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Abstract—This paper develops an accurate and computation-
ally efficient data-driven framework to detect voltage events from
PMU data streams. It develops an innovative Proximal Bilateral
Random Projection (PBRP) algorithm to quickly decompose the
PMU data matrix into a low-rank matrix, a row-sparse event-
pattern matrix and a noise matrix. The row-sparse pattern matrix
significantly distinguishes events from normal behavior. These
matrices are then fed into a clustering algorithm to separate
voltage events from normal operating conditions. Large-scale
numerical study results on real-world PMU data show that
the proposed algorithm is computationally more efficient and
achieves higher F scores than state-of-the-art benchmarks.

Index Terms—Phasor measurement unit (PMU), event de-
tection, low-rank and sparse matrix decomposition, bilateral
random projection.

I. INTRODUCTION

PHASOR Measurement Units (PMUs) are capable of
recording both amplitudes and angles of voltage and

current phasors. PMUs have been widely deployed in transmis-
sion networks worldwide to improve the situational awareness
of power system operators [1]. The rapid adoption of PMUs in
transmission grids has led to tremendous growth in the amount
of synchrophasor data. For example, with a 60 Hz sampling
rate, each PMU can generate more than one gigabyte of data
per day [2]. The wealth of PMU data enables the development
of various data-driven applications to better monitor, protect,
and control power systems. In particular, data-driven event
detection algorithms are critical to making system operators
aware of abnormal system conditions [3]. The early detection
of power system events enables the operators to take corrective
control actions in response to disturbance events.

The existing literature on the data-driven power system
event detection using synchrophasor data can be clustered
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into three groups. The first group of literature leverages
signal processing techniques and statistical analysis to detect
system events. Signal processing techniques such as discrete
wavelet decomposition [3], dissipating energy flow [4], em-
pirical mode decomposition [5], self-coherence spectrum [6],
Teager-Kaiser energy operator [7], dynamic programming-
based swinging door trending [8], graph signal processing
[9] [10], and parallel detrended fluctuation analysis [11] are
adopted to detect oscillation events [6], voltage events [3],
[5], [9], frequency events [3], [5], [9], [11] and sequence of
voltage and frequency events [7]. A multi-hypothesis statistical
testing framework is developed in [12] to detect power line
outages. This group of techniques has achieved great success
at various types of power system events. However, most signal
processing techniques analyze PMU data streams collected
from different locations separately and did not fully exploit
underlying spatial-temporal correlations in the PMU dataset.

The second group of papers adopts deep learning techniques
to detect and classify abnormal events. Convolution neural
networks (CNN)-based classifiers [13] are built using the
rate of change of frequency and relative angle shift signals
to detect and classify generator trip and load disconnection
events. A novel information loading based regularization and
a graph signal processing-based PMU sorting algorithm were
developed to improve the parameter sharing scheme of the
CNN framework [14]. An ensemble-based learning algorithm,
combining multiple machine learning algorithms, is proposed
in [15]. Despite the high accuracy achieved by deep learning
techniques, their success heavily depends on the availability of
numerous high-quality event labels rarely available in practice.

The third research group leverages the low-dimensionality
and approximates low-rank properties of PMU data to de-
tect power system events. Recognizing that high dimensional
PMU data lie close to a low dimensional manifold, principle
component analysis (PCA)-based event detection algorithms
have been developed [16]. Two statistics derived from a
moving window PCA on PMU data matrices are used to detect
frequency and islanding events [17]. It has been shown that
pilot PMUs identified by the PCA can be used to approximate
non-pilot PMUs’ data streams. An event alert will be issued
when the normalized approximation error is larger than a pre-
specified threshold [18]. In [19], a PCA-based method is de-
veloped to measure the similarity of operation states between
a pair of buses, and the k-reachability is adopted to detect
power system events. By exploiting the approximate low-rank
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property of PMU data matrices, subspace characterization [20]
and matrix completion-based [21], [22] approaches have been
proposed to detect power system events. The PCA and matrix
completion-based event detection algorithms model PMU data
as the sum of a low-rank matrix and a noise matrix. They
overcome the shortcomings of algorithms in the first two
groups and do not require a large number of event labels
for training. However, the PMU data decomposition methods
in the third group are oversimplified and ignore the unique
structural pattern of events.

