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Abstract

This paper reviews the burgeoning field of data-driven algorithms and their appli-
cation in solving increasingly complex decision-making, optimization, and control
problems within active distribution networks. By summarizing a wide array of use
cases, including network reconfiguration and restoration, crew dispatch, Volt-Var
control, dispatch of distributed energy resources, and optimal power flow, we under-
score the versatility and potential of data-driven approaches to improve active dis-
tribution system operations. The categorization of these algorithms into four main
groups—mathematical optimization, end-to-end learning, learning-assisted optimiza-
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tion, and physics-informed learning—provides a structured overview of the current
state of research in this domain. Additionally, we delve into enhanced algorith-
mic strategies such as non-centralized methods, robust and stochastic methods, and
online learning, which represent significant advancements in addressing the unique
challenges of active distribution systems. The discussion extends to the critical role
of datasets and test systems in fostering an open and collaborative research environ-
ment, essential for the validation and benchmarking of novel data-driven solutions.
In conclusion, we outline the primary challenges that must be navigated to bridge
the gap between theoretical research and practical implementation, alongside the op-
portunities that lie ahead. These insights aim to pave the way for the development
of more resilient, efficient, and adaptive active distribution networks, leveraging the
full spectrum of data-driven algorithmic innovations.

Keywords: Data-driven control, decision-making, active distribution networks,
learning-assisted optimization, physics-informed learning.

1. Introduction

Distribution networks are undergoing two significant transformations. The first
transformation involves the shift from the single, grid-sourced distribution system
for power supply to a system characterized by bidirectional energy flow. This change
is driven by the rapid integration of various distributed energy resources (DERs).
The widespread adoption of behind-the-meter renewable energy sources (RES) such
as rooftop solar photovoltaic systems, introduces new forms of uncertainty and vari-
ability that challenge the traditional operations paradigm developed by distribution
utilities. Furthermore, the distributed nature of RES dramatically increases the com-
plexity of power flow and voltage characteristics across distribution networks. On
the load side, the trend towards electrification of heating and transportation further
increases this complexity as the increasing peak loads may quickly outweigh capacity
constraints [1].

The second transformation encompasses the digital transition. This shift in-
troduces new measurement, communication, and control devices, enriching oper-
ational methods and enhancing visibility for monitoring and managing distribu-
tion networks. Key technologies such as advanced metering infrastructure (AMI),
micro-synchrophasors, power electronic devices (PEDs), soft open points, soft power
bridges, and distribution automation devices are emerging as valuable assets in the
distribution grid. These technologies are integral both to the network and to cus-
tomer premises, offering advanced capabilities for communication and control. The
digital connectivity and programmability of these devices enable a rich set of new
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functions, allowing utilities to more effectively manage the distribution grid and ad-
dress the challenges mentioned earlier by actively and precisely controlling energy
flows. At the same time, these advancements raise important questions concerning
privacy, security, safety, and reliability in the operations of distribution systems.

Together, these two transformations signify a pivotal shift from distribution net-
work operations to distribution system operations. A distribution system operator
(DSO) not only expands its capabilities in managing networks but also ensures the
overall functionality of the broader active distribution system. This is achieved by
integrating the operation of the network with DERs, adopting practices reminiscent
of those at the transmission level, and including local electricity market operations.
Such advancements fundamentally alter the operational dynamics of electric utilities
and the roles of local communities. With distributed control becoming increasingly
feasible and widespread, microgrids and local energy communities are gaining the ca-
pacity to operate with enhanced autonomy. This evolution allows for reconfigurable
distribution networks that can function with a reduced dependency on the centrally
operated utility grid.

While these transformations are well under way in many countries around the
world, academic communities have proposed new methods, techniques, and frame-
works that facilitate innovative services for DSOs. These advancements leverage the
data, computation, communication, and control capabilities afforded by the digital
transition. With the increased popularity of artificial intelligence (AI) and data-
driven optimization methods, there are high hopes that such new functionality may
help bridge the gap towards the increased requirements imposed on DSOs due to
the DERs and digital transition. A rapidly growing body of literature applies data-
driven optimization and AI to distribution networks, including applications such
as network reconfiguration and restoration, crew dispatch, Volt-VAR control (VVC),
grid services provisions, and optimal power flow (OPF). This paper provides a critical
review of data-driven optimization, control, and decision-making in these application
areas within distribution networks, and identifies possibilities to improve and enable
DSOs, highlights current theory-practice gaps, and lists open research questions.
Note that this paper is dedicated to focusing on short-term control, optimization,
and decision-making in active power distribution networks. Long-term expansion
planning lies beyond its scope. For thorough reviews of active distribution network
expansion planning, we refer readers to established review articles [2, 3, 4].

The motivation for this paper arises from clear limitations observed in exist-
ing literature reviews on data-driven methods within active distribution networks.
Previous reviews have often adopted a narrow focus, typically addressing specific
applications or isolated methodological approaches, thereby lacking a comprehen-
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sive integration of diverse machine learning methodologies. For example, reviews by
Abdelkader et al. [5] and Allahmoradi et al. [6] primarily focus on Volt/VAR opti-
mization, whereas Bertozzi et al. [7] emphasize grid stability control. Mohd Azmi
et al. [8] address a variety of challenges within active distribution networks, with
a strong emphasis on information and communication technologies (ICTs). Tightiz
and Yoo [9] explore data-driven microgrid management systems but focus specifically
on microgrid-level issues rather than providing a comprehensive view of distribution
networks. Radhoush et al. [10] and Ibrahim et al. [11] emphasize end-to-end machine
learning strategies. Similarly, Barja-Martinez et al. [12] offer insights into artificial
intelligence applications, but mainly within the scope of big data services, not fully
capturing broader methodological integrations. Compared to existing data-driven
literature reviews of power systems, our paper stands out by offering comprehensive
summaries from both use cases and algorithmic perspectives. Moreover, we provide
an insightful review of open-source datasets and testing systems, which are crucial for
the validation of data-driven control, optimization, and decision-making algorithms
and solutions. By synthesizing a broad spectrum of methodologies and pinpointing
critical technical gaps, our paper not only refreshes the current knowledge base re-
garding data-driven approaches but also charts explicit pathways for future research
and realizing data-driven distribution networks.

The remainder of this paper is organized as follows. Section 2 reviews the moti-
vation for data-driven control, optimization, and decision-making. Section 3 reviews
applications for data-driven optimization in distribution networks. Section 4 summa-
rizes exiting data-driven control algorithms. Section 5 introduces relevant datasets
and testing systems. Section 6 discusses the challenges and opportunities. Section 7
provides the concluding remarks.

2. Motivation for Data-Driven Solutions in Active Distribution Networks

Utilities have widely developed and implemented model-based algorithms for con-
trol, optimization, and decision-making within active distribution networks. De-
spite their extensive development and deployment over decades, these algorithms
encounter two primary limitations. First, model-based algorithms may not satisfy
the need for real-time decision-making due to the growing complexity, variability,
unobservability, and uncertainty of the distribution system. Most decision-making
problems in distribution networks can be formulated as mixed integer programming
(MIP) problems or nonlinear programming (NLP) problems. The complexity of
solving such problems escalates rapidly as the problem size increases. Second, the
distribution network physical models underpinning these algorithms are often unre-
liable. The majority of model-based optimization algorithms are built based on the
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distribution network’s topology, parameters, and customer data in the geographic
information system (GIS) and customer management system [13]. However, main-
taining accurate, complete, and current information about the distribution network,
especially as its complexity grows, can be a labor-intensive task.

In response to the demands of real-time decision-making and the challenges posed
by insufficient model information, recent years have seen a significant surge of data-
driven approaches aimed at addressing decision-making problems within active dis-
tribution systems. Besides, the development of ‘learning to optimize’ algorithms [14]
represents a notable advancement in solving optimization problems. These algo-
rithms have been specifically designed to enhance the performance of existing opti-
mization solutions. Furthermore, the emergence of physics-informed neural networks
(PINNs) [15] marks a revolutionary step forward. These networks integrate phys-
ical laws into the learning process, providing a powerful tool for tackling complex
problems where traditional data-driven models might fall short. By incorporating
domain-specific knowledge, PINNs offer a promising avenue for improving accuracy
and reliability in modeling and simulating active distribution systems, bridging the
gap between data-driven insights and physical world constraints.

3. Summary of Use Cases in Active Distribution Systems

As illustrated in Fig. 1, the use cases for control, optimization, and decision-
making in active distribution systems can be grouped into five categories. A summary
of the relevant publications and their corresponding methods is provided in Table 1.
Additionally, a comparative analysis of five use cases in active distribution networks
is given in Table 2 to highlight their distinctive characteristics. In the following
subsections, we will explore each use case in detail.

