
Solving Unit Commitment Problems with
Multi-step Deep Reinforcement Learning

Jingtao Qin, Nanpeng Yu and Yuanqi Gao
Department of Electrical and Computer Engineering

University of California, Riverside
Riverside, California 92507 USA

jqin020@ucr.edu, nyu@ece.ucr.edu, ygao024@ucr.edu

Abstract—Solving the unit commitment (UC) problem in a
computationally efficient manner is a critical issue of elec-
tricity market operations. Optimization-based methods such as
heuristics, dynamic programming, and mixed-integer quadratic
programming (MIQP) often yield good solutions to the UC
problem. However, the computation time of optimization-based
methods grows exponentially with the number of generating
units, which is a major bottleneck in practice. To address this
issue, we formulate the UC problem as a Markov decision process
and propose a novel multi-step deep reinforcement learning (RL)-
based algorithm to solve the problem. We approximate the action-
value function with neural networks and design an algorithm to
determine the feasible action space. Numerical studies on a 5-
generator test case show that our proposed algorithm significantly
outperforms the deep Q-learning and yields similar level of
performance as that of MIQP-based optimization in terms of
optimality. The computation time of our proposed algorithm is
much shorter than that of MIQP-based optimization methods.

Index Terms—Unit commitment, Markov decision process,
deep reinforcement learning, multi-step return.

I. INTRODUCTION

The unit commitment (UC) problem in the day-ahead mar-
ket determines the optimal startup and shutdown schedules
of generators based on supply offers, demand bids, network
conditions and operational constraints. Achieving near-optimal
UC solutions is vital to improving the efficiency of day-
ahead market. The UC problem is often first formulated as
Mixed Integer Quadratic Programming (MIQP) problem and
then solved by commercially available solvers. The existing
literature on UC problems can be categorized into two groups
according to the model assumption.

Methods in the first group leverage model-based methods
including heuristic methods [1], dynamic programming [2],
mixed-integer linear programming [3], Lagranian relaxation
[4], and meta-heuristics such as simulated annealing [5] and
evolution approaches [6]. Although these methods produce
good results, their computation time increase exponentially
with the number of energy resources and operational con-
straints. As the number of aggregated distributed energy re-
sources and uncertainties associated with renewable energy
continue to increase, it will be challenging to find a near
optimal UC solution in a computationally efficient manner.

In the second group of literature, reinforcement learning
(RL)-based methods have been used to solve the UC prob-
lem. RL is a mathematical framework for learning to solve
sequential decision-making problems. It has been used to
solve control problems in power distribution systems [7].
[8] proposes three reinforcement learning techniques, which
include approximate policy iteration, tree search, and back
sweep to reduce system operation costs compared to simulated
annealing on a 12-units system. In [9], Navin N.K et al.
cast the UC problem as a multi-agent fuzzy reinforcement
learning task where individual generators act as players to
jointly minimize the total operational cost. A decentralized
Q-learning-based optimization algorithm is proposed in [10]
to solve economic dispatch and UC problems in an online
manner.

The RL-based algorithms mentioned above face a challenge
that the dimensionality of state and action space increases
exponentially with the size of the problem. To address this
issue, we propose a multi-step deep reinforcement learning
algorithm for UC problems, which uses deep Q-learning
network to parameterize an approximate action-value function.
To the best of our knowledge, this work is the first attempt
to apply deep reinforcement learning to solve UC problems.
The reminder of this paper is organized as follows: Section II
presents the problem formulation of UC problems. Section III
provides the technical methods. Section IV shows the results
of numerical studies and the robustness of proposed algorithm.
Section V states the conclusion.

II. PROBLEM FORMULATION

In this section, we first describe the formulation of the UC
problem. Then we review the basics of the Markov decision
process (MDP). Finally, we formulate the UC problem as an
MDP.

A. Formulation of Unit Commitment Problems

The objective of the unit commitment problem is to find the
optimal unit schedule that minimizes the total operation cost
over the operational horizon as shown in (1).

