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TERRAN: A Transformer-based Electric Vehicle Routing Agent for

Real-time Adaptive Navigation
Maojie Tang, Nanpeng Yu, Ioannis Karamouzas, and Zuzhao Ye

Abstract—The Electric Vehicle Routing Problem with Time
Windows (EVRP-TW) poses significant challenges for sustain-
able logistics due to its tight coupling of spatial, temporal,
and energy constraints. Classical optimization methods face
trade-offs: exact solvers like CPLEX ensure optimality but
require prohibitive runtimes, while metaheuristics like Variable
Neighborhood Search struggle with feasibility under complex
constraints. We propose TERRAN, a transformer-based rein-
forcement learning framework for real-time and scalable EVRP-
TW optimization. TERRAN integrates three key components: (1)
Future-Feasibility Pruning (FFP), which proactively eliminates
energy-infeasible actions by verifying reachability to charging
stations or depots before each move; (2) Staged Reward Schedul-
ing, which progressively transitions from dense auxiliary signals
to task-aligned rewards to guide the agent from achieving fea-
sibility to minimizing cost; and (3) An End-to-End Transformer-
Based RL Agent Tailored for EVRP-TW, which directly inte-
grates EV-specific constraints—including battery consumption,
charging decisions, and delivery time windows—into the policy
network and decoding process, enabling unified, post-processing-
free optimization across varying instance scales. Experiments on
Solomon benchmark instances with 5–100 customers demonstrate
that TERRAN achieves 100% feasibility across all problem
scales. It matches CPLEX’s optimality on 5–customer instances,
achieves up to 170,000× speedups with solutions within 1.5%
of optimal on 15–customer instances (0.02 s vs. 3,500 s), and
delivers feasible solutions for 100–customer instances in 0.47 s,
where CPLEX fails on over 80% of cases within 1 hour. These
results establish TERRAN as a practical and scalable solution for
real-time electric vehicle routing in complex and constraint-rich
environments.

NOTE TO PRACTITIONERS

This paper addresses the challenge of real-time route plan-
ning for electric vehicles (EVs), which is critical for logistics
platforms such as Amazon and FedEx that must quickly
generate delivery routes while managing battery constraints,
charging logistics, and strict customer time windows. We
propose TERRAN, a deep reinforcement learning framework
that produces feasible EV routing plans within seconds,
achieving computational speeds that are orders of magnitude
faster than classical solvers like CPLEX while maintaining
solution quality far superior to traditional heuristics. By en-
forcing hard feasibility constraints during decision-making,
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TERRAN guarantees that all generated routes satisfy oper-
ational requirements without the need for post-processing or
repair. Although the current implementation assumes simpli-
fied vehicle dynamics—including constant travel speed, fixed
charging rates, and a compulsory full charging strategy—these
idealized assumptions allow efficient initial modeling but limit
applicability to more dynamic real-world environments. Future
work will address these limitations by introducing nonlinear
battery models, dynamic traffic conditions, and flexible partial
charging strategies. Beyond last-mile delivery, the proposed
approach may also benefit broader applications in smart city
logistics, dynamic fleet management, and intelligent energy
scheduling for electric vehicle networks.

Index Terms—Electric Vehicle Routing, Time Windows, Con-
strained Reinforcement Learning, Transformer Architectures.

I. INTRODUCTION

THE rapid adoption of electric vehicles (EVs) in last-mile
delivery systems is reshaping logistics, driven by grow-

ing environmental concerns and the demand for sustainable
operations [1], [2]. Platforms like Amazon Flex and FedEx
SameDay, which generate routes within minutes of order
finalization, exemplify the urgency of intelligent routing strate-
gies that balance delivery schedules with EV battery man-
agement. These routing decisions directly affect operational
costs, delivery efficiency, and energy consumption, making
real-time and feasibility-conscious planning indispensable [3].
Studies indicate that optimized EV routing can reduce last-
mile delivery costs by 10% [4] and achieve energy savings
ranging from 20% to 51% [5], [6], underscoring its economic
and environmental impact.

At the heart of this challenge lies the Electric Vehicle Rout-
ing Problem with Time Windows (EVRP-TW), an extension
of the classical Vehicle Routing Problem (VRP) [7]. The
VRP seeks to minimize travel costs while meeting customer
demands. EVRP-TW introduces three additional groups of
tightly coupled constraints that exacerbate the NP-hardness [8]
and practical complexity of VRP. The first group of constraints
imposes temporal dependencies by modeling delivery time
windows that require each customer to be served within a
specified interval [9]. The second group of constraints focuses
on battery energy consumption and necessitates strategic plan-
ning of charging station (CS) visits to ensure the vehicle’s state
of charge (SoC) remains within operational limits [10]. Note
that some of the energy related constraint may be relaxed if
vehicle-to-vehicle energy sharing and trading is allowed. In
such a setting, a blockchain- and PKI-based secure vehicle-
to-vehicle energy-trading protocol can further enhance system
security by ensuring authenticated participation, transaction
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integrity, and tamper-proof settlement [11]. The third group
of constraints models charging delays, capturing the time and
operational costs associated with charging activities. These
additional groups of constraints render many traditional opti-
mization methods impractical for real-time EVRP-TW, where
platforms demand feasible solutions in minutes [12].

To this end, we propose TERRAN (Transformer-based
Electric vehicle Routing agent for Real-time Adaptive
Navigation), a reinforcement learning framework designed to
generate efficient, scalable, and feasible EV routes under time
and energy constraints in dynamic, real-world environments.

A. Existing Approaches and Limitations

Existing approaches to EVRP-TW fall into three categories:
exact solvers, metaheuristics, and deep reinforcement learning
(DRL). While each has achieved notable progress, none fully
satisfies the combined needs of real-time decision-making,
scalability, and strict constraint feasibility.

Exact solvers, such as MILP formulations [13] and branch-
price-and-cut frameworks [14], guarantee global optimality by
exhaustively exploring the energy–time solution space. These
methods can address partial charging and tight spatiotemporal
coupling but require extensive engineering effort, e.g., hand-
crafted dominance rules and labeling procedures. Moreover,
they scale poorly [15], often necessitate dummy nodes to
handle multiple charging station visits [16], and lack open-
source implementations, limiting their applicability in real-
time logistics. Among these, commercial solvers like CPLEX
are widely used for their robustness but remain impractical for
large instances under tight time budgets.

Metaheuristics, including ALNS [17], Tabu Search [18],
and ACO [19], reduce computational burden via heuristic
search but rely heavily on domain-specific rules and hyperpa-
rameter tuning. Some methods support partial recharging [20]
or heterogeneous fleets [21], [22], yet most still operate on
static structures and require manual feasibility recovery [23].
Reproducibility remains a challenge due to limited code avail-
ability and lack of standard benchmarks.

Deep Reinforcement Learning (DRL) solvers for routing
are typically cast as a centralized dispatcher that constructs
routes sequentially: at each step, the next node is selected,
and once the current vehicle returns to the depot, a new route
is initiated and the process repeats [24], [25]. This yields
a discrete, stepwise decision process that aligns naturally
with sequence-based backbones such as RNN/LSTM/Pointer
decoders [26], [27]. In the case of EVRP-TW, however, the
dispatcher must additionally ensure both time-window and
state-of-charge (SoC) feasibility. Thus, each decision concerns
not only which node to visit next, but also whether the move is
reachable under energy and time constraints—commonly en-
forced through hard feasibility masks and, in some approaches,
post hoc repair mechanisms [28], [29].

