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Abstract

Higher penetration of intermittent solar photovoltaic (PV) systems in the dis-
tribution grid results in frequent voltage fluctuations. The conventional volt-
age regulating devices operating on a slow-timescale need to be supplemented
with the fast-operating smart inverters with adjustable reactive power setpoints.
Complete and accurate information about distribution network topology and
line parameters is necessary for conventional model-based Volt-VAR control
(VVC) methods. However, such information is often unavailable. To tackle
these challenges, a reinforcement learning-based two-timescale VVC algorithm
is proposed in this paper that jointly controls the conventional voltage regulating
devices at the slow-timescale and the smart inverters at the fast-timescale. Our
proposed VVC algorithm simultaneously minimizes voltage violation costs and
system operation costs in a model-free manner utilizing historical operational
data. Two hierarchically organized agents are set up for the slow-timescale and
fast-timescale problems, which are coupled through a communication scheme.
The two sets of control policies are learned concurrently by a deep deterministic
policy gradient and multi-agent soft actor critic algorithm respectively. Com-
prehensive numerical studies performed with the IEEE 123-bus distribution test
feeder show that the proposed framework can identify near optimal control ac-
tions of voltage regulating devices and smart inverters in real-time operations.

Keywords: Two-timescale, Volt-VAR control, smart inverters, high solar PV
penetration, reinforcement learning.

1. Introduction

In the past decade, there has been an increasing penetration of renewable re-
sources such as solar photovoltaic (PV) systems in power distribution networks.
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Globally, the share of renewables in electricity supply rose from 19% in 2008
to 26% in 2019 [1]. The global roof-mounted solar PV capacity is projected to
be between 40.2 GW and 83.7 GW in 2023 [2]. Distributed energy resources
(DERs) including solar PV, battery storage, electric vehicles (EVs), and load
controlled by demand response (DR) have been growing in the distribution net-
work.

While the DERs provide benefits for electricity systems, customers, and the
environment, they also create new challenges for the distribution network [3].
The challenges include capacity constraints, power quality issues such as voltage
violations, adverse impacts on protection systems due to bidirectional power
flow, and reduced hosting capacity [4]. Specifically, high solar PV penetration
in the distribution network creates serious operation challenges such as over-
voltages and increased line losses [5]. Moreover, the intermittent nature of solar
energy can cause fast and large voltage fluctuations in the distribution grid [5].
Thus, maintaining distribution system voltages within acceptable limits in the
presence of high solar PV penetration is a major challenge [6].

Volt-VAR control (VVC) has been introduced to reduce voltage violations
and network losses in the power distribution system. In the conventional VVC,
the operations of voltage regulating devices such as voltage regulators, on-load
tap changers (OLTC), and switchable capacitor banks are coordinated to achieve
this goal. Both centralized and decentralized model-based optimization meth-
ods are proposed for conventional VVC. These methods include oriented dis-
crete coordinate descent [7], branch-and-cut [8], nondominated sorting genetic
algorithm [9], fuzzification [10], and home energy management system coordi-
nation [11]. These control approaches determine the optimal hourly discrete
setpoints for the voltage regulating devices by solving an optimal power flow
(OPF) problem. However, these mechanical devices are usually operated at a
slow-timescale e.g., 15-minute to hourly, due to the wear and tear associated
with mechanical switching. As a result, conventional VVC is not adequate
for distribution systems with fast and uncertain voltage fluctuations associated
with solar PV generation. Moreover, solving the optimization-based VVC re-
quires solving mixed-integer programming problems which can be NP-hard [12].
The computational complexity of this formulation grows exponentially with the
network size and the number of VVC devices. Relaxation techniques such as
McCormick relaxations [13], linearization techniques [14], and semi-definite pro-
grams [12] can be employed to formulate the problem as a convex OPF problem.
However, these approaches can be computationally expensive and do not guar-
antee a global optimal solution.

In addition to the conventional VVC, which focuses on voltage regulating
devices, new VVC potentials are being explored through the control and coordi-
nation of DERs. Reference [15] proposes a distributed EV charging coordination
and fast vehicle-to-grid VAR dispatch scheme to improve voltage quality. Mo-
bile energy storage system scheduling is leveraged in a joint optimization of
VVC in [16]. In [17], a hybrid architecture of both centralized and distributed
control with the coordination of solar PVs and demand response is proposed.

Smart solar PV inverters can provide fast and continuous active and reactive
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power control with low operational costs. They are equipped with two-way com-
munications which allow remote control systems to change inverter setpoints.
As a result, smart inverters can be operated at a fast-timescale e.g. every minute
for VVC according to the IEEE 1547a-2020 standard [18] to mitigate frequent
voltage variations in distribution feeders. Model-based optimization approaches
for smart inverter control can be broadly divided into three categories: central-
ized [19, 20, 21], distributed [22, 23, 24], or local control approaches [25, 26].
These control approaches determine the reactive power and/or active power
setpoints of PV inverters by solving an OPF problem. The nonlinear DistFlow
[27] model is used for distribution system OPF formulations. Convex relaxation
techniques such as second-order cone program can be applied to formulate and
solve the nonconvex optimization problem [19]. Other local control approaches
calculate the reactive power setpoint of smart inverters using droop control [28].

