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Abstract—The widespread deployment of advanced sensors
in power transmission systems enabled machine learning (ML)
models for event detection and classification. However, recent
research reveals that ML models are vulnerable to adversarial
attacks, which can fool the trained classifier by adding a small
perturbation to the original data. Previous studies on adversarial
attacks in power systems focused on the white-box configuration,
which requires the attacker to have full access to the ML model’s
structure and parameters, which is unrealistic for real-world
scenarios. This paper focuses on the black-box adversarial attack,
where attackers only have access to the ML model’s inputs
and outputs. We propose a hybrid query-efficient black-box
adversarial attack method that synergistically combines two types
of attack algorithms: score-based and boundary-based attacks.
Furthermore, within the score-based attack method of our hybrid
method, we propose a query-efficient sign gradient estimation
algorithm based on the binary representation of the coordinates
through a batch of elaborate queries. Experimental results on a
large-scale real-world PMU dataset and the state-of-the-art event
classifier have validated the effectiveness of the proposed black-
box adversarial attack method.

Index Terms—Black-Box Adversarial Attack, Event Classifica-
tion, Phasor Measurement Units, Power system.

I. INTRODUCTION

The deployment of advanced sensors in the power system
has empowered data-driven methods for event detection and
classification [1]. A prime example is the phasor measure-
ment units (PMUs) with high sampling frequency that can
accurately measure voltage and current synchrophasors [2].
Over the past decade, PMUs have been widely deployed
for power system’s wide area monitoring system (WAMS)
[3]. With a large amount of data from PMUs, sophisticated
machine learning applications can be developed to improve
the reliability of modern power systems.

In recent years, machine learning (ML)-based methods have
demonstrated a high level of accuracy and computational
efficiency in identifying and classifying transmission grid
anomalies, including voltage, frequency, and oscillation events.
To address the data quality issues of PMU raised in [4],
several ML-based methods have employed feature extraction
approaches, which include physics rule-based feature extrac-
tion [5], event pattern-based feature engineering [6], matrix
decomposition [7], and energy similarity measurement [8].
Other methods focus on optimizing neural network structures

to enhance the end-to-end power system event classification,
such as convolutional neural network (CNN) [9], spatial pyra-
mid pooling (SPP)-aided CNN [10], generative adversarial
networks (GANs) [11]. The power system events are iden-
tified via an enhanced ResNet-50 model with information-
loading regularization [12]. The hierarchical approaches for
event classification that integrate multiple models have also
been explored. For instance, [13] utilizes a hierarchical CNN
model with channel filtering. [14] presents a refined two-level
hierarchical CNN-based model.

Despite the advancements of ML-based methods in power
systems, they often exhibit vulnerability to adversarial attacks.
Such attacks inject small perturbations to the data, exploiting
the inherent weaknesses of ML-based models to induce incor-
rect predictions [15]. Recent research by [16] demonstrates
that adversarial attacks can easily sabotage ML-based event
classifiers in the power system.

Adversarial attacks can be broadly divided into two cate-
gories, i.e., white-box attacks and black-box attacks. White-
box attacks require knowledge of the neural classifier’s ar-
chitecture and trained parameters. Through back-propagation
on the model, the gradient of the attacking objective function
can be easily computed. However, white-box attacks are often
limited in their practical application. This is because the
attacker’s access to the model’s architecture and parameters,
which, in many real-world scenarios, remain confidential and
beyond the reach of potential adversaries. Conversely, black-
box attacks do not require the aforementioned knowledge.
Instead, they only need to access the ML models’ inputs and
outputs. Both types of attacks pose significant security risks
to ML models, which highlights the critical need for defense
strategies with sufficient robustness against such adversarial
threats. This paper focuses on the black-box attacks on the
ML-based power system event classifier models.