To better understand the evolution and current capabilities
of DRL-based EVRP-TW solvers, we next discuss the pro-
gression of their architectural backbones and learning frame-
works, and how these developments relate to broader trends
in transportation electrification.

Backbone evolution: from RNN/Pointer to Transformer.
Early neural decoders adopted RNN/LSTM/Pointer architec-
tures [26], [27], which aligned well with the sequential na-
ture of routing but suffered from limited long-range con-
text and weaker parallelism. As attention models matured,
Transformer-style backbones became prevalent for VRPs [25]
and have since been extended to EV variants through edge-
and energy-aware encoder-decoder designs [29]. Compared
with RNNs, Transformers provide three key advantages: (i)
token-wise global context at each decoding step, which is
critical for long-horizon feasibility considerations (e.g., de-
pot/CS/customer triads); (ii) clean hard masking, allowing
direct injection of TW and SoC constraints at the logit level;
and (iii) inherently parallelizable training, essential for real-
time dispatch. Empirically, Transformer-based EV routing
has shown improved feasibility and scalability [29]; related
attention-based models have also advanced heterogeneous
vehicle routing problems (HVRP) [30]–[32]; while energy-
focused EVRP studies consistently report gains with attention
backbones [33]. These properties collectively motivate our
choice of a Transformer backbone for TERRAN.

Reinforcement learning framework: policy-gradient and
beyond. On the learning side, most neural routing solvers rely
on policy-gradient training with variance reduction techniques.
For EVRP(-TW), both value-based DQN variants [28], [34]
and end-to-end policy-gradient approaches [30]–[33], [35],
[36] have been explored. DRL-TS [29] further proposes a
two-stage curriculum that combines graph attention with edge
features and separates soft versus hard constraint enforce-
ment across phases. Despite these advances, several chal-
lenges remain. Reward functions are often hand-crafted, risk-
ing misalignment with long-horizon routing objectives [24],
[25]. Feasibility mechanisms typically depend on soft penal-
ties or static masks, which fail to capture dynamic SoC
reachability [29]. Moreover, large-scale instances frequently
suffer from degraded solution quality or incur substantial
decoding overhead due to feasibility recovery [28]. To ad-
dress these limitations, our method integrates a Transformer
backbone with constraint-aware attention and explicit future-
reachability modeling under a PPO/GAE objective. This de-
sign improves feasibility and training stability, while maintain-
ing real-time inference efficiency.

Relation to trajectory optimization in transporta-
tion electrification. Beyond routing, a parallel line of re-
search in transportation electrification focuses on optimiz-
ing continuous-time vehicle trajectories and grid–EV co-
scheduling. Recent studies include the joint optimization
of distribution networks and EV trajectories with explicit
carbon-emission allocation [37], as well as eco-driving speed-
trajectory optimization using optimal control or dynamic pro-
gramming that minimizes traction energy [38], [39]. These
works address a different decision layer—optimizing speed
profiles and charging schedules along a given path or network
operating point—whereas EVRP-TW targets discrete node
sequencing and charging station selection under TW/SoC
constraints. The two classes of approaches are complemen-
tary: trajectory-level results can refine arc-level energy and
time estimates or serve as speed advisors within a dispatch
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framework, while EVRP-TW determines which customers and
CSs to visit and when.
Summary. Exact solvers guarantee optimality at the expense
of scalability; metaheuristics trade computational speed for
robustness and generalization; and existing DRL methods,
though promising, exhibit critical limitations in reward shaping
and feasibility enforcement. These challenges underscore the
need for a scalable DRL framework that can ensure feasibility,
improve training stability, and deliver high-quality real-time
solutions—motivating our proposed TERRAN.

B. Our Contributions

We propose TERRAN, a constrained RL framework for
real-time EVRP-TW that explicitly addresses spatiotemporal
and energy constraints. TERRAN makes four contributions:

1) First publicly available deep RL framework and
reproducible benchmark for EVRP-TW. To the best
of our knowledge, there is no prior reproducible end-
to-end DRL framework for EVRP-TW with matched
constraints, public training scripts, and data genera-
tors. We release a repository with training code, data-
generation tools, standardized instance sets, and solver
baselines, establishing a transparent, reproducible, and
extensible foundation for future research: https://github.
com/NanpengYu/TERRAN.

2) Future-Feasibility Pruning (FFP). We introduce a
look-ahead action-pruning mechanism that removes
energy-infeasible actions by verifying reachability to a
depot or charging station after each decision step. This
rule is provably feasibility-preserving, shrinks the search
space, and improves both training stability and inference
efficiency.

3) Staged Reward Scheduling. We design a multi-stage
reward schedule that guides learning from feasibility dis-
covery to optimizing the primary objective (total travel
distance). Early dense signals (e.g., for customer service
or charging) mitigate sparse feedback and accelerate
convergence.

4) Unified Transformer-based, constraint-aware pol-
icy for EVRP-TW. We integrate battery consump-
tion, charging operations, and time-window constraints
directly into decoding/masking within a Transformer-
based policy, enabling end-to-end solution generation
without ad-hoc post-processing.

TERRAN achieves up to 170,000× speedups over CPLEX
on 15-customer instances (0.02 s vs. 3,500 s), while maintain-
ing solutions within 1.5% of the optimal. On 100-customer
benchmarks, TERRAN generates 100% feasible solutions in
just 0.47 s, whereas CPLEX fails to return a feasible solution
in over half the cases within the 1-hour time limit. Across all
problem scales, TERRAN consistently produces high-quality,
constraint-compliant routes with exceptional computational ef-
ficiency and can serve as a transparent and extensible baseline
for future work on EVRP-TW problems.

The rest of the paper is organized as follows. Section II
models the EVRP-TW as a constrained graph-based opti-
mization problem with spatiotemporal dynamics. Section III

TABLE I
LIST OF NOTATIONS

Symbol Description

V Set of all nodes (depot, customers, charging stations)
Vd Depot node set (typically {0})
Vc Set of customer nodes
Vs Set of charging station (CS) nodes
dij Euclidean distance between node i and j
ωij Travel time between node i and j; linearly proportional to dij
Q Maximum battery capacity of EVs
C Cargo capacity of EVs
g Charging rate
η Energy consumption rate per unit time
(xi, yi) 2-D spatial coordinates of node i
[ei, li] Time window at node i (arrival bounds)
qi Demand of customer i (0 for depot and CS)
tser Constant service time at customer nodes
Tmax Upper bound of global time horizon
Emin(i) Minimum energy required to reach a depot or CS from node i

SoCt Battery level (state-of-charge) at step t
ct Remaining cargo capacity at step t
τ t, τ̃ t Departure time and arrival time at step t
St System-level state tuple: (τ t, SoCt, ct)
st RL state composed of: partial route, St, and current node ut

at Action at step t (selecting next node ut+1 to visit)
ut Node visited at step t (before taking at)
A Action space (candidate nodes at each step)
Mt(i) Feasibility mask for node i at time t

Π Permutation of visited nodes (full routing plan)
Rk Route of vehicle k as a subsequence of Π

reformulates it as a Markov Decision Process (MDP) to enable
RL solutions. Section IV introduces the TERRAN framework,
detailing the model architecture, masking scheme, and multi-
stage reward design. Section V presents experimental results
on Solomon benchmark instances, alongside ablation studies.
Section VI concludes the paper and discusses future work
directions for scalability and real-world deployment.