Min
T∑
t=1

N∑
i=1

cpi (t) + cui (t) + cdi (t), (1)

2021 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)

978-1-6654-1502-6/21/$31.00 ©2021 IEEE 14020
21

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 C

om
m

un
ic

at
io

ns
, C

on
tr

ol
, a

nd
 C

om
pu

tin
g

Te
ch

no
lo

gi
es

 fo
r S

m
ar

t G
rid

s (
Sm

ar
tG

rid
Co

m
m

) |
 9

78
-1

-6
65

4-
15

02
-6

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
 D

O
I:

10
.1

10
9/

SM
AR

TG
RI

DC
O

M
M

51
99

9.
20

21
.9

63
23

39

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on February 13,2022 at 21:59:20 UTC from IEEE Xplore. Restrictions apply.

where T is the number of time periods in the operational
horizon, N is the number of units, cpi (t) is the production
cost of unit i in period t, cui (t) is the startup cost of unit i in
period t, and cdi (t) is the shutdown cost of unit i in period t.

In this paper, we consider four types of constraints, namely,
the load/spinning reserve balance constraints, generation lim-
its, ramping limits, and minimum up and down time con-
straints.

1) Load/Spinning Reserve Balance Constraints: The en-
ergy balance constraints and spinning reserve requirements are
enforced by (2)-(3).

N∑
i=1

pi(t) = d(t), ∀t ∈ T (2)

N∑
i=1

p̄i ≥ d(t) +R(t), ∀t ∈ T, (3)

where p̄i(t) is the maximum available power output of unit i
in period t, d(t) and R(t) are the load demand and spinning
reserve requirement in period t. pi(t) ∈

∏
i(t) is the power

output of unit i in period t,
∏
i(t) is the feasible production

region of unit i in period t, which is determined by the
operation constraints as follows.

2) Generation Limits: The generation units’ operating con-
straints are enforced by (4)-(5):

P ivi(t) ≤ pi(t) ≤ p̄i, ∀i ∈ N, ∀t ∈ T (4)
0 ≤ p̄i(t) ≤ P̄ivi(t), ∀i ∈ N, ∀t ∈ T, (5)

where P̄i is the capacity of unit i. P i is the minimum output
of unit i. vi(t) is the on/off status of unit i in period t.

3) Ramping Limits: The output of generation units are also
constrained by ramp up and startup ramp rates (6), shutdown
ramp rates (7), as well as ramp down limits (8):

p̄i(t) ≤pi(t− 1) + RUivi(t− 1)

+ SUi[vi(t)− vi(t− 1)] + P̄i(1− vi(t)) (6)
p̄i(t) ≤P̄ivi(t+ 1)

+ SDi[vi(t)− vi(t+ 1)] (7)
pi(t− 1) ≤pi(t) + RDivi(t)

SDi[vi(t− 1)− vi(t)] + P̄i[1− vi(t− 1)], (8)

where RUi and RDi are the ramp up and down limits of unit
i. SUi and SDi are the startup and shutdown ramp limits of
unit i.

4) Minimum Up and Down Time: The minimum up and
down time constraints can be formulated as mixed-integer

linear equations in (9)-(14):
Gi∑
t=1

[1− vi(t)] = 0, ∀i ∈ N (9)

t+UTi−1∑
n=t

vi(n) ≥ UTi[vi(t)− vi(t− 1)],

∀i ∈ N, ∀t = Gi + 1, · · · , T − UTi + 1 (10)
T∑
n=t

{vi(n)−[vi(t)− vi(t− 1)]} ≥ 0

∀i ∈ N, ∀t = T − UTi + 2, · · · , T (11)
Li∑
t=1

[vi(k)] =0,∀i ∈ N (12)

t+DTi−1∑
n=t

[1− vi(n)] ≥ DTi[vi(t− 1)− vi(t)],

∀i ∈ N, ∀t = Li + 1, · · · , T − DTi + 1 (13)
T∑
n=t

{1− vi(n)− [vi(t− 1)− vi(t)]} ≥ 0

∀i ∈ N, ∀t = T − DTi + 2, · · · , T (14)

where Gi and Li are the numbers of initial periods during
which unit i must be online or offline. UTi and DTi are the
minimum up and down time of unit i.