In this paper, we propose a query-efficient hybrid black-
box attack algorithm that combines two categories of black-
box attack methods: the score-based attack and the boundary-
based attack. This hybrid algorithm partially mitigates the
shortcomings of the existing methods, that is, trapped in a local
minimum prematurely. Moreover, we propose a query-efficient
sign gradient estimation algorithm that requires a much smaller
number of the query to perform the score-based attack. The



large-scale studies of black-box attacks on power system event
classifiers using real-world PMU data verify that the proposed
hybrid attacks can achieve faster and more effective attacks
than the state-of-the-art (SOTA) methods. The contributions
of this paper are listed as follows:

• We propose a two-step hybrid attack algorithm by syn-
ergistically combining score-based and boundary-based
black-box adversarial attacks, which achieves better query
efficiency and a higher attack success rate.

• We propose a query-efficient sign gradient estimation
algorithm for score-based attack, which can efficiently
estimate the sign of the classifier’s gradient via a batch
of designed queries.

• We demonstrate that the proposed method outperforms
SOTA black-box adversarial methods on event classifiers
using a large-scale real-world PMU dataset.

The rest of the paper is organized as follows. Section II
provides the problem definition of adversarial attacks, and
baseline black-box adversarial attack algorithms. Section III
presents the proposed query-efficient sign gradient estimation
algorithm and hybrid query-efficient black-box attack algo-
rithm. Section IV compares the performance of the proposed
method with multiple SOTA black-box attack algorithms.
Section V concludes the paper and discusses future work.

II. PRELIMINARIES

This section first introduces the key notations of this paper,
including the samples of PMU time series, the dataset of the
power system events, and the event neural classifier employed.
Subsequently, it elucidates the definition of the adversarial
attack on the neural classifier. Furthermore, the background
of the black-box adversarial attack is introduced.

A. Key Notations

1) Notation 1: A sample from the PMU time series is
formally defined as a tensor spanning a predetermined tem-
poral window, expressed as x = [m1,m2, · · · ,mW ], where
W denotes the total count of timestamps within the specified
window. For each unique timestamp i, satisfying 1 ≤ i ≤ W ,
the term mi represents a measurement matrix that encapsulates
various electrical variables collected from multiple PMUs,
which include active power (P ), reactive power (Q), voltage
magnitude (|V |), and frequency (F ).

2) Notation 2: Each PMU time series x is accompanied
by an associated event label y, which signifies the specific
type of event characterized by the sample. The construction
of the power system event dataset thus involves aggregating
pairs comprising PMU time series samples and their corre-
sponding event labels. Formally, the dataset is represented as
D = {(x1, y1), (x2, y2), . . .}.

3) Notation 3: The ML-based power system event classifier
is denoted by fθ(·), where θ represents the parameters of
the classifier fθ(·). Given an input sample x, the classifier
fθ(·) computes the probability associated with each event type,
yielding an output vector ŷ = fθ(x).

B. Problem Definition

Adversarial Attack: Given a classifier fθ(·) and an original
PMU sample x, the adversarial attack aims to create an adver-
sarial sample x′ = x+ δ, where δ is a meticulously designed
imperceptible perturbation vector. The goal of generating such
an adversarial sample can be formally encapsulated as:

argmax
δ

L(fθ(x+ δ), y), subject to ||δ||2 ≤ ϵ, (1)

where L(fθ(x+ δ), y) denotes the loss function of the classi-
fier, specifically the cross-entropy loss between the predicted
label fθ(x+δ) and the true label y. The term ||δ||2 represents
the L2 norm of the perturbation vector δ, and ϵ is a predeter-
mined small constant that limits the perturbation’s magnitude.
This constraint is imposed to ensure that the adversarial sample
is indistinguishable while still misleading the classifier.

The adversarial attack can be categorized into two primary
types: white-box attack and black-box attack. The white-box
attack assumes the attacker possesses complete knowledge and
access to the target ML model, enabling direct calculation of
the model’s gradient. Representative white-box attack algo-
rithms include the Fast Gradient Sign Method (FGSM) [15]
and Projected Gradient Descent (PGD) [17], which leverage
the sign of the gradient to generate perturbations, demonstrat-
ing a direct and potent method of attack.

Fig. 1. The illustration of black-box attacks for PMU measurement.

However, the real-world scenarios often align more closely
with the black-box attack, where the attacker is restricted to
interacting with the model through its inputs and outputs,
relying solely on the prediction f(x) provided by the classifier.
Under this paradigm, the attacker lacks insight into the model’s
internal architecture, weights, or training data.