II. PROBLEM FORMULATION

EVRP-TW, introduced by Schneider et al. [13], extends
the classical VRP by incorporating EV constraints involving
battery capacity and delivery time windows (see Appendix A).
In our setting, a central dispatcher agent plans routes for
multiple EVs sequentially, where each vehicle operates in-
dependently but is coordinated centrally through a unified
sequential decoding process. As in the standard benchmark
setup, we adopt a homogeneous and unlimited fleet of vehicles,
facilitating comparability and reproducibility with prior work.
Table I summarizes the key notations used throughout the
paper.

Following prior work on RL-based combinatorial optimiza-
tion [25], we represent an EVRP-TW solution as a sequence
of node selections constructed in an autoregressive decoding
process. At each decoding step t, the vehicle observes the
current system state and selects the next node ut+1 ∈ V to
visit, subject to feasibility constraints.

To support this sequential decision process, we formalize
the problem on a complete directed graph G = (V,E), where
the node set is defined as V = Vd ∪ Vc ∪ Vs, consisting of:

• Depot (Vd = {0}): the origin and destination for all EVs,
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• Customers (Vc = {1, . . . , nc}): demand nodes with
service time windows,

• Charging Stations (Vs = {nc + 1, . . . , nc + ns}): loca-
tions where vehicles must charge to full battery capacity
before departure.

Each node i ∈ V is represented by a 5-dimensional static
feature vector:

Xi =

{
(xi, yi, 0, 0, Tmax), if i ∈ V \ Vc

(xi, yi, qi, ei, li), if i ∈ Vc,

where (xi, yi) denotes 2-D spatial coordinates of node i, qi is
the demand at node i (zero for depot and CS), [ei, li] represents
the time window for serving the customer at node i.

For depot and CS nodes, demand and time window are
set to (0, 0, Tmax) to standardize dimensionality. This unified
representation enables consistent encoding of heterogeneous
node types. The arc set is defined as E = {(i, j) | i, j ∈ V },
where the travel distance between node i and j is given by
dij =

√
(xi − xj)2 + (yi − yj)2.

A. Dynamic System State: Per-Vehicle Modeling

Model Assumptions. Following the classical EVRP-TW for-
mulation [13], we adopt the following assumptions:

• EVs travel at a constant speed, making travel time ωij

linearly proportional to the Euclidean distance dij .
• Energy consumption is proportional to travel distance,

and since EVs travel at a constant speed, we express it as
proportional to travel time, with a fixed rate η (kWh/min).

• The charging rate g (kWh/min) of EVs at CSs is constant.
• Each charging session restores the battery to full capacity;

partial charging is not allowed.
• All customer nodes require a fixed service time tser, while

depot and charging stations incur no service delays.
These assumptions govern the evolution of each EV’s

operational status throughout its assigned route. Since the
agent constructs routes sequentially, we model the per-vehicle
dynamics using a system state St at each decoding step t,
capturing the current EV’s time, battery, and remaining cargo
capacity:

St = (τ t, SoCt, ct), (1)

where τ t ∈ [0, Tmax] denotes system time at step t, represent-
ing the vehicle’s departure time from node ut after completing
service or charging, SoCt ∈ [0, Q] denotes the state-of-charge
of the EV battery, and ct ∈ [0, C] denotes the EV’s remaining
cargo capacity.

This state representation encodes three core operational con-
straints of EVRP-TW: temporal deadlines, energy feasibility,
and remaining load capacity.

Operational Constraints: Feasibility Conditions

1) Time Window: For any customer node ut+1 ∈ Vc, the
vehicle must arrive within the service time window:

eut+1
≤ τ t+ωut,ut+1

≤ lut+1
, t ∈ [0, Tmax− 1] (2)

2) Energy Feasibility: The EV battery must have enough
energy to reach the next node:

SoCt ≥ η · ωut,ut+1
, t ∈ [0, Tmax − 1] (3)

3) Cargo Capacity: To serve a customer ut+1 ∈ Vc, the
vehicle must have sufficient capacity:

ct ≥ qut+1
, t ∈ [0, Tmax − 1]. (4)

4) Depot Return: Each route must terminate at a depot
uT ∈ Vd within the time horizon:

τ̃T ≤ Tmax (5)

Solution Representation: Permutation-Based Routing

A feasible solution to EVRP-TW is represented by a per-
mutation of node indices: Π = (u0, u1, u2, . . . , um), ui ∈ V,
where depot nodes (i.e., node 0) act as delimiters separating
individual vehicle routes. This format allows a single agent
to construct routes for multiple EVs in a unified decoding
sequence. Each sub-sequence between depot nodes corre-
sponds to a distinct vehicle’s route, executed in parallel in
the actual delivery process. The total number of vehicles is
thus determined by the number of depot returns rather than
being fixed a priori. For illustration, consider an instance with
5 customers (nodes 1–5), one CS (node 6), and a single depot
(node 0). The permutation Π = {0, 1, 6, 2, 4, 0, 5, 0} defines
two vehicle routes: R1 : 0 → 1 → 6 → 2 → 4 → 0,
R2 : 0 → 5 → 0.

This permutation-based structure provides a unified rep-
resentation that naturally incorporates depot returns and op-
tional charging station stops. Each sub-route must satisfy
all operational constraints, including time-window feasibility,
battery capacity, and cargo limits. While routes are generated
sequentially within a single permutation, they are executed
concurrently by multiple vehicles in practice. Each depot token
terminates the current route and resets a route-local clock τ
to zero for the next one, ensuring that all temporal constraints
are evaluated with respect to the local clock of the vehicle
serving each customer.

Objective Function

The objective is to minimize the total travel distance across
all EV routes:

min
Π∈F

K∑
k=1

∑
(i,j)∈Rk

dij (6)

where F denotes the set of node permutations satisfying
constraints (2)–(5).

This distance-based objective follows the classical EVRP-
TW formulation [13], where travel distance is widely adopted
due to its correlation with travel time, energy usage, and
operational cost. Our work retains this standard assumption
while focusing on constrained policy learning.
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III. EVRP-TW AS AN RL PROBLEM

We model EVRP-TW as a finite horizon Markov Decision
Process (MDP) with the tuple (S,A,P, r,Hmax, γ), where S
is the state space, A is the action space, P is the dynamics
model, r is the reward function, Hmax denotes the step
horizon, and γ ∈ (0, 1] is the discount factor. Our goal
is to find a policy πθ : S → A, represented as a neural
network with weights θ, which maximizes the expected return,
i.e., the discounted cumulative reward of the states visited:
Gt =

∑Hmax−t
k=0 γkrt+k.

