
DER coordination approach utilizing a three-block ADMM-
based distributed AC optimal power flow strategy, effectively
addressing inverter-based VVC challenges with strong conver-
gence and scalability. Yuntao et al. [22] introduced a bi-level
consensus ADMM-based method for fully distributed inverter-
based VVC in active distribution networks, highlighting im-
proved convergence rates and enhanced operational reliability
through hierarchical coordination. Additionally, an accelerated
ADMM-based distributed inverter VVC strategy leveraging
quasi-Newton techniques was presented by Xu et al. [23],
demonstrating superior computational speed over conventional
methods. However, the area-based decomposition schemes in
these studies potentially face challenges related to commu-
nication delays, data privacy concerns, and robustness under
real-time operational uncertainties. As an alternative, temporal
decomposition methods may help preserve data privacy and
enhance robustness in practical implementations.

Another factor contributing to the increased curtailment of
DERs is the inherent conservativeness of robust optimization
approaches. While these methods are designed to ensure
system reliability under uncertainties, they often lead to overly
conservative estimates of HC, resulting in unnecessary DER
curtailment. To mitigate this issue, alternative approaches
including probabilistic [24] and stochastic HC analysis [25],
have been introduced to balance reliability with optimal DER
integration. However, these methods typically rely on prede-
fined statistical distributions of DERs’ outputs, which may not
accurately reflect real-world uncertainties. Additionally, they
often fail to capture the complex spatiotemporal correlations
between DERSs’ outputs across different buses. Graph Neural
Networks (GNNs) have recently emerged as a powerful tool
for time-series prediction of electrical loads and distributed en-

ergy resources (DERs) [26], demonstrating strong potential for
mitigating conservativeness while ensuring system reliability.

HC assessment problems are predominantly formulated as

mixed-integer linear programming (MILP) models. Despite
their effectiveness, MILPs are notoriously challenging due
to combinatorial complexity. Lagrangian Relaxation (LR)
has long served as a promising strategy to mitigate these
difficulties through problem decomposition [27]. A notable
breakthrough in this direction is the Surrogate Lagrangian
Relaxation (SLR) method proposed by Bragin and Tucker
[28], which overcomes the persistent challenge of achieving
linear-rate convergence without relying on prior knowledge or
heuristic estimation of the optimal dual value. Compared with
ADMM, the SLR method does not require solving augmented-
Lagrangian subproblems or tuning penalty parameters, which
substantially reduces computational overhead—especially in
large-scale mixed-integer settings. Although ADMM provides
solid O(1/k) convergence guarantees for convex continu-
ous problems, its behavior in mixed-integer formulations is
far less predictable. This makes SLR a more reliable and
efficient choice for the stochastic HC problem considered
in this work. More recently, Ben Hammouda et al. [29]
extended the applicability of LR to continuous-time optimal
control of coupled nonlinear systems within large-scale pre-
dictive control frameworks. Their contribution introduces a
decomposable dual problem structure that facilitates efficient
solution of large-scale multi-agent systems via Lagrangian
duality, demonstrating strong potential for real-time distributed
model predictive control. Nonetheless, advances in LR-based
temporal decomposition remain underexplored and represent
an important direction for future research.

To address the aforementioned limits, this paper makes the

following key contributions:

1) To explicitly limit the duration of voltage violations, we
introduce a novel voltage violation duration constraint,
which, to our knowledge, is the first instance of such a
formulation being integrated into a Mixed Integer Linear
Programming (MILP) framework.

2) We develop an efficient three-phase linear power flow
model that incorporates DNR and VRs to maximize
the operational HC and propose a stochastic hosting
capacity optimization (S-HC) model that leverages a
Graph Convolutional Recurrent Network (GCRN) to ef-
fectively capture the spatiotemporal correlations between
load demands and DER outputs across different buses.

3) We present a Surrogate Lagrangian Relaxation (SLR)-
based temporal decomposition scheme and develop a
Relaxed Stochastic Hosting Capacity (RS-HC) algorithm
to improve computational efficiency. Numerical study
results confirm that the proposed SLR approach substan-
tially accelerates computation while preserving the same
level of operational HC.

The remainder of this paper is structured as follows: Section
IT presents the dynamic operational HC model for unbalanced
three-phase distribution systems. Section III introduces the
SLR-based temporal decomposition scheme for the stochastic
HC model outlined in Section II. Section IV provides case
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studies to validate the proposed approach, and Section V
concludes the paper with key findings.

[1. DYNAMIC OPERATIONAL HOSTING CAPACITY MODEL
FOR UNBALANCED THREE-PHASE DISTRIBUTION SYSTEM

A. Three-phase Power Flow Model with Voltage
Regulators

In this subsection, we give the three-phase power flow
model with voltage regulators. For each branch (i, k), the
voltage drop is:

up = Ui — Zi[(Pir — jQyr) U], (1)

where u; = [VA, V2 VT u, = [VA VB, VET e €31
are the three-phase voltage vector of bus ¢ and k, P, Q) €
R3*! are the three-phase active and reactive power flow vector
of branch (i,k), z;x = i + jxi, € C3*3 are the three-
phase impedance matrix of branch (i, k), & is the element-
wise division.

Assuming that the voltage magnitudes between the phases
are nearly balanced [30], we multiply both sides of (1) by its
conjugate to obtain:

lu]® = |u|® = 2(Fiu Pir + ik Qur,) + (P, Qi)s (2)

where 7, = Re{TTH} ® ik + Im{TTH} ® x5 is the
equivalent resistance matrix, &;; = Re{TTH @ @ —
Im{TT"} @ 7 is the equivalent reactance matrix, T =
[1,e7927/3 ¢327/3] and ¢l (Pjx, Q;;,) is the high-order linear
approximation, ® is the element-wise product.