To coordinate the operation of VVC devices at different timescales, re-
searchers developed two-timescale model-based VVC by augmenting the slow-
timescale VVC of conventional voltage regulating devices with fast-timescale
smart inverter control [29]. References [30] and [31] formulate the VVC as a cen-
tralized optimization problem. The conventional VVC devices include capacitor
banks [31, 30] and OLTCs [31, 32]. Reference [33] proposes bi-level Volt-VAR
optimization method to achieve conservation voltage reduction benefits.

There is one major drawback of the existing model-based VVC methods.
The model-based optimization approaches rely on accurate and complete dis-
tribution network models [34, 35] such as topology [36, 37] and line parameters
[38]. However, it is difficult for regional electric utilities to maintain accurate
reliable network models for the primary and secondary feeders. Data-driven
approaches can eliminate the need for accurate distribution network topology
and parameter information. For example, reference [39] proposes an extremum
seeking (ES) control algorithm for VVC in the distribution network by intro-
ducing sinusoidal perturbations to extract gradient information. Reference [40]
uses multiple linear regression to determine a function that relates a set of lo-
cal features to the optimal reactive power injection for VVC. Support vector
machine-based methods have been developed for slow-timescale [41] and fast-
timescale [42] VVC. Among the data-driven approaches, deep reinforcement
learning (DRL) has been found to be suitable for control and optimization prob-
lems. DRL can identify optimal VVC control strategies from data by learning
which VVC actions yield the most return by trying them. Researchers have de-
veloped DRL-based algorithms for slow-timescale VVC problems [43, 44, 45, 46]
and the fast-timescale smart inverter control problem [47, 35, 48]. Reference [43]
proposes a constrained soft actor-critic based VVC algorithm to determine the
optimal tap settings of voltage regulating devices. Reference [44] proposes a
batch reinforcement learning (RL) algorithm to determine the optimal setting
of load tap changers. Reference [45] enhances DRL with a supervised learning
model that learns the VVC operating environment. Reference [46] integrates
graph neural networks in DRL to model the VVC operating environment. In the
fast timescale, reference [47] proposes a fully distributed multi-agent-based RL
method for optimal reactive power dispatch of smart inverters. Reference [35]
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utilizes a multi-agent constrained soft actor-critic (MACSAC) algorithm to co-
ordinate the reactive power dispatch of multiple smart inverters. Reference [48]
develops a deep deterministic policy gradient (DDPG) based VVC algorithm
for optimal reactive power dispatch of multiple smart inverters.

Data-driven approaches can be utilized to solve the two-timescale VVC
problem. A two-timescale VVC framework is developed in [49]. For the slow-
timescale, deep Q-learning is used to determine the switching schedule of ca-
pacitors. For the fast-timescale, an optimization-based approach is adopted to
control the smart inverters. However, the model of the secondary feeders is
still needed in the optimization-based fast-timescale control. In reference [50],
a two-stage DRL method is proposed for inverter-based Volt-VAR control in
active distribution networks. The operations of the slow-timescale VVC devices
are scheduled in the offline stage in a model-based manner using theoretical pa-
rameters to build the approximate active distribution network model. An offline
agent robust to the model mismatch is trained using a highly efficient adversarial
RL algorithm. However, the existing data-driven approaches for two-timescale
VVC still use some components of the power distribution system model, which
may not be available in practice. Another two-timescale data-driven VVC algo-
rithm is developed in [51]. The DDPG is used to learn the control policy for the
fast-timescale VVC, while the primary feeder’s slow-timescale VVC is done by
a model-based approach. It would be advantageous to make the two-timescale
VVC framework entirely model-free.

Reference [52] designed a novel physical-model-free two-timescale voltage
control framework for distribution systems. The network is partitioned into
several sub-regions, each defined as an agent. In the fast timescale, PV invert-
ers’ scheduling is modeled as Markov games and solved by a multi-agent soft
actor-critic (MASAC) algorithm. In the slow timescale, OLTCs and capacitors
are controlled by the soft actor-critic (SAC) algorithm. The agents in two dif-
ferent timescales are coordinated by the reward signal. However, the framework
has two limitations. First, as the fast timescale policy is not fixed, the environ-
ment becomes non-stationary from the perspective of the slow-timescale agent.
This violates the stationarity and Markovity assumptions. To address this prob-
lem, we propose to solve this non-stationarity problem by extending the use of
centralized training and decentralized execution (CTDE) framework to the two-
timescale RL setting. Second, reference [52] does not include the degradation
cost of PV inverter into the objective of VVC problems. If the degradation costs
of the PV inverters are not considered, there is no dependency between the reac-
tive power control actions of the smart inverters. For this reason, the scheduling
of the smart inverters at the fast timescale could be simply formulated as a con-
textual multi-armed bandit problem [53]. Our framework considers the inverter
degradation cost thus justifies the MDP formulation.

In this paper, we take the next logical step to our previous paper [51] by
developing a two-timescale multi-agent RL-based VVC algorithm, which does
not rely on any primary or secondary feeder information. Since two DRL agents
are employed to produce discrete actions at the slow-timescale and continuous
actions at the fast-timescale, we need to ensure that the learning environment is
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stationary. Additionally, the agents should have information about the actions
taken by the other to learn the optimal policy. To tackle these challenges, we
propose two hierarchically arranged sets of policies that are learned and executed
at two different timescales. The two policies interact with each other via a com-
munication medium and must be learned simultaneously. In the slow-timescale,
a MASAC-based approach is adopted to determine the tap positions of voltage
regulators, OLTCs, and switchable capacitor banks [54]. In the fast-timescale,
a deep deterministic policy gradient (DDPG)-based algorithm is employed to
determine the setpoints of the reactive power of smart inverters [55]. We de-
sign a communication scheme for the DRL agents in two different timescales
to exchange information and learn the control policy concurrently. The unique
contributions of this paper are summarized below.