State Space Design

At each decoding step t, the state st ∈ S represents the
routing progress and vehicle status: st = (Π1:t−1, S

t, ut) ,
where Π1:t−1 denotes the sequence of nodes visited so far,
St = (τ t, SoCt, ct) is the current dynamic system state, and
ut ∈ V is the current node index. An episode terminates
when all customer nodes in Vc have been visited and the
agent has constructed a complete sequence of vehicle routes,
each starting and ending at the depot. Although the MDP
operates in a sequential decision-making mode, the underlying
solution corresponds to a parallel execution across multiple
vehicles. The agent implicitly determines when to dispatch
a new vehicle by inserting a depot node into the sequence,
thereby eliminating the need for a predefined fleet size.

Action Space Design

The action at ∈ A corresponds to selecting the next node
ut+1 ∈ V to visit. Infeasible nodes are dynamically masked
based on time window, battery, and cargo capacity constraints.
The mask Mt(i) is computed such that:

Mt(i) =


0, if τ̃ t+1 > li (time window violated)
0, if SoCt − η · ωut,i < 0 (insufficient energy)
0, if ct < qi (infeasible demand)
1, otherwise

This mask ensures single-step feasibility based on one-step
ahead constraints. Future feasibility, such as ensuring sufficient
battery energy to reach a subsequent charging station or the
depot, is addressed in Section IV.

Environment Transition Dynamics

Given state st and a valid action at = ut+1, the next state
st+1 is deterministically defined: P(st+1 | st, at) = 1. The
updates are as follows:

The time-related state variables are updated as follows:
Arrival time:

τ̃ t+1 = τ t + ωut,ut+1
, ut+1 ∈ V

Departure time:

τ t+1 =


max(eut+1 , τ̃

t+1) + tser, ut+1 ∈ Vc,

τ̃ t+1 +
Q− (SoCt − η · ωut,ut+1)

g
, ut+1 ∈ Vs,

0, ut+1 ∈ Vd.

The battery state-of-charge is updated as follows:

SoCt+1 =

{
SoCt − η · ωut,ut+1 , ut+1 /∈ Vs ∪ Vd

Q, ut+1 ∈ Vs ∪ Vd

The cargo state is updated as follows:

ct+1 =


ct − qut+1

, ut+1 ∈ Vc

C, ut+1 ∈ Vd

ct, ut+1 ∈ Vs

If ut+1 ∈ Vd, the vehicle is reset: time is re-initialized, the
battery is fully recharged, and cargo capacity is restored. The
episode terminates once all customers in Vc have been visited
exactly once and the final route returns to the depot, ensuring
that the constructed permutation Π consists of complete,
depot-terminated routes. Early termination due to constraint
violations does not occur, as infeasible actions are proactively
masked by the environment.

Reward Function Design

Let ∆dt ≥ 0 denote the travel distance incurred when
moving from the current node ut to the next node ut+1 (i.e.,
the action at := ut+1). The per-step reward is defined as

rt = − ∆dt (7)

+ rre 1
{
ut ∈ Vs, SoCt ≤ θSoC, ut−1 /∈ Vs

}
(8)

+ rser 1{ut ∈ Vc} (9)
+ rloop 1{ut+1 ∈ Lt, servet = 0} , (10)

where θSoC ∈ (0, 1) is a low-SoC threshold; Lt is a short
memory (e.g., the last m=3 nodes visited) used to detect
short cycles; and servet = 0 indicates that no customer is
served within Lt. We use the distance term without additional
scaling and keep the shaping magnitudes small relative to
the (normalized) distance cost, with rser > 0, rre > 0,
and rloop < 0. The charging bonus in (8) is granted only
under low SoC and not for immediate repeated recharges at
the same CS group (enforced by at−1 /∈ Vs). Equation (9)
encourages service progress, and (10) suppresses degenerate
short cycles (e.g., i→ j→ i or CS–CS toggling) that do not
contribute to service. Since the final objective remains distance
minimization, the shaping terms can be annealed or removed
in later training stages.

IV. PROPOSED METHOD

Given the EVRP-TW MDP formulation in Section III,
we propose TERRAN, a transformer-based policy network
trained via policy-gradient training to generate feasible EVRP-
TW routes through autoregressive decoding. The framework
explicitly incorporates time, energy, and capacity constraints
into each routing decision (see Fig. 1).

Unlike prior DRL-based approaches that rely on retro-
spective constraint repair [28], [29], TERRAN embeds con-
straint feasibility directly into the decision-making process
through three key innovations: (i) Future-Feasibility Prun-
ing (FFP), a proactive pruning mechanism that eliminates
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Fig. 1. TERRAN overview. Trainable modules are indicated by an asterisk (*): Transformer backbone*, Actor*, and Critic*. Constraint-handling
components—feasibility masks Mt (time, capacity, ), Future-Feasibility Pruning (FFP), and environment/state updates—are nontrainable and gate the action
space before the policy step.

infeasible actions; (ii) Staged Reward Scheduling, a multi-
phase reward strategy that progressively shifts from dense
auxiliary signals to pure route optimization; and (iii) End-
to-End Transformer-based RL Agent Tailored for EVRP-
TW, which integrates battery, charging, and time-window
constraints into the model architecture and decoding process,
enabling feasibility-aware routing without post-processing.

A. Model Architecture

TERRAN adopts a transformer-based encoder-decoder ar-
chitecture, augmented with dynamic state encoding, attention
masking, and autoregressive decision-making. Fig. 1 summa-
rizes the key modules and data flow.

a) Graph Embedding.: Each node is represented by
a 5-D feature vector including spatial, temporal, and task-
specific attributes (e.g., demand, charging eligibility), linearly
projected into a shared embedding space.

b) Transformer Encoder (×N ).: We use N stacked
encoder layers with multi-head self-attention to capture global
node dependencies. The resulting contextualized embeddings
are reused as attention keys and values.

c) Decoder with Dynamic Query and Feasibility Mask-
ing.: At each decoding step t, the decoder performs masked
multi-head cross-attention. Encoder outputs {hi}i∈V are lin-
early projected to keys and values, K = WKhi, V = WV hi.
The query representation combines both local routing context
and global graph information. Specifically, we concatenate the
current-node embedding hut with the dynamic state variables
to form the input vector wt = [ τ t; SoCt; ct; hut ]. This
vector is processed by a feed-forward network to produce
zt = FFN(wt), which is then combined with a graph-level

aggregated feature hgraph = 1
|V |

∑
i∈V hi, yielding the final

query representation z̃t = zt + hgraph. The attention query is
given by Q = WQz̃t. Cross-attention with (Q,K, V ) produces
an attention glimpse gt, which is shared by both the actor
(policy over feasible next nodes, decoded via greedy, sampling,
or beam search) and the critic (state-value estimate). Before
action selection, a binary feasibility mask Mt integrates time-
window, capacity, and energy constraints together with Future-
Feasibility Pruning (FFP) to suppress infeasible logits.

d) Actor and Critic.: The Actor network uses masked
logits from gt to sample the next action at, while the Critic
network estimates the state value from gt to guide PPO
updates.

e) Environment.: After each action, the environment de-
terministically updates the routing state and recomputes the
feasibility mask Mt+1, completing the autoregressive loop.

f) Discrete Decoding and Route Reconstruction.: At step
t, masked logits over V feas

t ⊆ V induce a categorical distribu-
tion over feasible candidates. Sampling from this distribution
(e.g., greedy selection, stochastic sampling, or beam search)
yields an integer index ut+1 ∈ V feas

t , which is appended to
the growing permutation Π (Sec. II). The depot token 0 acts
as a route delimiter: subsequences between two depots form
vehicle routes {Rk}, and revisited customers are excluded by
an instance-level visited mask. Decoding terminates when all
customers have been visited and the last token is the depot,
at which point Π is a complete discrete solution. Feasibility
is ensured by construction because time-window, capacity,
and energy masks—together with FFP—eliminate infeasible
actions before selection; thus any decoded integer sequence
corresponds to a feasible set of paths (e.g., {0 → 5 → 0}).
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When multiple trajectories are generated (e.g., via restarts or
beam search), we return the best instance solution under the
distance objective.