B. Basics of Markov Decision Process (MDP)

MDP is the mathematical framework for describing sequen-
tial decision making problems. It can be formalized as a tuple
(S,A,P,R, γ), where S is the state space, A is the action
space, P is the environment transition probability, R is the
reward function and γ is a discount factor (0 ≤ γ ≤ 1) [11]. At
each time step t, the agent selects an action at from the action
space A based on the current state st ∈ S. Then it receives
a numerical reward rt+1 = R(st, at) and the environment
transitions to the next state st+1 according to the transition
probability P(st+1|st, at).

The goal of the agent is to learn a policy π(a|s) that
maximizes the total expected discounted rewards J(π) =
E[G(τ)], where T is the length of one episode, G(τ) =∑T
t=0 γ

trt+1, and τ is a trajectory of states and actions
s0, a0, r1, s1, a1, r2, Here we need to define two important
value functions vπ(s) and qπ(s, a) to represent the value of
states and state-action pairs following a policy π:

vπ(s) = Eπ[Gt|St = s]

= Eπ

[∑T
k=0 γ

krt+k+1|St = s
]

(15)

qπ(s, a) = Eπ[Gt|St = s,At = a]

= Eπ

[∑T
k=0 γ

krt+k+1|St = s,At = a
]

(16)

The optimal policy is defined as π(a|s) = arg maxπ vπ(s) for
all s ∈ S or π(a|s) = arg maxπ qπ(s, a) for all s ∈ S and
a ∈ A(s).

2021 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)

141
Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on February 13,2022 at 21:59:20 UTC from IEEE Xplore. Restrictions apply.

C. Formulate the UC Problem as an MDP

In this subsection, we formulate the UC problem as an MDP.
The overall schematic of the MDP formulation for the UC
problem is shown in Figure 1. The episode, state, action, and
reward function are defined as follows.

Figure 1: MDP formulation of the UC problem.

Algorithm 1 Compute Feasible Actions Set
Initialize feasible action set At = ∅, from current state ssst
obtain vvvt, pppt,uuut, dddt

1: for n = 1, · · · , 2N do
2: Obtain action vector vvvnt+1

3: set ν1 = ν2 = ν3 = 1
4: set vector p̄̄p̄p to zero
5: for i = 1, · · · , N do
6: if ui(t) < vi(t)UTi + (1− vi)DTi then
7: if vni (t+ 1) 6= vi(t) then
8: ν1 = 0
9: break

10: if vi(t) = 1 then
11: if pi(t) > SDi then
12: if vni (t+ 1)=0 then
13: ν2=0
14: break
15: if vni (t+ 1) = 1 then
16: if vi(t) = 1 then
17: p̄i = min(pi(t) + RUi, P̄i)
18: else p̄i = min(pi(t) + SUi, P̄i)
19: if

∑N
i=0 p̄ < d(t+ 1) +R(t+ 1) then

20: ν3 = 0

21: if ν1 = ν2 = ν3 = 1 then
22: append vvvnt+1 to set At

1) Time Steps and Episodes: We define each hour as a
time step. Here we focus on the day-ahead unit commitment
problem. Therefore we define an episode to be either a whole
day (24 time steps), or last until no feasible action can be
found, whichever comes the first. When an episode is finished,
the next episode always starts from the first hour of the next
day. We denote the length of an episode as T .