Meanwhile, sparsity-inducing norms have been widely
adopted in other power grid fields. Examples include malicious
cyber attack detection [23]–[25], imbalance identification [26]
and line outage detection [27]. Routtenberg et al. [26] success-
fully leveraged the sparse structure in voltage measurements to
localize imbalances in the power grid. Zhu et al. [27] leverage
sparse overcomplete representations with l1 norms to identify
sparse power line outages. Liu et al. [24] propose a novel
matrix decompsition method based on l1 norm to detect the
malicious attacks in the power grid. Hao et al. [23] assume
the measurement matrix can be recovered by a low-rank
matrix and a sparse-attack matrix and apply l1 norm to induce
sparsity. The l1 norm only constraints a matrix to be element-
wise sparse, i.e., non-zero elements appear randomly in the
matrix. This sparsity-inducing constraint is too weak to cater a
structured sparsity, like row-sparse or column-sparse. To break
this limitation, Gao et al. [25] proposed an attack identification
algorithm with the l21 norm, assuming that the measurement
data matrix is a low-rank matrix plus a transformed column-
sparse matrix. This time, the sparse matrix is not directly
stripped from the original measurement matrix, but needs to
be multiplied by a known transform matrix. To construct the
transform matrix, we need to know the structure of the power
grid in advance, as well as the impedance and admittance
between different buses, which is hard to obtain in practice.
Most of the algorithms in this group rely on singular value
decomposition (SVD), whose computation time drastically
increases with the number of PMUs and the analysis window
length. This drawback dramatically limits the scalability of
the event detection algorithm. Our research develops a novel
method that decomposes the PMU measurement matrix into a
low-rank matrix, a sparse matrix, and a noise matrix without
a transform matrix in a computationally efficient manner.

Mining the real-world data gathered by hundreds of PMUs,
covering thousands of events across the U.S., discovers that
regional events mostly show a unique sparsity in the noise
matrix (Fig. 2). As the row of the noise matrix corresponds
to individual PMUs, the sparsity emerges in its row space,
depending on how sensitive a PMU is to events. Among a wide
variety of power system events, voltage-related events mainly
triggered by system faults are recognized as a regional event.
Therefore, the row-sparse property in the noise matrix can
exert an effect, especially in an event with a significant voltage
dip. This paper proposes further decomposing the noise matrix
into a row-sparse event-pattern matrix and a pure noise matrix,
in light of the above. This innovative low-rank and sparse
matrix decomposition framework, extracting anomaly features
from both the low-rank matrix and the row-sparse event-

pattern matrix, enables event alerts. Finally, an unsupervised
clustering technique is adopted to distinguish normal system
operation data from that of the power system voltage events.

Fig. 1. Overview of online event detection framework based on low-rank and
sparse matrix decomposition model.

Unique contributions of this work include:
1) The proposed iterative matrix decomposition approach,

PBRP, which greatly accelerates the solution of a gen-
eral low-rank and sparse matrix decomposition problem
where the residual matrix has a row-sparse structure.

2) The data-driven event detection framework based on
PBRP yields better theoretical and empirical computa-
tion efficiency than existing SVD-based subspace char-
acterization approaches

3) Unlike the model-based or supervised deep learning
methods, our proposed voltage event detection algorithm
does not rely on detailed physical model or a large
amount of event labels for training.

4) The numerical study on a large-scale real-world PMU
dataset with hundreds of PMUs and voltage events
shows that the PBRP-based event detection framework
provides higher F1 and F2 scores than state-of-the-art

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on February 13,2022 at 22:11:06 UTC from IEEE Xplore.  Restrictions apply. 



0885-8950 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2021.3134945, IEEE
Transactions on Power Systems

3

algorithms. The proposed algorithm can also estimate
event area/location along with PMUs that are sensitive
to an event.

II. TECHNICAL METHODS

A. Overall Framework

The overall framework of the proposed online voltage event
detection algorithm is summarized in Fig. 1. The proposed
algorithm has three modules: a streaming matrix decomposi-
tion module, an anomaly feature extraction module, and an
event detection module based on cluster analysis. The first
module separately decomposes four types of streaming PMU
data matrices in w1-length windows. Each type of data matrix
(X) would be decomposed into a low-rank matrix (L), a sparse
event-pattern matrix (S), and a noise matrix (G) via PBRP
algorithm. The second module extracts useful features, two
anomaly scores, LAS and SAS from decomposed matrices, L
and S. The third module performs cluster analysis on extracted
features within w2-length windows to identify anomalies.