B. Dynamic Staged Reward Scheduling

Optimizing only for total travel distance—while aligned
with the final objective—leads to sparse and delayed rewards.
In early training, the agent receives little feedback until it
completes a valid route, often resulting in degenerate behaviors
such as looping between charging stations or returning to the
depot prematurely. To address this issue, we design a dynamic
multi-stage reward schedule that transitions the agent from
feasibility discovery to distance minimization. At each stage,
we strategically retain terms from the full reward function (7),
and gradually phase out others to avoid competing objectives.
The training proceeds in three stages:

In the Initialization Stage, the reward function consists of
three terms that encourage exploration and basic feasibility
by providing dense feedback. The first term is the distance
penalty, rdist = −dij , which discourages longer travel dis-
tance. The second term is a service reward, rser ≥ 0, which
incentivizes customer visits. The third term is the loop penalty,
rloop ≤ 0, which penalizes repetitive CS to CS moves.

In the Shaping Stage, two changes are made to the initial-
ization stage’s reward function to promote long-term planning
by rewarding strategic charging decisions. First, we include
a charging encouragement term, rre ≥ 0, which is applied
when visiting a CS with low SoC. Second, we reduce the
contribution of the service reward rser to help the agent shift
its focus from simply meeting customer demand to improving
the feasibility of the route.

In the Optimization Stage, all auxiliary reward terms are
removed, and the reward is purely based on travel distance.

This staged design stabilizes training, promotes strategic
behavior, and aligns the final policy with the EVRP-TW
objective of minimizing total travel cost.

C. Feasibility Pruning and Masking Scheme

TERRAN enforces feasibility during decoding with a dual-
layer masking mechanism. The first layer (constraint-related)
encodes operational limits (time windows, capacity, energy),
while the second layer (instance-related) captures routing
logic (e.g., single service per customer and depot return).

Let At ⊆ V be the candidate set at step t. The feasible
action set is

Afeas
t = { i ∈ V | M con

t (i) = 1 ∧ M inst
t (i) = 1 }.

1) Constraint-Related Mask Mcon
t . It is formed as a

conjunction of three sub-masks:

M con
t (i) = M time

t (i)M cap
t (i)M energy

t (i). (11)

(i) Time window.

M time
t (i) =


1, τ t + ωut,i ≤ li, i ∈ Vc,

1, i /∈ Vc,

0, otherwise.

(12)

(ii) Capacity.

M cap
t (i) =


1, ct ≥ qi, i ∈ Vc,

1, i /∈ Vc,

0, otherwise.

(13)

(iii) Energy via Future-Feasibility Pruning (FFP). Let c(u, i)
denote the energy to travel from u to i (under the constant-
speed linear model c(u, i) = η ωu,i). Define the nearest-facility
energy as:

Emin(i) = min
j∈Vs∪Vd

c(i, j), (Emin(i) = 0 if i ∈ Vs ∪ Vd).

(14)

A candidate i is pruned at step t iff

c(ut, i) +Emin(i) > SoCt ⇐⇒ SoCt − c(ut, i) < Emin(i).
(15)

Equivalently, the energy sub-mask is

M energy
t (i) = 1

[
c(ut, i) + Emin(i) ≤ SoCt

]
. (16)

2) Instance-Related Mask M inst
t . Two rules are enforced.

(i) Visited-customer.

Mvisit
t (i) =

{
0, i ∈ Vc and customer i already served,

1, otherwise.
(17)

(ii) Premature-return. If no unvisited customer satisfies both
time and capacity, the next action must be the depot:

Mprem
t (i) =


1, i ∈ Vd,

0, i /∈ Vd and
∑
j∈Vc

Mvisit
t (j)M time

t (j)M cap
t (j) = 0,

1, otherwise.
(18)

The instance-level mask is

M inst
t (i) = Mvisit

t (i)Mprem
t (i), (19)

and is updated after each action.
Final mask.

Mt(i) = M con
t (i)M inst

t (i), (20)

which is used both to restrict the action-sampling space and to
prune infeasible nodes during masked attention in the decoder.

D. Training

We train TERRAN using an on-policy actor-critic policy
gradient framework, where a policy (actor) and its value
function (critic) are learned in tandem [40]. Unlike prior
DRL approaches for VRP that rely on REINFORCE [41]-
style updates with sparse trajectory-level rewards, we support
step-wise credit assignment through actor-critic optimization
over state-action pairs (st, at). This enables the trained agent
to exploit at each decision point intermediate feedback, such
as service rewards, distance penalties, and constraint-driven
incentives.

During training, the agent samples batches of solution
trajectories via parallel environment rollouts. At each decoding
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step t, it selects an action at from the masked feasible set {i |
Mt(i) = 1}, and records the transition tuple (st, at,Mt, rt).
An episode ends when all customer nodes are served and the
EV reaches the depot.

We optimize a standard on-policy policy-gradient objective
by maximizing

Lπ = Et[At log π(at | st) + λeHent(πθ)(· | st)] , (21)

where At is the advantage at time t and Hent is an entropy
regularization term that encourages exploration and mitigates
premature convergence (λe is a small positive scalar). In
its simplest form, the advantage can be defined as At =
Rt−V (st), where V (st) = E[Rt |πθ; st] is the value function
estimated by the critic network. However, to reduce variance
in policy updates, we employ the Generalized Advantage Es-
timation (GAE) method [42] to compute smoothed advantage
estimates.

We use the Proximal Policy Optimization (PPO) algo-
rithm [43] for policy training, where a surrogate loss Lπ is
used based on off-policy samples from an older policy πθold

to estimate the expected return of the current policy. This
facilitates efficient learning of policies that generate feasible
and high-quality EVRP-TW solutions under complex energy
and time constraints.

The value function loss component corresponds to the
critic’s regression task: Lvalue = (V (st)−Rt)

2, where Rt is
the empirical return accumulated from step t.

V. NUMERICAL EXPERIMENTS

A. Experimental Setup

Before presenting results, we describe the training configu-
ration, dataset construction, and evaluation protocol.

Hardware and Training Settings. All experiments are
conducted on a workstation with an AMD Ryzen Threadripper
3970X (32-core CPU) and an NVIDIA RTX 2080 Ti GPU.
The model is implemented in PyTorch and trained using the
AdamW optimizer [44]. For PPO updates, we use a batch size
of 64 and a total of 5 million environment steps. Additional
training hyperparameters are provided in Appendix B.