• We develop an entirely model-free RL-based two-timescale VVC for distri-
bution networks, which does not rely on any feeders’ topology or param-
eter information. The hierarchically organized slow-timescale and fast-
timescale RL agents communicate with each other to learn the optimal
control policies concurrently and efficiently.

• The proposed fast-timescale controller considers the degradation cost of
smart inverters in the sequential decision-making process of the VVC prob-
lem. The degradation cost introduces dependencies between actions at
different times, thereby justifies the use of the full MDP formulation.

The rest of the paper is organized as follows. Section 2 presents the overall
framework of the two-timescale VVC problem. Section 3 provides the problem
formulation of the slow-timescale VVC and fast-timescale smart inverter control.
Section 4 presents the technical methods, which include DDPG, MASAC, and
the proposed two-timescale VVC algorithm. Section 5 shows the numerical
study results. Finally, Section 6 states the conclusions.

2. Two-timescale VVC Framework

We consider a power distribution system with both conventional voltage-
regulating devices and smart inverters. The smart inverters control reactive
power setpoints of solar PV systems. The overall framework of the two-timescale
VVC is shown in Fig. 1. The framework is composed of a slow-timescale VVC
subproblem and a fast-timescale VVC subproblem. Both are solved by DRL-
based algorithms. In particular, two separate agents are set up for the slow-
and fast-timescale subproblems, which communicate with each other to cooper-
atively achieve the global objective. The conventional voltage regulating devices
are operated at a slow-timescale on a 15-minute to hourly basis. Within each
15-minute interval or each hour, the tap and switching positions of these volt-
age regulating devices are kept fixed and used as part of the state space of the
fast-timescale agent. In the fast-timescale VVC, the reactive power setpoints
of smart inverters are determined for every minute t to mitigate voltage vi-
olations caused by rapid fluctuations in the solar PV generation. The smart
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Figure 1: The overall framework for the proposed RL-based two-timescale VVC

inverter dispatch schedule, the tap positions, and switching schedules of the
voltage regulator, OLTCs, and capacitor banks are determined jointly with a
hierarchically arranged multi-agent RL algorithm. It utilizes a SAC algorithm
in the slow timescale and a DDPG algorithm in the fast-timescale. Rewards
collected within an hour or a 15-minute interval by the fast-timescale agent are
used as part of the reward collected by the corresponding slow-timescale agent.
The two-timescale DRL-based VVC algorithm is presented in Section 4.2.

3. Problem Formulation

In this section, we first introduce the notations and problem setup. Then,
we discuss the mathematical formulation of the two-timescale VVC problem.
Finally, we formulate the VVC problem as a multi-timescale Markov decision
process (MDP).

3.1. Notations and Problem Setup

We consider a radial distribution feeder of N buses represented by a graph
G := (N ,L), whereN := {1, . . . , N} is the set of nodes and L := {(m,n) ⊂ N ×N}
is the collection of edges representing distribution line segments. Each line’s re-
sistance and reactance is denoted as rij and xij respectively. Let vi be the
complex voltage phasor at node i ∈ N and ui = |vi|2. Let Iij , Pij , and Qij
be the complex current, real and reactive power flowing from node i to node j,
respectively. ℓij = |Iij |2 is the current magnitude squared.

In this paper, we consider Nr smart inverters and Nc conventional voltage
regulating devices such as voltage regulators, OLTCs, and capacitor banks as
the VVC devices. A voltage regulator is placed at the reference bus. Switchable
capacitor banks and OLTCs are installed at different locations on the feeder.
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Each of the voltage regulators and OLTCs has K discrete tap positions with a
step size of Creg and Ctsf , which respectively correspond to the change in turns
ratios. The switchable capacitor banks have on/off positions. These devices
are operated at a slow-timescale e.g. every hour or every 15-minute τ . Let
tapregτ and taptsfτ , and tapcapτ indicate the tap position of the voltage regulators,
OLTCs, and the switch status of the capacitor banks at time τ , respectively.
Tap groups them all.

The reactive power setpoints of the smart inverters are determined at a fast-
timescale, e.g. every minute t, to mitigate voltage violations. Let Nr be the
nodes with inverters. Let pgi and qgi be the real and reactive power generation
from the smart inverter connected solar PV system at node i, and pGi and qGi be
the total real and reactive power generation from the solar PV systems. Let p̄git
be the available solar PV production at time t for inverter i, which is determined
by solar irradiance and the inverters’ nameplate capacity S̄i.

Let pci and q
c
i be the real and reactive power demand at node i; pi + jqi be

the net complex power injection at node i where pi := pGi −pci and qi := qGi −qci .
At any time t, the real and reactive power generation from smart inverters,
electric demand pgit, q

g
it, p

c
it, q

c
it, and the settings of voltage regulators, OLTCs,

and capacitor banks determine the voltages and power flows on the distribution
network.

3.2. Optimization-based Volt-VAR Control Methods

This subsection formulates the two-timescale VVC as an optimization prob-
lem, which serves as a baseline algorithm for this study.