2) States: We define the state at time t as st =
(t, vvvt, pppt,uuut, dddt), where t is the global time, vvvt is a vector
of the on/off status vi(t) of unit i in period t (1 if it is on, 0
otherwise), pppt is a vector of the power output pi(t) of unit i
in period t, uuut is a vector of the number of periods ui(t) that
unit i has been on/off up to period t and can be formulated as

(17). Note that vi(0) is the initial commitment state of unit i
and ui(0) is the number of periods that unit i has been on/off
prior to the first period of the episode.

ui(t) =

{
ui(t− 1) + 1, if vi(t)− vi(t− 1) = 0

1, otherwise
(17)

Finally, dddt is a vector [d(t + 1), d(t + 2), · · · , d(t + K)] of
load demand forecasts for the next K steps.

3) Actions: The action at at time t is defined as changing
the on/off status of all units to vvvt+1 in period t + 1. Due to
the operation constraints of generation units and the varying
load demand, some of the on/off status might be infeasible.
Therefore, we need to find all the feasible actions based on
the current state to determine the action space. The algorithm
for generating all feasible actions is presented in Algorithm
1. First, we initialize the feasible action set At = ∅ and
obtain vvvt, pppt,uuut, dddt from state st in period t. Then we check
whether all operation constraints are satisfied for each of
the 2N possible combinations. In the algorithm, ν1, ν2, ν3
are the flag variables denoting the satisfaction of minimum
up/down time limits, shutdown ramp limits, and spinning
reserve requirement, respectively. If all three constraints are
satisfied, then vvvnt+1 is a feasible action.

4) Reward: The reward rt+1 reflects the negative of the
operation cost Ct+1 in period t+ 1, which is defined as (18).

Ct+1 =
N∑
i=1

cpi (t+ 1) +
N∑
i=1

cui (t+ 1) +
N∑
i=1

cdi (t+ 1) (18)

• cpi (t+1) is the quadratic production cost function in time
period t+ 1 given by (19) [12].

cpi (t+ 1) = aivi(t+ 1) + bipi(t+ 1) + cip
2
i (t+ 1) (19)

We can obtain pi(t+ 1) by solving a single period economic
dispatch (ED) using quadratic programming once the on/off
status vi(t+ 1) are known. Note that in the single period ED
process, the ramp up/down limit and startup ramp limit need
to be considered.
• The startup cost cui (t + 1) is calculated by a staircase

function [3] as in (20).

cui (t+ 1) =

{
CUi [min{NDi, ui(t)}] , if vi(t+ 1) > vi(t)

0, otherwise
(20)

where CUi is a vector of the staircase startup cost of unit i.
The symbol CUi[k] denotes taking the k-th element from the
vector CUi. NDi is the number of intervals of the staircase
startup cost function, i.e. the length of CUi.
• The shutdown cost cdi (t+ 1) is formulated as (21).

cdi (t+ 1) =

{
CDi, if vi(t) > vi(t+ 1)

0, otherwise
(21)

where CDi is the shutdown cost of unit i.
As mentioned before, an episode could be terminated early

if there is no feasible action under the current state. To avoid
this situation, we should give the agent a large punishment

2021 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)

142
Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on February 13,2022 at 21:59:20 UTC from IEEE Xplore. Restrictions apply.

when it occurs. To this end, we define the reward function as
(22).

rt+1 = −

{
Ct+1, if At+1 6= ∅
ζ, if At+1 = ∅

(22)

where ζ is a large constant.

III. TECHNICAL METHODS

In this section, we introduce the proposed multi-step deep
reinforcement learning algorithm for the UC problem for-
mulated in Section II. First, we review the preliminary of
deep Q-learning (DQN). Then we introduce a multi-step
deep Q-learning algorithm for UC problems to improve the
learning efficiency of the basic DQN. Lastly, we present a
few additional implementation details.