Crew dispatch

Services provisions by DERs

Qmax

-Qmax
Vref

Volt-var controlFeeder
s3

s1
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s4

Reconfiguration 
and Restoration

Optimal Power Flow
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Figure 1: Use cases for control, optimization, and decision-making in active distribution systems.
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Table 1: Summary of Publications, Use Cases and Methodology

Use Case Papers Methods Classification

Restoration and Reconfiguration

[16, 17, 18, 19] Heuristic Method Mathematical Optimization

[20, 21, 22, 23, 24, 25] Meta-heuristic Method Mathematical Optimization

[26, 27, 28] Dynamic Programming Mathematical Optimization

[29, 30, 31, 32, 33, 34, 35,
36, 37, 38, 39, 40, 41, 42, 43,
44, 45, 46, 47, 48]

Mathematical Programming Mathematical Optimization

[49, 50, 51, 52, 53, 54, 55,
56, 57, 58, 59, 60, 61, 62, 63,
58, 64, 65, 66, 67, 68, 69]

Reinforcement Learning End-to-end Learning

[70, 71] Supervised Learning End-to-end Learning

[72, 73] Supervised Learning Physics-informed Learning

Crew Dispatch

[74, 75, 76, 77] Mathematical Programming Mathematical Optimization

[78] Meta-heuristic Method Mathematical Optimization

[79] Reinforcement Learning End-to-end Learning

Volt-VAR Control

[80] Dynamic Programming Mathematical Optimization

[81, 82, 83, 84, 85, 86, 87,
82, 88, 89] Mathematical Programming Mathematical Optimization

[90, 87, 91, 92] Meta-heuristic Method Mathematical Optimization

[93, 94] Supervised Learning End-to-end Learning

[95, 96, 97, 98, 99, 100, 101,
102, 103, 104, 105, 106, 107,
108]

Reinforcement Learning End-to-end Learning

[109] Learning Iterations Learning-assisted Optimization

[110, 111, 112] Network Embedding Physics-informed Learning

Services Provisions by DERs

[113, 114, 115, 116] Mathematical Programming Mathematical Optimization

[117, 118, 119] Supervised Learning Learning-assisted Optimization

[120] Meta-heuristic Method Mathematical Optimization

[121, 122] Reinforcement Learning End-to-end Learning

Optimal Power Flow

[123, 124] Dynamic Programming Mathematical Optimization

[125, 126, 127, 128, 129,
130, 131, 132, 133] Mathematical Programming Mathematical Optimization

[134, 135, 136, 137, 138,
139, 140, 141, 142, 143, 144,
145, 146]

Supervised Learning End-to-end Learning

[147, 148, 149] Extremum Seeking Control Mathematical Optimization

[150, 151, 152, 153, 154,
155] Supervised Learning Learning-assisted Optimization

[156, 157] Network Embedding Physics-informed Learning

[158, 155, 159, 160, 161,
162] Loss Embedding Physics-informed Learning
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Table 2: Comparative analysis of data-driven use cases in active distribution networks

Use Case Operational Focus Decision Variables
Optimization
Characteristics

Reconfiguration
and Restoration

Topology adjustment,
fault restoration in

response to contingencies

Switch statuses
(open/close)

Mixed-integer
linear/nonlinear
Programming

Crew Dispatch

Efficient coordination of
repair crews under

time/resource constraints

Routing and task
scheduling (locations,

time windows)

Combinatorial
Programming

Volt-VAR Control

Voltage profile regulation
and reactive power

optimization

Tap positions;
capacitor/reactor control;

DER reactive output

Mixed-integer
linear/nonlinear
Programming

Service Provision
by DERs

Coordination of DER
assets for ancillary or

market services

Active/reactive
set-points; participation

in grid services

Mixed-integer
linear/nonlinear
Programming

Optimal Power Flow

Optimal dispatch of grid
resources respecting

system limits

Generator output; voltage
levels; power flows;
transformer taps

Nonlinear
Programming

3.1. Network Reconfiguration and Restoration

Large-scale blackouts, resulting from power system failures or extreme weather,
necessitate the swift restoration of power supply to mitigate their impacts. Service
restoration, aimed at resupplying power to de-energized loads [163], becomes crucial
in such scenarios. The primary objectives of restoration efforts include safely and
rapidly returning the power system to normal operating conditions, minimizing both
losses and restoration time, and reducing the adverse effects on society [164]. From
a technical standpoint, service restoration can be approached as a temporary sys-
tem reconfiguration challenge, primarily involving the manipulation of switch on/off
statuses.

Distribution network reconfiguration (DNR) serves to reorganize the topology of
distribution networks, aiming to enhance network efficiency and stability by adjust-
ing the statuses of switches, devices, and line flows [43]. The primary goal of DNR is
to determine the optimal on/off statuses for all switches in a way that optimally bal-
ances loads and minimizes network losses while adhering to operational constraints
[29]. Besides, Wang et al. [27] propose a Markov decision process framework—solved
via approximate dynamic programming (ADP)—that dynamically reconfigures dis-
tribution systems during extreme weather events to enhance resilience. In addition,
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Wang et al. [28] develop an Markov decision process-based model with an ADP
solution for real-time distribution network reconfiguration aimed at minimizing re-
newable generation curtailment and load shedding under operational constraints.
Generally, DNR problems are typically divided into two main categories: static and
dynamic reconfiguration [42]. Static reconfiguration is concerned with identifying the
optimal configuration for the current network, focusing on a single point in time. In
contrast, dynamic reconfiguration seeks to find a series of optimal network configura-
tions over time, with the additional goal of minimizing the operations of mechanical
devices [64].

A substantial body of research has been dedicated to solving this problem, with
existing approaches generally classified into two main categories: model-based meth-
ods and data-driven methods.

Model-based methods further bifurcate into centralized and distributed approaches.
Centralized methods encompass a range of techniques including heuristics or meta-
heuristic algorithms [16, 20], dynamic programming (DP) [32], and various mathe-
matical programming methods such as mixed integer non-linear programming (MINLP)
[31, 41], mixed integer linear programming (MILP) [34, 35, 38, 39], mixed-integer
conic programming (MICP) [40], mixed integer second-order cone programming
(MISOCP) [36]. These methods rely on a central controller to aggregate informa-
tion from across the system and dictate actions for each local agent. However,
this centralization introduces vulnerabilities, notably a single point of failure, which
can compromise system resilience. In contrast, distributed methods, exemplified by
the multi-agent system (MAS) [47] and alternating direction method of multipliers
(ADMM) [46], aim to enhance algorithmic resilience by distributing decision-making
across multiple agents. Despite these advantages, the current literature on MAS
provides limited insights into how decision-making protocols align with network-
level optimal restoration problems [48]. Additionally, ADMM struggles to achieve
convergence when applied to nonconvex MIP problems [165]. Both MAS and ADMM
depend on decentralized communication and collaboration, making them vulnerable
to data breaches, malicious attacks, synchronization issues, and communication fail-
ures. To ensure secure and reliable operations, they require the implementation of
encryption protocols, privacy-preserving techniques, and trust mechanisms. To re-
duce the high communication rounds of ADMM, a layered architecture for distributed
algorithms has been proposed in [48] for network restoration, designed to enhance
grid resilience after disasters. This architecture coordinates the grid’s controllable
assets across multiple layers, enabling the support of critical services without relying
on costly communication networks or data-processing infrastructure.

Model-based methods face notable challenges. The lack of accurate distribution
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network models complicates the direct application of these algorithms. Addition-
ally, the intricacies of restoration and reconfiguration tasks stem from their dis-
crete, multi-constrained, non-linear, and multi-objective characteristics [166]. Con-
sequently, data-driven methods are increasingly being recognized as a viable alter-
native for addressing the complex issues of restoration and reconfiguration in active
distribution networks.

Similar to model-based approaches, data-driven methods can also be divided into
centralized methods and distributed methods. Data-driven centralized algorithms
predominantly incorporate supervised machine learning and reinforcement learning
(RL) techniques. Extensive research adopts deep Q-network (DQN) for distribution
system restoration [55, 49, 58, 56], static reconfiguration [50, 53, 59] and dynamic
reconfiguration [51, 60, 61, 62]. Furthermore, Tianqiao et al. proposed a graph-RL
framework for the restoration problem. The proposed algorithm links the power
system topology with a graph convolutional network, and then the latent features
over graphical power networks produced by graph convolutional layers are exploited
to learn the control policy using DQN [54]. Yuanqi et al. developed a data-driven
batch-constrained soft actor-critic (BCSAC) algorithm for the dynamic DNR prob-
lem. The proposed algorithm can overcome the extrapolation error problem [64].
Similarly, Ji et al. developed an autonomous dynamic reconfiguration method for
the active distribution network based on the deep learning method. The reconfigura-
tion strategies are learned using a long-short-term memory (LSTM) network trained
on historical datasets and real-time operation. A switch action function is combined
with the LSTM model to perform dynamic control [70]. To enhance the training
efficiency, an imitation learning framework was proposed for training such an agent,
where the agent will interact with an expert built based on the mixed-integer program
to learn its optimal policy, and therefore significantly improve the training efficiency
compared with exploration dominant RL methods [57]. To provide a fast online
response and optimal sequential decision-making support, the curriculum learning
(CL) technique was adopted to guide the RL agent to learn to solve the original
hard problem in a progressive and more effective manner [66].

The widely used data-driven distributed method is multi-agent reinforcement
learning (MARL). Hybrid multi-agent frameworks with Q-learning algorithms [67,
68, 69] were developed to support rapid restoration of the active distribution system
by using a framework that does not rely on a centralized controller, avoiding a
potential single point of failure. Wu et al. developed a multi-agent soft actor-
critic (MASAC) approach for the reconfiguration problem [65], where the proposed
algorithms can reduce the computational burden and accommodate different system
states and scales.
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3.2. Crew Dispatch

Restoring electricity service necessitates the coordination of multiple crews, each
possessing unique skill sets, to undertake a variety of procedurally interdependent
tasks with safety as a paramount concern [75]. The routing repair crews (RRC) can
be modeled as a vehicle routing problem (VRP), a combinatorial optimization and
integer programming problem aimed at determining the optimal routes for a fleet
of vehicles [74]. Traditionally, this problem has been approached with model-based
methods, including MILP [74, 75], DP [77], second-order conic programming (SOCP)
[76].

However, given that the routing problem is an NP-hard combinatorial optimiza-
tion, the complexity is poised to increase with the trend of integrating repair and
restoration tasks. In light of this, the advent of data-driven methods has spurred
a wave of innovative approaches to incorporate repair crew dispatch strategies into
the outage management framework. For instance, Fanucchi et al. utilize a repetitive
nearest neighbor algorithm and particle swarm optimization technique to identify
patrol sequences for crew dispatch in a multi-objective setting [78]. Shuai et al.
propose a novel AlphaZero-based utility vehicle routing method to determine the
real-time dispatch strategy of repair crews after a storm [79].