Consider a three-phase, wye-wye solidly grounded voltage
regulator situated in branch (i, k), which can be equiva-
lently represented by an ideal transformer in series with an
impedance [31], as illustrated in Fig. 1. In this model, bus s
is a virtual node between bus ¢ and bus k, connected to the
secondary side of the ideal transformer, and z represents the
combined impedance of the voltage regulator and the branch.

k+1

ideal transformer
u;

Pd, +jQdy
Fig. 1. Branch with an equivalent voltage regulator model.
To obtain a linear formulation of voltage regulators, we first

apply Special Ordered Set type 1 (SOS1) to model the voltage
relationship between bus ¢ and s as:

My, My,
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m m
E Tik * M= Tik, E T, =1, “)
m=1 m=1

where U = |V;¥|? is the squared voltage magnitude, 7
denotes the turns ratio of the voltage regulator, 7;; represents
the tap position, M;y, is the total number of taps, and 7, w;}

are a binary variable and its associated non-negative weight,
respectively.

Then, we define a new variable y/} = U7 - 21} and apply
big-M method to relax constraint (3) as:

0<y <M-x}, 0<US —y3 <M-(1—zj) (5

A similar procedure can be applied to the power flow
balance equation of branch (i, k), which will give us:

Py = Y_ Py + Pdy— Pg, + 5 (P,Q)
jeD(k)

Qi = Y. Q;+Qd,— Qg+ (P,Q),

J€ED(k)

(6)

where Pdy,Qd,;, are the active and reactive load at bus
k, Pg;,Qg, are the active and reactive DER generation
at bus k, ¢, (P,Q),c}(P,Q) are the higher-order linear
approximation of active and reactive power loss, D(k) is the
set of downstream buses connected to bus k. The details of
approximation (2) and (6) can be found in Appendix A and
Appendix B in reference [30].

B. Deterministic Hosting Capacity Optimization Model

In this subsection, we develop a deterministic dynamic
operational HC optimization model for DERs. The objective
is to maximize the total active operational HC of all DERs
that the system can accommodate, or equivalently, to minimize
the total active power curtailment of all DERs. To reduce
the frequency of switch and voltage regulator operations, we
include their operational costs in the objective function.

1) Objective function:

. . -
Obj. min > (Pgi,— Pgf)
SVl e \ieg pes
(7
+ Z w*Yik,t + Z W pikyt |
(i,k)e€s (i,k)e€m

where 7T is the set of time periods, ]/3?]:;, Pg?, are the
maximum available and actual active power of DER on bus i
at time ¢, G is the set of buses which have DERs, £°,£" are
the set of branches that have switches and VRs, w?®,w” are the
operation cost coefficient of switches and voltage regulators,
Vik,t> Pik,¢ are the operation times of switch and VR on branch
(i,k) at time t. The following constraints are included in the
optimization problem:
2) DER output constraints:

Pgf, =¢f Pyl 0<¢F <1

—8gf < Pgf, < Sgf,—Sgf < Qg}, < Sgf
—V28¢¢ Sngt—FngtS\/ng;p 3
—V25¢f < Pgf, — Qgf, < V2Sg?

Vi e GVt € T, Yo € 1y,

where Cf , 1s the capacity efficiency factor of DER on bus
1 at time ft, ng . 1s the reactive power of DER on bus %
at time t, ng ., 1is the installed capacity of DER on bus
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1. To simplify the original quadratic capacity constraint, we
employ the circle constraint linearization method proposed in
[32], which provides an efficient approximation. The same
approach is also applied to the thermal capacity constraints
of the branches.

3) Branch power flow balance constraints:

'Lk:t Z k:jt+Pd Pglf,t
JED(k

'Lk t = Z Qk] t + Qdf,t - leﬁt (9)
JED(k)

Vk e NVt € T,V € 9,

where A is the set of all buses. Here, we neglect the higher-
ordered term in (6).
For branches without a voltage regulator:

Ufy UL =208 Pikge + 25,Qup ) + M (1 — i)
U/f,t > Uft - 2(7’fkpik,t + i'kaik,t) - M(1 - Oéz‘k,t)
V(i k) € EJET Nt € T Vo € 1y,

(10)

where v is a binary indicator variable which equals 1 if
branch (4, k) is connected at time ¢, £ is the set of all branches.
Again, we neglect the higher-order term in (2).
For branches with a voltage regulator:

3)—0©)

Ulf,t < U;D,t o Q(ffkpik,t + -’ikaik,t) + M(l - aik,t)

ULy 2 U =200 Py + 2,Qup ) — M(1 — cigt)

V(i k) € E,Vt € T,V € ¢y,

(11)

4) Voltage magnitude and imbalance constraints:

U;ft = Uref ) VieS
UM <Uf, < UM NieN/S
Uitpt - ia;)g avg _
—e< g <c U ZUZt,VZGNg
bt <p€da
Vi e T, Vo € ¢y,
(12)

where UMim M2 are range B service voltage in the ANSI
standard [12], S and N3 are the set of substations and the set
of three-phase buses, U;", is the average voltage magnitude
on bus ¢ at time t. The third equation is used to regulate
the imbalance level for all three-phase buses. € is the voltage
imbalance limit factor.

