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Abstract—This paper develops a power system frequency
health index prediction model using the graph attention network
(GAT). A range of pre-contingency grid operating conditions at
different loading levels and diverse contingency information serve
as training inputs to infer the grid health in terms of system
frequency. The frequency nadir is leveraged for the frequency
health indicator and its corresponding labels for training samples.
The dynamic attention mechanism is incorporated in the graph
convolutional network (GCN) model to learn the varying corre-
lation levels between substations/buses effectively. The extended
IEEE 118-bus model is adopted to evaluate the frequency health
index prediction performance of the proposed GAT and baseline
methods. The prediction accuracy of the GAT is 12% higher
than that of the baseline method. It is demonstrated that the
GAT model is much more robust than the GCN model against
erroneous phasor measurement unit (PMU) measurements and
partial observability from PMUs.
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I. INTRODUCTION

The escalating threat of extreme weather events, such
as hurricanes and floods, and the increasing risk of cyber-
attacks underscores the importance of enhancing power grid
resilience. This calls for advanced real-time contingency anal-
ysis tools, which complement Energy Management Systems
(EMS), and can be accessed in control rooms. Nevertheless,
the development of real-time contingency analysis and system
health assessment tools faces challenges due to the expanding
influence of renewable energy sources, introducing variability
and complexity into grid management. The growing impor-
tance of stability issues initiated by cyberattacks along with
subsequent islanding and reconnection, is another significant
technical challenge.

Mainly because the physical grid topology and the branch
power flow information may be directly leveraged in the
learning process, the graph neural network model has been
actively explored in the power system research studies [1].
One track of research is to predict the relation between the
contingency scenario and the stability of power systems. An-
other track of research aims at predicting the dynamic behavior
or transient trajectories of the system. Most of the existing
research primarily formulates a classification problem and tries
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to identify whether a power system is stable or unstable. Ref-
erence [2] proposes a data-driven transient stability assessment
model using the graph convolutional model with a multi-
pooling mechanism. Both max pooling and mean pooling are
leveraged to improve the stability prediction performance. This
model may be used for dynamic security assessment purposes.
Reference [3] develops a graph attention model that can predict
the dynamic response of synchronous generators using real-
time system measurements. The developed model is capable
of predicting future dynamic behaviors of the power grid
with the input of the first 10-step dynamic response following
disturbances. This model may be used for real-time power
system control purposes.

Graph neural network models have also been adopted for
assessing the other stability health indices. A graph neural
network model was developed to predict short-term voltage
health index [4], [5]. However, the frequency health index has
barely been studied [1], [6]. A key frequency indicator in con-
tingency analysis is the frequency nadir, i.e., the lowest point
that the system frequency reaches during a disturbance. Earlier
investigations [2], [3] dealt with short-circuit faults only as
a contingency scenario, although such faults can potentially
impact both transient stability and frequency instability.

This paper delves deeper into this area by developing
a specialized graph neural network tailored for analyzing
frequency stability following short-circuit faults alongside
scenarios involving typical generator or load disconnections.
Power system measurements, such as the phasor measurement
unit (PMU) data, are not always accessible at all power
stations and substations. As a result, the developed machine
learning model must demonstrate exceptional robustness when
predicting the grid health index using limited measurement
data. By developing a graph learning-based system frequency
health index prediction algorithm, this paper could enhance
not only the system operators’ situational awareness but also
system resilience.

The main technical contributions of this paper are:

• The development of a graph attention network (GAT)-based
frequency health index prediction algorithm by leveraging
the topology of the power transmission network, which
attains superior accuracy compared to the state-of-the-art
health index prediction algorithms.



• Establishment of comprehensive training and testing dataset
with realistic power system configurations, operating condi-
tions, and contingency scenarios using refined time-domain
simulation models.

