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Abstract—The widespread deployment of phasor measurement
units (PMUs) in power transmission systems has accelerated
the development of deep learning–based real-time monitoring
solutions, such as event classification. Despite these advance-
ments, recent research indicates that adversarial attacks pose
a significant threat, as even minor perturbations in the input
data can deceive well-trained models. In domains like computer
vision, adversarial samples have been shown to transfer across
different architectures, thus enabling black-box attacks via surro-
gate models. However, this transferability phenomenon remains
largely unexplored in power system applications. In this work,
we conduct a comprehensive study of adversarial transferability
for power system event classification using machine learning
models and a large-scale dataset. Drawing on the insights from
this investigation, we propose a novel ensemble-based black-
box adversarial attack that exploits transferability to achieve
higher success rates and greater query efficiency. Furthermore,
beyond using the Euclidean norm to measure perturbations,
we incorporate signal-to-noise ratio (SNR) and maximum mean
discrepancy (MMD) to enhance the robustness and depth of our
perturbation analysis. Extensive experiments on a large-scale,
real-world PMU dataset and state-of-the-art event classifiers
highlight the effectiveness of our proposed approach.

Index Terms—Black-box adversarial attack, event classifica-
tion, phasor measurement units, power system.

I. INTRODUCTION

The rapid deployment of advanced sensors such as phasor
measurement units (PMUs) has accelerated the development of
data-driven methods in power systems, particularly for event
detection and classification [1]. PMUs offer high reporting
rates for voltage and current phasors [2]. Their widespread
adoption has generated large volumes of data to drive machine
learning solutions in power systems [3]. These solutions are
crucial to improving the reliability of the modern power
grid. Recently, machine learning-based methods have shown
remarkable accuracy and efficiency in detecting and classify-
ing transmission grid anomalies, such as voltage, frequency,
and oscillation events. Many researchers have developed end-
to-end deep neural network-based event classifiers, such as
convolutional neural networks (CNNs) [4], enhanced ResNet-
50 models [5], and generative adversarial networks (GANs)
[6]. Others adopt hierarchical strategies, for example, using a
hierarchical CNN with channel filtering [7] or a refined two-
level hierarchical CNN-based framework [8].

Despite considerable advances in machine learning-based
methods for real-time power systems monitoring, these models
remain inherently susceptible to adversarial attacks. They
could pose critical reliability and security risks in future
deployments. By introducing small perturbations into the input
PMU data, adversarial attacks can exploit underlying model
weaknesses and trigger incorrect predictions [9]. Recent work
by [10] further demonstrates how easily adversarial manipu-
lation can compromise machine learning-based power system
event classifiers.

Adversarial attacks are commonly divided into white-box
and black-box categories. Both pose significant security threats
to machine learning-based models. White-box attacks assume
full knowledge of the model and allow for direct gradient com-
putation [9], [11], but real-world constraints often limit this
access. In contrast, black-box attacks only require input-output
queries and can be subdivided into query-based and transfer-
based approaches. Query-based attacks generate adversarial
samples by iteratively probing the black-box model using
zeroth-order gradient estimation [12], sign gradient estimation
[13], [14], or decision boundary analyses [15]–[17]. Transfer-
based attacks exploit adversarial transferability [18], [19] by
crafting perturbations against a surrogate model, which can
then deceive the target. However, their success rates remain
limited, particularly when attacking diverse architectures.

While adversarial attacks have been explored in power sys-
tems [20], and adversarial transferability has been extensively
studied in computer vision, it remains largely underexplored in
power system applications, especially in the context of event
detection and classification. This paper addresses this gap by
conducting a comprehensive study of adversarial transferabil-
ity for power system event classification models. Drawing
on our findings, we propose an ensemble-based black-box
attack algorithm that takes advantage of adversarial samples
from a surrogate model. This algorithm improves the success
rates and query efficiency of existing black-box methods.
By identifying how and why machine learning-based models
fail under adversarial conditions, our work provides critical
insights for developing more robust models and enables the
power systems community to strengthen resilience against
real-world threats.