Black-box attacks typically involve trial-and-error methods
to craft adversarial examples. These methods include querying
the model with varied inputs and observing the outputs to
infer its behavior and formulate an effective attack strategy.
This iterative process of refinement, depicted in Figure 1,
involves adjusting the adversarial sample based on feedback
from the model, aiming to induce misclassification by the



model. Figure 2 illustrates a successful black-box attack on
the neural classifier for power system events. The addition of
a small perturbation fools the trained event classifier.

C. Black-box attack algorithms

The black-box attack can be further categorized into
score-based attack and boundary-based attack. Here’s a brief
overview of algorithms in each category:

1) Score-based black-box attack: The score-based attack
relies on the confidence scores predicted by the target ML
model. These scores, which can be probabilities indicating how
strongly the model believes its predictions are correct, serve
as feedback for crafting adversarial examples. The attacker
iteratively modifies the input data based on these scores to
maximize the likelihood of incorrect model predictions.

Techniques like gradient estimation can be used, where the
attacker estimates the gradient of the loss concerning the input
by observing changes in the output score as the input is slightly
varied. A common approach to estimating gradient involves
numerical approximation, which can be mathematically repre-
sented as follows:

∇xL(θ;x, y) ≈
1

B

B∑
b=1

[f(x+ η(b))− f(x)] · |η(b)|−1, (2)

where η(b) are small perturbations, and the loss function
calculation is repeated B times. The perturbation can be
generated by different strategies. For instance, the Natural
Evolutionary Strategies (NES) [18] samples η(b) by β · η̂,
where η̂ is sampled from Gaussian distribution. Moreover,
Liu et al. [19] extended signSGD to a zeroth-order setup with
the ZOSignSGD algorithm and outperformed NES against a
black-box model on the MNIST database. The ZoSignSGD
algorithm approach uses the sign of the estimated gradient
to achieve better convergence. These attacks, which utilize
the sign of the estimated gradient, are also named sign-based
attack algorithms, a subcategory of score-based attacks.

2) Boundary-based black-box attack: The core idea behind
boundary-based attacks is to iteratively refine adversarial ex-
amples by exploring the target classification model’s decision
boundary, which refers to the hypersurface that separates
different classes in the model’s prediction space. By carefully
perturbing input data points and observing changes in the
model’s output, attackers can identify points close to the
decision boundary. These points are then used to generate
adversarial examples—inputs, which are almost identical to
legitimate examples but will be incorrectly classified by the
model [20], [21]. One common technique used in boundary-
based attacks is the binary search method, along with random
perturbations, to efficiently search for adversarial examples
close to the boundary.

III. PROPOSED HYBRID QUERY-EFFICIENT BLACK-BOX
ATTACK ALGORITHM

This section presents the proposed hybrid query-efficient
black-box adversarial attack algorithm that combines the
score-based and the boundary-based attack. We first present

the proposed score-based attack with a more query-efficient
sign gradient estimation algorithm, which we named BitSched-
ule. Then, we describe the two-stage hybrid black-box ad-
versarial attack algorithm that combines the aforementioned
score-based and boundary-based attacks.

A. A query-efficient score-based attack

In this subsection, we introduce a query-efficient, score-
based attack algorithm, which is underpinned by a novel sign
gradient estimation algorithm. Initially, we outline the overall
framework of the sign-based black-box attack, followed by
an in-depth exposition of the proposed query-efficient sign
gradient estimation algorithm.

Algorithm 1 Sign-based black-box attack algorithm
Input: classifier fθ, data sample x, learning rate α
Output: Adversarial example xadv

Parameters: Perturbation bound ϵ, Maximum iteration M
1: xadv = x
2: query cnt = 0
3: while query cnt < M do
4: g = SignGradientEstimate(fθ,xadv)
5: xadv = xadv + αg
6: if fθ(xadv) ̸= fθ(x) then
7: Success, stop the attack.
8: end if
9: end while

10: return xadv

1) Framework of sign-based black-box attack: The overall
framework of the sign-based attack algorithm is presented in
Algorithm 1. This algorithm iteratively estimates the sign of
the gradient of the loss function with respect to the input data
and updates the sample by the sign of the estimated gradient,
scaled by the learning rate until it misclassifies the sample or
reaches the maximum query limit. The sign gradient estimation
algorithm estimates the sign of the gradient by performing
queries to the model. The sign gradient estimation algorithm
is pivotal to the efficacy of the sign-based black-box attack.