A. Deep Q-Learning Method

Deep Q-learning is an RL algorithm that combines the
vanilla Q-learning with deep neural networks in order to solve
MDPs with continuous state space [13]. Deep Q-learning
approximates the action-value function using a deep neural
network called deep Q network (DQN) Q(st, at|θ). The DQN
is trained to minimize the mean-squared temporal difference
error L(θ) using the stochastic gradient descent:

L(θ) = E(s,a,r,s′)∼D

(
r + γmax

a′
Q(s′, a′|θ′)−Q(s, a|θ)

)2
,

(23)
where Q(s′, a′|θ′) is another neural network with the identical
architecture as Q(st, at|θ), called the target network. The
parameters θ′ of the target network is updated periodically
from the Q network weights θ to stabilize the training process.
D is the replay buffer which stores the transition tuples
(s, a, r, s′).

B. Multi-Step Deep Q-Learning for UC Problems

The deep Q-learning method discussed above is easy to im-
plement and can be directly applied to solve high-dimensional
state space MDPs. However, it can be inefficient when applied
to the UC problem introduced in Section II. This is because the
effects of taking an action may not be immediately reflected in
the next reward and could impact the rewards of multiple time
steps later. As a result, many updates are required to propagate
the reward to the relevant preceding states and actions [14].
This makes the learning process slow and extremely sample-
inefficient.

We address the problem by adopting the multi-step return
method [15], where the action value function Q(st, at|θ) is
updated toward a n-step return R(t):

L(θ) = (Q(st, at|θ)−R(t))2, (24)

where R(t) is defined as:

R(t) = rt+1+γrt+2+· · ·+γn−1rt+n+ max
a′∈A′

γnQ(st+n, a
′|θ′)
(25)

To compute R(t), we run the agent-environment interaction
for n steps to obtain the rewards rt+k, k = 1, ..., n and the
n-step next state st+n, then evaluate (25).

With the n-step target, both the long-term and the short-
term effects of an action can be learned by regressing toward
the exact reward, rather than by bootstrapping from the target
network Q(s, a|θ′). Thus, multi-step deep Q-learning algo-
rithm significantly improves the learning efficiency for the UC
problem.

The pseudocode of a multi-step deep Q-learning for UC
problems is summarized in Algorithm 2.

Algorithm 2 Multi-Step Deep Q-learning for UC Problems
Initialize parameters of UC problems
Input historical load data set of Nd days
Initialize day d = 1
Initialize learning counter m = 0
Initialize action-value function Q with random parameters θ
Initialize target network parameters θ′ = θ
Initialize n-step buffer D as a queue with a maximum length
of n

1: for episode = 1, · · · ,M do
2: Input historical load data of day d
3: Obtain initial state s1 of day d
4: for t = 1, · · · , T do
5: Obtain feasible action set At of state st according

to Algorithm 1.
6: With ε select a random action at from At;

otherwise select at = maxa∈At
Q(st, a|θ′).

7: Obtain the schedule of units on next period t+ 1
based on action at.

8: Solve a single period ED and calculate reward rt+1

according to (18)-(22).
9: Calculate uuut+1 according to (17) and then

formulate the next state st+1.
10: Call Algorithm 1 to calculate At+1.
11: if At+1 = ∅ then
12: donet = 1

13: else donet = 0
14: Store (st, at, rt+1, st+1,At+1, donet) in D
15: if length(D) = n or donet = 1 then
16:

R =

{
0, donet = 1

maxaQ(st+1, a|θ′), donet = 0

17: for i = t, t− 1, · · · , t− length(D), do
18: R = ri + γR
19: Perform a gradient descent step on

(R−Q(si, ai|θ))2

20: m = m+ 1
21: if mod(m, Itarget) = 0 then
22: Update θ′ = θ

23: if day d is over then
24: d = mod(d+ 1, Nd)

C. Algorithm Implementation Details
This subsection provides the implementation details of

the proposed multi-step deep Q-learning algorithm for UC
problems.

2021 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)

143
Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on February 13,2022 at 21:59:20 UTC from IEEE Xplore. Restrictions apply.