3.3. Volt-VAR Control

VVC selects appropriate settings for voltage regulating and reactive power com-
pensation devices to manage voltage profiles and reactive power flow in distribution
systems. VVC methods can be broadly categorized into two categories: legacy and
advanced control methods [167]. Legacy methods encompass standalone controllers,
line drop compensators, and rule-based approaches; while advanced control methods
leverage mathematical programming or artificial intelligence techniques.

While these methods have been effective in various circumstances and have served
the industry for years, they also present limitations. Legacy methods, being pre-
dominantly open-loop, lack the ability to adapt to changing operating conditions
beyond their sensing areas. Moreover, defining appropriate rules can be challenging,
rendering these methods inefficient in some situations. Additionally, the absence of
coordination among different controllers often results in sub-optimal outcomes. these
approaches struggle to accommodate the dynamic and complex nature of modern dis-
tribution grids, particularly with the increasing integration of DERs. Moreover, The
recent IEEE Standard 1547-2018 requires that inverter-fed DERs contribute reactive
power to support grid voltage.

Advanced control methods have been extensively researched to integrate invert-
based DERs into VVC and overcome the limitations identified in legacy VVC tech-
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niques. These methods are generally divided into physical model-based methods
and data-driven approaches. Physical model-based VVC algorithms commence by
constructing an accurate and reliable model for the distribution network, followed
by the collection of field measurements from the distribution management system
(DMS). The VVC problem is subsequently formulated as a mathematical program-
ming problem, which is tackled with commercial solvers. This scheme facilitates
closed-loop, coordinated control that reflects the broader operational conditions of
the system. Techniques within the realm of physical model-based VVC include MILP
[81], mixed-integer quadratically constrained programming (MIQCP) [82], bi-level
mixed-integer programming [83], MINLP [84], SOCP [85], and MISOCP [86]. Fur-
thermore, to accelerate the optimization of the inverter-based VVC, a tuned ADMM
method incorporated gradient projection algorithm is proposed for the data-driven
optimization paradigm [109].

Although physical model-based VVC algorithms offer significant theoretical ad-
vantages, they encounter numerous practical challenges. First, these methods presup-
pose the availability and accuracy of distribution network and load models. Unfortu-
nately, the network data maintained in utility companies’ GIS are often incomplete
or inaccurate [167], making it difficult to construct a precise and reliable physical
model of the distribution network for the application of physical model-based VVC
algorithms. Second, the computational time required by many physical model-based
algorithms remains a bottleneck, particularly due to the complexities underlying
MIPs. This issue is exacerbated in the context of large-scale distribution networks,
where the computational demands become even more challenging.

In response to the limitations of physical model-based methods, data-driven al-
gorithms employing advanced signal processing and artificial intelligence techniques
have emerged as promising alternatives. In [89], a data-driven, two-stage real-time
VVC method is proposed to address rapid voltage violations caused by the high
penetration of inverter-based DERs. Additionally, to prevent conflicts among par-
allel inverters and maintain VVC control stability while considering the physical
constraints of inverters, a novel VVC strategy based on Artificial Neural Networks
(ANN) is proposed in [94]. This strategy operates at the grid edge through the con-
trol of distributed DER inverters. Unlike their predecessors, these methods do not
depend on constructing a physical model of the distribution network. Instead, they
derive control policies directly from online or historical operational data, thereby
offering broader applicability. Machine learning-based approaches for VVC, as de-
veloped in references [93] and [168], exemplify this shift. Furthermore, RL gained
traction as a potent algorithm for sequential decision-making tasks and has been
studied in the VVC context. This category encompasses a variety of methods, such
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as DQN [101, 102], Q-learning [106, 107], SAC [103, 104, 105], DDPG [98, 99, 100],
etc.

To enhance the performance and robustness, some studies have integrated RL
with graph neural networks [97], while others have introduced novel concepts like
mutual information regularization [95]. To mitigate fast voltage violation while min-
imizing the network power loss, [98] proposes a two-stage deep reinforcement learning
(DRL)-based real-time VVC method. To improve the communication efficiency and
resilience, the VVC problem is formulated as a networked multi-agent Markov deci-
sion process, which is solved by using the maximum entropy RL framework and a
novel communication-efficient consensus strategy [96]. To ensure stability and safety,
a stability-constrained RL method for real-time VVC is proposed in [108]. This ap-
proach leverages an explicitly constructed Lyapunov function to guarantee stability
by enforcing monotonically decreasing policies. In contrast to physical model-based
VVC methods, data-driven methods could achieve coordinated control without re-
quiring accurate and complete system parameter information.

3.4. Services Provisions by DERs

The integration of DERs into the power grid has revolutionized the provision of
ancillary services, traditionally dominated by large, centralized power plants. De-
mand response (DR) in active distribution systems can be treated as DERs and it
can participate in energy and capacity markets, as well as provide multiple ancillary
services to the grid, such as frequency regulation and contingency reserve [169]. This
subsection explores the ways in which DERs contribute to electricity market service
provision.

The increasing penetration of small-scale intermittent DERs in the power system
poses frequency regulation challenges due to the reduction in system inertia. In
[113], a new entity called Renewable Energy Aggregators (REA) is proposed, enabling
DERs to enhance frequency stability in low-inertia systems. The REA participates in
the electricity market and provides frequency regulation services through dynamic
scheduling and control strategies. Additionally, in [114], a centralized controller
is proposed for the provision of Primary Frequency Control (PFC) by aggregating
DERs in active distribution systems. This controller aims to determine the optimal
setpoints for DERs to regulate power flow in accordance with PFC requirements.
To include the varying inertia due to the presence of DERs, [117] proposed a new
framework to obtain a constant data-driven controller for frequency regulation with
uncertain and time-varying power system dynamics. The flexible wireless accesses for
DERs make the cloud’s optimized deployment of edge regulation tasks possible. In
[115], a cloud-edge collaboration and wireless communication coordination framework
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is proposed to facilitate DER frequency regulation. This framework enables DER
users to participate in fast auxiliary markets with high returns.

The effective integration of DERs into the active distribution systems requires
close coordination between Transmission System Operators (TSOs) and Distribution
System Operators (DSOs). This collaboration is crucial for ensuring that DERs can
provide ancillary services at both the transmission and distribution levels without
compromising grid reliability. In [116], a decentralized transactive energy market
strategy is presented, which integrates wholesale and local energy markets through
coordinated interactions among TSOs, DSOs, and DER owners. In [120], a data-
driven methodology is proposed to estimate the power flexibility at the TSO-DSO
interface for meshed grids, addressing the limitations revealed by the application of
Interval Constrained Power Flow (ICPF) in such cases.

DR refers to changes in end-users’ consumption behavior in response to direct
control signals, time-varying electricity prices, or other forms of incentives. Con-
sumers’ DR services generally include load shedding, load shifting, and the utiliza-
tion of onsite generation or energy storage [170]. In distribution networks, DR plays
an important role in efficiency and reliability improvement [171, 172].

For load-serving entities, the development of rapid optimization algorithms to co-
ordinate the vast array of heterogeneous, distributed DR resources is crucial for op-
erational efficiency enhancement. The lack of a standardized model for DR resources
further complicates the optimization problem. To address these complexities, a vari-
ety of methodologies have been proposed to model and optimize the operation of DR
resources, with embedded data-driven methods to handle the aforementioned com-
plexities. In [118], Behl M, et al. proposed a data-driven method called DR-Advisor,
which serves as a recommender system for facilities managers of large buildings.
This method provides control actions to achieve the required load curtailment and
maximize economic rewards. Additionally, in [119], a price-based DR strategy is
formulated using an explicit ANN to generate data on optimal HVAC (heating, ven-
tilation, and air-conditioning) system load schedules. Subsequently, another ANN is
trained online to directly predict these optimal load schedules.

In addition to analytically solving optimization-based DR models, a substantial
body of research has explored the use of RL to achieve optimal DR control across
various devices, such as electric vehicles and air conditioners. Reference [121] provides
a comprehensive review of RL algorithms and modeling techniques tailored for DR
applications. The study in [122] formulates the rescheduling problem of a fully
automated energy management system (EMS) as an RL problem. It suggests that
this RL problem can be approximately solved by decomposing it over device clusters,
avoiding the need for explicit modeling of user dissatisfaction due to job rescheduling.
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This novel formulation permits the EMS to initiate jobs autonomously, granting
users the flexibility to submit more versatile requests. Remarkably, this approach
maintains a computational complexity that is linear with respect to the number of
device clusters.

3.5. Distribution System Optimal Power Flow

Traditionally, OPF algorithms have been formulated to tackle a diverse array
of challenges within transmission system operations. These challenges encompass
a wide range of optimization objectives related to both active and reactive power
management. Specific goals include economic dispatch, optimizing power transfer,
minimizing losses and costs, achieving the minimum control shift, and reducing the
number of controllers that need to be adjusted. Each objective plays a crucial role
in enhancing the efficiency and reliability of power system operations. For example,
a system operator might implement an advanced economic dispatch strategy based
on stochastic dual dynamic programming (SDDP) [123, 124] that simultaneously
minimizes generation costs, reduces energy losses, and streamlines control actions
by optimizing both active and reactive power flows, thereby maintaining voltage
stability and minimizing the need for frequent controller adjustments.

In distribution systems, the application of traditional OPF methods is less preva-
lent. This is partly because they necessitate extensive communication with a wide
array of devices, presenting a logistical challenge. Moreover, traditional OPF meth-
ods often lack the robustness required to effectively address the inherent nonlineari-
ties and non-convexities associated with three-phase power flow. These complexities
introduce significant obstacles to the straightforward application of OPF algorithms,
underscoring the need for adapted or alternative approaches that can accommodate
the unique characteristics of distribution systems.

In recent years, there has been considerable academic progress to bring OPF
methods closer to distribution system operation. Most efforts have focused on mak-
ing distributed optimization schemes more robust. In addition, concepts from control
theory and statistical learning have been integrated to overcome challenges towards
safely and efficiently implementing OPF. As the role of OPF in distribution sys-
tems attracts broader attention, we direct the interested reader to several survey
papers [173, 174, 175]. Here we discuss recent advances in data-driven techniques for
OPF.