Although the Euclidean norm is typically used to quantify



imperceptibility in image-based adversarial attacks, it may not
fully capture the impact of perturbations on power system
data [21], where even small deviations of the Euclidean norm
can produce noticeable noise. To address this limitation, we
adopt a multi-metric approach by incorporating two additional
measures, signal-to-noise ratio (SNR) and maximum mean
discrepancy (MMD), alongside the Euclidean norm. This
combination provides a more robust framework for limiting
and analyzing adversarial perturbations for power system event
detection and classification.

The main contributions of this paper are highlighted below.
• We conduct the first extensive investigation of adversarial

transferability in power systems using large-scale datasets
and multiple machine learning-based models.

• We propose an ensemble-based method that exploits ad-
versarial transferability to significantly enhance both the
success rate and query efficiency of black-box adversarial
attacks, surpassing existing techniques.

• We adopt a multi-metric approach, incorporating the
Euclidean norm, signal-to-noise ratio (SNR), and max-
imum mean discrepancy (MMD), to rigorously assess
adversarial perturbations, offering deeper insights into
their impact on event classification performance.

The remainder of this paper is organized as follows. Sec-
tion II introduces key notations and formulates the adversarial
attack problem. Section III describes our transferability eval-
uation methodology, proposes an ensemble-based black-box
adversarial attack algorithm, and details our multi-metric per-
turbation analysis approach for power system data. Section IV
presents transferability results and compares the performance
of our proposed method against several state-of-the-art black-
box attack algorithms. Finally, Section V concludes the paper
and discusses the directions for future work.

II. KEY NOTATIONS AND PROBLEM DEFINITION

This section begins by defining the key notations used in
this paper, including the PMU time series representation, the
power system event dataset, and the machine learning-based
event classifier. Subsequently, it formalizes the concept of
adversarial attacks on classifiers and provides the background
of the black-box adversarial attack methodologies.

A. Key Notations

Let x = [m1,m2, · · · ,mW ] represent a time series of
PMU measurements spanning a fixed window of length W .
Each mi(1 ≤ i ≤ W ) is a measurement matrix containing
electrical variables (e.g., active power, reactive power, voltage
magnitude, and frequency) collected from multiple PMUs.

Each sample x is paired with an event label y, indicating the
type of event captured in the time series. The power system
event dataset can be written as:

D = {(x1, y1), (x2, y2), . . .}.

We denote the machine learning-based event classifier by
fθ(·), where θ represents its learned parameters trained by the
above event dataset D. Given an input sample x, the classifier

Fig. 1. The illustration of black-box and transfer-based adversarial attacks
for PMU measurements.

outputs a probability distribution over event types, denoted by
ŷ = fθ(x).

B. Problem Definition
1) Adversarial Attacks: An adversarial attack on a classifier

fθ(·) seeks to generate the adversarial sample x′ = x + δ,
where δ is a small, imperceptible perturbation. Formally, this
is expressed as:

argmax
δ

L(fθ(x+ δ), y), subject to ||δ||2 ≤ ϵ, (1)

where L(·) typically represents the cross-entropy loss, and ϵ
constrains the perturbation magnitude to ensure the impercep-
tibility in terms of the l2-norm.

C. White-Box vs. Black-Box Attacks
a) White-box attacks: White-box attacks assume full ac-

cess to the model’s architecture and parameters, enabling direct
gradient computation. Methods such as FGSM [9] and PGD
[11] leverage gradients to generate adversarial perturbations.

b) Black-box attacks: Black-box attacks operate without
knowledge of the model’s internal details, relying solely on
queries and observed outputs (see the upper part of Figure 1).
These attacks iteratively refine δ through trial and error
until the classifier misclassifies the perturbed input. Figure 2
illustrates how minor perturbations can deceive a trained power
system event classifier.

D. Review of Black-Box Attack Algorithms
a) Score-Based Attacks: These methods exploit confi-

dence scores from the target model to approximate gradients
of the loss function L(θ;x, y). Attackers craft adversarial
samples by iteratively querying the model with small input
variations. Notable techniques include Natural Evolutionary
Strategies (NES) [22] and ZoSignSGD [12]. Details on score-
based attack methods are provided in Section IV-C1.