3.2.1. Slow-Timescale VVC Using Voltage Regulation Devices

The slow-timescale VVC at the beginning of each hour or a 15-minute in-
terval τ is constructed as a model predictive control (MPC) problem [56]. The
tap positions at the current time interval τ are selected to minimize the op-
erational cost of the distribution network over a time horizon τh while sat-
isfying the operational constraints. The DistFlow equations are of the form
gs (X) = b. The operational cost has three components: line real power loss,
JL,τ :=

∑
(i,j)∈L Cerijℓijτ , switching cost due to the absolute change in tap

position of the Nc number of VVC devices between consecutive time steps,
JTap,τ :=

∑Nc

j=1 CTap|Tapj,τ − Tapj,τ−1|, and the voltage violation cost when
the voltage magnitude is not within the desirable range:

JV,iτ =

{
Cv(uiτ − 1)

2
if |vi| < 0.95 or |vi| > 1.05

0 otherwise
(1)

Here, Ce, Cv and CTap are electricity price ($/MWh), voltage violation cost
($/volt) and switching cost ($/tap change) respectively. A voltage violation
cost dependent on the magnitude of the voltage violation is chosen instead
of a non-dimensional value or voltage deviation cost so that the distribution
network can tolerate small voltage violations and eventually arrive at an overall
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lower operational cost. The MPC-based slow-timescale VVC is formulated as a
mixed-integer nonlinear programming (MINLP) problem as (2)-(3).

min
Tapτ:τ+τh

τ+τh∑
τ

(JL,τ + JV,τ + JTap,τ ) (2)

s.t. gs (X) = b, Xl ≤X ≤Xh (3)

X := (Pτ :τ+τh ,Qτ :τ+τh ,uτ :τ+τh , ℓτ :τ+τh ,Tapτ :τ+τh)

Note that in the baseline slow-timescale VVC framework, only real power in-
jection of inverters are considered. The reactive power set point is assumed
to be 0. Due to the highly nonlinear voltage violation cost, the slow-timescale
problem cannot be easily relaxed into a mixed integer second order cone pro-
gram (MISOCP). Since the convex relaxation cannot be performed easily, it is
difficult to obtain the global optimal solution. However, it suffices as a baseline
for comparison purposes.

3.2.2. Fast-Timescale VVC Using Smart Inverters

Smart inverters are controlled to absorb or inject power. The k-th solar
PV inverter has a maximum apparent power capability S̄k. The active power
output is set at the available solar PV production potential. The reactive power
output is limited by the inverter rating. If the inverter is not oversized, then it
can not provide reactive power compensation when p̄gkt = S̄k. The set of smart
inverter’s operating points FRPCk is defined as:

Fk :=

{
(pgkt, q

g
kt)

∣∣∣pgkt = p̄gkt, |q
g
kt| ≤

√
S̄2
k − (p̄gkt)

2

}
(4)

The MPC-based fast-timescale VVC is performed at every time slot t within each
interval τ . The tap positions of the conventional VVC devices are determined at
the start of the time interval τ by the slow-timescale VVC and kept fixed within
the interval τ . The optimal setpoints of the smart inverters are determined at
every minute t to minimize the operational cost of the distribution network over
a time horizon th while satisfying the operational constraints.

In addition to line loss and voltage violation, the operational cost includes
the inverter degradation cost. Fluctuations in the real and reactive power injec-
tion by smart inverters lead to temperature swings known as “thermal stress”
in the power switching devices such as insulated gate bipolar transistors (IG-
BTs) and diodes in the smart inverter. This thermal stress causes some of
the most frequent failures in power inverters, such as bond-wire liftoff and the
solder joint fatigue [57, 58]. Thus, the fluctuation of power injection needs
to be mitigated in order to maintain the reliability and prolong the lifetime
of power inverters [59, 60, 61]. Therefore, we model the inverter degrada-
tion cost proportional to the change in the reactive power levels of the in-
verter in consecutive time steps. If CI is the inverter degradation cost ($/watt
change in inverter power), then the inverter degradation cost is expressed by
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JI,t :=
∑
i∈Nr

CI

(∣∣∣pgi(t+1) − p
g
it

∣∣∣+ ∣∣∣qgi(t+1) − q
g
it

∣∣∣). Note that the active power

set points of smart inverters in this paper do not change in successive time steps.
The degradation cost term is shown in the general form. The MPC-based fast-
timescale VVC is formulated as follows:

min
qg
t:t+th

t+th∑
t

(JL,t + JV,t + JI,t) (5)

s.t. gf (X) = b, Xl ≤X ≤Xh (6)

X :=
(
Pt:th ,Qt:t+th ,p

g
t:t+th

, qgt:t+th ,ut:t+th , ℓt:t+th
)

(7)

Again, it is difficult to find the global optimal solution for this problem. How-
ever, it suffices as a baseline algorithm.

3.3. Formulate Volt-VAR Control as a Markov Decision Process

We briefly review the basics of the Markov decision process (MDP). An MDP
can be defined as a tuple consists of a state space S, an action space A = ℜM
(M is the dimension of the action space), an initial state distribution p (s1), a
transition probability p (st+1|st, at), and a reward function R : S ×A ∈ ℜ. The
agent interacts with the environment E according to some policy µ : S → A
to generate trajectories of the form s1, a1, r1, . . . , st, at, rt, . . . , sT , aT , rT , where
rt = R(st, at). The return from a state is defined as the sum of discounted

future reward Gt =
∑T
i=t γ

(i−t)R (si, ai) with a discounting factor γ ∈ [0, 1].
The goal of the agent is to learn a policy which maximizes the expected return
from the initial state J = Es∼p(s1)Eµ[Gt|s1 = s].