B. BitSchedule: A query-efficient sign gradient estimation
algorithm

As previously introduced, a critical aspect of sign-based
black-box attacks involves estimating the gradient’s sign by
querying the model. Denote n as the dimensionality of a PMU
time series sample x. Estimating the sign gradient at point
x typically requires performing gradient estimation across
each coordinate and taking their sign, which requires O(n)
query operations. For example, a PMU sample comprising
360 timestamps, 40 PMUs, and 4 distinct measurements has
360×40×4 = 57, 600 dimensions, resulting in 57,600 queries,
which is very time-consuming.

An alternative approach for sign gradient estimation in-
volves applying a sign operator over the gradient estimation
result, as elaborated in Eq. (2): sign(∇xL(θ;x, y)). Given
that the sign-based optimization algorithm solely requires the



Fig. 2. Example of a successful black-box attack on PMU data: a tiny perturbation makes the model misclassify from voltage to oscillation event.

gradient’s sign, maintaining magnitude variations across dif-
ferent coordinates in η(b) introduces unnecessary complexity.
Thus, we standardize the magnitude, focusing solely on sign
information to enhance efficiency. Formally, this simplification
is represented as follows:

η(b) = δv(b), where v(b) ∈ {−1,+1}n, (3)

with δ, a small constant set to 0.01 in this study.

Algorithm 2 BitSchedule: a sign gradient estimation algorithm
Input: Classifier fθ, PMU data sample x
Output: Estimated sign(∇xL(θ;x, y))

1: n = dimensionality of sample x
2: g = 0n

3: for query = 1 to ⌈log2(n)⌉ do
4: v = 0n

5: for coordinate = 1 to n do
6: if coordinate &(1 ≪ query) ̸= 0 then
7: vcoordinate = 1
8: else
9: vcoordinate = -1

10: end if
11: end for
12: g = g + (L(θ;x+ δ · v, y)− L(θ;x, y)) · v
13: end for
14: return sign(g)

To reduce the number of queries required for sign gradient
estimation, we introduce a method that needs only O(log2(n))
queries to estimate the sign gradient across each dimension.
Assuming a total of B queries are performed, each query
employs a direction vector v(b) ∈ {−1,+1}n, indicating that
each dimension’s coordinate is assigned either +1 or −1.
The strategy aims to ensure that no two coordinates, i and
j, share identical direction settings across these B queries to
avoid identical sign gradient estimations for these coordinates.
Since there are two options for each coordinate, it is easy to

derive that at least B = ⌈O(log2(n))⌉ queries are necessary
to guarantee the above distinctiveness among coordinates.

To achieve this, our method employs binary bit encoding,
preventing any two coordinates from having identical direction
settings across all ⌈log2(n))⌉ queries. For any given coordinate
i (0 ≤ i < n), we convert i into its binary representation
b1b2 · · · b⌈log2 n⌉, where each bk (1 ≤ k ≤ ⌈log2 n⌉) is either
0 or 1. Consequently, for each 1 ≤ k ≤ ⌈log2 n⌉, we assign
v
(k)
i = −1 if bk is 0, or v

(k)
i = +1 if bk is 1, in the

corresponding k-th query.
This methodology is detailed in Algorithm 2, which is

named “BitSchedule” due to its reliance on binary encod-
ing for direction setting. Notably, to prevent overfitting and
enhance generality during the iterative attack process, we
shuffle all coordinates prior to each sign gradient estimation.
Compared to the binary simultaneous perturbation stochas-
tic approximation (BSPSA) [22], BitSchedule averages the
log2(n) designed perturbations instead of using two random
symmetric Bernoulli distribution perturbations.