3.5.1. Using feedback measurements to run OPF in a closed loop - “feedback OPF”

These methods use control-theoretic techniques to actively track a reference based
on an OPF solution. As such they are data-driven by virtue of their online measure-
ments and feedback. Bolognani et al. first propose the technique using duality-based
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methods for reactive power control for voltage regulation and loss minimization [125].
In [126, 127, 128, 129], various authors further conceptualize the methods for closed-
loop feedback optimization to steer a power system in real-time to the optimal op-
erating point without explicitly solving an AC OPF problem. Instead, it treats the
power flow equations as implicit constraints that are naturally enforced by the phys-
ical grid and then uses adaptive feedback control. The feedback approach can be
effective in overcoming model uncertainties commonly found in OPF models. Picallo
et al. combine the approach with dynamic state estimation to control unmeasured
states [130]. The approach has gained academic traction but remains challenging to
apply in practice. One of the main challenges of this approach is that it requires
a careful analysis of theoretical stability conditions, which are typically derived for
continuous dynamics and have to be translated to the more realistic discrete and
stochastic nature of practical OPF systems. Other issues are a lack of quantita-
tive results on the rate of convergence, the robustness against noise, or the tracking
performance for time-varying problem setups [176].

3.5.2. Using data to robustly solve OPF

OPF is a complex computational task. It requires having adequate information
about the network model, including models of various assets relevant to OPF calcu-
lations and variables that provide input to OPF calculations. Distribution system
models are never perfect; they have errors and uncertainties within them. Input vari-
ables, such as voltages, nodal injections, or power flows may come either as forecasts
with errors or as real-time measurements with noise- or delay-induced errors. In
addition, OPF for distribution grids is also a highly nonlinear and non-convex com-
putation, which may not necessarily yield a solution or take time to converge. As a
result, solving OPF in a centralized offline fashion is challenging. Error distributions
are typically assumed to follow some probability distribution and many techniques
have emerged to develop more stochastic OPF methods that integrate these distribu-
tions into the formulation and numerical solving, see [132] for an overview. However,
these probability distributions are typically not known and merely available through
finite data sets or online measurements. Data-driven techniques may help allevi-
ate some of these challenges, by exploiting convex relaxations based on Wasserstein
techniques [133]. Guo et al. incorporate these ideas in the feedback optimization
schemes [131, 132] covered in Subsection 3.5.1.

3.5.3. Using learning to apply OPF in an open loop - “feedforward OPF”

These methods use learning techniques to mimic OPF solutions, typically in a
decentralized fashion. Particularly, the work by Sondermeijer et al. [134] and Dobbe
et al. [135] use a linear regression approach to learn control policies using a training
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set generated offline from solving an OPF. The designed controller decides on reac-
tive power injections for rooftop solar photovoltaic (PV) in a balanced, single-phase,
distribution network. The controllers only rely on local information, making their
approach a robust proposition that does not require a communication network be-
tween DERs. This work was extended by Serna Torre and Hidalgo-Gonzalez [136]
where they propose a linear regression framework to learn reactive power controllers
for each rooftop solar PV that would be robust to topological changes (e.g., expan-
sion of branches, new nodes). Furthermore, the work in [134, 135] was extended
by Karagiannopoulos et al. [146] where the authors, similar to the previous works,
generate a training set from solving an OPF offline. This training set differs from
the approach in previous works by taking into account uncertainty from renewable
energy (as a chance constraint), modeling unbalanced three-phase operation, and
also considering a broader set of control actions: reactive power, active power cur-
tailment, load shifting, and batteries management. The work in [156] is based on the
stacked extreme learning machine (SELM) framework and innovates by incorporating
a physics-informed data-driven OPF approach, which enables the overall framework
to be tractable (which is not possible by only using SELM). One of the key aspects
of this approach is the identification of active constraints to extract more effectively
the features while reducing the learning complexity. The proposed framework does
not require knowledge of the network topology or its parameters, making it ready-
to-use for different cases. There exist other contributions that rely on a different set
of machine learning techniques. For example, the work in [145, 142] uses a deep RL
approach to mimic OPF, and [137, 138] uses a kernel-based approach. We also refer
the reader to the work in [139, 140].

3.5.4. Model-free methods

These methods use model-free techniques to estimate the gradient to OPF prob-
lems based on real-time measurements. The work in [147, 148, 149], uses extremum
seeking control for near-optimal management of DERs for voltage regulation in dis-
tribution networks. By broadcasting real-time information, each DER can adjust
its output to move the system toward the global optimum. This methodology does
not depend on prior knowledge of the system’s topology, DERs’ locations, renewable
energy power generation, or forecasts.

The feedback-optimization method covered in Subsection 3.5.1 is also applicable
without an explicit power flow model by using voltage sensitivities [177].
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4. Summary of Algorithms

Different decision-making problems in distribution networks are modeled and
solved in a variety of ways. Before summarizing existing algorithms, we first focus
on classifying the use cases into different categories. Depending on whether deci-
sion variables are continuous or discrete and whether a single action or a sequence
of actions need to be made, optimization problems in distribution networks can be
divided into four categories: discrete variables and single action, discrete variables
and sequence of actions, continuous variables and single action, and continuous vari-
ables and sequence of actions. In general, sequential decision-making problems are
usually more difficult because a sequence of decision variables at different times must
be determined. Optimization problems that involve discrete variables are also more
challenging due to the non-smooth solution space and NP-hard nature of the prob-
lem.

As highlighted in Section 3, a diverse array of algorithms has been developed to
address the four categories of problems encountered in active distribution systems.
Given this variety, it becomes imperative to organize these algorithms into distinct
classes for better understanding and analysis. In this section, we categorize the algo-
rithms into four main approaches: mathematical optimization, end-to-end learning,
learning-assisted optimization, and physics-informed learning, as illustrated in Fig.
2. The following provides a brief overview of each approach:

Figure 2: Classification of algorithms for distribution system decision-making and control problems.

1) Mathematical optimization: This approach formulates decision-making
and control problems in the distribution network as optimization problems. Optimal
solutions are sought through traditional mathematical techniques, such as heuris-
tic algorithms, dynamic programming, linear approximation techniques, and convex
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relaxation. Each method aims to find optimal or near-optimal solutions by system-
atically exploring the problem space within predefined mathematical frameworks.

2) Learning-assisted optimization: Combining the strengths of machine learn-
ing and traditional optimization, this approach employs machine learning algorithms
to enhance or solve optimization problems. Machine learning models may predict
system behaviors or identify patterns that inform optimization strategies, effectively
acting as an intelligent layer that supports decision-making processes.

3) Physics-informed learning: Physics-informed learning incorporates the
physical principles governing the distribution system directly into data-driven mod-
els, such as embedding the power grid model within a neural network. This method
ensures that the learned models and solutions are not only data-compatible but also
adhere to fundamental physical laws, enhancing the reliability and applicability of
predictions and controls.

4) End-to-end learning: End-to-end learning seeks to establish a direct map-
ping between the states of the power grid and DERs and the resultant decisions or
desired control signals. This approach leverages deep learning models to learn com-
plex relationships entirely from data, bypassing the need for explicit intermediary
steps or feature engineering. Although supervised learning and reinforcement learn-
ing are structured differently, both are classified as end-to-end learning because they
optimize the complete mapping from inputs to outputs in a unified training process.

4.1. Four Widely-adopted Approaches to Solve Decision-Making and Optimization
Problems in Active Distribution Systems

4.1.1. Mathematical optimization

Decision-making problems in distribution networks are often framed as optimal
control problems, which can be formulated through MIP or NLP.

Mathematical optimization for MIP. Algorithms for solving MIP are cat-
egorized into exact algorithms and heuristic or meta-heuristic algorithms. Exact
algorithms, such as branch-and-bound [178], cutting plane algorithms [179] and DP
[80], aim to find precise solutions. For comparison, the heuristic or meta-heuristic
algorithms don’t guarantee the optimal solutions and try to obtain near-optimal
solutions. Consequently, the heuristic or meta-heuristic algorithms must strike a
good balance between exploration and exploitation, in order to trade off between
performance and computational efficiency.

Mathematical optimization for NLP. The primary challenges of NLP in
distribution networks are their non-linearity and non-convexity. Apparently, if NLP
problems can be reduced to linear or convex ones, the problems would be much
easier to solve. Therefore, many researchers leverage convex relaxations and linear
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approximations to simplify the NLP problems. Taking the OPF problem as an
example, the AC power flow model, inherently non-linear and non-convex, can be
linearized into a DC power flow model or relaxed into convex optimization problems,
such as semidefinite programming (SDP) relaxation for general networks and a SOCP
relaxation for radial networks [173]. Both relaxation techniques significantly alleviate
computational demands while maintaining acceptable solution accuracy. However,
the relaxed solution may not always correspond to a feasible or optimal solution of the
original non-convex problem. For instance, in unbalanced three-phase distribution
systems, taking the convex hull of the original region expands the feasible set, leading
to higher-rank physically infeasible solutions when using SDP [180].

Despite their widespread application, mathematical optimization approaches face
two significant limitations: the necessity for precise model parameters and the lack of
scalability, with computational time escalating rapidly as the problem size increases.

4.1.2. Learning-assisted optimization

Learning-assisted optimization approaches leverage machine learning to acceler-
ate the solution process of optimization problems, showing significant advancements
in recent years. This approach not only improves computational efficiency and solv-
ing speed but also enhances the scalability and tractability of optimization problems
in active distribution systems and beyond.