• The proposed GAT-based algorithm demonstrated remark-
able reliability and robustness in partially observable grids.
The rest of the paper is organized as follows. Section

II presents the proposed graph attention neural network for
frequency health index prediction. Section III demonstrates the
proposed algorithm in the numerical study using a large-scale
IEEE testing system. Section IV concludes the paper.

II. GRAPH NEURAL NETWORK MODEL FOR FREQUENCY
HEALTH INDEX PREDICTION

A. Frequency Health Indices and the Corresponding Labels
The frequency health index is derived using the frequency

nadir as the lowest frequency level before reaching the post-
steady-state frequency, as shown in Fig. 1. The frequency
health index is segmented into 5 different categories, with each
category defined by specific frequency ranges, as shown in
Table I. These categories will serve as the class labels used as
the output of the graph neural network. The ordinal encoder
[4] is integrated into the output layer of the graph neural
network to introduce inductive bias in the learning process
by incorporating prior knowledge of ordinal relations among
categories. Since grid frequency is generally a global indicator,
the frequency health index prediction task is formulated as a
graph classification problem.

B. Frequency Health Index Prediction Model Structure
The graph attention network (GAT) [7], [8] is selected

as the deep learning model for the frequency health index
prediction task for several reasons. As mentioned earlier, while
the graph convolutional network (GCN) is highly effective
in performing supervised learning on graph-structured data,
integrating edge weights into the training process can present
challenges. In contrast, the GAT model can effectively learn
the critical lines with the strength of inter-correlation between
substations/buses. Therefore, the GAT extends the capabilities
of the GCN by enhancing its edge-related functionality by in-
corporating the attention mechanism. The overall architecture
of the proposed GCN/GAT model and a baseline, multilayer
perceptron (MLP) model are shown in Fig. 2. Unlike the
GCN/GAT, the MLP cannot directly handle edge features.

There are two categories of inputs to the grid health pre-
diction model. The first category of inputs represents the pre-
fault steady-state system information associated with the buses

Fig. 1. Example frequency response following a transformer outage at bus
89 in IEEE 118-bus system, indicating its nadir using blue arrow near 5 s.

and branches. The second category of inputs is related to the
contingency information, which corresponds to the 11-th and
12-th node features in Table II. The voltage drop feature is
treated as a synthetic value. For system faults occurring in the
middle of a transmission line, the feature is set to 0.5. When
the fault occurs inside a transformer, the feature is set to 0.0.
Otherwise, it is set at 1.0. The fault duration is normalized to
200 ms, meaning that, for example, 50 ms of the fault duration
is represented as 0.25. Note that all the node features, except
the 11-th and 12-th features, and all the edge features as listed
in Table II, are assumed to be collected from PMUs.

C. GAT-based Frequency Health Index Prediction Model

Inputs of the GCN/GAT model are first passed through the
edge-conditioned convolution (ECC) layer, which updates each
node i’s feature vector from xi to x′

i. This is done by activating
the sum of the product of the weight matrix and the feature
vector and the aggregation of nodal and feature vectors via a
parameterized neural network, as shown in (1).

x′
i = ReLU

[
Wxi +

∑
j∈N (i)

xj · hΘ(ei,j)
]
, (1)

where W denotes the weight matrix, hΘ denotes a neural
network (e.g., a multilayer perceptron), xi denotes the feature
vector of the i-th node, and ei,j denotes the edge feature vector
for the edge from the source node, i, to the target node, j.

The output of the ECC layer is then used as the input of
graph convolutional layers with/without the graph attention
mechanism. The node representations xi are updated at each
graph convolutional layer according to (2).

x′
i = ReLU

[
W̃ T

∑
j∈N (i)

Âj,i · xj · C
]
,

C =

(
1 +

∑
j∈N (i)

Âj,i

)− 1
2
(
1 +

∑
i∈N (j)

Âi,j

)− 1
2

(2)
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Fig. 2. GCN/GAT model (left) and MLP model (right).