Normalization and Units. To stabilize optimization and
ensure comparability across instances, we normalize all inputs
to a canonical [0, 1] range on a per-instance basis. For each
instance, node coordinates are translated and rescaled to fit
within a unit square, customer demands are expressed relative
to vehicle capacity, time windows and travel times are scaled
by the instance horizon, and battery state-of-charge is scaled
by vehicle battery capacity. The same procedure is consistently
applied during training and inference; at deployment, each test
instance (e.g., Solomon benchmarks) is normalized with its
own per-instance rules before being processed by TERRAN.
This reduces domain shift in scale, units, and spatial density,
thereby enhancing cross-instance generalization.

Training Dataset. All training instances are synthetically
generated following an extended Solomon-style EVRP-TW
instance generator. Each instance contains a single depot,
multiple charging stations, and a set of customers (n ∈
{5, 15, 100}) distributed under three spatial patterns: Random

(R), Clustered (C), and Random–Clustered (RC). The number
of charging stations is set to 3, 7, and 20 for the small-,
medium-, and large-scale settings, respectively. Time windows
are produced using standard Solomon benchmark rules to
ensure consistency with VRPTW literature. To enhance struc-
tural diversity, two geographical layouts are used: an inter-city
configuration (charging stations dispersed across the map) and
an intra-city configuration (charging stations co-located with
customer clusters). All instance-generation scripts have been
released in our public repository to ensure full reproducibility.

Testing Dataset. Evaluation is conducted using: (i) the
original Solomon benchmark dataset [45] for the 100-customer
setting, which includes 56 standard instances across the R, C,
and RC types; and (ii) 5-customer and 15-customer instances
constructed by subsampling from a representative subset of
Solomon instances. Specifically, we extract 12 sub-instances
for each size and spatial type, ensuring structural coverage and
consistency across evaluation scales.

Training Time. The 5-customer and 15-customer models
are trained for 500,000 environment steps, taking approx-
imately 2 days of wall-clock time. Due to the increased
sequence length and action space, the 100-customer model
is trained for 5 million steps over approximately 4 to 5 days.

Evaluation Metrics. We evaluate TERRAN and all base-
lines using three key metrics: (1) total travel distance (objective
value), reflecting route quality; (2) inference time per instance
(in seconds), measuring runtime efficiency; and (3) anytime
objective values recorded at fixed time checkpoints (1, 5, 15,
30, 45, and 60 minutes), used to assess convergence speed and
performance under time constraints.

B. Numerical Study Results

We present a comprehensive evaluation of TERRAN across
benchmark scenarios of increasing complexity (5, 15, and
100 customers). The numerical studies are separated into four
parts. The first part covers ablation studies to quantify the
benefits of reward shaping and constraint pruning. The second
part compares the proposed algorithm with baselines to assess
the scalability and solution quality. The third part covers
anytime behavior by analyzing algorithm convergence perfor-
mance under runtime constraints. The final part visualizes the
solution of a large-scale instance of EVRP-TW problem.

1) Ablation Studies: We conduct ablation studies to assess
the contributions of two key components in TERRAN: Dy-
namic staged reward scheduling, which shifts the learning
signal from feasibility heuristics toward cost minimization; and
Future-Feasibility Pruning (FFP), which removes actions
that would strand the vehicle (i.e., insufficient energy to reach
any charging station or the depot).

All reward-scheduling ablations are conducted on 15-
customer subsets to balance tractability and complexity.
Specifically, we evaluate on 12 subsets derived from Solomon
instances spanning all three families: C-type (C103, C106,
C202, C208), R-type (R102, R105, R202, R209), and RC-type
(RC103, RC108, RC202, RC204). Unless otherwise stated, we
report the mean across these 12 subsets. Hyperparameters are
listed in Appendix B.
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Fig. 2. Evaluation performance under dynamic vs. distance-only reward
schedules. Solid lines indicate the average total distance across 12 Solomon
test instances (C103, C106, C202, C208; R102, R105, R202, R209; RC103,
RC108, RC202, RC204); shaded areas represent one standard deviation.

To isolate the effect of reward scheduling, we compare the
full staged design against a baseline using only negative travel
distance as the training signal, keeping FFP and all other
components fixed to ensure a fair comparison. As shown in
Fig. 2, dynamic reward scheduling accelerates convergence in
early training and yields lower final objective values. It also
improves generalization on evaluation instances, whereas the
distance-only variant converges more slowly and often settles
into suboptimal policies.

To assess the role of FFP, we disable the look-ahead energy-
feasibility check during decoding. Without it, the agent may
select nodes that are immediately reachable but ultimately
become stranded due to insufficient battery to reach a charging
station or depot. While soft-penalty methods attempt to dis-
courage such actions via large negative rewards (e.g., −1, 000),
they do not guarantee constraint satisfaction at inference time,
where stochastic sampling and policy noise can still yield
invalid trajectories.

In contrast, FFP enforces feasibility through hard masking:
it proactively excludes actions that would lead to energy-
infeasible states, ensuring that the agent remains within the
feasible solution space throughout decoding. This eliminates
the need for artificial penalties or post hoc repairs, and
maintains strict constraint compliance even under sampling
noise.

2) Baseline Comparison: We benchmark TERRAN against
two representative classical methods adapted from [13]: an
exact MILP solved with CPLEX and a hybrid heuristic
VNS/TS. To provide an end-to-end reference under identical
objectives and constraints, we also implement a DRL baseline
(DRL–Sample, PPO) with the same normalization, feasibility
masks, Future-Feasibility Pruning (FFP), and distance-only
reward as TERRAN. The key distinction is that TERRAN
employs Staged Reward Scheduling whereas DRL–Sample is
trained solely with the distance objective. All inference times
are measured per instance on the same hardware. Deterministic
decoders (CPLEX, VNS/TS, Ours–Greedy/Beam) have zero
variance, whereas stochastic decoders (DRL–Sample, Ours–
Sample) report both best and mean±std. Unless otherwise
noted, we use a sample-based decoder with 100 parallel
rollouts and select the lowest-cost trajectory, following [25],

Fig. 3. Anytime performance on 15-customer EVRP-TW instances. TERRAN
consistently converges faster and discovers a larger number of global optimal
solutions within seconds.

[36].
a) Small instances (n = 5).: Ours–Sample attains the

same best objective as CPLEX/VNS (187.1) while decoding
in 0.01 s; the classical solvers require tens to hundreds of
seconds. Relative to DRL–Sample, Ours–Sample substantially
improves the mean objective (215±8.9 vs. 312±52.4).

b) Medium instances (n = 15).: CPLEX achieves
the best solution (346.6) but requires 3,509 s. Ours–Sample
reaches 351.7 (within ≈1.5% of CPLEX) and slightly out-
performs VNS/TS (353.3), while decoding in 0.01 s. Com-
pared with DRL–Sample, the mean objective improves from
607±71.7 to 438±34.5.

c) Large instances (n = 100).: Classical solvers are in-
feasible and not reported at this scale. Ours–Sample achieves a
best objective of 1,249.6 and a mean of 1, 457±177.6 in 0.47 s,
versus 2,571.1 (best) and 3, 189±197.9 (mean) for DRL–
Sample (0.41 s), corresponding to improvements of about 51%
(best) and 54% (mean). TERRAN attains near-optimal quality
on small and medium Solomon instances—within ∼1–2% of
CPLEX—while decoding orders of magnitude faster, and it
markedly outperforms a matched DRL baseline at n=100
under the same protocol.