Learning-assisted optimization for MIP: Recent developments in learning-
assisted optimization for MIP have focused on expediting the searching procedure
in the solution space. This group of methods includes formulating optimization as
a RL problem [14], learning meta-heuristic algorithms [181], accelerating DP [182],
learning to branch [183, 184], mixed-integer optimization with learned constraints
[185]. In [72], MIP for the distribution network reconfiguration problem is solved
by synergistically combining a physics-informed Graph Neural Network framework
(GNN) with an optimization model. Similar ideas are extended to transmission
systems. To solve the security-constrained unit commitment (SCUC), Álinson et
al. use machine learning techniques to extract information from previously solved
problems to significantly improve the computational performance of MIP solvers
when solving similar instances in the future [186].

Learning-assisted optimization for NLP: Learning-assisted optimization ap-
proaches for NLP include learning warm start points, learning constraints, and learn-
ing to perform iterative updates. Instead of predicting the NLP solution directly,
supervised learning methods are used to predict a better starting point for solvers.
With the learned warm start points, solving the problem takes a smaller number
of iterations and computation time [187]. The existing works that try to learn
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constraints can be further subdivided into learning active constraints (binding in-
equalities) [188], umbrella constraints (necessary and sufficient for covering feasible
solutions) [189] and inactive constraints [190], [191]. Active constraints are those
inequality constraints that are binding upon solving the optimization problem. The
umbrella constraints are necessary and sufficient constraints to cover the OPF fea-
sible solution. By using the learned active constraints or umbrella constraints, it is
easier to obtain the optimal solution. Learning inactive constraints enables solvers
to concentrate on the most critical aspects of the problem, leading to faster and
potentially more accurate solutions. Furthermore, deep neural networks can also
be used to perform iterative updates. For instance, Kyri Baker et al. avoided cal-
culating the Jacobian matrix by replacing the Newton-Raphson step with a purely
data-driven machine learning (ML) model that learns subsequent iterations’ solutions
[155]. The ML model is trained on Newton-Raphson iterations and learns to imitate
the Newton-Raphson algorithm without having to construct Jacobian matrices or
calculate matrix inverses.

4.1.3. Physics-informed learning

Recent works in physics-informed learning aim to reduce the amount of required
training data and achieve higher accuracy by embedding physical system information
into learning processes.

Network Embedding: Some researchers focus on embedding physical informa-
tion into neural networks. Reference [157] introduces a framework to incorporate AC
power flow equations inside neural network’s training and integrates methods that
rigorously determine and reduce the worst-case constraint violations across the en-
tire input domain while maintaining the optimality of the prediction. Reference [156]
develops a new framework to reduce the learning complexity of a SELM by embed-
ding features of the physical system. This approach can avoid the time-consuming
iterative updates in OPF calculation. In [73], an end-to-end physics-informed GNN
is proposed to solve the dynamic reconfiguration problem by modeling switches as
gates in the GNN message passing and embedding discrete decisions directly within
the framework.

Loss Embedding: Embedding physical system information into loss functions
represents another innovative direction. Reference [160] proposed an integration of
deep neural networks and Lagrangian duality to capture the physical and operational
constraints. Reference [161] solves OPF by differentiating through the operations of a
power flow solver that embeds the power flow equations into a holomorphic function.
In [159], Karush–Kuhn–Tucker (KKT) optimality conditions are used to construct
the training loss function. To ensure that the power-flow balance constraints are
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satisfied, a penalty approach was adopted in the deep neural network training to re-
spect the inequality constraints [142]. To enhance the robustness against anomalous
measurements, reference [110] proposes a physics-informed global graph attention
network and a deep auto-encoder to extract features of the measurements, then the
extracted features are fed into the SAC algorithm.

4.1.4. End-to-end learning

End-to-end learning algorithms have emerged as a predominant method for ad-
dressing decision-making and control problems within active distribution systems.
These algorithms aim to completely supplant the traditional optimization models
with machine learning techniques, including supervised learning and RL. The key ad-
vantage of end-to-end learning lies in its computational efficiency: once the machine
learning models are adequately trained, they require only straightforward function
evaluations to operate, providing a significant boost in speed compared to traditional
iterative optimization methods [159].

Supervised learning for non-sequential decisions: For non-sequential decision-
making tasks in active distribution networks, supervised machine learning models
process system and DERs states as inputs and generate decisions or control signals
as outputs. These models are typically trained on historical operational data, en-
abling them to execute swiftly during online operations, far outpacing the runtime
of iterative algorithms [159]. The specific supervised learning models employed in
this domain include: feed-forward neural network (FNN) [141, 142], Kernel-based
regression [138, 137, 146] and multiple linear regression [134].

RL algorithms for sequential decisions: RL algorithms are instrumental
in addressing sequential decision-making problems in active distribution systems,
typically framed within the context of Markov decision processes (MDPs). In this
RL framework, an agent learns to interact with its environment by observing states,
taking actions based on those observations, and receiving rewards for its actions.
The ultimate objective is to learn a policy - a mapping from states to actions - that
maximizes the expected discounted return [13]. RL algorithms such as Q-Learning
[192, 106], actor-critic [193], Markov chain Monte Carlo (MCMC) [194], are only
applicable to distribution system control and decision-making problems with small
state and action spaces. To tackle problems with high-dimensional state and action
spaces, DRL algorithms are pursued. The most commonly used DRL algorithms
include DQN [55, 56, 49, 50, 57], SAC [105, 64, 103], deep deterministic policy
gradient (DDPG) [63, 195, 196, 197] proximal policy optimization (PPO) [66]. DRL
algorithms have significantly expanded the applicability of RL in active distribution
systems, providing robust solutions to complex and high-dimensional problems.
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4.2. Enhanced Algorithms

In addition to the four widely used approaches, this subsection introduces three
enhanced data-driven algorithms to solve decision-making and optimization problems
in distribution systems.

4.2.1. Non-centralized methods

Centralized algorithms have traditionally dominated optimization and control
tasks within active distribution systems. Despite their widespread use, these cen-
tralized approaches exhibit several significant drawbacks. First, centralized controls
are often not resilient against the failure of the centralized controller [96]. This is
because each agent communicates with a centralized controller that performs com-
putations and sends out commands [173]. Second, centralized control requires a high
data transmission rate and reliable communication conditions which are not always
available in the distribution network. Third, the user’s information is required as
input for centralized control, which puts users’ privacy at risk. Therefore, many
researchers tried to develop non-centralized algorithms.

In light of these challenges, there has been a significant shift towards developing
non-centralized algorithms. These methods are particularly relevant to the rising
integration of DERs into the distribution grid. Non-centralized optimization and
control offer several benefits over their centralized counterparts, including improved
system resilience, reduced communication burden, and enhanced privacy protection.

Non-centralized methods encompass a broad spectrum of approaches, ranging
from mathematical optimization techniques like distributed optimization to machine
learning strategies such as MARL. These diverse methodologies provide flexible and
scalable solutions for managing optimization and control in active distribution sys-
tems, addressing the shortcomings associated with centralized control.

Distributed optimization: Distributed optimization enables agents within an
active distribution system to collaboratively minimize a global function, which con-
stitutes the sum of local objective functions [198]. This collaborative approach to
optimization is divided into two principal categories based on the foundational al-
gorithms utilized. The first category encompasses methods based on augmented
Lagrangian decomposition, such as dual decomposition [199], the ADMM [88], an-
alytical target cascading (ATC) [200, 201], and auxiliary problem principle (APP)
[202, 203]. These methods are particularly adept at breaking down the global opti-
mization challenge into smaller, more manageable sub-problems, thereby facilitating
a more efficient solution process. On the other hand, the second category relies on the
KKT necessary conditions, including techniques like optimality condition decompo-
sition (OCD) [204, 205], consensus + innovations [206], and gradient dynamics (GD)
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[207]. These approaches leverage the optimality conditions to guide the distributed
optimization process, enhancing the ability to achieve consensus among agents and
ensuring that the global optimization objectives are met. One of the key advan-
tages of distributed optimization methods is their ability to bolster cybersecurity
measures by mitigating the risks associated with centralized control systems. Fur-
thermore, these methods significantly reduce the dependency on extensive and costly
communication infrastructure, making them a highly attractive option for enhancing
efficiency, resilience, and security within modern active distribution systems [173].

MARL: MARL represents a synergistic blend of MAS and RL, garnering sig-
nificant attention for its application in the data-driven control of active distribution
systems in recent years. MARL leverages the strengths of both distributed methods
and RL to offer a robust framework for optimizing decision-making processes within
distribution networks. Specifically, Notable implementations of MARL in this do-
main include MASAC [65, 104], multi-agent Q-learning (MAQL) [107], multi-agent
deep Q-network (MADQN) [101, 102], and multi-agent deep deterministic policy gra-
dient (MADDPG) [98, 99]. MARL approaches integrate the benefits of distributed
methods and RL. These approaches collectively enhance control performance while
concurrently mitigating the communication overhead and the risk of private data ex-
posure. By distributing the decision-making process across multiple agents, MARL
enables more scalable and efficient solutions, allowing for simultaneous optimization
of numerous objectives across the network. The integration of RL principles fur-
ther ensures that each agent can adaptively learn from the environment to improve
its policy over time, leading to optimized network operations with reduced reliance
on centralized control mechanisms. This dual benefit of enhanced performance and
security makes MARL an increasingly preferred choice for tackling the complex chal-
lenges of active distribution system management.

Game Theory: Game theory represents a mathematical framework designed for
analyzing strategic interactions among rational decision-makers, gaining substantial
attention for its application in active distribution networks in recent years. As a fun-
damentally non-centralized method, game theory models interactions as cooperative
or non-cooperative games, effectively capturing the complexity inherent in decen-
tralized decision-making processes involving diverse stakeholders. Prominent appli-
cations within active distribution networks include cooperative bargaining games for
distributed battery balancing [208], Stackelberg games for integrated energy system
management [209], non-cooperative games for retail electricity market operations
[210], and coalition formation strategies for distributed energy resources (DERs)
[211, 212]. Game theory leverages the strengths of distributed coordination and
strategic decision-making to enhance network performance, reduce operational costs,
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and mitigate stakeholder conflicts. By facilitating decentralized decision-making and
coalition formation, game-theoretic approaches offer scalability, efficiency, and fair
resource allocation. Additionally, cooperative game theory methods such as Shapley
value and Nucleolus ensure equitable profit distribution among collaborating entities,
thereby fostering stable and effective coalitions. Consequently, the dual benefits of
optimized performance and improved stakeholder coordination position game theory
as an increasingly attractive approach to addressing the multifaceted challenges of
active distribution system management. However, game theory approaches can suffer
from complexity and computational overhead, especially as the number of stakehold-
ers or actions increases. Additionally, achieving equilibrium solutions may require
extensive communication and iterative negotiation, potentially leading to inefficien-
cies in practical real-time implementations.