TABLE I
LABELS SET FOR EACH FREQUENCY HEALTH INDEX

Class Label 0 Label 1 Label 2 Label 3 Label 4
Frequency Range (Hz) (59.975, ∞] (59.95, 59.975] (59.85, 59.95] (59.70, 59.85] (−∞, 59.7]

Number of Contingencies 13,217 2,581 3,309 3,402 2,716

TABLE II
INPUTS OF HEALTH INDEX PREDICTION MODEL

Node/Branch feature Feature type
1 Active power output, PG Node
2 Reactive power output, QG Node
3 Active power load, PL Node
4 Reactive power load, QL Node
5 Voltage magnitude, |V | Node
6 Voltage angle, ∠V Node
7 Active power output deviation, ∆PG Node
8 Active power load deviation, ∆PL Node
9 Reactive power output deviation, ∆QG Node
10 Reactive power load deviation, ∆QL Node
11 Voltage drop (3 simplified levels), ∆V Node
12 Fault duration, Fdur Node
13 Active power transfer, Ptie Branch
14 Reactive power transfer, Qtie Branch

where Âi,j denotes an ij-th element of Â = A+ I , where A
is the adjacency matrix. It is noted that Ai,j equals 1 if node
i is connected to node j and 0 otherwise.

The GAT model [7] uses a refined approach to analyze
graph-structured data with the help of the attention mechanism,
enabling it to concentrate on specific nodes and their intercon-
nected relationships (represented by edges). The GCN model
leverages pre-assigned unity edge weights between nodes,
while the GAT model trains the edge weights dynamically
using the attention mechanism. The nodal representations, xi,
are updated in each of the graph layers as shown below:

x′
i = αi,iWsxi +

∑
j∈N(i),j ̸=i

αi,jWixj (3)

In (3), the weight matrix, W, is separately expressed with Ws

and Wi that correspond to the self-loop elements and other
elements. The attention coefficient, αi,j is calculated from:

αi,j = softmax(ei,j) =
eei,j∑

k∈Ni
eei,k

(4)

ei,j = a(Whi,Whj) = aT LeakyReLU(W · [hi||hj ]), (5)

where a ∈ R2F ′
, W ∈ RF ′×F , and || denotes a vector

concatenation. F denotes the number of features at each node.
h denotes a set of node features. (5) proposed in [8] is the
result of shifting aT outside the original LeakyReLU(·) that
is proposed in [7]. (5) enables the algorithm to handle the
attention mechanism dynamically, unlike [6] which deals with
the attention mechanism only in a static manner.

D. Ordinal Encoder

The labels in each health index can be described as an
ordinal variable. For example, the difference between system
health for labels 4 and 5 is much smaller than that of levels
4 and 1. Thus, ordinal encoding can be adopted to introduce
prior knowledge (also known as inductive bias) that represents
the natural ordering between the labels in each health index.

Algorithm 1 Classification with Ordinal Encoder
for every epoch do

K logits Li are derived at the last layer
si = sigmoid(Li),∀1 ≤ i ≤ K
L′
i =

∑
j≤i log(sj) +

∑
i<j log(1− sj),∀1 ≤ i ≤ K

p′i =softmax(L′
i),∀1 ≤ i ≤ K

end for

TABLE III
CONTINGENCY SCENARIO

Type Equipment (number of cases) Fault duration
Line outage Transmission line (163) 50, 200, 367 ms

Transformer
outage

Unit transformer (55)
Load transformer (91)
Tie transformer (9)

50. 200, 367 ms

Synchronous
machine outage

Synchrnous generator (19)
Synchronous condensers (36) N/A (0 ms)

To implement the ordinal encoder, we take the output logits
Li from the last fully-connected layer and run it through
Algorithm 1 to derive the probability that the health index
belongs to each labels. Since the grid health index prediction
task is formulated as a classification problem, the cross-
entropy loss function is selected for gradient calculations.