5) Voltage violation duration limits: In addition to the in-
stantaneous voltage magnitude limits, we also incorporate
novel voltage violation duration limits to capture dynamic
information. Specifically, we limit both the overall duration
of voltage violations and the duration of consecutive voltage
violations, formulated as follows:

af, +ef, <US <U;+ M -af,
(1-0bf,) <Uf, <U +M-(1-bf,) — of,
b0 <1, Vi e Ng, Vi e T Vg €y

U; -
U, - (13)
ga

> (afy +bF,) < di, Vi€ Na, Vo € 1
teT
t+da
S (af+084) < do, Vi € NV € Ta Vg € 4

k=t

(14)

where U“ U, are range A service voltage in the ANSI standard
[12], a b” are the binary indicators that voltage on bus 4
at time t for phase ¢ violate range A service voltage, 5Z,t, gz,t
are non-negative auxiliary variables, d;,ds are the duration
limits, Ny is the monitor bus set, 7 is the monitor time set,
|Tal = |T1 -

6) Branch thermal capacity constraints:
— Qi S < Py < g S5
— Qi S < Q. < ik 1S
\[azk Sie s < P:Z +t sz Jt < \fazk I
\[Olm tSmax < 13;2 . Zk t < \[Oézk *SZkax7

5)

where ST is the thermal capacity of branch (i, k).
7) Radiality constraints:

Y i =181 [ Y Buu=1VieN/S
(i,k)€E keN(i)
Bik,t + Bri,t = ikt Brit =0,Vi € S,
(16) (17)

where |A] and |S]| are the total number of buses and substation
buses, [j;:+ iS a binary variable that equals 1 if k is the
upstream bus of 7.

8) Switch and voltage regulator operation constraints:

ik,t Z Akt — Ok t—1 max
v ' ‘ Vit < Vik

Yik,t = ik t—1 — Qikt teT

‘ ‘ T a8) < 19)
Pik,t = Tik,t — Tik,t—1 Z pikt < PR,
Pik,t = Tikt—1 — Tik,t teT

max max

where ~;2%%, pii#* are the daily operation limit for switch and
voltage regulator on branch (i, k).

C. Stochastic Hosting Capacity Optimization Model

Unlike traditional methods that often rely on simplified
statistical assumptions and fail to capture spatiotemporal
dependencies, we employ a Graph Convolutional Recurrent
Network (GCRN) to address the uncertainties in load demands
and DER outputs. Subsequently, we develop a stochastic HC
optimization model powered by the predictions of the GCRN.

Let ¥¢_ry1,9_ Kki2,-..,09; € R™¥3 represent a sequence
of length-K historical load demand or DER output shape ma-
trices in the unbalanced distribution network. The predictions
of loads or DER outputs at time ¢ + 1 can be obtained as:

Viv1 = Fo(i—k41,..-,04), (20
where O is the set of trainable weight matrices. Specifically,
the GCRN integrates spatial and temporal modeling, followed
by prediction generation, as detailed below:
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1) Spatial convolution: At each time step ¢, the input matrix
¥, is processed by a graph convolution network (GCN) to
capture spatial dependencies:

H =0 (D‘1/2(A 4 I)D‘l/QﬁtW) 7 Q1)
where A is the adjacency matrix of the graph built from the
power distribution network, I is the identity matrix used to
add self-loops to the graph, D is the diagonal degree matrix
with D;; = > j(Aq;j + 1;;), W is the trainable weight matrix,
and o(-) is the activation function.

2) Temporal convolution: The spatially encoded output H,
from the GCN is then fed into a Recurrent Neural Network
(RNN) to model temporal dependencies across time steps. The
hidden state h; is updated as:

he =0 (WS H + W/ hi—1+b), (22)

where h; is the hidden state at time ¢, which captures tem-
poral information accumulated up to time ¢, W,, W}, are the
trainable weight matrices, and b is a bias vector.

3) Prediction generation: The hidden state h;, which en-
capsulates both spatial and temporal dependencies, is passed
through a fully connected layer to predict the load or DER
output shape for each bus at time ¢ + 1:

Depr = ¢ (WEhy),

where W, is a trainable weight matrix, ¢(-) : R3ICIx» —
R7>3%ICl §g a reshape function, C is the set of scenarios. This
step provides multiple predictions of load demand/DER output
shape values.

To introduce stochasticity for HC optimization, the proba-
bility mass function (PMF) of load demand or DER output
shape at time ¢ 4+ 1 on bus ¢ is given by:

(23)

PMF(97,,, = 0775.) = (24)

ey’
where ¢ € C represents the scenario index. Here, we assume
an equal probability distribution across all scenarios. Addition-
ally, we assume the active and reactive load demand shapes
are the same for each bus at time ¢ + 1, which means:

a4
ﬁf,tﬂ’QdftH =Qd;; 'ﬁftﬂ 25)

where Pd;,,,,Qd, , are the nominal active and reactive
load on bus ¢ at time ¢ + 1.

Once the PMF for all load demands and DER outputs is ob-
tained, multiple scenarios are generated for each time period.
To improve clarity, all decision variables and parameters are
categorized into two distinct groups, represented as vectors.
The variables in group x vary across different scenarios,
capturing the system’s stochastic nature, while the variables
in group y remain consistent across all scenarios, ensuring
stability in the optimization process.

=
m:{ngthgft’Pgitvpdft’detv
U;Dt’Uft’ zt’bzt’ zt’—i,t}

y: {Ci,w ik,tvyilg,ta Qik,ts Bik,ts Vik,ts Tik pik,t}

55
Pdf,t+1 = Pdi,t+1 ’

ik,t> sz t)
(26)

Accordingly, the stochastic hosting capacity optimization
model (S-HC) can be formulated as follows:

Obj. min | ‘ZZ N (Pgi; — Pgfy)
teT ceC ieG per;
S-HC:
+ Z w’}/zkt'i_ Z szkt

(i,k)e€&= (i,k)e&r
s.t. 8) —(19), «x — x¢, VeeC,

27)

All decision variables in group x will be extended by adding
a scenario-specific dimension, and the expanded variables will
be represented as x°.