4.2.2. Robust and Stochastic methods

To ensure the operational safety and reliability of the active distribution system,
optimization algorithms must exhibit robustness against uncertainties and measure-
ment noise. Robust optimization approaches are designed to address control prob-
lems by preparing for the worst-case scenarios. These strategies have been developed
to achieve optimal distribution system reconfiguration [43, 44] and to tackle VVC
problems amidst uncertainties in load demands and distributed generation outputs.
On the other hand, stochastic optimization methods focus on optimizing the expected
control objectives [45], accounting for the probabilistic nature of system uncertain-
ties. Such methods have been utilized to address complex problems, including the
optimal EV charging scheduling problem in an iterative procedure [213] and solving
a multistage stochastic OPF problem [131, 132]. By incorporating the unpredictabil-
ity of future events and variations within the system, stochastic methods provide a
framework for making informed decisions that enhance the efficiency and resilience of
active distribution operations. Both robust and stochastic optimization approaches
play crucial roles in navigating the inherent uncertainties of active distribution sys-
tems, ensuring that operational decisions are both safe and reliable under a wide
range of operating conditions.

However, robust and stochastic optimization methods possess significant limita-
tions. Robust optimization methods, for instance, often exhibit overly conservative
behavior. By accounting for worst-case scenarios, these methods tend to produce
solutions that are suboptimal under typical operating conditions, potentially lead-
ing to increased operational costs. Additionally, robust formulations, such as the
column-and-constraint generation (CCG) method [214], can become computation-
ally intensive, especially in large-scale systems where the worst-case scenario search
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space expands significantly. On the other hand, stochastic optimization methods,
although capable of addressing uncertainty through the optimization of expected
performance, also encounter notable drawbacks. Primarily, their effectiveness heav-
ily depends on accurate probabilistic modeling of uncertain parameters, which can be
challenging to achieve in practice due to limited or noisy data. Furthermore, stochas-
tic methods frequently necessitate extensive scenario generation, thereby increasing
computational complexity and hindering timely real-time decision-making.

To address these limitations, data-driven distributionally robust optimization
(DRO) has emerged as a promising alternative. This methodology combines the
advantages of robust and stochastic approaches by constructing an “ambiguity set”
of probability distributions consistent with available empirical data. Consequently, it
effectively captures both forecast and sampling errors inherent in real-world datasets,
resulting in solutions that strike a better balance—avoiding excessive conservatism
while maintaining adaptability. Data-driven DRO has demonstrated notable effec-
tiveness in various applications, including network reconfiguration [215, 216], restora-
tion [217], Volt-VAR control [209, 218], energy trading [219], and optimal power flow
[220, 221].

4.2.3. Online Learning

Online learning (OL) has emerged as a powerful data-driven and machine learn-
ing technique in the management of DR resources within active distribution systems.
Initial investigations into the deployment of DR resources leveraged the multi-armed
bandit framework, focusing on index policies informed by Markov chains for effective
load dispatching [222]. As the field has evolved, OL has been increasingly applied
to refine the management of DR resources by learning from real-time data. OL can
be used as a tool to learn probability distributions and behavior of the loads to
properly dispatch them [223]. Recent works used OL to provide load shedding while
learning the parameters and deciding the best available loads to curtail [224]. [225]
follows a similar approach while considering load dispatch constraints. In [226], an
OL approach is used to select loads to provide load-shifting services while learning
load parameters. [227] use online convex optimization to track setpoints with un-
certain and flexible loads in DR programs. Overall, by continually updating and
refining load dispatch strategies based on real-time data and evolving system condi-
tions, OL enables a more dynamic and efficient response to the key challenges of DR
management.
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5. Relevant Data Sets and Testing Systems

5.1. Simulation Environment and Datasets
5.1.1. Simulation Environments

When it comes to active distribution systems simulation platforms for data-driven
applications, most researchers have used proprietary environments. One of the main
reasons is that the electric utility industry is heavily regulated and quite conser-
vative. Being safety-critical, the real-world distribution system topologies, control
settings, and DERs data are proprietary and often not shared with researchers.
Despite these constraints, several well-known distribution system simulators have
emerged as valuable tools for researchers and engineers. OpenDSS [228], Matpower
[229], Pandapower [230], and PSASP [231], GridLAB-D [232] are among the leading
simulators that offer capabilities for modeling active distribution networks. These
platforms facilitate the calculation of power flows and the analysis of network faults,
thereby simulating the operational state of active distribution networks.

Such simulation environments are crucial for generating sufficient labeled data
needed for the training and validation processes of data-driven methods. By provid-
ing a virtual representation of active distribution systems, these simulators enable
the development, testing, and refinement of data-driven applications in a controlled
and accessible manner, bridging the gap between theoretical research and practical
utility operations.

Beyond those conventional simulation tools, researchers have also developed a
few gym-like simulation environments tailored for specific data-driven tasks such as
machine learning-based applications. These specialized environments are crucial for
simulating the dynamics of active distribution networks under various states, actions,
and observations, closely mirroring real-world responses. Such gym environments are
instrumental for training and testing RL agents, providing a realistic and controlled
setting to explore and validate different control strategies.

One notable example is a Gym-like VVC environment developed for the IEEE 13-,
123-, and 8500-bus test feeders, which served as a testbed to conduct RL-based VVC
research [233]. Gym-ANM [234] is another environment designed for training agents
in active network management tasks, including control schemes of generators and
DERs. PowerGym [235] is an open-source RL environment for VVC in active distri-
bution systems. Besides, An OpenDSS-cum-SimPy based Gym environment [236] is
presented to train agents for network reconfiguration to address network congestion
and cyber threats. Recently, a Resilient RL Co-Simulation (ResRLCoSIM) frame-
work has been developed in [237], leveraging GridLAB-D and Hierarchical Engine for
Large-scale Infrastructure Co-Simulation (HELICS) [238]. This framework is com-
patible with the Gym environment and can be applied to various benchmark RL
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methods, offering a versatile platform for testing and enhancing the resilience of RL
agents in power system simulations.

Moreover, due to the complex nature of operation and control for multiple devices
concurrently, the active distribution system can serve as a natural test field for
multi-agent algorithms. A few multi-agent application simulation environments are
constructed to test algorithms in this setup. For example, PowerGridworld [239]
enables users to instantiate diverse multi-agent scenarios, which integrates power
flow solutions into the agents’ observation spaces and rewards. A MARL simulation
environment [240] is established to focus on solving the active voltage control problem
in active distribution networks.

Additionally, several studies have explored simulation environments for micro-
grids. Pymgrid [241] is built to focus on the tertiary level for microgrid, i.e., con-
cerning the long-term dispatch of the various generators for optimizing the opera-
tional cost. OpenModelica Microgrid Gym (OMG) [242] is an open-source platform
designed to simulate, control, and optimize microgrids based on energy conversion
through power electronic converters. The above platforms support Gym-like usages
such as reset, step, random action sampling, and visualization. Hence, they can
be used to validate most of the developed RL algorithms [243, 97]. Power system
researchers can make fair comparisons on the developed RL algorithms without wor-
rying about proprietary information leakage.

5.1.2. Datasets

The data-intensive nature of the aforementioned methods makes it imperative
to create benchmark datasets and authoritative testbeds for active distribution net-
work applications. Those kinds of standardization are crucial for testing algorithms
and promoting equitable performance comparisons. There are several open-source
datasets [244, 245, 246, 247, 248, 249, 233] providing the topology data of real-world
active distribution networks, including the information of line resistance, reactance,
and network topology. Moreover, load data in distribution networks is prevalent in
several datasets. For instance, the dataset by [250] details a real-world Norwegian
low-to-medium voltage distribution grid, encompassing both grid data and load data.
Another dataset by [251] supplies network and loading data for an actual distribution
network in North East England. Additionally, the ATTEST dataset [252] includes
information about a realistic distribution network in Croatia, covering grid topology,
nodes, generators, and power consumption. The collection of multi-energy load data,
e.g., electric vehicles [253, 254, 255, 256, 257], electrified buildings [258, 259, 260],
and heat pumps [261], are also included in many datasets. A specific example is
the Pecan Street Dataport [262], which provides high-resolution energy data, includ-
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ing flexible loads, inflexible loads, generators, and power quality from volunteering
participants.

5.2. Physical test systems

5.2.1. ERIGrid 2.0

ERIGrid 2.0 (European Research Infrastructure supporting Smart Grid) is led
by the Center for Energy of the Austrian Institute of Technology, which unites 20
innovation partners from 13 European countries to create a transnational platform for
the benefit of research, industry, and network operators. The project allows industrial
and academic researchers to test smart grid control algorithms on-site or virtually,
and they also develop and make publicly accessible e-learning tools, webinars, and
workshops to provide remote lab access for educational purposes. This platform
can support developing, testing, and validating modern power supply systems, the
integration of renewable energies, and the digitalization of networks and intelligent
energy systems. ERIGrid 2.0 is composed of 21 physical and 10 virtual laboratories.
On-site testing is supported by their technical staff. Access to their facilities is free
and they support the cost of traveling. For more technical details and how to request
access, please refer to [263].