Fig. 2. Example of a successful black-box attack: small perturbation causes misclassification from normal operation to frequency event.

b) Boundary-Based Attacks: These attacks iteratively re-
fine adversarial samples by probing the decision boundary, the
hyper-surface separating different classes. By perturbing the
input and observing the model output, attackers identify points
near this boundary and use them to create nearly identical and
misclassified samples [15], [17]. Techniques such as binary
search can efficiently locate the boundary points. Boundary-
based attacks are presented in detail in Section IV-C1.

III. TECHNICAL METHOD

This section first outlines the evaluation methodology for
assessing adversarial transferability between various models.
Then, it presents the proposed ensemble-based black-box
adversarial attack algorithm, which leverages transferability to
amplify adversarial effects in power system event classifica-
tion. Finally, we introduce two specialized metrics designed
specifically for power systems to ensure that the generated
perturbations remain imperceptible.

A. Evaluating Adversarial Transferability for Power System
Event Classifiers

To assess how well adversarial samples transfer between
different event classifiers, we compute the percentage of
adversarial samples originally generated to mislead one model
that also causes misclassifications in another. We refer to this
metric as the transferability success rate. A higher rate implies
stronger transferability between the two models, reflecting
the ability of the same perturbation pattern to exploit shared
vulnerabilities across diverse neural architectures.

In our experiments, we measure the transferability suc-
cess rate across five network architectures: VGG-13 [23],
MobileNet-V2 [24], DenseNet-121 [25], ResNet-50, and
ResNet-18 [26]. All classifiers are trained on the large-scale
dataset described in Section IV-A, which takes approximately
2 hours per model on a Quadro RTX 6000 GPU. Despite
architectural differences, all these networks share the same
power system event classification objective, enabling a direct
comparison of their susceptibility to adversarial samples.

As presented in Section IV-B, our findings reveal that
adversarial samples in the power systems domain indeed ex-
hibit transferability across different model architectures. This
result underscores the potential of leveraging transferability to

strengthen black-box adversarial attacks in power system event
classification. Building on these insights, the next subsection
introduces a novel ensemble-based black-box adversarial at-
tack algorithm that harnesses transferability to achieve higher
success rates and greater query efficiency than state-of-the-art
approaches.

B. Ensemble-Based Black-Box Adversarial Attack Algorithm

In this subsection, we first provide an overview of the sign-
based black-box attack algorithm [12] and then introduce our
proposed ensemble approach that leverages transferability to
improve the attack success rate and query efficiency.

Algorithm 1 Sign-based black-box attack
Input: classifier fθ, data sample x, learning rate α
Output: Adversarial example xadv

Parameters: Perturbation bound ϵ, Maximum iteration N
1: xadv = x, query cnt = 0
2: while query cnt < N do
3: g = SignGradientEstimate(fθ,xadv)
4: xadv = xadv + αg
5: if fθ(xadv) ̸= fθ(x) then
6: Success, return xadv

7: end if
8: end while
9: return Fail, return xadv

1) Sign-Based Black-Box Attack: Algorithm 1 illustrates
the sign-based attack framework, which iteratively refines
adversarial samples by estimating the sign of the loss gradient
with respect to the input data. The adversarial example is
updated in each iteration by adding a scaled version of
this estimated sign. The process continues until the classifier
misclassifies the input or the query limit is reached.

Various methods can be used for the gradient estimation.
Among these, the state-of-the-art BitSchedule approach [27]
offers a reliable and efficient black-box strategy to approxi-
mate the sign of the gradient, making it particularly well suited
for generating adversarial perturbations.