[I. SURROGATE LAGRANGIAN RELAXATION-BASED
TEMPORAL DECOMPOSITION FOR STOCHASTIC
HOSTING CAPACITY ASSESSMENT

In this section, we introduce a temporal decomposition
approach utilizing the Surrogate Lagrangian Relaxation (SLR)
algorithm [33] to enhance the solving efficiency of S-HC. The
temporal decomposition consists of the following steps.

A. Dualization

First, we dualize the temporal daily operation constraint
(19) and the voltage duration limit in (14), and augment the
objective function of S-HC by incorporating the product of the
Lagrange multipliers and these temporal constraints. We derive
a relaxed stochastic hosting capacity optimization model (RS-
HC) after rearrangement as:

Ob;. Pmpz (
+ZZZQ

L 5D 9D DD SN e

c€CIeG teT; pEY;

Vf’cdl

;0,0 Z (af%c + bf,;gc) _

ceCieNy per; teT;
R LYY 0 - D i
HC: teT; k=K; teT;/Tq
+ Y Qi+ @) D vk — Ak
(i,k)e&s teT;

+ > (()\ik +a") D pik —

Akl
1 7
(i,k)€€ET teT;

s.t. (8) — (13),(15) — (18),x — x,Yc € C,Vj € J,

(28)

where 7; is a subset of time horizons, J is the set of subprob-
lems, K = max(1,t—d), K2 = min(t, |T|—d), v, v/, are
the dual variables associated with voltage duration limit (14),
Air 1s the dual variable associated with daily operation limit
(19) for switches or VRs.
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B. Decomposition

. min
Pg,y.p

222>

5oPiC
gz t
ceCieg tET peY;

Y Y ( S (et o)

ceC iENd PpEY; teT;

— Pgl o™

Sub-

HC. PSS e o, °>)

tET k=K,

>

(i,k)EEs
+ Y Ok win) Y Pk
(i,k)e&r teT;

st (8) — (13),(15) — (18),z — =",y —» y",Vc e C
(29)

Ak +@ik) Y Vit
=

Then, we decompose augmented RS-HC into multiple indi-
vidual period-level subproblems. A subproblem for sub-period
7 atiteration n is defined as (29), which is formulated by fixing
the variables in the other subproblems to the values obtained
from the previous iteration.

C. Coordination

Unlike traditional Lagrangian decomposition algorithms,
the multipliers in (29) can be updated after solving each
subproblem. To make sure that the multipliers are updated
in acute angles, the following optimality condition needs to
be satisfied:

L(wc,n yn A" Vc,n c, n) < L( c,n—1 yn—l A pon

(30)
where L(x>",y™, A", A\") is the objective value of RS-HC at
iteration n. Here we adopt the step-sizing formula developed

in [33] and update the multipliers as follows:

Nt = N+ gl T, vk e £PuET
SOC7L+1 [Z/gacn n ggacn] i ENd
124%2 Y

it = [U cn e goen] Vi Ny vk e Ty GD
¢cn— 1H~n 1||
£ T 1=n

19"l
where ¢" is the stepsize at iteration n, & < 1 is a scaling

constant, [-]T represents projection onto the positive orthant.
g™ is the surrogate subgradient vector at iteration n, which is
given as:

T = D Vs — M V(i k) € €°
teT
T =D Pl — PR, V(isk) € €
teT 5
§ff”=Z( :,acn_i_btpcn) dl,ViENd (3)
teT
k+d
GEer = S (agem £ b8 — do, Vi € N,V € Ta

t=k

c,n
, U )a

The key steps of SLR are outlined in Algorithm 1. Since we
initialize v°, p°,a®, b" as 1, the stopping criterion in line 8
guarantees that the solution obtained by SLR is feasible when
the algorithm terminates early.

Algorithm 1 SLR for RS-HC model

Initialize A°, 20, v°, g%, 29, y°, multipliers are initialized as
small constants, surrogate subgradients are initialized as O,
{7 % a8 = 1.
I: forn=1,...,N do
2:  For sub-period j = (n mod |7])+1, solve Sub-RS-HC
model j and update A", v™, v"™, g", =", y".
if Optimality condition (30) is satisfied then
Continue iteration.
else
Set x£&" = wc,n—l,yn =y
end if
if g" <0 and ||Az|| + ||Ay|| < 1e™® then
Stop iteration.
10:  end if
11: end for

n—1

R I A A

IV. CASE STUDIES

In this section, we first outline the numerical setup, followed
by an evaluation of the proposed GCRN model’s performance
in DER and load prediction. Next, we compare the solving
efficiency of MILP and SLR for the S-HC and RS-HC models
and present the operational HC and device operation results for
both algorithms. Finally, we discuss the selection and impact
of monitoring buses.

A. Numerical Setup

We utilize the modified IEEE 123-bus unbalanced distri-
bution system, as shown in Fig. 2, for our first test system.
This system includes 4 voltage regulators, 6 tie switches, and
14 solar PV systems. The parameters of the 123-bus system
are detailed in Table I. The value of the big-M constant is
empirically tuned and set to M = 5 to balance computational
efficiency and model accuracy. The historical time series
data for load and solar PV are sourced from [34], an open-
source dataset developed by the National Renewable Energy
Laboratory (NREL), which includes data spanning one year.