• Q-network structure: The Q-networks are standard feed-
forward neural networks with state-action pairs as the input
and the corresponding Q value as the single output. This Q-
network architecture scales linearly with the number of units.
• Episode initialization: In our problem formulation, the

goal is to maximize the total reward over all the training days.
Thus the initial status of the next day is obtained from the
last time period of the current day. To this end, we use the
historical load data of the next day for training only when the
agent finds a policy that satisfy the load demand of every time
period of the current day.
• Time variable encoding: In this work, we only en-

code the hour-of-day part of the global time step t, which
ranges from 0 to 23. t is encoded in two coordinates
[cos(2πt/24), sin(2πt/24)] to reflect its periodic nature [16].

IV. NUMERICAL STUDIES

In this section, the proposed RL-based algorithm is applied
to solve the UC problem for a five-unit system adopted from
[6]. We first provide the numerical study setup, then we show
the performance and robustness of the proposed algorithm.

A. Experimental Data and Algorithm Setup

The proposed algorithm is applied to solve a 24-hour
horizon scheduling problem for a five-unit system [6]. The
parameters of five thermal units are shown in Table I. The
minimum and maximum of staircase startup cost CU of unit
i are equal to its hot start cost (hc) and cold start cost (cc).
The number of intervals of staircase startup cost function ND
is equal to cold start hours (ch) plus 1. Initial status is the
number of hours each unit has been online (+) or offline (-)
prior to the first period of the first day.

Table I: Parameters for the 5-unit system
Unit 1 Unit 2 Unit 3 Unit 4 Unit 5

P̄ (MW) 455 130 130 80 55
P (MW) 150 20 20 20 55
a ($/h) 1000 700 680 370 660

b ($/MWh) 16.19 16.60 16.50 22.26 25.92
c ($/MW2h) 0.00048 0.002 0.00211 0.00712 0.00413

UT (h) 8 5 5 3 1
DT (h) 8 5 5 3 1

RU (MW) 300 85 85 55 55
RD (MW) 300 85 85 55 55
SU (MW) 300 85 85 55 55
SD (MW) 300 85 85 55 55

hc ($) 4500 550 560 170 30
cc ($) 9000 1100 1120 340 60
ch (h) 5 4 4 2 0

Initial status (h) 8 -5 -5 -3 -1

The load demand of the 225-bus Western Electricity Coordi-
nating Council (WECC) system developed in [17] is adopted
and scaled so that it can be served by the five generation
units. The historical data from [17] has 184 days of load
demand from May 1, 2004 to October 31, 2004. We split
it into training, validation and testing datasets. The training
dataset has 153 days of load demand from May 1 to September
31. The validation dataset has 14 days of load demand from
October 1 to October 14 and the testing dataset has 14 days
of load demand from October 15 to October 28.

The hyperparameters of the multi-step deep Q-learning al-
gorithm are provided in Table II, which are tuned individually
to reach their best performance. The hyperparameters of DQN
is the same as multi-step deep Q-learning except for algorithm
steps n. These setups will be used for all of the simulation
studies except when reporting the performance sensitivity with
respect to certain parameters. In particular, the performance
of different load forecasting steps K and the length of n-step
return will be shown in the next subsection.

Table II: Hyperparameters of multi-step deep Q-learning

Hyperparameter Value Hyperparameter Value
Load forecast steps K 24 Discount factor γ 0.99

Algorithm steps n 8 Greedy maximum ε̄ 1.0
Number of hidden units 150 Greedy minimum ε 0.01

Itarget 60 Greedy attenuation length 3840
Learning rate α 0.0001 Number of episode 200

B. Optimality and Robustness of the Proposed Algorithm

In this subsection, we first report the performance of DQN
and our proposed algorithm. We select the MIQP algorithm
with Gurobi 9.1 [18] solver as a baseline algorithm for
the 5-unit UC problem. We also run the training process
10 times independently using the same hyperparameters to
show the robustness of the proposed algorithm. Finally, we
show the process of determining the optimal value of the
hyperparameters K and the number of steps n.