III. NUMERICAL STUDY

A. Case Study Setup

1) Test System and Contingency Scenarios: The IEEE
118-bus system [9] is adopted as the fundamental testing
environment (see Fig. 3). To make the system more realis-
tic, step-up/down transformers and additional units at power
stations are included, referring to [10]. These modifications
led to a larger system with 264 buses and 325 branches.
The hypothesized disturbances are N-1 contingencies, such as
unit trips, load sheddings, transformer trips, and line trips,
as shown in Table III. The fault durations are set to 50,
200, and 367 ms, considering the typical fault identification
time with and without intentional delay at transmission lines
and the breaker failure clearing time [11]. In total, there
are 25,225 contingency cases (373 outages and 25 different
loading profiles) for this test system. The entire cases are
further split into 15,145 (60%), 2,520 (10%), and 7,560 (30%)
cases for training, validation, and testing, respectively.

2) Scenarios of System Operating Conditions: The number
of units at power stations and fuel types is inferred from [10]
and [12] and illustrated in Table IV. The small capacity units
are all treated as run-of-river hydropower facilities. 1-4 units
are assumed to be connected to each power station. Based on
[9], [10], the following steps are employed to generate a wide
range of system operating conditions:



Fig. 3. IEEE 118-Bus system model.

a) Loading conditions: Different loading scenarios are gen-
erated by adjusting the overall system demand from 40% to
100% of the peak demand, increasing in increments of 5%.
b) Power station-level dispatch: Advanced gas combined cycle
(AGCC) power units are fuel efficient. Thus, their active power
outputs are fixed at over 90% for all units at the power
station. When the demand level lowers, e.g., below 50%, 3 out
of 5 AGCC power stations reduce the number of connected
units without changing active power output. The run-of-river
hydropower station is treated as a constant power output unit
regardless of the loading level. The rest of the power stations,
such as the coal/gas-fired and hydropower, are treated as
variable active power units.
c) Unit-level dispatch scenarios: Two unit-level dispatch sce-
narios are employed: even unit dispatch, where all units at
a power station alter the active power output with the same
percentage, and uneven unit dispatch, where one unit’s active
power output is adjusted while others remain unchanged.

On-load tap changers, shunt capacitors/reactors, and the
reactive power output from synchronous generators/condensers
are individually adjusted to satisfy all bus voltage level con-
straints for a specified demand.

3) Dynamic Models: The dynamic model is built for a
round rotor generator with one damper winding circuit for

each of the D-axis and Q-axis with saturation characteristics.
The inertia time constant, H , is set to 4 seconds and 3 seconds
for all synchronous generators and synchronous condensers,
respectively, considering the presence of the rotating mass
of turbines in generators and its non-existence in condensers.
A static load model with frequency-dependent characteristics
(2%/%Hz for active power load) is employed to consider the
induction motor behavior indirectly.

4) Control and Protection Models: Generator controller
models cover an IEEE standard steam turbine-governor con-
troller with a droop of 4% and an IEEE standard static exciter
model with an over-excitation limiter, but no power system
stabilizer. These models are derived based on the parameters
outlined in [10], [13]. Frequency protections that consist of
an underfrequency load shedding scheme with three-step cas-
caded trips and over-/under-frequency relays for synchronous
generators/condensers are thoroughly implemented into the
simulation model. These parameters were sourced from the
specifications provided in [14].