TABLE |
PARAMETERS OF 123-BUS SYSTEM

Parameter value Parameter value
Sgf 50 KVA w® le=4
SE 2,000 KVA w” le™

Umax 1.10 pu. M j, 5

Umin 0.90 p.u. YR 4

U; 1.05 p.u. PR 8

U, 0.95 p.u. d1 8

€ 0.06 da 4
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Fig. 2. Modified IEEE 123-bus system.

We further validate our approach using a real-world dis-
tribution network from the Midwestern United States, first
introduced in [35]. This system consists of three feeders
with 240 buses, serving 1,120 customers. Each customer is
equipped with a smart meter recording hourly energy con-
sumption (kWh). For this study, we scale the full year of
2017 smart meter data provided in [35]. Since the dataset does
not include DERs, we integrate solar PV data from the IEEE
123-bus test system into the 240-bus network. Specifically,
solar PV units are installed at buses {1013, 1017, 2025,
2040, 2048, 2058, 3052, 3061, 3067, 3091, 3130, 3135, 3154,
3161}, with system parameters aligned to those in the IEEE
123-bus system. The original network includes one voltage
regulator and nine tie switches; to better demonstrate the
effectiveness of our algorithm, we add four additional voltage
regulators at branches (1008,1009), (2032,2033), (3022,3030),
and (3107,3140). Optimization is carried out using Gurobi
12.0.1 [36], with a time limit of one hour for the 123-bus
system and two hours for the 240-bus system, and a MIP gap
tolerance is set to 0.01% for both.

The proposed GCRN architecture consists of one Graph
Convolutional Long Short-Term Memory (GCLSTM) layer, as
introduced in [37], followed by two Fully Connected Network
(FNN) layers. The corresponding hyperparameters are listed
in Table II. We use the mean squared error (MSE) as the loss
function. Regularization and early stopping were not applied
because preliminary experiments indicated stable convergence
without significant overfitting. The model parameters corre-
sponding to the minimum training loss are retained for final
evaluation to ensure reliable and consistent performance.

TABLE Il
HYPERPARAMETERS OF THE GCRN
Model GCLSTM | FNN-1 | FNN-2
Input dimension 24 64 64
Output dimension 64 64 1
Learning rate 0.001
Sequence length K 24
Training epochs 500

B. Performance of GCRN on solar PV and load
prediction

In this subsection, we evaluate the performance of the
proposed GCRN in predicting solar PV generation and load
demand. To benchmark the GCRN, we use the Gaussian
Mixture Model (GMM) introduced in [38]. Two approaches
are considered for employing the GMM to characterize un-
certainties: one models the uncertainties spatially, and the
other models them temporally. These models are referred to as
GMM-S and GMM-T, respectively. The probabilistic density
functions (PDF) of load demand or DER output for these
models are expressed as:

K
GMM-S : PDF, (1) = Y ¢N(s|p;, Xi),

=1

- (33)
GMM-T : PDF;(#;) = Y ¢:N(¥i|ps,, ),

=1

where K is the number of Gaussian components, ¢; repre-
sents the mixing coefficient for the i-th component, satisfying
ZiK:1 ¢; = 1, N(+|p;, X;) denotes the multivariate Gaussian
distribution with mean vector g, and covariance matrix ;.
In GMM-S, the PDF is modeled spatially by capturing the
uncertainty across the network at a single time ¢. In contrast,
GMM-T characterizes temporal uncertainties by capturing
variations for a specific bus ¢ over time.

1) IEEE 123-bus system: For the IEEE 123-bus system, we
train the models using 90 days of historical data and evaluate
their performance over a subsequent 7-day testing period. The
average mean squared errors (MSEs) for load demand and
solar PV generation predictions during the testing phase are
reported in Table III and IV. Notably, the proposed GCRN
consistently achieves the lowest MSE under all scenarios,
demonstrating its superior predictive accuracy.

TABLE llI
AVERAGE MSE OF LOAD DEMAND PREDICTION ON 123-BUS SYSTEM
Models ICl=1 ICl=3 ICl=5 ICl=10 | |C|] =20
GMM-S 0.00181 0.00333 0.00314 0.00296 0.00311
GMM-T | 0.00305 0.00306 0.00303 0.00280 0.00276
GCRN 0.000316 | 0.000319 | 0.000320 | 0.000334 | 0.000327
TABLE IV
AVERAGE MSE OF SOLAR PV PREDICTION ON 123-BUS SYSTEM
Models ICl=1 ICl=3 ICl=5 ICl=10 | |C] =20
GMM-S 0.0127 0.0161 0.0124 0.0108 0.0115
GMM-T 0.0233 0.0141 0.0141 0.0128 0.0125
GCRN 0.000812 | 0.000797 | 0.000802 | 0.000800 | 0.000799

The complexity of the S-HC problem scales linearly with
the number of scenarios. To optimize computation time, it is
essential to select a small set of “representative scenarios”. As
shown in Tables III and IV, the performance of the proposed
GCRN remains stable across different scenario counts. There-
fore, we select |C| = 3 to balance computational efficiency
and representativeness.
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Then, we present the daily solar PV generation and load
demand shape profiles for bus 29, along with the GCRN-
predicted scenarios, in Fig. 3. The figure illustrates that the
scenarios generated by GCRN effectively capture the actual
variations in solar PV generation and load demand.

1.0

)
o o o
> o ©

Load/PV shape (p.u.

o
N

GCRN load scenarios
—=— Actual load demand .,

12 16 20
Time/h

—+ GCRN PV scenarios
—— Actual PV generation

0 4 8

o
o

Fig. 3. The daily solar PV generation and load demand with prediction
scenarios on the 123-bus system.