2) Ensemble-based Black-box Attack via Transferability:
Algorithm 2 details our proposed ensemble-based black-box
attack strategy, which combines gradient estimates from both



Algorithm 2 Ensemble-based black-box attack algorithm
Input: classifier fθ, surrogate classifier fS

θ , data sample x,
learning rate α

Output: Adversarial example xadv

Parameters: Perturbation bound ϵ, Maximum iteration N
1: xadv = x, query cnt = 0, iter = 0
2: while query cnt < N do
3: g1 = SignGradientEstimate(fθ,xadv)
4: g2 = WhiteBoxAttack(fS

θ ,xadv)
5: g = g1

||g1||2 + e−iter·d g2

||g2||2
6: xadv = xadv + αg
7: if fθ(xadv) ̸= fθ(x) then
8: Success, stop the attack.
9: end if

10: iter += 1
11: end while
12: return xadv

the black-box model and a white-box surrogate. In each
iteration, we compute two gradients:

(1) g1, the sign of the gradient estimation obtained by
querying the black-box target model.

(2) g2, the gradient estimation derived from a white-box
attack on a surrogate model, which is trained using leaked or
eavesdropped data by an attacker to approximate the target’s
behavior due to the transferability of adversarial perturbations.

To combine these two gradients, we introduce an exponen-
tially decaying coefficient e−iter·d, designed to give greater
weight to the surrogate-based gradient early on and then grad-
ually reduce its influence. Specifically, we form the combined
gradient as:

g =
g1

||g1||2
+ e−iter·d g2

||g2||2
, (2)

where iter is the current iteration index, and d is a hy-
perparameter that controls the decay rate (set to 1 in our
experiments). In the initial stages of the process, g2 (from the
surrogate model) plays a dominant role, effectively exploiting
transferability properties to enhance attack efficacy. As itera-
tions progress, the algorithm is more dependent on g1, which
reflects the direct black-box feedback of the target model.

We can choose from various methods for gradient esti-
mators. In this work, we employ the BitSchedule estimator
[27] to approximate the sign of the black-box gradient (g1),
as it provides a reliable and efficient approach to querying
the target model. Meanwhile, for the surrogate-based gradient
(g2), we use the Carlini-Wagner L2 attack (C&W) [28], a well-
established white-box method known to identify impactful and
constrained adversarial perturbations effectively.

C. Perturbation Analysis for PMU Data in Power Systems

Most adversarial attack research evaluates perturbations
using the Euclidean norm, assuming that smaller perturbations
correspond to more imperceptible changes. However, this
assumption does not always hold for power system sensor data

[21]. The distinctive patterns in PMU signals make even small
Euclidean norm perturbations perceptible, as they introduce
noise patterns that can be identified by system operators. To
address this limitation, we incorporate two additional metrics
for a more comprehensive perturbation analysis: signal-to-
noise ratio (SNR) and maximum mean discrepancy (MMD).
These metrics provide a more robust assessment of adversar-
ial perturbations, ensuring that attacks remain effective and
inconspicuous within real-world power system environments.

1) Signal-to-Noise Ratio (SNR): To estimate the SNR, we
adopt the noise filtering procedure from [21], which applies
median filters of various orders to the raw PMU measurements.
Let S = MedianFilter(X) represent the filtered signal, and
define the noise component as N = X − S. The SNR in
decibels (dB) is then calculated using the ratio of the standard
deviation of the filtered signal S to the standard deviation of
noise N.

SNRdB = 20 · log10
(

std(S)
std(N)

)
. (3)

Drawing on typical PMU data characteristics, we constrain
the SNR of the adversarially perturbed signal to deviate by no
more than 1 dB from that of the unperturbed signal.

We chose the 1 dB threshold based on our extensive
analysis of the natural variability in the PMU data. Specifically,
our two-year study of 40 PMUs, with 100 samples (each
containing around 60,000 measurements), revealed that the
signal-to-noise ratio (SNR) has a standard deviation of 1.6 dB.
This indicates that a 1 dB variation is well within the typical
fluctuation range of the system. In other words, a perturbation
of up to 1 dB is almost indistinguishable from the inherent
measurement noise observed in regular operations.

By enforcing this limit on the adversarial perturbation, we
ensure that the noise introduced remains within a standard
operating range for power system PMU data, maintaining the
integrity and realism of the power system’s behavior while
still providing a meaningful challenge to the system.