The average daily operation cost of the validation days is
reported after every training episode in Figure 2. The initial
status of the units on the first validation day are identical
during the training process. Here we ran 5 independent ex-
periments with different random seeds and calculate the mean
value and standard deviations cross the runs. From Figure 2 we
can see that the average daily cost of validation days calculated
by multi-step deep Q-learning (n-step Q) declines quickly as
the training process proceeds and stabilizes at a lower level
than DQN after 50 training episodes.

Figure 2: Average daily operation cost of validation days
during the training process.

After training, we use the testing dataset to evaluate the
algorithm performance. The parameters of the neural networks
of DQN and n-step Q that minimize the average daily oper-
ation cost of validation days are used for testing. The daily
operation cost of testing days calculated by DQN, multi-step

2021 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)

144
Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on February 13,2022 at 21:59:20 UTC from IEEE Xplore. Restrictions apply.

deep Q-learning, and MIQP are summarized in Table III. The
percentage deviations of the DQN and the n-step Q-learning’s
performance from the MIQP, δ1 and δ2 are also reported. Due
to the space limitation, only the daily costs of the first week
and the total cost of 14 days are shown. The MIP gap of
Gurobi solver is set to 0.0001%, so we can assume that the
percent deviations in Table III are equal to the gap between
the results of DQN or the proposed algorithm and the optimal
value. As shown in Table III, the daily operation cost and
percent deviation of the proposed algorithm is smaller than
that of the DQN. The computing time of the 14 testing days of
DQN, multi-step deep Q-learning, and MIQP are 1.61s, 1.37s,
and 8.37s respectively. Note that the optimization periods of
MIQP in table III are two days and we extract the operation
cost of the first day from the optimization result.

Table III: Daily operation cost of DQN, n-step Q and MIQP
Day DQN ($) n-step Q ($) MIQP ($) δ1(%) δ2(%)

1 238,714 238,653 238,153 0.24 0.21
2 215,132 212,440 209,788 2.55 1.26
3 208,069 205,525 203,356 2.32 1.07
4 228,218 227,506 226,968 0.55 0.24
5 228,584 227,704 227,072 0.67 0.28
6 227,857 225,512 225,082 1.23 0.19
7 227,477 225,297 224,952 1.12 0.15

14-Total 3,109,900 3,086,561 3,070,433 1.29 0.53

To verify the robustness of the proposed algorithm, we
perform 10 independent experiments with different random
seeds. The percent deviations of the daily costs of the 14
testing days between multi-step deep Q-learning and MIQP
is shown is Figure 3. The daily costs of the testing days in 10
experiments are identical expect for two runs in most days.

Figure 3: Box plot of testing days’ operation costs.
Table IV: Total cost of the 14 testing days under different
hyperparameters

n

($) K
4 9 14 24

4 3,100,952 3,092,026 3,104,284 3,088,305
8 3,095,295 3,087,631 3,090,681 3,086,205

12 3,091,644 3,102,634 3,096,974 3,090,424
16 3,102,398 3,090,878 3,089,610 3,087,306
20 3,096,879 3,089,342 3,088,598 3,087,165
24 3,095,571 3,087,700 3,094,630 3,086,634

Table IV shows the total costs of the 14 testing days using
different values for hyperparameters K and n. Also, we run

5 independent experiments with different seeds to calculate
the average total operational cost. We can see that when
K = 24 and n = 8, the proposed algorithm yields the lowest
operational cost of $3,086,205.

V. CONCLUSION

This paper proposes a multi-step deep reinforcement learn-
ing algorithm to solve the UC problem, which is formulated
as a Markov decision process. We use deep networks to
parameterize an approximate action-value function and de-
sign an algorithm to determine the feasible action space.
Numerical studies on a 5-unit UC test case show that our
proposed algorithm outperforms the DQN significantly and
almost matches the global optimal solutions identified by
MIQP. The advantage of the proposed multi-step deep Q-
learning algorithm over MIQP is in terms of computation time.