2) Real-world 240-bus system: For the real-world 240-bus
system, the models are also trained on 90 days of historical
data and evaluated over a subsequent 7-day testing period.
The average MSEs for active and reactive load predictions
during testing are reported in Tables V and VI, respectively.
Unlike the 123-bus system, we assume that the active and
reactive loads follow distinct load profiles. Once again, the
proposed GCRN consistently achieves the lowest MSE across
all scenarios, underscoring its superior predictive accuracy.

10714 - -
1\‘!
o 1072 i
3 .
g I
S I 3 0.100
R g
0 : 2
£ i fo
10744 i S 0.025
0o 25 |s0 75 100
10-5 time/s.
0102 103 3.6 x10°

time/s
SLR-3
SLR-4

MILP lower bound
MILP upper bound

—A- SLR1  —m-
SLR2  —e-

Fig. 4. Progress on the upper and lower bounds for solving the 24-hour
S-HC and RS-HC.

iteration, whereas for MILP, each marker corresponds to the
objective value reported by Gurobi.

From Fig. 4, we observe that SLRs quickly converge to the
nearly optimal objective value in a significantly shorter time
compared to MILP. Although MILP identifies the best upper
bound in approximately 300 s, the presence of a large constant
M in numerous constraints weakens the LP relaxation, making
it considerably less effective. As a result, MILP requires a
much longer time to reach the best lower bound. Additional
experiments confirm that, given sufficient time, the MILP
lower bound eventually reaches the current best upper bound.

2) Real-world 240-bus system: For the real-world 240-bus
system, we empirically select downstream buses {1015, 2060,
3052, 3139} as monitoring points. Fig. 5 depicts the evolution
of the objective values for both solution approaches over the
course of the solving process. In this large-scale system, the
MILP solver identifies its first feasible solution at approxi-
mately 5,700 seconds, yet the MIP gap remains substantial
within the 1-hour time limit. In contrast, the SLR methods
rapidly converge to sub-optimal solutions that are close to the
MILP’s performance, as illustrated in the figure.

TABLE V
AVERAGE MSE OF ACTIVE LOAD PREDICTION ON 240-BUS SYSTEM
Models ICl=11]]|C|=3| |Cl=5 ] |C]=10 | |C]| =20
GMM-S 0.0213 0.0212 0.0224 0.0226 0.0230
GMM-T | 0.0200 0.0216 0.0231 0.0223 0.0228
GCRN 0.00442 | 0.00440 | 0.00441 | 0.00443 0.00441
TABLE VI
AVERAGE MSE OF REACTIVE LOAD PREDICTION ON 240-BUS SYSTEM
Models ICl=1 ICl=3 1] |Cl=5 | |C/l=10 | |C|=20
GMM-S 0.0229 0.0221 0.0231 0.0227 0.0234
GMM-T | 0.0218 0.0226 0.0229 0.0226 0.0235
GCRN 0.00735 | 0.00735 | 0.00735 | 0.00736 0.00736

C. Computation efficiency of MILP and SLR

1) IEEE 123-bus system: In this subsection, we compare
the computation efficiency of the MILP and SLR methods in
solving the S-HC and RS-HC models for the first testing day.
Given the radial structure of the test feeder, we empirically
select downstream buses that are far from the substation as
monitor buses. Specifically, we choose buses 85 and 114. Fig.
4 illustrates the evolution of the objective values for both
approaches throughout the solving process. For MILP, the
upper and lower bounds, as reported by Gurobi, are depicted.
For SLR, we evaluate its robustness by varying the sub-horizon
length |7}| across four values: 1, 2, 3, and 4. To ensure clarity,
we denote SLR with |7;| = 1 as SLR-1 and collectively refer
to SLR-1, SLR-2, SLR-3, and SLR-4 as SLRs. In the case
of SLRs, each marker represents the objective value at each

.
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Fig. 5. Progress on the upper and lower bounds for solving the 24-hour
S-HC and RS-HC.

D. Operational HC and device operation results

1) IEEE 123-bus system: The operational HC of solar PV
at selected buses, along with the total value at ¢ = 14h, as
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obtained by MILP and SLRs, is presented in Table VII. The
results indicate that SLRs achieve the same operational HC as
MILP for all solar PV systems.

TABLE VII
PV OPERATIONAL HC OF DIFFERENT BUSES AT t = 14h (KW)
Algorithm | bus 7 | bus 29 | bus 63 | bus 80 | bus 104 Total
MILP 4337 | 46.24 36.88 36.48 46.26 565.89
SLRs 4337 | 46.24 36.88 36.48 46.26 565.89

Next, we present the switch reconfiguration and tap setting
results for MILP and SLR-4 in Fig. 6 and Fig. 7, respectively.
Switch IDs 1 to 6 correspond to the switches located between
the following bus pairs: (13, 152), (18, 135), (60, 160), (54,
94), (151, 300), and (97, 197). To maintain the radiality of
the initial system topology, the six switches are initially set to
[1,1,1,0,0,1]. The switch reconfiguration results indicate that
both MILP and SLR-4 require two operations on switches 1
and 5, but at different time steps.

Switch reconfigutation result of MILP
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Fig. 6. Switch reconfiguration results of SLR-4 and MILP.

The initial tap positions are set to O for all voltage regulators.
VR IDs 1 to 4 correspond to the voltage regulators located
between the bus pairs (150, 149), (9, 14), (25, 26), and
(160, 67). The results show that SLR-4 requires more tap-
changing operations than MILP, with three operations for SLR-
4 compared to two operations for MILP. Given that we use
small operation cost coefficients (le~), the objective value
obtained by SLR-4 can be considered approximately optimal.
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Fig. 7. Tap setting results of SLR-4 and MILP.