5.2.2. DERConnect, UC San Diego

DERConnect is a National Science Foundation Mid-Scale Research Infrastructure
at the University of California, San Diego that received $42 million dollars in fund-
ing in 2020. DERConnect establishes, for the first time, a grid-connected, customiz-
able, and dedicated power system with all the required components and DER types
for large-scale distributed control in one place. DERConnect features actual (i.e.,
functional devices at scale in addition to hardware emulators) and advanced DERs;
testing equipment linked with a communication system; operation in grid-connected
and islanded modes; and real-time remote access. DERConnect controllable loads
include heating, ventilation, and air conditioning systems, lighting, solar PV, battery
energy storage, and EVs. DERConnect will enable near real-time distributed control
trials on several levels of hierarchy via multiple separable sub-units and up to 2,500
actual DERs and 2 million independent simulated DERs. DERConnect will open
to the research community in 2025. An example of the research carried out in the
earlier years of UC San Diego’s microgrid can be found in [264]. For more technical
details and how to request access, please refer to [265].

5.2.3. ARIES, National Renewable Energy Laboratory

The National Renewable Energy Laboratory has an on-site research platform
called ARIES (Advanced Research on Integrated Energy Systems) [266], which stands
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for advanced research on integrated energy systems. This platform is designed to
de-risk and optimize current energy systems as well as provide insights into future
systems that rely on renewable energy sources. ARIES has four research objectives:
1) increasing the penetration of variable generation and storage, 2) increasing the
capabilities for power electronics-based management and control, 3) de-risking multi-
sectoral energy systems deployment and operation, and 4) designing cyber-secure
control strategies. To fulfill these objectives, ARIES has the following research areas:
energy storage, power electronics, hybrid energy systems, future energy systems, fu-
ture energy infrastructure, and cybersecurity. ARIES is composed of real equipment
and devices, emulated devices, hardware-in-the-loop experiments, high-performance
computing, and assets at other national laboratories to allow full experimentation of
integrated energy systems at a scale that replicates the real world. For more technical
details about how to collaborate, please refer to [266].

5.2.4. Princeton Island Grid

Princeton Island Grid (PIG) is a microgrid located in Princeton New Jersey
with an islanding function. The PIG consists of a controllable building load, a
1 MWh battery energy storage system, 836 kW of solar PV, and six 7.2kW EV
chargers. Siemens in-house software is used to manage the PIG (such as DECIGO
CC, Mindsphere Application Center for Distributed Energy Systems, and Siemens
Energy Workplace for Analysts). PIG is a living lab for testing microgrids, grid-
level controls, IoT, energy-related performance monitoring and analysis, simulation
and digital twin, and cyber security. Some examples of the data-driven applications
that can be tested on PIG are: microgrid energy demand monitoring and analysis,
microgrid-based demand response, short-term solar power predictions using cloud
image, power systems cyber attack analysis, etc. For more details about the resources
of PIG, please refer to [267].

6. Challenges, Opportunities, and Pathway in Realizing Data-Driven Dis-
tribution Networks

Data-driven algorithms serve as an innovative approach to solving decision-making
problems with increasing complexity in active distribution networks. Despite their
potential, a significant divide persists between the practical applications in the in-
dustry and the advancements in academic research. This section first delves into the
primary challenges and opportunities that data-driven methods face in addressing
real-world decision-making, optimization, and control problems in active distribution
networks, then outlines a pathway to deploying data-driven methods in active power
distribution networks.
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Figure 3: An overview of the challenges and research opportunities.

6.1. Challenges

6.1.1. Generalization

While data-driven approaches can greatly reduce the computation time and im-
prove the solution quality of optimization problems in active distribution systems,
their generalization performance cannot be guaranteed. The distribution systems’
network topology may change over time, new DERs may be introduced into the
feeders, and the spatio-temporal distribution of the electric load in the testing pe-
riod could be different from that of the training data. In general, it is very difficult
to guarantee that the data-driven algorithms could adapt and react properly to ev-
ery previously unseen distribution network and operation conditions. Practically,
retraining the model periodically may only partially mitigate the issue.

6.1.2. Interpretability

Interpretability describes the degree to which distribution system operators can
understand the decisions made by machine learning algorithms and data-driven ap-
proaches. Low interpretability is the main hindrance to the wider deployment of
learning algorithms in distribution networks, especially end-to-end deep learning al-
gorithms which are widely regarded as “black box” models. These models cannot be
readily understood by system operators and provide desired operation safety guaran-
tees. Developing models that combine high interpretability with advanced analytical
capabilities is essential for meeting the operational standards and safety requirements
of distribution system operators.
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6.1.3. Feasibility

Sensor data from real-world active distribution systems must follow physical laws,
such as Kirchhoff’s law and conservation of energy. Most decision-making problems
in distribution networks are optimization problems with operational constraints.
Violating these constraints will lead to infeasible and unsafe solutions. Unfortu-
nately, naive data-driven algorithms typically cannot enforce these hard constraints
in decision-making problems. Therefore, to make data-driven approaches applicable
in actual distribution system operations, there is a need to develop machine learning
algorithms for optimization problems with hard constraints.

6.1.4. Limited Observability

Typically, the existing sensing and monitoring instrumentation in active distri-
bution networks is insufficient [268], which offers system operators very limited ob-
servability. While some research efforts have concentrated on state estimation and
decision-making with limited data [269], the challenge of ensuring model generaliza-
tion and feasibility under partial observability remains significant.

6.1.5. Highly Regulated Industry

The power industry has traditionally been a highly regulated industry, partially
resulting from its heavy infrastructural investments, proprietary data, and critical
security requirements. Power distribution system operators have a systematic way
of ensuring the secure operation of the active distribution grid after decades of oper-
ational experience. Compared to other industries, it takes more time for the market
to transition from human-centric decision-making to the regime of data-centric coun-
terpart.

6.2. Research and Development Opportunities

6.2.1. Utilization of physical laws and information

Integrating physical laws and information into ML algorithms can significantly
improve the reliability and accuracy of predictive models. This class of methods has
revolutionized many application areas in a variety of ways. For instance, physics-
informed neural networks have been developed to solve supervised learning tasks
while respecting any given laws of physics described by general nonlinear partial
differential equations [15]. To follow the law of conservation of energy, Hamiltonian
and Lagrangian mechanics are embedded into the neural networks [270, 271]. In
physics-informed RL, incorporating physical principles can enhance the effectiveness,
sample efficiency, and training speed, facilitating complex problem-solving and real-
world application [272].
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6.2.2. Robust learning against adversarial attacks

The input-output mappings learned by deep neural networks can be highly discon-
tinuous functions. This means that small perturbations to the inputs of data-driven
decision-making models for distribution networks can lead to huge prediction errors
[273]. Furthermore, the data-driven models in distribution networks may be vulner-
able to adversarial attacks. Thus, it is necessary to learn a control policy, which is
robust to uncertain system operation conditions, network topology, and vulnerable
sensor data. In the area of RL, Lerrel et al. proposed robust adversarial reinforce-
ment learning (RARL) to improve the robustness of RL algorithms [274], which can
improve the anti-interference ability of the RL models. In the area of active distribu-
tion systems, researchers find that several competition-winning, state-of-the-art RL
agents proposed for power system control are vulnerable to adversarial attacks [275].
To address this problem, they propose to use adversarial training to increase the
robustness of RL agents against attacks and avoid infeasible operational decisions.
In [276], an adversarial RL algorithm is developed to train an offline agent robust to
the model mismatch for VVC. However, the approach does not address data privacy
concerns between different entities. To safeguard data privacy across microgrids, a
data-driven federated RL method is introduced in [237], aimed at mitigating ad-
versarial attacks in networked microgrids. Additionally, a hierarchical control layer
is integrated alongside the primary controls of grid-forming inverters. Nonetheless,
further research is needed to incorporate safety-constrained RL techniques to ensure
secure and reliable operations.

6.2.3. Learning for optimization with constraints

To meet the constraints of optimization problems, many scholars began to pay
attention to learning algorithms for optimization with constraints. This approach
is crucial for ensuring that solutions not only achieve optimal performance but also
adhere to the physical and operational parameters that govern real-world systems.
In general, two main types of constraints can be imposed on neural networks: soft
constraints and hard constraints. The former introduces additional terms (e.g., those
derived from Lagrangian duality [277]) into the loss function, which is minimized dur-
ing training. However, imposing soft constraints does not guarantee the satisfaction
of physical laws, which is a significant limitation for applications in active distri-
bution systems where compliance with such laws is non-negotiable. Research has
demonstrated that imposing hard constraints is computationally feasible and yields
satisfactory outcomes. For instance, [278] shows that imposing hard constraints
can in fact be done in a computationally feasible way and delivers reasonable re-
sults. [279] present deep constraint completion and correction (DC3) to solve this
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problem. Specifically, this method enforces feasibility via a differentiable procedure,
which implicitly completes partial solutions to satisfy equality constraints and unrolls
gradient-based corrections to satisfy inequality constraints.

6.2.4. Decision-making under partial observability and uncertainties

The real-world active distribution systems have a limited number of sensors that
could provide real-time measurements, which leads to feeders with limited observ-
ability. To navigate this challenge, sequential decision-making problems are often
formulated as partially observable Markov decision processes (POMDPs) [280, 281],
with tailored RL algorithms developed to provide solutions. There are a few papers
that touched on the topic in active distribution systems. In [193], Shahab et al. stud-
ied the users’ long-term load scheduling problem and modeled the changes of price
data and electric load as a Markov decision process, which enables us to capture
the interactions among users as a partially observable stochastic game. Hangyue et
al. formulated VVC as a partially observable Markov game. Then, a MADDPG
algorithm is adapted to solve this problem [99]. By integrating constraints directly
into the learning process and developing algorithms capable of operating under par-
tial observability, researchers are paving the way for more robust and efficient active
distribution operations. Decision-making under uncertainty is another crucial as-
pect of active distribution systems, where various methods have been developed to
address the unpredictability of real-world conditions. Two leading approaches in
this domain are stochastic optimization and robust optimization. However, many
decision-making problems in active distribution systems involve MIP, which remains
computationally challenging to solve efficiently. To accelerate the solving process,
two recent learning-based approaches, Neur2SP [282] and Neur2RO [283], have been
introduced to tackle classical decision-making problems under uncertainty. These
methods show significant potential for application in active distribution systems,
offering improved computational efficiency and scalability.