3.3.1. Fast-Timescale VVC as a Markov Decision Process

To formulate the fast-timescale VVC problem as an MDP, the distribution
system controller is treated as the agent and the distribution network is treated
as the environment. We define the state, action, and reward function as follows:

State. The state consists of the follows: reactive power injection of inverters of
the previous time step qgt−1; aggregated load pct at relevant nodes at time t; solar
PV production potential of the smart inverters determined by solar irradiance
and technical parameters of the solar PV systems p̄gt ; voltage magnitude at
each bus |vt|; current time t; and the current tap positions of voltage regulating
devices tapreg, taptsf , tapcap.

The current time τ can embed information about future load as electric load
has a time-dependent pattern. As a result, it is beneficial to consider it as a state
in the RL algorithm. The active and reactive load data at every node was not
available. We only had the aggregated hourly smart meter energy consumption
data from Austin, Texas in 2019 from the Pecan Street Dataset. The aggregated
load data is scaled and allocated to each node according to the existing spatial
load distribution of the IEEE standard test cases. Since each node is assumed
to have a constant power factor, we only use the aggregate load data as a state.
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Action. The reactive power outputs of the smart inverters are considered as
actions. The reactive power injected/absorbed by inverter i is limited by the

active power capacity of the inverter. It can be expressed by |qgit| ≤ q̄gRit where

q̄gRit =
√
S̄2
i − (p̄git)

2. We rewrite the equation as qgit = aq q̄
gR
it , where aq ∈ [−1, 1]

is the action space.

Reward. The reward received by the RL agent consists of three terms as shown
in (8): line loss, voltage violation costs, and the inverter degradation costs
formulated in the same way as in Section 3.2.2.

rt = − (JL,t + JV,t + JI,t) (8)

We consider a quadratic voltage violation cost in the reward function so
that the performance of our proposed VVC algorithm can be fairly compared
to the optimization-based baseline VVC algorithms. The inverter degradation
cost JI,t creates a dependency between the reactive power control actions of the
smart inverters taken at different time steps. As a result, the scheduling of the
smart inverters at the fast-timescale can be directly formulated as a MDP and
RL algorithms can be utilized to solve the fast-timescale VVC problem.

3.3.2. Slow-Timescale VVC as Markov Game

The slow-timescale policy should take into account the fast-timescale actions
taken within the hour/15-minute interval. Therefore, the slow-timescale policy
is formulated as an ordered two-player Markov game. Markov game is a multi-
agent extension of MDPs. An ordered Markov game is defined by an ordered
set of states S, and a collection of action sets, A1, . . . , Ak, one for each ordered
agent in the environment. State transitions are controlled by the current state
and one action from each agent: S × A1 × . . .× Ak → S′. Each agent i has an
associated reward function, Ri : S×A1× . . .×Ak → R. Each agent i attempts

to maximize its expected sum of discounted rewards, E
{∑∞

j=0 γ
jri,t+j

}
, where

ri,t+j is the reward received j steps into the future by agent i.
In our setup, the distribution system controller is treated as the agent and

the distribution network is treated as the environment. The slow-timescale
agent observes the state Sτ and selects action A according to a stochastic policy
π at the start of the time interval τ . The fast-timescale agent receives private
observations at each subsequent minute t within the time interval τ denoted
by O1:T = {O1, . . . , OT }, selects the corresponding actions denoted by a1:T =
{a1, . . . , aT }, and gathers rewards r1, . . . , rT . The slow-timescale agent receives
a reward Rτ : Sτ ×O1:T ×a1:t at the end of τ and produces the next state Sτ+1

according to the state transition function T : Sτ ×Aτ ×O1:T × a1:T → Sτ+1.
We define the state, action, and reward function as follows:

State. The state consists of aggregated load pcτ , solar PV generation p̄gτ at the
nodes with smart inverters at the start of time interval τ , current tap positions
of voltage regulating devices tapreg, taptsf , tapcap, and current time τ .
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Action. The action taken by the slow-timescale VVC agent is changing the tap
positions of the conventional VVC devices from Tap to Tap′. If Nc denotes
the number of conventional VVC devices and Ni denotes the number of tap
positions of device i, the size of the action space is

∏Nc

i=1 |Ni|.

Reward. The reward received by the slow-timescale RL agent is the negative of
the total operational cost at each minute t within time interval τ , i.e. the reward
collected by the fast-timescale agent within time interval τ and the switching
cost JTap,τ :

Rτ =

T∑
t=1

rt − JTap,τ (9)

4. Technical Methods

In this section, we describe the proposed two-timescale RL-based algorithm
to solve the VVC problem. Section 4.1 reviews the DDPG algorithm in order
to solve the fast-timescale VVC. The fast-timescale VVC agent has continuous
actions. SAC and DDPG implement a model-free policy gradient and value-
based method. Both algorithms are suitable for solving the fast-timescale VVC
problem. In [62], the authors compared the performance of Twin delayed DDPG
and SAC and found that their performance can be statistically indistinguishable
in most continuous control benchmarks. In our problem setting, we obtained
slightly better training and testing results by using DDPG in the fast-timescale
problem. Hence, we adopt the DDPG algorithm to solve the fast time-scale
VVC. Section 4.2 presents the proposed two-timescale algorithm to solve the
VVC problem along with the MASAC algorithm. The slow-timescale agent
has discrete actions. The soft actor-critic (SAC) algorithm can be modified to
produce discrete outputs. Section 4.3 describes our proposed policy network
architecture.