The technical details of these three modules are presented
in the next few subsections. Subsection II-B provides the
formulation and iterative solution approach to the low-rank
and sparse event-pattern matrix decomposition problem. Sub-
section II-C presents the bilateral random projection technique
to reconstruct the low-rank matrix. Subsection II-D develops
the proximal method to solve the sparse matrix. The anomaly
feature extraction method and the clustering algorithm are
described in subsection II-F.

B. Low-Rank and Sparse Event-Pattern Matrix Decomposition

Let n denote the number of PMUs under consideration.
We collect the streaming PMU data into a matrix time series
Xt ∈ Rn×w by placing new instances of data in the rightmost
column while removing the leftmost column. These matrices
are decomposed in a specific way based on prior knowledge
of their properties.

10 20 30

Time (1/30 s)

10

20

30

40

50

60

70

P
M

U
 I

D

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10 20 30

Time (1/30 s)

10

20

30

40

50

60

70

P
M

U
 I

D

Fig. 2. The heatmap of “X−L” (left) and “X−L−G” (right) for normalized
active power data (scaled from 0 to 1). The event happens approximately at
the red line.

The first property of note has to do with the rank of
these matrices. As shown by small-scale empirical studies and
theoretical derivations, voltage and current phasor data under
normal conditions exhibits a low-rank structure [21]. Using
large-scale PMU data from the Eastern Interconnection of the
continental U.S. power transmission grid, the active power
(P), reactive power (Q), voltage magnitude (V), and frequency
(F) data does possess the low-rank property, which means the
low-rank property holds up well during steady-state operation
periods. In Table I, the analysis on a representative event shows
that the largest singular value of the reactive power data matrix
accounts for 99.988% of the variance, while this percentage
drops to 59.743% during event periods. Suppose that this
normal behavior from the streaming PMU data matrices is
decomposed as:

X = L+ (X − L), (1)

where L is an approximation of X with rank r. Then the
matrix, X − L, contains information from the data that is
residual from normal behavior, which is a promising first step
towards event detection.

The second property of note has to do with the structure
of X − L during voltage event periods. It turns out that
these matrices have specific patterns of sparsity that we can
take advantage of. The main component of this structure
comes directly from the fact that voltage events, when they
occur, often significantly affect limited area/zones. As such,
the number of PMUs interacting with a voltage event is prone
to be limited (Fig. 2). The right subfigure shows the heatmap
of an event pattern matrix representing one-second min-max
normalized active power data. Thus, we propose to decompose
the PMU data matrix as follows:

X = L+ S +G, (2)

where L ∈ Rn×w is a low-rank matrix, S ∈ Rn×w is a row-
sparse event-pattern matrix representing the impact of voltage
events, and G ∈ Rn×w denotes a noise matrix. Then, the
problem can be formulated as:

min
L,S

1

2
‖X − L− S‖2F

s.t.

{
rank(L) = r,
S is row-sparse.

(3)

It turns out that this “row-sparse” event pattern can be
captured by using l21 regularization, where the l21 norm of
S is defined as ‖S‖21 =

∑
i

√∑
j s

2
ij . In other words, by

adding the l21 norm on event-related matrix, S, to the objective
function as a penalty term, the solution will yield the desired
row-sparse structure. The problem can then be relaxed into a
new one:

min
L,S

1

2
‖X − L− S‖2F + λ‖S‖21

s.t. rank(L) = r,
(4)

where the λ is a penalty coefficient of the l21 norm. This opti-
mization problem (4) can be solved with Coordinate Descent.
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TABLE I
SINGULAR VALUE DECOMPOSITION OF P, Q, V, AND F DATA MATRICES OVER 1 SECOND (30 SAMPLES)

Data Type Electrical Quantity Singular Value Percentage Variance ( σ2
i∑

i σ2
i

) Singular Value Proportion ( σi∑
i σi

)

1st 2nd 3rd 1st 2nd 3rd

Non-event Data

P (Active Power) 99.999261% 0.000536% 0.000109% 99.242040% 0.229736% 0.103609%
Q (Reactive Power) 99.988472% 0.008789% 0.001427% 97.134683% 0.910695% 0.366895%
V (Voltage Magnitude) 99.999995% 0.000005% 0.000000% 99.963393% 0.022302% 0.003274%
F (Frequency) 99.999999% 0.000000% 0.000000% 99.996304% 0.000824% 0.000654%