Fig. 8 and 9 depict the voltage profiles at monitor buses
85 and 114, respectively. These results reveal that, across all

evaluated algorithms, instances of voltage violations are both
infrequent and transient—persisting for no more than four
consecutive time steps and cumulatively not exceeding eight
intervals over the simulation horizon. This indicates a high
level of compliance with operational constraints, underscoring
the effectiveness of the proposed voltage violation duration
constraint in maintaining voltage stability.
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Fig. 8. Voltage profiles of phase C on bus 85 in scenario 1
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Fig. 9. Voltage profiles of phase A on bus 114 in scenario 1

2) Real-world 240-bus system: Table VIII presents the op-
erational hosting capacity (HC) of solar PV at selected buses,
along with the total capacity at ¢t = 14h, as obtained by the
MILP and SLR approaches. For this larger real-world system,
the results show that the SLR methods can achieve higher
operational HC than the MILP at certain PV buses, as well as
a greater total HC overall.

TABLE VIII
PV OPERATIONAL HC OF DIFFERENT BUSES AT t = 14h (KW)
Algorithm | bus 2040 | bus 2058 | bus 3052 | bus 3130 Total
MILP 29.85 20.65 25.20 20.14 416.78
SLRs 34.73 23.64 31.55 32.83 443.69

We then present the switch reconfiguration and tap setting
results for both the MILP and SLR-2 approaches in Fig. 10
and Fig. 11, respectively. Switch IDs 1 through 9 correspond
to the switches located between the following bus pairs: (1,
1001), (1010, 2057), (1, 2001), (2012, 2013), (2021, 2026),
(2013, 3005), (1, 3001), (3075, 3076), and (3081, 2016). To
preserve the radiality of the initial system topology, the nine
switches are initialized with the configuration [1, O, 1, 1, 1,
0, 1, 1, 0]. The reconfiguration results reveal that both MILP
and SLR-2 require a total of 13 switching operations, albeit
occurring at different time steps.

Consistent with the 123-bus system, the initial tap positions
of all voltage regulators in the 240-bus network are set to
zero. The five voltage regulators, denoted as VR IDs 1-5, are
installed at bus pairs (0, 1), (1008, 1009), (2032, 2033), (3022,
3030), and (3107, 3140). Simulation results demonstrate that
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Fig. 10. Switch reconfiguration results of SLR-2 and MILP.
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Fig. 11. Tap setting results of SLR-2 and MILP.

the MILP formulation requires a total of six tap-changing
operations, whereas the SLR-2 approach achieves comparable
performance with only four operations. This reduction high-
lights the improved operational efficiency of SLR-2 relative
to MILP in regulating voltage within large-scale distribution
systems.

Fig. 12 and 13 present the voltage profiles at monitoring
buses 2060 and 3139, respectively. Consistent with the obser-
vations from the 123-bus system, voltage violations across all
evaluated algorithms are infrequent and short-lived—persisting
for no more than four consecutive time steps and occurring in
fewer than eight intervals over the entire simulation horizon.
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Fig. 12. Voltage profiles of phase B on bus 2060 in scenario 1
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Fig. 13. Voltage profiles of phase A on bus 3139 in scenario 1

E. Selection and impact of monitor buses

In Section IV-C, we empirically select three downstream
buses as monitor buses on the 123-bus system. However,
this approach may lead to voltage violations at other buses,
potentially exceeding the voltage violation duration limits. To
ensure that the voltages at all buses comply with the voltage
violation duration limit, we can manually identify buses that
exceed this constraint. A subset of these violated buses can
then be empirically selected and added to the monitor bus set
Na.

Table IX shows that SLR-4 and MILP results in 65 and
54 buses violating the voltage duration limit when using the
initial monitor set Ny = {85,114}, respectively. To address
this, we empirically select seven additional buses from the
violated set and add them to N With the updated monitor
set, we resolve the S-HC and RS-HC models and find that
all buses now remain within the specified limits. Note that
while the total solar PV operational hosting capacity across
all time periods remains unchanged under both the initial
and updated monitor sets, the timing and frequency of switch
and voltage regulator operations differ between the two cases.
Additionally, for MILP with the updated monitor set, Gurobi
terminates at 3, 600 seconds with a 75.9% MIP gap, once again
due to the weak LP relaxation caused by the increased number
of big-M constraints. Finally, when selecting all buses, except
for the substation bus, as the monitor set, MILP fails to find
the optimal solution within 3, 600 seconds. In contrast, SLR-4
successfully finds a nearly optimal solution in approximately
15 minutes. In terms of optimality gap, the MILP achieves
a smaller gap than the SLR when using the initial monitor
set. However, as the monitoring set expands to Ny = N/S,
the MILP is unable to obtain a high-quality solution within
3,600 seconds, whereas the SLR method achieves a tighter
optimality gap under the same computational limit.

Fig. 14 and 15 depict the voltage profiles at buses 1 and
96 under both the initial and updated monitor sets. With the
updated monitor set, the voltages are effectively reduced to
comply with the voltage violation limits.