C. The proposed hybrid query-efficient black-box attack

In this subsection, we propose a hybrid query-efficient
black-box attack, designed to combine the strengths of score-
based and boundary-based attacks while mitigating their re-
spective limitations.

Score-based attacks update the sample using the estimated
gradient or its sign. However, such updates often converge to
the local optima, as each iteration explores only a proximal
area around the current point. Furthermore, boundary-based
attacks require an initialization phase, which selects an optimal
starting point from a set of randomly generated perturbations.
This phase is critical to the attack’s performance but requires
a substantial number of queries, diminishing its success rate
when there are strict query limitations.

To overcome these challenges, we introduce a hybrid at-
tack algorithm that combines the merits of score-based and



Algorithm 3 Proposed hybrid black-box attack algorithm
Input: classifier fθ, PMU data sample x, learning rate α
Output: adversarial example xadv

Parameters: Perturbation bound ϵ, limit for the number of
query M , query limit in stage 1 M1, query limit in stage 2
M2, (M = M1 +M2)

1: xadv = x
2: xadv = ScoreBasedAttack(fθ,xadv,M1)
3: if fθ(xadv) ̸= fθ(x) then
4: Successful in stage 1, return xadv

5: else
6: xadv = BoundaryBasedAttack(fθ,xadv,M2)
7: end if
8: return xadv

boundary-based attacks. This innovative two-step attach ap-
proach is detailed in Algorithm 3 that aims to enhance both
query efficiency and the success rate of the attack.

Initially, the proposed query-efficient score-based attack is
applied within a restricted query limitation. If this phase
successfully fools the model, the attack is successful and
finishes in this phase. If not, the process transitions to the
second step, where the perturbation generated during the score-
based phase serves as the initial perturbation for the boundary-
based attack. This strategy effectively bypasses the boundary
attack’s initialization phase, leveraging the score-based attack’s
outcomes to reduce the total number of required queries and
improve overall attack success rates.

IV. NUMERICAL STUDY

In this section, we validate the proposed black-box adver-
sarial attack algorithms with a large-scale real-world PMU
dataset in the Western Interconnections of the United States.
Six SOTA algorithms are used as baseline methods.

First, the PMU data used in this work is briefly described.
Then, we introduce six baseline black-box adversarial attack
algorithms. After that, we evaluate the performance of these
six baseline methods and compare them with our proposed hy-
brid query-efficient black-box attack. Furthermore, the score-
based method with our query-efficient sign gradient estimation
method is validated and compared. Finally, we provide the
success rate with different query limitations to quantify the
efficiency of different attack algorithms.

A. Dataset and Target ML Event Classification Model

This study utilized two years of PMU data collected from
the U.S. Western Interconnection in 2016 and 2017. The raw
dataset comprises sequences of voltage phasors, current pha-
sors, and frequency measurements. By following the methods
outlined in [11, Section III-F], the raw data is cleaned and
transformed into a structured tensor format, encapsulating four
electrical variables: active power (P ), reactive power (Q),
voltage magnitude (|V |), and frequency (F ). The preprocess-
ing pipeline implemented several critical steps, including the

removal of unreliable PMUs based on status flags or outlier
thresholds and the imputation of missing data.

The power system event labels were derived from the event
logs provided by the electric utility and network operators.
The final dataset consists of 1,204 labeled PMU data samples,
categorized into four distinct event types: 625 line events
(characterized by voltage variations), 333 generator events
(associated with frequency changes), 147 oscillation events,
and 99 instances of normal system operation conditions.

Each data sample within the dataset corresponds to a 12-
second observation window, with the PMUs recording data at
a frequency of 30 Hz. Consequently, each PMU data sample is
represented as a 360×40×4 tensor, aligning with the number
of timestamps (360), the number of PMUs (40), and the four
electrical variables (P , Q, |V |, and F ).

The ML-based classification model trained on this dataset
serves as the target model of the adversarial attack, which is
an enhanced ResNet-50 [23] neural network. This classifier
utilized the graph signal processing-based PMU sorting algo-
rithm and information loading-based regularization to achieve
SOTA event classification performance [12].