2) Maximum Mean Discrepancy (MMD): MMD is a non-
parametric statistical measure that compares two probability
distributions using sample data. Let X, X′ be i.i.d. samples
from distribution P, and Y, Y′ are i.i.d. samples from distri-
bution Q. Given a positive-definite kernel k(·, ·) the squared
MMD is defined by:

MMD2(P,Q) = E[k(X,X′)] +E[k(Y,Y′)]− 2E[k(X,Y)].
(4)

Intuitively, MMD measures the distance between the mean
embeddings of P and Q in a reproducing kernel Hilbert space
(RKHS). Because it depends only on a suitable kernel and
does not require strong assumptions about the underlying data-
generating process, MMD is well-suited for detecting both
subtle and high-dimensional differences.

In practice, MMD can be coupled with a permutation test
to provide a statistically rigorous assessment of whether two
datasets come from different distributions. Specifically, one
computes the observed MMD in the original samples, then



repeatedly shuffles and partitions a pooled dataset to obtain a
distribution of MMD values under the null hypothesis (P =
Q). This yields a p-value indicating how likely the observed
MMD would be if P and Q are the same.

In the power system context, we apply MMD to ensure that
adversarial perturbations do not shift the distribution of PMU
signals beyond acceptable limits. Specifically, we require that
a hypothesis test comparing the noise distributions before and
after the attack yields a p-value above 0.5, indicating that there
is insufficient evidence to conclude a significant distributional
shift. To make the test highly sensitive to rejecting the null,
we set a comparatively large p-value threshold of 0.5. This
suggests that the post-attack noise remains statistically indis-
tinguishable from normal variations, minimizing the risk of
detection by system operators.

By complementing the Euclidean norm with both SNR and
MMD metrics, we gain a more domain-relevant evaluation
of adversarial perturbations in PMU data. This multi-metric
approach captures both the perceptibility of noise and potential
shifts in PMU data distribution.

IV. NUMERAL STUDY

In this section, we begin by introducing the large-scale
real-world PMU dataset used to train our models. We then
present experimental findings on adversarial transferability
across different network architectures. Finally, we compare
both the success rate and query efficiency of our proposed
ensemble-based black-box attack method against seven state-
of-the-art baseline algorithms.

A. Dataset and Target ML-based Event Classification Model

This study utilizes two years of PMU data (2016–2017)
from the U.S. Western Interconnection, comprising voltage
phasors, current phasors, and frequency measurements. 40
PMUs’ data are used in this study. Following [6, Section III-
F], we cleaned and transformed the raw data into a struc-
tured tensor format that captures four variables: active power,
reactive power, voltage magnitude, and frequency. The data
preprocessing pipeline included discarding unreliable PMUs
based on status flags and outlier thresholds, as well as imputing
missing data.

Event labels were derived from utility data logs, resulting
in 1,204 labeled samples that span four categories: line events,
generator events, oscillation events, and normal operation
instances. Each sample covers a 12-second interval recorded at
30 Hz, producing a [time steps × PMUs × variables] tensor.
We trained five neural networks, VGG-13 [23], MobileNetV2
[24], DenseNet-121 [25], ResNet-18, and ResNet-50 [26], on
this dataset to perform event classification, serving as target
models for the adversarial attacks. The attacks include both
white-box evaluations for transferability assessment and black-
box attacks.

B. Transferability Result between Different Models

Table I presents the transferability success rates among
five different classifiers, revealing that adversarial samples

do exhibit some degree of cross-model effectiveness in the
power system event classification task. For instance, adver-
sarial samples crafted on VGG13 can still achieve a 34.16%
success rate on DenseNet-121 (using DeepFool) and a 20.08%
success rate on ResNet-50 (using FGSM). However, these
values are substantially lower than those typically observed in
image analytics tasks, where transferability between different
network architectures can exceed 60%.