3) Anytime Behavior: To evaluate anytime performance, we
focus on the 15-customer test set, which offers a nontrivial and
balanced evaluation scenario. The 5-customer problem is too
simple. Conversely, the 100-customer case is too challenging:
CPLEX achieves feasibility on only 14.3% (8/56) of test
instances, and VNS/TS fails to return any feasible solution
within the time limit. Thus, the 15-customer case is an ideal
middle ground for comparison.

We evaluate solution quality at six time checkpoints: 1, 5,
15, 30, 45, and 60 minutes. Fig. 3 presents the anytime perfor-
mance of all algorithms, with lines indicating average objective
values and bars showing the number of global optima found
across 12 test instances. As shown in the figure, TERRAN
identifies near-optimal solutions within seconds, significantly
outperforming both CPLEX and VNS/TS throughout the time
horizon. While CPLEX and VNS/TS gradually improve, nei-
ther achieves competitive performance within 28 minutes.
TERRAN finds global optima in 8 out of 12 test cases—all
within one minute—compared to 4 and 2 for CPLEX and
VNS/TS, respectively. This highlights not only TERRAN’s
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TABLE II
PERFORMANCE ON SOLOMON BENCHMARKS. FOR EACH METHOD AND PROBLEM SIZE WE REPORT THE best OBJECTIVE (LOWER IS BETTER) AND

RUNTIME. FOR STOCHASTIC DECODERS (DRL–SAMPLE, OURS–SAMPLE), WE ADDITIONALLY REPORT MEAN±STD ACROSS RUNS IN PARENTHESES.
DETERMINISTIC METHODS (CPLEX, VNS/TS, OURS–GREEDY/BEAM) HAVE STD = 0.

5 Customers 15 Customers 100 Customers
Method Best Obj Mean±Std Time (s) Best Obj Mean±Std Time (s) Best Obj Mean±Std Time (s)

CPLEX 187.1 – 148 346.6 – 3,509 – – –
VNS/TS 187.1 – 63 353.3 – 2,833 – – –
DRL–Sample 187.1 312±52.4 0.01 387.5 607±71.7 0.02 2,571.1 3,189±197.9 0.41
Ours–Greedy 189.7 – 0.01 493.3 – 0.02 1,579.2 – 0.22
Ours–Beam 189.3 – 0.01 367.0 – 0.02 1,509.5 – 0.24
Ours–Sample 187.1 215±8.9 0.01 351.7 438±34.5 0.02 1,249.6 1,457±177.6 0.47

Fig. 4. Routing plan for a 100-customer EVRP-TW instance solved by
TERRAN. Each color indicates a distinct vehicle route, with CSs strategically
placed near customer clusters. The solution satisfies all constraints without
post-processing, demonstrating the model’s scalability and feasibility-aware
planning.

ability to produce high-quality solutions rapidly, but also its
robustness under tight time budgets.

In sum, TERRAN demonstrates superior anytime perfor-
mance, combining short execution time, strong solution qual-
ity, and consistent feasibility—positioning it as a highly prac-
tical method for real-time EVRP-TW deployment.

4) Solution Visualization for a 100-Customer Instance:
To qualitatively assess TERRAN’s performance in large-scale
settings, we examine a representative 100-customer instance.
As shown in Fig. 4, the solution satisfies all time, energy, and
capacity constraints without any post-processing. Each route
(color-coded) forms a spatially coherent customer cluster, with
strategically placed charging stops that align with battery
limitations. Notably, TERRAN consistently respects time win-
dows while minimizing detours, demonstrating effective long-
horizon planning.

This case highlights TERRAN’s ability to incorporate
feasibility-driven decision-making into global route plan-
ning—validating the role of attention masking and FFP in
producing robust, scalable solutions.

VI. CONCLUSION

We presented TERRAN, a Transformer-based reinforce-
ment learning framework for the Electric Vehicle Routing
Problem with Time Windows (EVRP-TW). TERRAN inte-
grates Future-Feasibility Pruning (FFP) and staged reward
scheduling into an end-to-end, feasibility-aware decoder, so
that time, energy, and capacity constraints are enforced during
action selection rather than via post-processing.

On Solomon benchmarks, TERRAN matches CPLEX on
small instances and scales to large ones: it yields 100%
feasible solutions for 100-customer cases in ∼0.47 s and
achieves up to 1.7×105 speedups on 15-customer instances
while remaining within 1.5% of optimal. These results indicate
that the approach is both accurate and real-time capable.

This study focuses on the classic EVRP-TW benchmark:
single depot, homogeneous fleet, and full charging [13]. We do
not model heterogeneous vehicles or charging-station queuing.
Nevertheless, TERRAN provides a reusable backbone: its
constraint-aware Transformer and FFP can be extended to
partial-charging models, heterogeneous or multi-depot fleets
by appropriately augmenting the state and masking logic. Our
open-source implementation offers a compact and transparent
testbed for such extensions, as well as for exploring alternative
learning signals (e.g., inverse or preference-based RL) and
planning under uncertainty or partial observability.
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APPENDIX

A. MILP Formulation for EVRP-TW

For benchmarking purposes, we adapt the MILP formulation
from [13], which jointly models routing, charging, and time
window constraints.
Objective:

min
∑
i∈V ′

0

∑
j∈V ′

N+1

j ̸=i

dijxij (22)

Constraints: ∑
j∈V ′

N+1
j ̸=i

xij = 1, ∀i ∈ V (23)

∑
j∈V ′

N+1
j ̸=i

xij ≤ 1, ∀i ∈ Vs (24)

∑
i∈V ′

N+1
i̸=j

xij =
∑

i∈V ′
N+1

i̸=j

xji, ∀j ∈ V ′ (25)

τ t
i + (tij + si)xij ≤ τ t

j + l0(1− xij), ∀i ∈ Vd (26)

τ t
i + tijxij + ginv(Q−yi) ≤ τ t

j + (l0+ginvQ)(1−xij), ∀i ∈ Vs

(27)

ej ≤ τ t
j ≤ lj , ∀j ∈ V ′

0 ∪ V ′
N+1 (28)

0 ≤ uj ≤ ui − qixij + C(1− xij), ∀i ∈ V ′
0 (29)

0 ≤ u0 ≤ C (30)

0 ≤ yj ≤ yi − hdijxij +Q(1− xij), ∀j ∈ V ′
N+1 (31)

0 ≤ yj ≤ Q− hdijxij , ∀i ∈ Vs (32)

xij ∈ {0, 1}, ∀i, j, i ̸= j (33)

Additional Notation Used in MILP:

Symbol Description

V ′
0 , V

′
N+1, V

′ Extended node sets with dummy copies
τi System time at node i
ej , lj Time window bounds for customer j
si Service time at customer i
ui Cargo load after visiting node i
u0 Initial cargo capacity
yi Battery level after visiting node i
l0 Large constant for time feasibility relaxation
ginv Inverse Charging Speed
h Energy consumption rate per distance unit

The objective (22) minimizes the total travel distance across
all routes. Constraints (23) and (24) govern node visitations:
each customer must be visited exactly once, while charg-
ing station visits are flexibly handled via duplicated nodes.
Constraint (25) ensures flow conservation, requiring that the

number of arrivals and departures at each node are balanced.
Temporal feasibility is maintained through constraints (26)
and (27), which regulate travel and charging times between
successive visits. Constraint (28) further enforces adherence to
the time windows specified for each customer and depot node.
Cargo capacity constraints are captured in constraints (29)
and (30), ensuring the vehicle load remains non-negative
and within maximum limits throughout the route. Similarly,
constraints (31) and (32) maintain the energy feasibility of
the EV, tracking battery levels along the journey. Finally,
constraint (33) defines the binary nature of routing decisions,
indicating whether an arc is traversed or not.