B. Baseline Black-box Attack Algorithms

In this paper, we design a comprehensive benchmark con-
taining six baseline algorithms: three score-based attacks and
three boundary-based attacks. The following subsections pro-
vide a brief introduction to these baseline algorithms.

1) Baseline score-based attacks:
a) SimBA: The SimBA (Simple Black-Box Adversarial)

[24] attack is a simple and effective score-based black-box
adversarial attack on ML-based classification models. It in-
volves perturbing the input image pixel by pixel or in small
patches and observing the changes in the output. The direction
of the perturbation is determined based on the model’s output,
aiming to maximize the error. The attack repeatedly makes
small changes to the input until it finds the perturbation that
can cause the model to misclassify the input.

b) ZoSignSGD: The ZoSignSGD [19] is a score-based
black-box attack by using the stochastic gradient descent
method. During the attack, instead of using the actual gra-
dients, the sign of the gradients is used for the parameter
updates to simplify the computation. In the ZoSignSGD attack,
the attacker uses the zeroth-order optimization technique to
approximate the signs of the gradients and then uses them to
craft input data that can mislead the trained model.

c) SignHunter: The SignHunter [25] is a black-box ad-
versarial attack algorithm that exploits the sign of gradients
in the model’s loss function. In simple terms, it focuses on
the sign of the gradient (positive or negative) in the model’s
predictions rather than the magnitude of the change. Adjusting
the sign of the gradient using a divide-and-conquer method,
the SignHunter attack can effectively mislead the ML model.

2) Boundary-based attacks:
a) BoundaryAttack: The BoundaryAttack is a boundary-

based black-box adversarial attack proposed in [21]. The
boundary attack starts with an adversarial example already



TABLE I
SUCCESS RATE UNDER DIFFERENT QUERY NUMBER LIMITATION K, AND PERTURBATION MAGNITUDE LIMITATION ϵ

Queries Limitation K
Target Distortion ϵ

Simba ZoSignSGD SignHunter BoundaryAttack OPT Sign-OPT BitSchedule Hybrid

K = 10000, ϵ = 10 1.94% 5.82% 5.17% 3.66% 1.94% 3.66% 12.07% 13.36%
K = 20000, ϵ = 10 3.02% 9.27% 7.97% 4.31% 2.58% 7.32% 13.79% 21.12%
K = 30000, ϵ = 10 5.60% 10.56% 10.34% 5.81% 3.02% 12.71% 15.09% 30.17%
K = 40000, ϵ = 10 9.91% 13.79% 12.72% 6.68% 3.23% 16.38% 15.95% 39.22%

K = 10000, ϵ = 20 3.88% 20.47% 15.73% 7.11% 3.45% 25.43% 32.54% 34.26%
K = 20000, ϵ = 20 12.07% 28.87% 24.78% 15.51% 5.82% 49.35% 34.70% 54.74%
K = 30000, ϵ = 20 17.46% 32.33% 29.95% 24.14% 8.62% 59.48% 35.13% 67.24%
K = 40000, ϵ = 20 19.40% 34.05% 31.46% 30.39% 11.42% 62.71% 35.56% 73.92%

misclassified by the target model. It then iteratively refines it
to reach a point close to the original data while maintaining its
adversarial nature. The attack explores the classifier’s decision
boundary - that is, the region in the input space where the
classifier’s decision changes.

b) OPT Attack: The OPT Attack [26] is a boundary-
based black-box adversarial attack. This method utilizes the
zeroth-order optimization to minimize the distance between
the original sample and the decision boundary. This method
efficiently calculates the above distance using the binary search
algorithm, reducing the number of require query for the attack.
Instead of optimizing over the sample, this algorithm optimizes
the direction of the perturbation to minimize the search space
and increase the attack efficiency.

c) Sign-OPT Attack: The Sign-OPT [20] attack is an-
other hard-label boundary-based black-box adversarial attack.
This method notices that although the time complexity of
the distance calculation to the boundary by binary search
is O(log(n)), it is still very time-consuming. To increase
the efficiency of the OPT attack, it proposed a Sign-OPT
attack that does not need to recalculate the decision boundary
distance every iteration. This method utilizes a method with
O(1) time complexity that can calculate the sign of the
changes in the distance and use this sign information to decide
the next iteration step. This method achieves greater query
efficiency than the OPT attack.