Event Data

P (Active Power) 95.003242% 4.933310% 0.045058% 78.391273% 17.863547% 1.707207%
Q (Reactive Power) 59.743182% 40.185730% 0.068034% 53.278058% 43.695845% 1.797904%
V (Voltage Magnitude) 99.545736% 0.447828% 0.006371% 92.892350% 6.230519% 0.743139%
F (Frequency) 99.999994% 0.000006% 0.000000% 99.971389% 0.023498% 0.001269%

This means that we alternate between solving the following
two sub-problems until ‖X−L

(k)−S(k)‖2F
‖X‖2F

converges:L
(k) = arg min

rank(L)=r

1
2‖X − L− S

(k−1)‖2F
S(k) = arg min

S

1
2‖X − L

(k) − S‖2F + λ‖S‖21

(5)

where L(k) and S(k) denote an estimate of L and S, respec-
tively, in the k-th iteration.

To solve the first sub-problem, we forgo time-consuming
exact optimization and instead choose to approximate its solu-
tion via an enhanced version of Bilateral Random Projections
(BRPs).

C. Bilateral Random Projections

Bilateral Random Projections (BRPs) are a fast and accurate
method of low-rank matrix approximation. We showcase a new
approximation approach here. First, consider the following
column-row-echelon decomposition of a matrix X ∈ Rn×w
that has a rank r.

X =
[
c1 c2 · · · cr

]︸ ︷︷ ︸
C

[
Ir | Ew−r

]︸ ︷︷ ︸
E

P, (6)

where c1, c2, · · · , cr are any choice of r linearly independent
columns of X , Ir ∈ Rr×r, Ew−r ∈ Rr×(w−r) and P ∈ Rw×w
acts on E as a column permutation matrix (EP is the reduced
row-echelon form of X , and P just moves the pivot columns
of that echelon form back to their original positions). This
decomposition expresses a matrix as a selection of r linearly
independent columns from X and uses the matrix Ew−r to
generate the remaining columns from the selected ones. We
can also express this same decomposition as X = (XA1)EP
where A1 acts on X to select those r independent columns. If
we then use a matrix AT2 to select r linearly independent rows
of X and collect them into a matrix HT (via left-application,
i.e., HT = AT2 X), then we have that

AT2 X = AT2 CEP. (7)

The left hand side of (7) has rank r, and EP has rank r as
well due to its Ir submatrix, so it must be the case that AT2 C
has rank r as well. But since AT2 C has dimension r × r, this

means that AT2 C is invertible. Thus EP = (AT2 C)−1AT2 X .
In other words:

X = CEP = C(AT2 C)−1(AT2 X) = C(AT2 C)−1HT . (8)

To get from here to BRPs, all we need is relaxing the
requirement that the matrices A1 and A2 choose r linearly
independent columns/rows of X , and instead let them ran-
domly choose subspaces via random linear combinations of
the columns/rows of X . This can be done by simply drawing
the elements of A1 and A2 randomly, according to some
distribution (in this case, the standard normal distribution).
The Johnson–Lindenstrauss lemma [28] ensures that such
random selection well approximates the process of selecting
independent rows and columns of X . In accordance with [29],
we enhance this approximation algorithm with a power scheme
technique. The idea of this enhancement is simple — instead
of approximating X itself, X̃ = (XXT )qX for some integer
q ≥ 1 are approximated. This leads to a higher likelihood of
randomly selecting the most important low-rank approxima-
tions because the matrix X̃ , while having the same row and
column spaces as X , has its singular values exponentiated to
the power of 2q+1, which leads to a much higher discrepancy
between the larger and smaller singular values. Once we have
an approximation of X̃ given by X̃ ≈ L̃ = C(AT2 C)−1HT ,
we can use the same approximated subspaces of X̃ to get
an approximation of X via X ≈ L = L̃

1
2q+1 . This can be

done efficiently by taking the QR decomposition of C and H ,
denoted QcolRcol and QrowRrow respectively, and computing

L = L̃
1

2q+1 = Qcol
[
Rcol(A

T
2 C)−1RTrow

] 1
2q+1 QTrow (9)