5) PMU Coverage: In consideration of the uneven deploy-
ment of PMUs within transmission grids, where PMUs, despite
their extensive use, may not be present in every substation,
the study aims to assess the algorithm’s robustness under
limited observability comprehensively. To achieve this goal, 24



TABLE IV
GENERATION RESOURCE WITH TWO DISPATCHING SCENARIOS

Bus
number

Fuel
type

Unit
capacity

# of connected units for demand level
Even dispatch Uneven dispatch

10 Coal 248 MW 2: [40%, 100%]
3: [90%, 100%]
2: [65%, 85%]
1: [40%, 60%]

12 AGCC 23.5 MW 4: [40%, 100%] 4: [40%, 100%]
25 Coal 215 MW 1: [40%, 100%] 1: [40%, 100%]

26 Coal 153 MW 2: [40%, 100%] 2: [65%, 100%]
1: [40%, 60%]

31 ROR 8.0 MW 1: [40%, 100%] 1: [40%, 100%]

46 Gas 10.9 MW 2: [40%, 100%] 2: [65%, 100%]
1: [40%, 60%]

49 AGCC 150 MW 1: [40%, 100%] 1: [40%, 100%]

54 Coal 40 MW 3: [40%, 100%] 2: [50%, 100%]
1: [40%, 45%]

59 AGCC 115 MW 2: [55%, 100%]
1: [40%, 50%]

2: [50%, 100%]
1: [40%, 45%]

61 AGCC 119 MW 2: [55%, 100%]
1: [40%, 50%]

2: [55%, 100%]
1: [40%, 50%]

65 Coal 220 MW 2: [40%, 100%] 2: [65%, 100%]
1: [40%, 60%]

66 Coal 238 MW 2: [40%, 100%] 2: [65%, 100%]
1: [40%, 60%]

69 Hydro 115 MW 1: [40%, 100%] 1: [40%, 100%]

80 Coal 162 MW 2: [40%, 100%] 2: [65%, 100%]
1: [40%, 60%]

87 ROR 12.5 MW 1: [40%, 100%] 1: [40%, 100%]

89 Coal 238 MW 3: [40%, 100%]
3: [85%, 100%]
2: [60%, 80%]
1: [40%, 55%]

100-1 AGCC 100 MW 1: [40%, 100%] 1: [40%, 100%]

100-2 AGCC 119 MW 2: [55%, 100%]
1: [40%, 50%]

2: [55%, 100%]
1: [40%, 50%]

103 Hydro 75 MW 1: [40%, 100%] 1: [40%, 100%]
111 Gas 67 MW 1: [40%, 100%] 1: [40%, 100%]
116 Gas 217 MW 1: [40%, 100%] 1: [40%, 100%]

AGCC: Advanced Gas Combined Cycle, ROR: Run-of-River.

distinct configurations representing diverse scenarios of PMU
partial coverage were examined. These configurations detail
six variations outlined in Table V, each presenting different
types of connected power equipment and varying instances of
missing PMUs. Moreover, three unique imputation methods
are individually implemented with both the GCN and GAT
models, collectively forming comprehensive sets of scenarios.

B. Frequency Health Index Prediction Results

1) Model Performance: The validation losses and testing
accuracies obtained from the MLP, GCN, and GAT models
are displayed in Table VI. The validation loss decreased when
embracing the ordinal encoder for each individual model. The
GCN and GAT models achieved a lower validation loss and
much higher testing accuracy than the MLP model. The GAT
model attained around 1% higher testing accuracy compared to
the GCN model. Note that the hyperparameters, e.g., learning
rate and the number of hidden layers and neurons, were fine-
tuned and chosen based on validation dataset performance.

2) GCN- and GAT- based Frequency Health Index Predic-
tion with Partial PMU Coverage: This study investigated the
impact of diverse PMU locations, considering various power
equipment, on frequency health index prediction. It also as-
sessed prediction sensitivity to reduced PMU coverage across
substations, indicating limited observability. The investigation

TABLE V
PARTIAL PMU COVERAGE SCENARIO

# of missing PMU Power equipment Remark
2 PMUs Switching station —
9 PMUs Tie-transformer Secondary-side only

18 PMUs Tie-transformer Both sides
19 PMUs Synchronous generator —
35 PMUs Synchronous condenser —
53 PMUs Step-down transformer Load bus with no unit

TABLE VI
FREQ. HEALTH INDEX PREDICTION PERFORMANCE

Machine
learning
model

Validation
loss

(×10−3)