4.1. Review of Deep Deterministic Policy Gradient Algorithm

DDPG is an off-policy DRL algorithm with the actor-critic architecture and
function approximators. The actor network maintains a deterministic policy
µ using a neural network parameterized by θµ. To ensure exploration, noise
sampled from a noise process η, e.g., an Ornstein-Uhlenbeck process [63] is
added to the output: µ′ (st) = µ (st|θµt )+η. The critic network approximates the
corresponding Q function of the policy using the neural network parameterized

by θQ. To improve the stability of learning, two target networks Q′
(
s, a|θQ′

)
and µ′

(
s|θµ′

)
are introduced to provide stable learning targets. In addition,

the experience replay buffer is employed which stores the experience tuples
(st, at, rt, st+1) for neural network training.

Since the target policy is deterministic, the Bellman equation can be ex-
pressed as follows:
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Qµ (st, at) = E [R (st, at) + γ [Qµ (st+1, µ (st+1))]] (10)

The training of the critic network is based on minimizing the following loss
function using batches of experience with Nm number of transitions.

L =
1

Nm

∑
i

(
yi −Q

(
si, ai|θQ

))2
(11)

yi = R (si, ai) + γQ′
(
si+1, µ

′
(
si+1|θµ

′
)
|θQ

′
)

(12)

The parameters of the actor network are updated using the critic network and
the policy gradient algorithm with batches of experience with Nm transitions.

∇θµJ ≈
1

Nm

∑
i

∇aQ
(
s, a|θQ

)
|s=si,a=µ(si)∇θµµ (s|θ

µ) |si (13)

4.2. Proposed RL-based Two-Timescale Volt-VAR Control Algorithm

To tackle the two-timescale VVC problem in a model-free manner, we pro-
pose two hierarchically arranged policies π and µ for the slow-timescale VVC
and the-fast timescale VVC, respectively. They are coupled via a communication
medium following [64] and are learned concurrently. Two separate experience
relay buffers Dπ and Dµ are maintained to collect the transitions at two different
levels of temporal abstraction. A schematic is provided in Fig. 2.

At the start of each hour or 15-minute interval τ , the slow-timescale VVC
agent observes the environment state Sτ and takes an action Aτ , which changes
the OLTC and capacitor tap to Tapτ . At each minute t within τ , the tap
positions are kept fixed, i.e. Tap1

τ = Tap2
τ = . . . = TapTτ . Since the taps

are fixed, there is no non-stationarity from the perspective of the fast-timescale
agent (but not vice versa). As such, the tap positions Tapτ are communicated
to the fast-timescale agent to account for the slow-timescale policy. The fast-
timescale agent produces actions at to control the smart inverter reactive power
productions. The transitions (st, at, rt, st+1) are stored in the experience replay
buffer Dµ, which are used to train µ by the DDPG algorithm.

If the fast-timescale policy is fixed, the slow-timescale VVC problem is sta-
tionary and can be solved by a single agent RL algorithm such as SAC [65]. We
briefly review SAC as follows. SAC maximizes a trade-off between the expected
reward and the policy’s entropy:

π∗ = argmax
π

T∑
τ=0

E(Sτ ,Rτ )∼ρπ [γ (Rτ + αH (π (.|Sτ )))] (14)

The entropy for a stochastic policy at state Sτ is defined as H (π (.|Sτ )) =
−
∑
A

π (A|Sτ ) lnπ (A|Sτ ). Maximizing the entropy term increases the stochas-

ticity of the policy hence encourages exploration. The trade-off between the two
objectives is controlled by the non-negative temperature parameter α.
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Figure 2: The two-timescale volt- VAR control setting
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SAC makes use of three neural networks. The actor network πϕ parameter-
ized by ϕ learns a stochastic policy π that maps states to actions. The critic
network Qν parameterized by ν learns a Q-function Q (S,A) that estimates the
value of the current policy π. The value network Vψ parameterized by ψ learns
the state value function Vψ (S).

However, the fast-timescale agent’s policy µ is changing within the hour τ
with training and therefore the environment becomes non-stationary from the
perspective of the slow-timescale agent π. This violates the stationarity and
Markovity assumptions underlying RL and prevents the straightforward use of
experience replay. To address these challenges, reference [66] proposed a simple
extension of actor-critic policy gradient methods where the critic is augmented
with information about the policies of other agents. Their proposed Multi-agent
Deep Deterministic Policy Gradient (MADDPG) algorithm extends DDPG to
multi-agent settings by adopting a centralized training with decentralized exe-
cution (CTDE) framework. The primary motivation behind MADDPG is that,
if the actions taken by all agents are known, the environment is stationary even
if the policies change. Since the tap positions are fixed within an hour, there is
no non-stationarity from the perspective of the fast-timescale agent. The fixed
tap positions are used as a state in the fast time-scale VVC algorithm. In that
sense, the fast-timescale agent can act independently and does not have a strict
master-slave relation to the slow-timescale agent. This leads to an algorithm
that leverages the observations and actions of all agents to train a centralized
action-value function, whereas the policy of each agent only depends on its own
observations. Therefore, the agents can take actions in a decentralized manner
during the testing period while ensuring stable training. The CTDE framework
can also be combined with the SAC algorithm, which yields the multi-agent
soft actor-critic (MASAC) algorithm [67]. We further modify this algorithm to
accommodate for discrete action space needed for the conventional Volt-VAR
control devices.