Finally, the aforementioned algorithm is iteratively per-
formed using the previous iterations’ C matrix as the projec-
tion matrix for the next iterations’ H matrix and vice versa.
We couple these iterations with an adaptive rank reduction
scheme. This is done so that if a too high rank, r, as input is
chosen, an even lower rank approximation can still be found
if a good one exists. Specifically, at the end of each iteration,
the enhanced algorithm checks if the rank of the combined
row-space and column-space containing matrix, AT2 X̃A1, is
below our rank parameter. If so, the algorithm reduces the rank
parameter and continues the loop. However, if the rank of this
matrix fail to reduce this iteration, the iteration is terminated.
The entire algorithm can be found in Algorithm 1.
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Algorithm 1 Closed-Form BRPs with Power Scheme
Input: X ∈ Rn×w1 , rank r, power Q
Output: BRP (X) , L

1: Initialize: X̃ = (XXT )qX;
2: Initialize: ∀i, j, A1,(i,j) ∼ N (0, 1), A2,(i,j) ∼ N (0, 1);
3: while true do
4: C = X̃A1 = QcolRcol;
5: H = X̃TA2 = QrowRrow;
6: if rank(AT2 C) < r then
7: r = rank(AT2 C);
8: else
9: break;

10: end if
11: A1 = H;
12: A2 = C;
13: end while
14: L = Qcol[Rcol(A

T
2 C)−1RTrow]

1
2q+1QTrow;

15: return L;

In Algorithm 1, it is worth mentioning that the power
scheme is strong enough when q ≥ 3 according to [29]. It
costs (2q+ 1)nwr floating-point operations (flops) to perform
two projections and r2(n+ w) flops to perform each QR de-
composition. The matrix division in (9) requires an additional
nwr+2wr2+4r3 flops. In general, the rank r is much smaller
than n or w. Thus, the computational complexity of the BRP-
based decomposition method is O(nwr). This is far faster than
the traditional matrix decomposition based on the SVD, whose
computational complexity is O(min(nw2, n2w)) [30].

D. Proximal Methods
The second sub-problem in (5) has the form of

min
S∈Rn×w

f(S) + λΩ(S), (10)

where f : Rn×w → R is a convex function, and Ω : Rn×w →
R is a sparsity-inducing norm. In this problem, F is half the
square of the Frobenius norm of the difference between X−L
and S, and Ω is the square of the l21 norm. This is exactly
the form of minimization that defines the proximal operator
[31] given by:

ProxλΩ(u) = arg min
v∈Rw

1

2
‖u− v‖22 + λΩ(v). (11)

In this case, the u variable found in the generic proximal
operator definition can be replaced with X−L, and v with S.
In the specific case where Ω(·) is the l21 norm, (11) is called
“group Lasso” [31], and the proximal operator for l21 is

Proxλ‖·‖21(X[i, :]) = (1− λ‖X[i, :]‖2)+X[i, :], (12)

where X[i, :] ∈ Rw is the i-th row of X , ‖X[i, :]‖2 =√
Σjxij , and (·)+ , max(·, 0). From (12), we can see that

the proximal operator maps a row of the target matrix at once.

E. Proximal BRP Algorithm
We call the proposed iterative approach to solve the matrix

decomposition problem (5), Proximal BRP (PBRP). It is
summarized in the Algorithm 2.

Algorithm 2 Proximal BRP (PBRP)
Input: X ∈ Rn×w1 , rank r, power factor Q, λ, ε
Output: L, S

1: Initialization: L = S = 0
2: while ‖X−L−S‖

2
F

‖X‖2F
≥ ε do

3: L = BRP (X − S)
4: S = Proxλ‖·‖21(X − L);
5: end while
6: return L, S

F. Feature Engineering and Anomaly Detection with DBSCAN

After individually obtaining the low-rank matrix L and the
sparse matrices associated with P, Q, V, and F, we take useful
measurements from them - which we will call anomaly scores.
Since the sparse matrix S represents the event patterns, its l21

norm is selected as the first anomaly score. We will call this
score ‘SAS’ (S-Anomoly Score) for short. Furthermore, the
sparsity of S intuitively comes from the regional variance of
events, and thus, SAS summarizes the spatial features of the
data. Drawing on the idea in [21], the maximum temporal
difference of L is treated as the second anomaly score:

LAS , max
i,j

(∣∣∣∣L[i, j]− L[i, j − 1]

L[i, j − 1]

∣∣∣∣) , (13)

which summarizes the temporal features of the data.

Algorithm 3 Voltage Event Detection Framework
Input: X(l) ∈ Rn×T (l ∈ {P,Q, V, F}); Analysis win-

dow lengths: w1, w2; DBSCAN: minpts, eps; Adaptive
Scheme: θ = 100, uprate = 1.1, downrate = 0.9.