REFERENCES

[1] T. Senjyu, K. Shimabukuro, K. Uezato, and T. Funabashi, “A fast
technique for unit commitment problem by extended priority list,” IEEE
Transactions on Power Systems, vol. 18, no. 2, pp. 882–888, 2003.

[2] Z. Ouyang and S. Shahidehpour, “An intelligent dynamic programming
for unit commitment application,” IEEE Transactions on power systems,
vol. 6, no. 3, pp. 1203–1209, 1991.

[3] M. Carrión and J. M. Arroyo, “A computationally efficient mixed-integer
linear formulation for the thermal unit commitment problem,” IEEE
Transactions on power systems, vol. 21, no. 3, pp. 1371–1378, 2006.

[4] M. P. Nowak and W. Römisch, “Stochastic Lagrangian relaxation applied
to power scheduling in a hydro-thermal system under uncertainty,”
Annals of Operations Research, vol. 100, no. 1, pp. 251–272, 2000.

[5] G. Purushothama and L. Jenkins, “Simulated annealing with local
search-a hybrid algorithm for unit commitment,” IEEE transactions on
power systems, vol. 18, no. 1, pp. 273–278, 2003.

[6] S. A. Kazarlis, A. Bakirtzis, and V. Petridis, “A genetic algorithm
solution to the unit commitment problem,” IEEE transactions on power
systems, vol. 11, no. 1, pp. 83–92, 1996.

[7] W. Wang, N. Yu, Y. Gao, and J. Shi, “Safe off-policy deep reinforcement
learning algorithm for volt-var control in power distribution systems,”
IEEE Transactions on Smart Grid, vol. 11, no. 4, pp. 3008–3018, 2020.

[8] G. Dalal and S. Mannor, “Reinforcement learning for the unit commit-
ment problem,” in 2015 IEEE Eindhoven PowerTech. IEEE, 2015, pp.
1–6.

[9] N. K. Navin and R. Sharma, “A fuzzy reinforcement learning approach
to thermal unit commitment problem,” Neural Computing and Applica-
tions, vol. 31, no. 3, pp. 737–750, 2019.

[10] F. Li, J. Qin, and W. X. Zheng, “Distributed Q-learning-based online
optimization algorithm for unit commitment and dispatch in smart grid,”
IEEE transactions on cybernetics, vol. 50, no. 9, pp. 4146–4156, 2019.

[11] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT Press, 2018.

[12] A. J. Wood, B. F. Wollenberg, and G. B. Sheblé, Power generation,
operation, and control. John Wiley & Sons, 2013.

[13] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, “Playing atari with deep reinforcement learn-
ing,” in NIPS Deep Learning Workshop, 2013.

[14] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep rein-
forcement learning,” in International conference on machine learning.
PMLR, 2016, pp. 1928–1937.

[15] C. Watkins, “Learning from delayed rewards,” PhD thesis, King’s
College, University of Cambridge, 1989.

[16] Y. Gao, W. Wang, and N. Yu, “Consensus multi-agent reinforcement
learning for volt-var control in power distribution networks,” IEEE
Transactions on Smart Grid, vol. 12, no. 4, pp. 3594–3604, 2021.

[17] N.-P. Yu, C.-C. Liu, and J. Price, “Evaluation of market rules using
a multi-agent system method,” IEEE Transactions on Power Systems,
vol. 25, no. 1, pp. 470–479, 2009.

[18] Gurobi. (2021, May) The gurobi optimization website @ONLINE.
[Online]. Available: https://www.gurobi.com/products/gurobi-optimizer/

2021 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)

145
Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on February 13,2022 at 21:59:20 UTC from IEEE Xplore. Restrictions apply.

		2021-12-10T13:00:38-0500
	Certified PDF 2 Signature