Testing
accuracy

# of
hidden

channels

# of
hidden
layers

Learning
rate of
Adam

MLP 1.3382 0.8192 64 4 0.0001
GCN 0.4419 0.9302 64 5 0.0001
GAT 0.4762 0.9392 64 4 0.0001

Number of heads (i.e., number of attention mechanisms) in GAT model: 4.

aimed to understand how different PMU locations and reduced
PMU coverage influence prediction accuracy.
a) Pseudo Measurements from the State Estimator: In the
absence of PMUs at specific bus locations, the GCN and GAT
models utilized pseudo measurements derived from the state
estimator. Notably, state estimator outputs, updated in intervals
of 0.5∼5 minutes, had a much longer sampling rate compared
to the standard PMU measurement with a reporting rate of
33.33 ms. Consequently, the state estimator-derived pseudo
measurements are inherently noisy and delayed measurements.
To emulate this characteristic in experiments, the Gaussian
noise with a standard deviation ranging from 1/30 to 1/3
is introduced into dynamic simulation results. For instance,
a standard deviation of 1/30 is assumed to correspond to a
±1% measurement error.

The testing losses of the GCN and GAT models in the
six scenarios are displayed in the top two subgraphs of
Fig. 4. When the pseudo-PMU measurement error is 3%
or lower, both models exhibit a minimal increase in testing
loss, regardless of missing PMU locations and model vari-
ations. However, as measurement noise surpasses 3%, both
models show increased losses. Notably, the GAT model dis-
plays significantly lower sensitivity to increasing pseudo-PMU
measurement error compared to the GCN model, signifying
superior robustness despite measurement noise.

Examining testing accuracies in the bottom two subgraphs
of Fig. 4 , a decline is observed when measurement error
exceeds 3%. However, the GAT model exhibits a less pro-
nounced decrease in accuracy (0.0∼9.3%) compared to the
GCN model (0.0 ∼ 25%), further emphasizing its superior
robustness against measurement noise. This robustness stems
from the GAT model’s enhanced ability to learn the inter-
correlations between nodes efficiently.

Both GCN and GAT models become most vulnerable when
no PMUs are present at power stations with synchronous
generators, meaning that PMU locations are more important
than the PMU coverage fraction/area in terms of frequency
health index prediction performance.
b) Zero/Peak Value Imputation for Substation with no PMUs:
Figure 5 illustrates the testing losses and accuracies of the
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Fig. 4. Testing loss and accuracy across 6 PMU missing scenarios.
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Fig. 5. Comparison of testing loss and accuracy across 3 imputation methods.

GCN and GAT models using two naive imputation methods,
including those at the 10% pseudo-PMU measurement error,
for better contrast. The GAT model with the peak value
replacement strategy overall demonstrates much better health
index prediction performance (68 ∼ 91%) compared to the
GCN model (33∼ 78%). Conversely, the GAT model with
the zero imputation strategy overall presents slightly lower
health index prediction performance (76∼87%) compared to
the GCN model (74∼88%). Figure 5 also indicates that testing
accuracies of both models decrease as the PMU installation
density decreases, meaning that the PMU installation ratio is
more critical than PMU locations for these naive methods.

IV. CONCLUSION

This paper develops a graph attention network (GAT)–
based frequency health index prediction algorithm to monitor
a transmission system in online control and operations. By
feeding system topology information in the neural network and
introducing ordinal encoding and an attention mechanism, the
proposed GAT-based algorithm achieves a 12% improvement
in testing accuracy over the baseline algorithm. The proposed
GAT-based frequency health index prediction algorithm can
also monitor transmission grids with partial PMU coverage.