Output: Anomaly Alert
1: for t = w1 + 1 : T do
2: for data type l = {P,Q, V, F} do
3: AS(l)[t]

L,S←− PBRP (X(l)[:, t− w1 : t], λ(l));
4: if max

i=1,...,n
| stdiµi
| > θ then

5: λ(l) = λ(l) × uprate;
6: end if
7: if ‖S‖21 == 0 then
8: λ(l) = λ(l) × downrate;
9: end if

10: end for
11: Construct the high-level feature batch:

B[t− w2 + 1 : t] =


AS(P )[t− w2 + 1 : t]
AS(Q)[t− w2 + 1 : t]
AS(V )[t− w2 + 1 : t]
AS(F )[t− w2 + 1 : t]

;

12: if t ≥ w2 then
13: DBSCAN(normalize(B), eps, minpts) → Alert;
14: end if
15: end for

After accumulating the two anomaly scores of P, Q, V, and
F for w2 time steps, an anomaly feature batch, B ∈ R8×w2 is
obtained. This feature batch can be regarded as a time series
of length w2 containing 8-dimensional feature vectors. Since
we intend to build an unsupervised framework, we need an
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unsupervised algorithm to do classification on B. There are
two widely used unsupervised clustering algorithms: k-means
and DBSCAN. Compared with k-means, DBSCAN is more
conducive to the detection of outliers [32]. DBSCAN is a
clustering algorithm based on density, so it is more suitable
for various complex-shaped datasets, while k-means is mainly
intended for convex datasets with spherical distributions. In
DBSCAN, there are three types of points: core points, density-
reachable points, and outliers. They are defined as follows:
If a point has at least ‘minpts’ other points in its ‘eps’
neighborhood, it is a core point. The points that are in the ‘eps’
neighborhood of a core point are called a density-reachable
point. Points that are neither core nor density reachable are
identified as outliers.

In our proposed framework, we apply DBSCAN on B
every time it is updated. If the 8-dimensional feature vector
corresponding to time t is identified as the first outlier by the
DBSCAN in the time series, the voltage event is deemed to
occur at time t.

G. Summary of the Overall Event Detection Framework
The proposed voltage event detection framework is sum-

marized in Algorithm 3, and illustrated in Fig. 1. For each
time window w1 and each data type l, the anomaly score
(AS) that includes SAS and LAS is obtained. These anomaly
scores are calculated based on L and S that are the outputs
of the PBRP algorithm. Since P, Q, V, and F data streams
have different scales, the corresponding penalty coefficients λl
are adjusted separately and adaptively in Lines 4-9. When the
maximum relative standard deviation (RSD) stdi

µi
for PMUs in

S exceeds a threshold θ, λl increases. The larger the RSD,
the greater the degree of signal dispersion - thus requiring the
weight of S to be larger to alert an event. Correspondingly, λl
increases. However, if the l21 norm of S becomes zero, which
means that no event pattern exists in X , λl decreases. After all
anomaly scores within a time window of w2 are calculated, we
construct the anomaly feature batch B and apply the density-
based cluster analysis on it to identify potential voltage events.

III. NUMERICAL STUDY WITH REAL-WORLD PMU DATA

The proposed event detection algorithm is validated using
real-world PMU datasets that were recorded following voltage
events. The online algorithm for PMU data processing and
disturbance detection [21] and [22] are selected as benchmark
algorithms.

A. Dataset Description
The PMU dataset is collected from the Eastern Interconnec-

tion of the U.S. power transmission grid. The dataset includes
P, Q, V, and F readings from 187 PMUs with a sampling
frequency of 30 Hz covering 668 labeled voltage events. Each
event contains 3 minutes or 5400 samples of data (Fig. 3).
Event datasets are divided into a validation dataset with 80% of
event samples and a testing dataset with 20% of event samples.
Our algorithm does not require training. The validation dataset
is only used to determine the hyper-parameters of the entire
framework, and the testing dataset helps evaluate the final
performance.

Fig. 3. Voltage event example with four electric quantities. The event occurs
around the middle of the red box. Each colored line represents the readings
from a PMU.