6.2.5. Data Privacy and Security

In distributed energy markets involving DERs and microgrids (MGs), prosumers
are increasingly concerned about data privacy and security during energy trans-
actions. Some ADMM-based privacy-preserving methods have been developed in
[284, 285], but as discussed earlier, distributed algorithms like ADMM remain vul-
nerable to malicious attacks [286, 287]. Moreover, ADMM requires two-time-scale
calculations, limiting its scalability to large networks and making it less robust to
noise and inexact solutions. To address these challenges, a privacy-preserving dis-
tributed energy transaction approach was proposed in [288], which enhances security
by adding a noise term and a secret function to the information exchange process.
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However, this method may not perform well in high line congestion scenarios or
when managing frequent bus injections and withdrawals, requiring further inves-
tigation. Additionally, distributed privacy-preserving algorithms involve frequent
data exchanges, which can lead to communication delays and high computational
overhead, particularly with limited computing resources. Recently, outsourced com-
putation has emerged as a solution, allowing prosumers with constrained resources to
delegate complex tasks to a power cloud center. For instance, a proactive deception
approach introduced in [289] utilizes virtual network encryption and asynchronous
decryption to enhance both speed and accuracy. However, further research is needed
to address challenges related to uncertainty aggregation in DERs and the general-
ization to nonconvex models.

6.3. Pathway to Realizing Data-Driven Distribution Networks

The transition toward fully operational, data-driven methods in active power
distribution networks involves bridging the gap between theoretical frameworks and
their practical deployment. This subsection articulates a comprehensive roadmap
that identifies strategic pathways essential for this transformation, underpinned by
advances in digitalization, sensing, and communication technologies.

6.3.1. Integration of Advanced Data Acquisition Systems

A fundamental step is the establishment of robust data acquisition infrastruc-
tures that can monitor network parameters at high resolutions. This entails the
deployment of smart sensors, micro-phasor measurement units (µPMUs), and IoT
devices across the distribution network. The comprehensive real-time capture of op-
erational data—ranging from voltage profiles and load variations to behind-the-meter
renewable energy outputs—is crucial for enabling accurate situational awareness and
subsequent data analytics.

6.3.2. Development of Scalable Data Management Platforms

With the influx of high-frequency and high-volume data, there is an urgent need
for scalable and secure data management platforms. Cloud-based solutions and edge
computing platforms can facilitate the storage, processing, and retrieval of large
datasets while ensuring data integrity and low latency. These platforms must be
designed with cybersecurity in mind to protect critical infrastructure and sensitive
customer information.

6.3.3. Adoption of Robust Data Analytics and Data-driven Models

Robust data analytics and data-driven models form the cornerstone of data-driven
solutions for active distribution networks. As summarized in Section 4, there is a
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wide spectrum of data-driven strategies—ranging from mathematical optimization
to learning-assisted optimization, physics-informed learning, and end-to-end learn-
ing—that collectively offer powerful tools for control, optimization, and decision-
making in active distribution networks.

6.3.4. Fostering Interdisciplinary Collaborations and Stakeholder Engagement

Realizing a data-driven future necessitates a multidisciplinary approach that
brings together electrical engineers, data scientists, and policy makers. Collabora-
tive frameworks can drive the integration of emerging technologies and standardize
practices across utilities. Additionally, fostering partnerships between industry and
academia will support pilot projects and testbeds, ensuring that theoretical advance-
ments are continually validated against real-world operational scenarios.

6.3.5. Emphasizing Regulatory and Standardization Frameworks

For widespread adoption, regulatory bodies must develop clear guidelines that
support innovation while ensuring system reliability. Establishing industry-wide
standards for data exchange, interoperability, and cybersecurity is imperative. These
standards will not only facilitate the integration of diverse technological systems but
also ensure that emerging data-driven methods align with national and international
regulatory policies.

6.3.6. Continuous Validation Through Demonstration Projects

Continuous validation is essential to transition data-driven methods from the-
ory to practice in active distribution networks. As detailed in Section 5, simulation
environments and physical test systems offer two complementary platforms for this
purpose. Simulation environments provide a controlled setting to assess algorithm
performance under varied scenarios, while physical test systems offer real-world in-
sights for validating operational resilience. Integrating lessons learned from these
platforms through demonstration projects ensures that the developed methods are
robust, scalable, and ready for practical deployment.

7. Conclusion

This paper provides a comprehensive literature survey of recent data-driven op-
timization and decision-making algorithms in active distribution networks. We sum-
marized the data-driven algorithms for optimization and decision-making problems
by major active distribution network applications, including restoration and reconfig-
uration, crew dispatch, Volt-VAR control, dispatch of distributed energy resources,
and optimal power flow. Then, we divide those algorithms into four categories:
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mathematical optimization, learning-assisted optimization, physics-informed learn-
ing, and end-to-end learning. The relevant datasets and testing systems for data-
driven control, optimization, and decision-making in active distribution networks are
also covered in depth. Finally, we highlight the key challenges of existing approaches
and point out research and development opportunities.
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of voltage regulation transformers in unbalanced distribution systems,” IEEE
Trans. Power Syst., vol. 31, no. 1, pp. 256–267, 2015.

[89] X. Sun, J. Qiu, and J. Zhao, “Real-time Volt/Var control in active distribu-
tion networks with data-driven partition method,” IEEE Trans. Power Syst.,
vol. 36, no. 3, pp. 2448–2461, 2020.

[90] H. Yoshida, K. Kawata, Y. Fukuyama, S. Takayama, and Y. Nakanishi, “A
particle swarm optimization for reactive power and voltage control considering
voltage security assessment,” IEEE Trans. Power Syst., vol. 15, no. 4, pp.
1232–1239, 2000.

[91] A. Anwar, A. N. Mahmood, J. Taheri, Z. Tari, and A. Y. Zomaya, “HPC-
based intelligent Volt/Var control of unbalanced distribution smart grid in the
presence of noise,” IEEE Trans. Smart Grid, vol. 8, no. 3, pp. 1446–1459, 2017.

[92] A. Vaccaro and A. F. Zobaa, “Voltage regulation in active networks by dis-
tributed and cooperative meta-heuristic optimizers,” Electr. Power Syst. Res.,
vol. 99, pp. 9–17, 2013.

[93] E. Pourjafari and M. Reformat, “A Support Vector Regression Based Model
Predictive Control for Volt-VAR Optimization of Distribution Systems,” IEEE
Access, vol. 7, pp. 93 352–93 363, 2019.

[94] S. Li, Y. Sun, M. Ramezani, and Y. Xiao, “Artificial neural networks for
Volt/VAR control of DER inverters at the grid edge,” IEEE Trans. Smart
Grid, vol. 10, no. 5, pp. 5564–5573, 2018.

[95] Y. Gao and N. Yu, “Model-augmented safe reinforcement learning for Volt-
VAR control in power distribution networks,” Appl. Energy, vol. 313, p. 118762,
2022.

[96] Y. Gao, W. Wang, and N. Yu, “Consensus multi-agent reinforcement learning
for Volt-VAR control in power distribution networks,” IEEE Trans. Smart
Grid, vol. 12, no. 4, pp. 3594–3604, 2021.

[97] X. Y. Lee, S. Sarkar, and Y. Wang, “A graph policy network approach for
Volt-VAR control in power distribution systems,” Appl. Energy, vol. 323, p.
119530, 2022.

45



[98] X. Sun and J. Qiu, “Two-stage Volt/Var control in active distribution networks
with multi-agent deep reinforcement learning method,” IEEE Trans. Smart
Grid, vol. 12, no. 4, pp. 2903–2912, 2021.

[99] H. Liu, C. Zhang, Q. Chai, K. Meng, Q. Guo, and Z. Y. Dong, “Robust
regional coordination of inverter-based Volt/Var control via multi-agent deep
reinforcement learning,” IEEE Trans. Smart Grid, vol. 12, no. 6, pp. 5420–
5433, 2021.

[100] F. Kabir, Y. Gao, and N. Yu, “Reinforcement learning-based smart inverter
control with polar action space in power distribution systems,” in IEEE Conf.
on Control Technol. and Appl., 2021, pp. 315–322.

[101] Y. Zhang, X. Wang, J. Wang, and Y. Zhang, “Deep reinforcement learning
based Volt-VAR optimization in smart distribution systems,” IEEE Trans.
Smart Grid, vol. 12, no. 1, pp. 361–371, 2020.

[102] D. Cao, J. Zhao, W. Hu, F. Ding, Q. Huang, and Z. Chen, “Attention enabled
multi-agent DRL for decentralized Volt-VAR control of active distribution sys-
tem using PV inverters and SVCs,” IEEE Trans. Sustain. Energy, vol. 12,
no. 3, pp. 1582–1592, 2021.

[103] W. Wang, N. Yu, Y. Gao, and J. Shi, “Safe off-policy deep reinforcement
learning algorithm for Volt-VAR control in power distribution systems,” IEEE
Trans. Smart Grid, vol. 11, no. 4, pp. 3008–3018, 2019.

[104] D. Cao, J. Zhao, W. Hu, N. Yu, F. Ding, Q. Huang, and Z. Chen, “Deep
reinforcement learning enabled physical-model-free two-timescale voltage con-
trol method for active distribution systems,” IEEE Trans. Smart Grid, vol. 13,
no. 1, pp. 149–165, 2021.

[105] H. Liu and W. Wu, “Online multi-agent reinforcement learning for decentral-
ized inverter-based Volt-VAR control,” IEEE Trans. Smart Grid, vol. 12, no. 4,
pp. 2980–2990, 2021.
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