The proposed GAT-based algorithm is more robust than the
GCN model when facing missing PMU measurements and
measurement errors. Specifically, the GAT model, with a zero
imputation strategy, yielded 9.7-37% higher testing accuracy
than the GCN model. The GAT model also achieved up to
17% higher testing accuracy than the GCN model at 10%
error of pseudo measurements obtained from the output of
the state estimator (which is one of the most appropriate
replacements for the PMU measurements). These findings
complement existing literature by showing GAT’s effective-
ness in improving frequency health index predictions, offering
a valuable approach for future research and applications.

This research work will be expanded by considering N-2 or
more contingencies and other types of system health indices,
such as angle stability-related health index, to enhance the
real-world utility of our approach. We also plan to investigate
different types of measurement noise, validate the proposed al-
gorithm on real-world data, and conduct comparative analyses
to strengthen its practical value and broaden its applicability.

REFERENCES

[1] W. Liao, B. Bak-Jensen, J. R. Pillai, Y. Wang, and Y. Wang, “A review of
graph neural networks and their applications in power system,” Journal
of Modern Power Systems and Clean Energy, vol. 10, no. 2, pp. 345–
360, Mar. 2022.

[2] J. Huang, L. Guan, Y. Su, H. Yao, M. Guo, and Z. Zhong, “System-
scale-free transient contingency screening scheme based on steady-state
information: A pooling-ensemble multi-graph learning approach,” IEEE
Trans. Power Syst., vol. 37, no. 1, pp. 294–305, Jan. 2022.

[3] T. Zhao, M. Yue, and J. Wang, “Structure-informed graph learning of
networked dependencies for online prediction of power system transient
dynamics,” IEEE Trans. Power Syst., vol. 37, no. 6, pp. 4885–4895, Jan.
2022.

[4] K. Yamashita, J. Qin, N. Yu, E. Farantatos, and L. Zhu, “Predicting
power system voltage health index with PMUs and graph convolutional
networks,” in 2023 IEEE Power Energy Soc. General Meeting, 2023.

[5] S. Gu, J. Qiao, W. Shi, F. Yang, X. Zhou, and Z. Zhao, “Multi-task
transient stability assessment of power system based on graph neural
network with interpretable attribution analysis,” Energy Reports, vol. 9,
pp. 930–942, 2023.

[6] S. Yang, B. Vaagensmith, and D. Patra, “Power grid contingency analysis
with machine learning: A brief survey and prospects,” in Proc. of 2018
Int. Jt. Conf. Neural Netw. (IJCNN), Oct. 2020.

[7] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Ben-
gio, “Graph attention networks,” in 6th Int. Conf. Learn. Represent. ICLR
2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track
Proceedings, 2018.

[8] S. Brody, U. Alon, and E. Yahav, “How attentive are graph attention
networks?” in 10th Int. Conf. Learn. Represent. ICLR 2022, Virtual,
April 25 - 29, 2022, Conference Track Proceedings, 2022.

[9] Power Systems Test Case Archive. (Aug., 1993) 118 bus power
flow test case. University of Washington. [Online]. Available:
https://labs.ece.uw.edu/pstca/pf118/pg tca118bus.htm

[10] CIGRE WG C4.503, “Power system test cases for EMT-type simulation
studies,” CIGRE, Tech. Rep. TB736, Aug. 2018.

[11] NERC System Protection and Control Task Force, “Protection system
reliability: Redundancy of protection system elements,” NERC, Tech.
Rep., Nov. 2008.

[12] A. Anderson, S. Kincic, B. Jefferson, B. Mcgary, C. Fallon, D. Ciesiel-
ski, J. Wenskovitch, and Y. Chen, “A real-time operation manual for
the IEEE 118 bus transmission model,” PNNL, Tech. Rep. 33499, Sep.
2022.

[13] IEEE TF on Turbine-Governor Modeling, “Dynamic models for tuebine-
governors in power system studies,” IEEE, Tech. Rep. PES-TR1, Jan.
2013.

[14] ERCOT, “ERCOT nodal operating guides – section 2: System operations
and control requirements,” May 2019.