B. Benchmark Method

The online algorithm for PMU data processing (OLAP) [21]
and OLAP with a Hankel matrix (HOLAP) [22] are two state-
of-the-art power system event detection methods. The Hankel
matrix is more sensitive to the change in temporal correlation
of the time series, but its size is larger. Both methods leverage
the low-rank property of their target matrices (the original
data matrix in OLAP and the data matrix constructed with
a Hankel structure in HOLAP). OLAP computes the ratio
of the first two singular values, denoted ζ, in a short time
window and detects system disturbances by using changes in
this ratio. HOLAP computes the rank-1 approximation error
of the original Hankel matrix as well as that of a permuted
version of itself, and identifies an event by using the change
in the ratio of these two errors. This later ratio is denoted as η.
To make a fair comparison, OLAP and HOLAP are embedded
into our proposed framework to replace PBRP by using ζ and
η as anomaly scores. In particular, Lines 3-9 in Algorithm 3
are replaced with the two comparison algorithms.

C. Hyper-parameter Settings

Important hyper-parameters of three algorithms are sum-
marized in TABLE II. The OLAP and HOLAP adopt the
optimal parameters identified in [21] and [22] respectively.
The DBSCAN module calculates Euclidean distance between
individual samples. Only the eps is fine-tuned because all the
algorithms are only sensitive to this hyper-parameter.

D. Numerical Results

We rely on the validation dataset to determine the optimal
value of the hyper-parameter ‘eps’ in DBSCAN. At the initial
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TABLE II
HYPER-PARAMETER SETTINGS

Algorithm
Components

Window
Length PBRP OLAP HOLAP DBSCAN

Parameter
Values

w1 = 30 ε = 0.001 w̄ = 5 κ = 5 minpts = 2
w2 = 300 λ = 10 eps : 2 ∼ 13

r = 5
q = 5

time t, the P, Q, V, F data in w1-length window are respectively
passed through the PBRP algorithm (Section II-E) to obtain
their corresponding L and S. Then, we extract anomaly
features SAS and LAS from the L and S matrices (Section
II-F), generating an 8-dimensional feature vector at time t.
Packing it with w2 − 1 feature vectors before time t into a
batch B, and send B to DBSCAN for clustering analysis. If
there is an outlier point, an alert will be issued. The result of
the above process is shown in Fig. 4. After getting the best
‘eps’, we use the best hyper-parameters to evaluate the final
performance of our voltage event detection framework on the
testing dataset.

1) Performance of Voltage Event Detection Framework:
Two commonly used evaluation metrics in classification prob-
lems, F1 and F2 scores, are used to evaluate the performance
of our voltage event detection framework. The two F-scores
are calculated based on precision and recall that are further
derived based on True Positive (TP), False Positive (FP),
and False Negative (FN). The TP means events are detected
within 1 second of the labeled event time. The FP denotes
the scenarios where the algorithm reports an event outside
the above 1 second time window. The FN comprises the
cases where no event is detected within the aforementioned
1 second time window. Recall and precision are calculated
as: Recall = TP

TP+FN , Precision = TP
TP+FP . F1 and F2

scores are derived based on precision and recall as follows:
F1 = 2×Precision×Recall

Precision+Recall , F2 = 5×Precision×Recall
4×Precision+Recall . The F1

score is the harmonic mean of the precision and recall, while
the F2 score weighs recall higher than precision.

The F1 and F2 scores of the proposed PBRP and the two
benchmark on the validation dataset are evaluated to select the
appropriate hyper-parameter, eps (Fig. 4). Note that two eps
are selected for each algorithm, one that optimizes F1 score
and the other optimizes F2 score. After the hyper-parameters
are selected, we apply the three algorithms to the testing
dataset. The PBRP algorithm achieves significantly higher F1
and F2 scores than the benchmark algorithms on the testing
dataset, mainly due to a substantial improvement in Recall
(Table III). Note that in Table III the top (bottom) three
rows correspond to the hyperparameters optimized for F1 (F2)
score.

The improvements over the benchmark can mostly be
attributed to the ability to capture the spatial properties with
the anomaly score SAS. Both OLAP and HOLAP are capable
of capturing temporal anomalies. However, as seen in Fig. 5,
these temporal anomalies, which are also captured by the LAS
indicator, does not become pronounced right away. This leads
to delay in the detection of events and significantly decreases

TABLE III
F SCORES OF THREE ALGORITHMS ON THE TESTING DATASET

Statistics OLAP HOLAP PBRP

Precision 0.8889 0.8824 0.8881
Recall 0.8955 0.8955 0.9478

F1 Score 0.8922 0.8889 0.9170

Precision 0.8089 0.8571 0.8000
Recall 0.9478 0.9403 0.9851

F2 Score 0.9163 0.9224 0.9415

the recall. In contrast, the spatial anomaly indicators reach
their peaks very quickly as soon as the event begins.
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Fig. 4. F scores of PBRP and benchmark algorithms on validation dataset.