In this paper, we take the idea of CTDE beyond its original field of ap-
plication: the multi-agent RL problem. Instead, it is used to solve the non-
stationarity problem of the two-timescale RL-based VVC. The pseudocode for
the two-timescale VVC algorithm is shown in Algorithm 1.

In our setting, the action taken by the fast-timescale agent depends only
on its own observations; the actions taken by the slow-timescale agent at the
start of the hour or 15-minute interval forms part of the states of the fast-
timescale policy. On the other hand, the reward obtained by the slow-timescale
agent depends on its state, the actions taken by the fast-timescale agent, and
the rewards obtained by the fast-timescale agent within the hour or 15-minute
interval. The state transition for the slow-timescale agent depends on its state
and the actions taken by the slow-timescale and fast-timescale policy.

Let the fast-timescale actions taken by and the private observations for the
inverter for all time steps within the time interval τ be aτ1:T = (a1, . . . , aT )

τ

and oτ1:T = (o1, . . . , oT )
τ
. The reward for the slow-timescale agent is calcu-

lated as the cumulative sum of the fast-timescale rewards for all time steps
within the time interval τ along with the switching cost, i.e. Rτ =

∑T
t=1 r

t-
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Algorithm 1 Reinforcement learning-based two-timescale VVC scheme

1: Initialize parameters ψ, ϕ, ν, θµ, θQ Dπ, Dµ, Nµ
2: Initialize target networks weights ψ′ ← ψ, θµ

′ ← θµ, θQ
′ ← θQ

3: Assemble the initial state vector S1 and s1
4: for τ = 1 . . . T do
5: Select action Aτ = πϕ (.|Sτ )
6: Update fast-timescale state st by utilizing Aτ

7: Set accumulated reward Rτ ← 0
8: for t = 1 . . . T do
9: Select action at = µ (st|θµ) + Nµ according to current fast-timescale

policy and exploration noise
10: Execute action at, reward rt, and next state st+1

11: Accumulate rewards Rτ ← Rτ + rt
12: Store (st,at, rt, st+1) in replay buffer Dµ

13: Randomly sample a random mini-batch of Nm samples from Dµ
14: Compute target yi using (12)
15: Update Q-function by minimizing loss in (11)
16: Update policy by one step of gradient ascent using (13)
17: Update target networks with

θQ
′
= ρθQ + (1− ρ)θQ′

, θµ
′
= ρθµ + (1− ρ)θµ′

18: end for
19: Observe next slow-timescale state Sτ+1

20: Store
(
Sτ , Aτ ,o

τ
1:T ,a

τ
1:T , Rτ , Ŝτ+1

)
in Dπ

21: Sample a random mini-batch of B samples from Dπ
22: Update V-function by minimizing loss in (15)
23: Update Q-function by minimizing loss in (17)
24: Update policy by minimizing loss (20)
25: Update target network parameters

ψ′ = ρψ′ + (1− ρ)ψ′

26: end for

∑
Tapτ − Tapτ−1. After the T -th fast timescale step within time interval

τ , the state of the environment becomes Sτ+1. The experience replay buffer
Dπ stores the experience tuples (Sτ ,Aτ ,o

τ
1:T ,a

τ
1:T , Rτ ,Sτ+1). The samples

obtained from Dπ are used to update the slow-timescale policy π. In or-
der to prevent non-stationarity, following the CTDE framework, our MASAC
uses the actions and observations of all agents in the action-value functions
Q (Sτ ,Aτ ,o

τ
t:T ,a

τ
t:T ), while the policy is only conditioned upon its own obser-

vations Aτ = πθ (Sτ ).
The value network Vψ is trained by minimizing the following approximate

squared residual error calculated over sampled mini-batch B from the replay
buffer Dπ.
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JV (ψ) =
1

|B|
∑
B

[
1

2

(
Vψ (Sτ ,o

τ
1:T ,a

τ
1:T )− V̂τ

)2
]

(15)

V̂τ = Qν
(
Sτ , Âτ ,o

τ
1:T ,a

τ
1:T

)
− α lnπϕ

(
Âτ |Sτ

)
, (16)

where Âτ is sampled according to the current policy Âτ ∼ πϕ (.|Sτ ). The
parameters of the action-value network Qν are updated by minimizing the fol-
lowing soft Bellman residual:

JQ (ν) =
1

|B|
∑
B

[
1

2

(
Qν (Sτ ,Aτ ,o

τ
1:T ,a

τ
1:T )− Q̂τ

)2
]

(17)

Q̂τ = Rτ + γVψ′
(
Sτ+1,o

τ+1
1:T , µ

′ (oτ+1
1:T

))
, (18)

where Vψ′
(
Sτ+1,o

τ+1
1:T , µ

′ (oτ+1
1:T

))
is estimated using a target value network Vψ′ .

The policy πϕ acts to maximize the expected future return along with the ex-
pected future entropy in each state, i.e. it maximizes V (S). In the case of
continuous actions, it is necessary to use the reparameterization trick to allow
gradients to pass through the expectations operator. However, it is no longer
necessary for the discrete actions which are sampled with the output distribu-
tion of the policy network. Now, with a slight abuse of notation, the policy
gradient can be derived similarly to the policy gradient theorem to maximize
the state-value function following [43]:

∇ϕV (S) ≈ ∇ϕ
∑
A

πϕ (A|S) (Q (S,A)− α lnπϕ (A|S))

= E
A∼πϕ

[∇ϕ lnπϕ (A|S) (Q (S,A)− α lnπϕ (A|S))]

= E
A∼πϕ

[∇ϕ lnπϕ (A|S) (Q (S,A)−V (S)− α lnπϕ (A|S))] (19)

The regularity condition
∑
A πϕ (A|S)∇θ lnπϕ (A|S) = 0 is used to derive

the second line. The loss function for updating the parameters ϕ of the policy
neural network is given by (20), whose partial derivative is the negative of (19).