F. Sensitivity analysis of key parameters

In this subsection, we perform a sensitivity analysis of key
parameters on the 123-bus system. We first examine the impact
of the cost coefficients w® and w”, while fixing the voltage
violation duration limits at d; = 4 and dy = 8. Specifically, we
assess how varying these parameters influences the operational
PV hosting capacity (HC) and device operation frequency.
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TABLE IX
PERFORMANCE COMPARISON UNDER DIFFERENT MONITOR SETS Nd ON 123-BUS SYSTEM
Algorithm N Number of Number of Total operational Total device Solve MIP Optimality
g d integer variables | violate buses PV HC (KW) operation times | time (s) | gap (%) gap (%)
{85,114} 13,824 54 4152.22 4 3,600 54.60 0.00
MILP {39,66,75,83,
85,94,96,114, 18,144 0 4152.22 7 3,600 75.90 0.37
149,160,300,450}
NS 67,392 0 4118.05 13 3,600 100 9.57
{85,114} 13,824 65 4152.22 5 97 N/A 0.12
SLR-4 {39.66,75.83,
85,94,96,114, 18,144 0 4152.22 7 383 N/A 0.37
149,160,300,450}
N/S 67,392 0 4152.22 9 896 N/A 0.62
R TABLE X
1.08 1.08 TOTAL OPERATIONAL PV HC AND DEVICE OPERATION TIMES UNDER
5106 51.06 DIFFERENT w®, w” ON 123-BUS SYSTEM
21.04 2104
H Dy H Total operational Total device
S1.02 SLR-2 102 i
Lo DEl o 0w PV HC (KW) operation times Solve time (s)
e ' ’ MILP SLR4 | MILP SLR4 | MILP SLR4
oo e oot e 0.0001 | 4118.05 415222 13 9 3600 896
0.001 4090.92  4113.61 7 11 3600 712
(a) Use original monitor set (b) Use updated monitor set 0.01 201529 4016.13 5 3 3600 348
0.1 3897.78  3897.78 1 1 3600 70

Fig. 14. Voltage profiles of phase A on bus 1 in scenario 1.
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Fig. 15. Voltage profiles of phase B on bus 96 in scenario 1.

Table X summarizes the total PV HC, device operations, and
solution times under different settings. The results indicate
that larger values of w® and w” not only lead to fewer device
operations but also reduce the achievable PV hosting capacity.
Across all scenarios, the proposed SLR-4 consistently matches
or outperforms the MILP benchmark. In terms of hosting
capacity, SLR-4 yields equal or higher values than MILP under
small to moderate cost coefficients. More importantly, SLR-4
demonstrates a clear advantage in computational efficiency:
while MILP consistently hits the 3600-second time limit,
SLR-4 converges within 1,000 seconds in every case, and
achieves its fastest solution in just 70 seconds at w?®, w” = 0.1.
Overall, these findings underscore the scalability and efficiency
of the proposed SLR-4 method, which achieves high-quality
solutions while dramatically reducing computation time.
Next, we fix w® = w" = 0.0001 and examine the impact
of varying dy and ds. As shown in Table XI, smaller values
of d; and dy force PV inverters to supply additional reactive
power for voltage support, thereby reducing the total opera-
tional hosting capacity of solar PV. In contrast, relaxing the

duration limits from (d;,d2) = (2,4) to (12,16) allows the
system to accommodate higher PV hosting capacity. Across all
scenarios, the proposed SLR-4 consistently achieves higher or
comparable PV HC relative to MILP, while requiring fewer
device operations. For example, at (dy,dsz) = (8,12), SLR-
4 achieves 4211.10 kW with only six operations, compared
to 4199.90 kW and thirteen operations under MILP. More-
over, SLR-4 demonstrates a clear computational advantage,
converging within 1100 seconds in all cases, whereas MILP
consistently reaches the 3600-second time limit. Notably, for
(d1,d2) = (2,4), MILP fails to find a feasible solution within
the time limit. These results highlight the effectiveness of the
proposed method in enhancing PV integration while maintain-
ing computational efficiency and reducing device operations.

TABLE XI
TOTAL OPERATIONAL PV HC AND DEVICE OPERATION TIMES UNDER
DIFFERENT d1, d2 ON 123-BUS SYSTEM

Total operational Total device Solve time (s)
dy. ds PV HC (KW) operation times
’ MILP SLR-4 MILP SLR-4 | MILP SLR-4
2,4 - 4059.54 - 7 3600 547
4,8 4118.05  4152.22 13 9 3600 896
8, 12 4199.90 4211.10 13 [3 3600 1057
12, 16 | 4244.06  4269.92 10 [3 3600 870

V. CONCLUSION

This paper presents an advanced operational hosting capac-
ity (HC) optimization framework to address the limitations
of traditional static HC methods and Dynamic Operating
Envelopes (DOEs). We develop a stochastic HC model incor-
porating a novel voltage violation duration constraint and pro-
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pose a Surrogate Lagrangian Relaxation (SLR)-based temporal
decomposition scheme to improve computational efficiency.
Compared with other decomposition schemes such as Benders
Decomposition and Progressive Hedging, the SLR method
relaxes coupling constraints using surrogate multipliers and
updates them through an aggregated subgradient approach.
This formulation requires fewer iterations and eliminates the
need for solving a master problem. Numerical results show a
significant speedup while maintaining operational HC, high-
lighting the proposed framework’s efficiency and scalability.
A limitation of the proposed SLR method is its sensitivity
to parameter selection, particularly the choice of stepsize,
which may require careful tuning in certain cases. A promising
direction for future research is the development of adaptive
schemes, such as surrogate Level-Based Lagrangian Relax-
ation (SLBLR), to enhance robustness and accelerate con-
vergence. Another direction is to investigate decision-focused
learning frameworks that jointly optimize GCRN and SLR,
allowing uncertainty information to be directly propagated
into the decision-making process. Furthermore, the current
formulation of the voltage violation duration constraint may
be relatively loose, suggesting the need for tighter and more
effective formulations. Finally, the proposed framework could
be extended to broader applications, including Transmission
System Operator—Distribution System Operator coordination
and VVC.
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