2) Computational Efficiency: The computation complex-
ity of BRP-based and SVD-based matrix decomposition ap-
proaches were discussed at the end of Section II-C. This
computational efficiency is crucial to apply the detection algo-
rithms online. Faster event detection allows greater flexibility
in the design of any submodules that follow.

To showcase that our method is faster than its competitors,
we varied the number of PMUs while fixing w1 = 30 and
w2 = 300. Therefore, the size of the matrix to be decomposed
is only proportional to the number of PMUs. All algorithm’s
computation times are reported in Table IV after averaging
over the detection of 100 randomly selected voltage events.
The partial computation time excludes the time of the cluster
analysis (Line 13 in Algorithm 3). The PBRP algorithm
uses 50% less computation time compared to the benchmark
algorithms. Furthermore, as the number of PMUs increases,
the increase in the computation time of the PBRP algorithm
is slower than that of the benchmark algorithms. Thus, the pro-
posed algorithm shows better applicability to larger grids and
larger numbers of sensors compared to benchmark algorithms.

TABLE IV
AVERAGE COMPUTATION TIME OF EVENT DETECTION ALGORITHMS

OVER THREE-MINUTE TIME PERIOD

Number of PMUs 50 100 150

Computation
Time (s)

(partial/total)

HOLAP 61.78/68.46 181.50/189.25 336.27/344.58
OLAP 7.53/15.01 9.58/17.33 16.99/24.79
PBRP 2.18/8.46 3.13/9.40 4.29/10.53
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Fig. 5. An example of decomposition of streaming PMU data matrix X with
corresponding anomaly scores for a voltage event.

3) Identification of PMUs That Can Capture Voltage
Events: As shown in Figs. 2 and 3, significant influence on
voltage events is often observed in a limited number of PMUs.
The sparsity structure in the S matrix could help identify
which PMUs are closely related to a particular voltage event.
For example, we could first identify the non-zero elements
in matrix S at the start of the events. These row indices of
these non-zero elements correspond to distinctive PMUs that
firmly grasp an event. Fig. 6 illustrates the identification of
the distinctive PMUs on the voltage event. The left column
figures depict the original P, Q, V, and F data obtained
from PMUs. The middle column is the heat map of sparse
matrix S. We remove the PMUs in the original X matrix
corresponding to the rows with zero elements at timestamp 24
identified as the start of the event. The right column shows
the filtered X , containing highly sensitive PMUs to the event.
The algorithm effectively identifies all the PMUs with sizable
dynamic behavior in P, Q, V, and F data streams.

IV. CONCLUSION

This paper reveals the distinctive sparsity structure of resid-
ual PMU data matrices during regional voltage events. This
distinctive characteristic of voltage events motivates us to
decompose the PMU data matrix into a low-rank matrix, a
row-sparse event-pattern matrix, and a noise matrix. The key
features extracted from the low-rank and row-sparse event-
pattern matrices are leveraged in a clustering module to
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Fig. 6. An example of identifying PMUs that are sensitive to voltage events.
Elements in the heatmap of S are scaled from 0 to 1.

differentiate voltage events from normal operating conditions.
A computationally efficient proximal bilateral random project-
based algorithm, PBRP, is proposed to perform the matrix
decomposition with structured sparsity-inducing norms. The
feature extracted from the row-sparse event-pattern matrix sig-
nificantly enhances the voltage event detection performance. A
large-scale numerical study with real-world PMU data shows
that our proposed online voltage event detection algorithm
yields lower computation time, higher accuracy, and scalability
than state-of-the-art benchmark. The proposed algorithm can
also specify event area/zones by identifying the PMUs most
sensitive to the detected event.

Although the proposed algorithm displays outstanding per-
formance for detecting voltage-related events, it only shows
marginal improvement in detecting frequency related events
due to less pronounced row-sparsity structure for the residual
PMU data matrix. In the future, we plan to further examine the
unique structures of the PMU data matrices, which correspond
to the frequency events.
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