A similar pattern emerges in attacks originating from
MobileNetV2 and targeting ResNet-50 or ResNet-18, with
success rates generally below 30%. This trend underscores the
relatively modest cross-architecture transferability observed in
power system event classification. One possible reason is the
unique data characteristics of PMU signals, which differ sig-
nificantly from images in both dimensionality and distribution.
As a result, adversarial perturbations crafted on one power
system event classification model do not consistently align
with the decision boundaries of other models.

These findings highlight the inherent difficulty in creating
universally transferable adversarial samples for power system
event classification, suggesting that techniques proven effec-
tive in vision-based domains may not directly translate to this
context. Consequently, more specialized or ensemble-based
approaches may be required to improve transfer-based attacks
on power system event classifiers, as they can better account
for the unique features and patterns present in PMU data.

C. Performance of Ensemble-based Black-box Adversarial
Attacks

1) Baseline Black-box Attack Algorithms: In this paper,
we benchmark six baseline black-box attacks, three score-
based and three boundary-based, to compare against our
proposed method. SimBA [13] is a straightforward score-based
approach that iteratively perturbs individual coordinates and
observes the classification output to maximize misclassifica-
tion. ZoSignSGD [12] also uses score information but applies
a zeroth-order optimization strategy, relying on sign-based
gradient approximations for efficient parameter updates. Sign-
Hunter [14] emphasizes the sign of gradients in the model’s
loss function, adjusting inputs through a divide-and-conquer
approach to effectively mislead the classifier. On the boundary-
based side, BoundaryAttack [15] starts with a sample already
misclassified and iteratively refines it to minimize the distance
to the original data, while OPT Attack [16] employs zeroth-
order optimization and binary search to narrow the gap to the
decision boundary. Finally, Sign-OPT Attack [17] improves
upon OPT by using sign information of distance changes,
significantly reducing computational overhead and enhancing
query efficiency.

2) Performance Comparison of Ensemble-based Black-box
Attacks: Table II and III presents both the success rates (top)
and the average query consumption (bottom) for multiple
black-box attack algorithms tested against four different clas-
sifiers, VGG13, MobileNetV2, DenseNet-121, and ResNet-50,
while using ResNet-18 as the surrogate in the ensemble-based



TABLE I
TRANSFERABILITY SUCCESS RATE BETWEEN DIFFERENT MODELS

Surrogate
Target Algorithm VGG13 MobileNetV2 DenseNet-121 ResNet-18 ResNet-50

VGG13
FGSM 86.95% 10.97% 17.39% 17.39% 20.08%

DeepFool 85.92% 24.84% 34.16% 36.64% 26.50%
C&W 97.10% 9.52% 16.97% 14.28% 16.14%

MobileNetV2
FGSM 6.83% 97.51% 8.90% 10.55% 12.83%

DeepFool 9.31% 99.58% 8.69% 12.42% 12.62%
C&W 6.83% 97.51% 7.86% 8.28% 8.28%

DenseNet-121
FGSM 13.45% 12.83% 95.44% 10.28% 19.25%

DeepFool 29.81% 26.50% 92.75% 30.43% 22.98%
C&W 9.73% 11.18% 91.51% 16.35% 17.59%

ResNet-18
FGSM 22.77% 39.33% 32.29% 100% 61.28%

DeepFool 30.64% 49.89% 37.68% 100% 64.38%
C&W 14.69% 27.32% 23.60% 100% 50.51%

ResNet-50
FGSM 13.45% 22.15% 14.69% 40.37% 94.61%

DeepFool 19.46% 22.36% 18.01% 28.77% 100%
C&W 10.76% 13.66% 12.42% 24.43% 100%

TABLE II
SUCCESS RATE OF DIFFERENT CLASSIFIERS UNDER – QUERY NUMBER LIMITATION: 1000,

PERTURBATION MAGNITUDE LIMITATION: 40, SNR CHANGE THRESHOLD:1dB, MMD p− value THRESHOLD:0.5

Simba ZoSignSGD SignHunter BoundaryAttack OPT Sign-OPT BitSchedule Ensemble-based
VGG13 5.17% 11.59% 8.69% 2.48% 1.44% 7.66% 42.65% 47.01%