C. Performance of Black-box Adversarial Attacks

Table I provides a comparative analysis of the efficacy
of various black-box adversarial attacks under different con-
straints on the number of queries (K) and the L2 norm of
the perturbation (ϵ). The experimental setup across each row
varies in terms of K and ϵ, offering insight into the impacts of
the parameters on the success rates of different attack methods.

The score-based black-box attacks, including Simba,
ZoSignSGD, SignHunter, and BitSchedule, are evaluated for
their query efficiency and success rate under various configu-
rations. The BitSchedule method emerges as the most effective
one. It achieves higher success rates across different K and
ϵ settings, which suggests its superior efficiency in utilizing
queries compared to other score-based algorithms.

The boundary-based attacks, such as BoundaryAttack, OPT,
and Sign-OPT, are evaluated under similar conditions. It is
observed that these attacks demonstrate lower query efficiency,
particularly under smaller query limitations. This reduced
efficiency can be attributed to the initialization phase of these
attacks, which involves generating and evaluating a batch of
random perturbations to identify an optimal starting point for
the attack, resulting in a higher number of queries. However,
as the query number limitation increases, the Sign-OPT attack
outperforms score-based methods. This advantage is likely due
to the Sign-OPT approach’s ability to circumvent local optima,
thereby increasing the overall success rate.

The hybrid attack strategy, integrating the strengths of
both score-based and boundary-based approaches, exhibits the
highest success rate across all tested configurations of K and ϵ.
This approach demonstrates exceptional query efficiency under
limited query scenarios and maintains a high success rate even
as the query and perturbation limitations are increased.

Figure 2 illustrates the effectiveness of the proposed hy-
brid attack on a particular PMU sample, that other baseline
methods could not successfully attack under identical testing
scenarios. This underscores the hybrid attack’s superior query
efficiency and success rate among black-box attack methods.

Fig. 3. Number of the successful attacks sample with increasing query
limitation. (L2 = 10 )

D. Query-efficiency Comparison between Adversarial Attacks
Figures 3 and 4 present a detailed graphical analysis of

how the success rates of various adversarial attack algorithms



Fig. 4. Number of the successful attacks sample with increasing query
limitation. (L2 = 20 )

evolve in response to changes in the query number limitation,
ranging from 0 to 40,000, with intervals of 50 queries.
These figures reveal that the proposed score-based algorithm,
BitSchedule, exhibits superior query efficiency, particularly
when the query number limitation is set below 10,000. This
finding suggests that BitSchedule excels at achieving high
success rates with a relatively low number of queries.

Furthermore, integrating score-based and boundary-based
attack methods into the proposed hybrid attack algorithm
demonstrates a significant advantage in both query efficiency
and success rate as the limitations on query numbers and
perturbation magnitudes are increased. This hybrid approach
capitalizes on the strengths of both attack categories, lever-
aging the query efficiency of score-based algorithms in low-
query scenarios and the high success rate of boundary-based
algorithms when the query limitation increases.

V. CONCLUSION

This paper proposes a hybrid query-efficient black-box
adversarial attack method to fool neural power system event
classifiers. The proposed hybrid black-box adversarial attack
combines the score-based attack and boundary-based attack for
better query efficiency and attack success rate. Furthermore,
this paper proposed a query-efficient sign gradient estimation
algorithm called BitSchedule that queries with binary-encoded
directions for each coordinate. This algorithm shows better
query efficiency than other score-based methods. The em-
pirical results on a large-scale real-world PMU dataset have
shown that the proposed hybrid black-box adversarial attack
method outperforms the other six SOTA black-box adversarial
attack algorithms in query efficiency and attack success rate.
In the future, our research will focus on the black-box attacks
on other ML-based applications in power systems, alongside
developing strategies to counteract these attacks to increase
the robustness of the ML-based applications.
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