B. Hyperparameter Settings

The main hyperparameters used in training TERRAN are
listed in Table III. These settings were selected based on
preliminary experiments to ensure training stability and gener-
alization across instance sizes. Values for staged reward coef-
ficients and decoding strategies are included for completeness
and can be adjusted based on problem scale.

TABLE III
TERRAN HYPERPARAMETER SETTINGS

Category Hyperparameter Value

Optimization
Optimizer AdamW
Learning rate 3e-5
Discount factor (γ) 0.99
GAE parameter (λ) 0.95
PPO clip ratio (ϵ) 0.2
Value loss coefficient (λv) 0.5
Entropy loss coefficient (λe) 0.01

Training Setup
Total environment steps 5 million
Training epochs 5,000
PPO batch size 64
Instance batch size per epoch 1,024
Number of parallel agents 100

Network Architecture
Hidden size 128
Encoder layers 4
Attention heads 8
Dropout rate 0.1

Reward Parameters
Charging warning threshold (θSoC) 0.3
Customer service reward (rser) 0.1
Charging reward (rre) 0.3
Loop penalty (rloop) -100

Decoding Strategy
Number of samples (sampling mode) 100
Beam width (beam search mode) 20

C. Baseline Solver Configuration

1) CPLEX Solver: CPLEX 22.1.1 was used with the fol-
lowing settings:

• Threads: 8 (to match hardware parallelism)
• MIP emphasis: balance_optimality
• Time limit: 1 hour for large instances
• Memory limit: 16GB
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To address the modeling challenge that charging stations
(CS) can be visited multiple times, whereas CPLEX natively
enforces a single-visit constraint per node, we adopt a node
duplication strategy [13]. Specifically, each CS is duplicated
into multiple dummy nodes, each permitting a single visit.
This approach enables CS nodes to be unified with customer
nodes in a single routing graph without introducing additional
structural complexity.

Each dummy node may be visited at most once, collectively
allowing multiple visits to the same physical CS. However,
there exists an inherent trade-off: increasing the number of
dummy nodes expands the problem size and search space,
leading to higher computational costs; conversely, insufficient
duplication may restrict feasible routing options and exclude
globally optimal solutions.

Prior studies commonly set the number of dummy nodes
conservatively, e.g., up to three times the number of customers.
However, our preliminary experiments suggest that such es-
timates can substantially enlarge the variable space without
proportional gains in feasibility. Consequently, we empirically
select a moderate number of dummy copies based on instance
size:

• 5-customer instances: 3 dummy nodes per CS
• 15-customer instances: 5 dummy nodes per CS
• 100-customer instances: 7 dummy nodes per CS

We note that these settings are empirically tuned for the
experimental benchmark used and are not guaranteed to be
globally optimal. More adaptive strategies that adjust the num-
ber of dummy nodes based on instance-specific characteristics
remain an open direction for future refinement.

2) VNS/TS Implementation.: We adopt the CPLEX solver
and the classical VNS/TS heuristic [13] as competitive base-
lines for performance comparison. Since the original VNS/TS
implementation was written in Java and not publicly released,
we re-implemented it in Python based on the algorithmic
descriptions provided in the paper. To ensure feasibility, we
include the AddNewVehicle repair heuristic. While we follow
the original design closely, some behavioral differences may
exist due to unspecified implementation details.

For consistency with TERRAN, the reimplementation is
done entirely in Python. We acknowledge that the choice
of programming language can significantly affect runtime
performance; therefore, our reported results are intended to
reflect algorithmic behavior rather than absolute execution
speed. All methods are evaluated under the same hardware
and software conditions, with runtime limits of 1 minute (small
instances) and 1 hour (large instances). Most hyperparameters
follow the original paper, with reasonable assumptions made
where necessary. The key settings are listed in Table IV.

D. Feasibility-Preserving Property of FFP

We formally show that the Future-Feasibility Pruning (FFP)
mechanism preserves all feasible (and thus optimal) solu-
tions by only eliminating actions that would lead to energy-
infeasible states.

TABLE IV
VNS SOLVER HYPERPARAMETER SETTINGS (15-CUSTOMER INSTANCES)

Parameter Value Description

ℓtabu 30 Max length of the tabu list
τtabu 100 Tabu Search iterations per restart
α, β, γ 10.0 Initial penalty weights
αmin, βmin, γmin 0.5, 0.75, 1.0 Min penalties
αmax, βmax, γmax 5,000 Max penalties
kmax 15 VNS neighborhoods
ηfeas, ηdist 700, 200 Iteration caps
δSA 0.08 SA cooling rate
λdiv 1.0 Diversity penalty
N

pre
route 1–10 Predefined route count

τpenalty 2 Penalty update interval
δ 1.2 Penalty multiplier
T0 adaptive Init. SA temperature

Suppose, for contradiction, that FFP prunes an action at = i
at step t, where node i lies on a feasible route. By the pruning
rule, this action is excluded if:

SoCt − η · ωut,i < Emin(i),

where SoCt is the battery level before moving to node i, ωut,i

is the travel time from node ut to i, η is the energy con-
sumption rate, Emin(i) denotes the minimum energy required
to reach any CS or depot from node i. Here, Emin(i) =
minj∈Vs∪Vd

η · ωi,j is precomputed for each node based on
shortest-path travel time to its nearest charging point or the
depot.

This condition implies that after moving to node i, the
remaining energy would be insufficient to reach any charging
point:

SoCt+1 = SoCt − η · ωut,i < Emin(i),

which contradicts the feasibility requirement that the vehicle
must always be able to reach a charging station or the depot
from any visited node.

Hence, any action pruned by FFP cannot be part of a
feasible route. FFP thus eliminates only actions that would
inevitably violate the energy constraints, and preserves all
feasible (and optimal) solution paths.
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algorithm for the conflict-free electric vehicle routing problem,” IEEE
Trans. Autom. Sci. Eng., vol. 19, no. 3, pp. 1405–1421, 2022.

[17] J. Duan, T. Wang, and W. Yang, “An adaptive large neighborhood search
heuristic for the electric vehicle routing problems with time windows
and recharging strategies,” J. Adv. Transp., vol. 2023, pp. 1–17, 2023.

[18] J.-F. Cordeau, G. Laporte, and A. Mercier, “A unified tabu search
heuristic for vehicle routing problems with time windows,” J. Oper. Res.
Soc., vol. 52, no. 8, pp. 928–936, 2001.

[19] H. Zhang, Q. Zhang, L. Ma, Z. Zhang, and Y. Liu, “A hybrid ant colony
optimization algorithm for a multi-objective vehicle routing problem
with flexible time windows,” Inf. Sci., vol. 490, pp. 166–190, 2019.
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