MobileNetV2 13.45% 20.91% 25.25% 7.03% 3.10% 11.18% 57.55% 64.59%
DenseNet-121 4.34% 6.83% 13.45% 2.89% 1.03% 2.07% 28.57% 36.23%

ResNet-50 6.62% 12.42% 15.73% 2.48% 2.07% 6.00% 42.65% 63.35%

TABLE III
AVERAGE QUERY NUMBER OF DIFFERENT CLASSIFIERS UNDER – QUERY NUMBER LIMITATION: 1000,

PERTURBATION MAGNITUDE LIMITATION: 40, SNR CHANGE THRESHOLD:1dB, MMD p− value THRESHOLD:0.5

Simba ZoSignSGD SignHunter BoundaryAttack OPT Sign-OPT BitSchedule Ensemble-based
VGG13 927 913 892 943 896 891 732 669

MobileNetV2 899 877 795 932 945 934 615 486
DenseNet-121 928 925 857 934 787 785 790 677

ResNet-50 911 900 824 935 801 795 715 404

method. Similar results are observed when other classifiers are
used as surrogates.

The experiments enforce the query limitation of 1000,
the maximum l2 perturbation norm on the z-scored inputs
of 40, the SNR change threshold of 1 dB, and the MMD
p − value threshold of 0.5. Under these constraints, the
proposed ensemble-based black-box attack (highlighted in red)
demonstrates significantly higher success rates than competing
methods, ranging from 36.23% on DenseNet-121 to 64.59%
on MobileNetV2. This underscores the method’s robustness
across varying network architectures.

Notably, the ensemble-based attack also excels in query
efficiency, requiring fewer queries on average than Simba,
ZoSignSGD, SignHunter, BoundaryAttack, OPT, Sign-OPT,
and BitSchedule. For example, it uses only 669 queries to
achieve higher success rate on VGG13, compared to 732
queries for BitSchedule, and 404 queries on ResNet-50 rather
than 795 for Sign-OPT. This reduction in query usage is
particularly advantageous in real-world, resource-constrained
settings, where there is limited time or computational budgets

to perform repeated queries. Combining high success rates
with reduced query consumption, the proposed method offers
both effectiveness and practical feasibility for adversarial
attacks on power systems event classifiers.

D. Progression Query-efficiency Comparison of Ensemble-
based Black-box Attacks

Figure 3 illustrates the progression of successful attacks as
the query budget increases on ResNet-50, while Tables II and
Tables III respectively provide final success rates at the 1000-
query limit and average query usage. The figure and above
tables show that the proposed ensemble-based black-box attack
outperforms all other methods on two key metrics: the total
number of successful adversarial samples generated and the
efficiency with which those successes are achieved.

In particular, the proposed ensemble-based method reaches
a high volume of successful attacks with fewer than 200
queries, surpassing baseline algorithms by a substantial margin
even in the early stages. By the 1000-query mark, it maintains
its lead, culminating in the highest final success rate while con-
suming fewer queries per successful attack on average. These



Fig. 3. Number of the successful attack sample with increasing query
limitation. (ResNet-50)

results highlight that the integration of transferability through
an ensemble-based approach yields substantial benefits when
operating under strict query constraints, making it a strong
candidate for resource-limited adversarial scenarios.

V. CONCLUSION

This paper explores adversarial transferability in power
system event classification and introduces an ensemble-based
black-box attack that improves both success rates and query
efficiency. Our findings reveal that adversarial transferability
in power systems event classifier is weaker than in vision
tasks, necessitating specialized attack strategies. The proposed
method effectively combines surrogate gradients with real-time
feedback, achieving high success rates and query efficiency
across all tested classifiers. Furthermore, by incorporating
domain-specific imperceptibility constraints, including SNR
and MMD, we ensure that adversarial perturbations remain
realistic and undetectable in practical power system operations.
Experiments on a large-scale real-world PMU dataset validate
the effectiveness of our proposed approach and highlight the
significant security implications of adversarial attacks in real-
time power system monitoring. Future work will focus on
developing more robust defenses and exploring the broader
applicability of our technique to other time-series data and
mission-critical systems.
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