Jπ (ϕ) =
1

B
∑
B

[
lnπϕ

(
Âτ |Sτ

)(
−Q

(
Sτ , Âτ ,o

τ
1:T ,a

τ
1:T

)
+V (Sτ ,o

τ
1:T ,a

τ
1:T ) + α lnπϕ

(
Âτ |Sτ

))]
(20)

4.3. Policy and Value Network Architectures

The neural network architectures for the value and policy functions need to
be carefully designed to handle the large input/output. First, the time series
inputs o1:T and a1:T are passed through two separate long short-term memory
(LSTM) networks [68], which convert the sequence of observations/actions to

16



Device 1

(softmax)

Device n

(softmax)

hT,cT
h1,c1

Hidden 

Layers

h0,c0

(Sigmoid)

Inputs (s)

o1 o2 oT

hT,cT
h1,c1h0,c0

a1 a2 aT

Inputs (o1:T)

Inputs (a1:T)

(ReLU activation)

Figure 3: Device-decoupled structure of the policy neural network with LSTM networks for
processing the action and observation time series

a fixed-size representation. The last cell state outputs of the LSTM networks
are treated as input to the policy neural network along with the state inputs
(Sτ ). Then, the device-decoupled structure and the ordinal encoding architec-
ture following [43] is used for the slow-timescale policy network. The overall
architecture for the slow-timescale policy network is depicted in Figure 3.

5. Numerical Study

The performance of the proposed two-timescale VVC in Algorithm 1 is tested
on a modified IEEE 123-bus test feeder.

5.1. Simulation Setup

The IEEE 123-bus test feeder has a voltage regulator at node 150. There are
three OLTCs connecting node 9 to node 14, node 25 to node 26, and node 160 to
node 67, respectively. Four capacitors are placed at node 83 (200 kVAr), node
88 (50 kVAr), node 90 (50 kVAr), and node 847 (50 kVAr). Three solar PV
systems with a nameplate capacity of 900 kW , 600 kW , and 360 kW are added
to the feeder at the nodes 70, 72, and 78, respectively. The inverters are not
oversized and the solar PV penetration level of the feeder is 73%. To illustrate
the algorithm’s capability for reactive power management with highly variable
load and high solar PV production conditions, we double the line impedances
so that the benefits of reactive power absorption are more pronounced.

All voltage regulators and on-load tap changers have 11 tap positions, which
correspond to turns ratios ranging from 0.95 to 1.05. The capacitors can be
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Table 1: Hyperparameter settings

Parameters DDPG MASAC LSTM
Size of hidden layers (512, 512) (512, 512) -
Activation function (hidden layers) ReLU ReLU -
Activation function (ordinal encoding) - Sigmoid -
Batch size 1000 1000 -
Discount factor 0.99 0.99 -
Learning rate actor and critic network 0.0001 0.00001 -
Standard deviation for exploration noise 0.2 - -
Number of epoch 1 1 -
temperature parameter - 0.2 -
Number of steps before running policy 200 500 -
Start updates after step 200 500 -
Hidden size (LSTM network for o1:T ) - - 4
Hidden size (LSTM network for a1:T ) - - 3

switched on/off remotely and the number of ‘tap positions’ is treated as 2. In
the initial state, the turns ratios of voltage regulators and on-load tap changers
are 1 and the capacitors are switched off. The electricity price Ce is assumed
to be $40/MWh. The operating cost per tap change is set to be $0.1 for all
devices. The penalty coefficient CV is set as $1/volt per node and time interval.
The inverter degradation cost CI is set to be $0.02/MW .

One year of load and solar PV generation data from Austin, Texas in 2019
was obtained from the Pecan Street Dataset [69]. The load data is scaled and
allocated to each node according to the existing spatial load distribution of the
IEEE 123-bus test feeder. The solar PV generation data is scaled according to
the corresponding nameplate capacity of the solar PV systems. The training
dataset consists of 39 weeks of data from weeks 1 to 39. During the training
period, the agents interact with the environment and update their policy and
value networks. Two weeks of data for weeks 40 and 41 are used for out-of-
sample testing, in which the trained RL agent takes control actions without
further updating the parameters of its neural networks. The hyperparameter
settings for the MASAC and DDPG algorithm of the proposed two-timescale
VVC are provided in Table 1.

5.2. Setup of the Baseline and Our Proposed Algorithms

Under the model-free RL-based control framework, we compare our pro-
posed two-timescale smart inverter control with a baseline RL algorithm where
the slow-timescale VVC and the fast-timescale VVC are trained separately. In
addition, we consider three model-based control algorithms as additional base-
line algorithms. Note that we assume the model-based control algorithms have
an accurate and complete distribution network model, which is an unfair ad-
vantage over the RL-based algorithms.
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The three model-based control algorithms and the RL-based baseline algo-
rithm are set up as follows:

1. Baseline 1: No VVC is executed.

2. Baseline 2: Only slow-timescale VVC is executed for a look-ahead horizon
of 4 hours following the method in Section 3.2.1. The smart inverters
operate at unity power factor with no reactive power injection/absorption
or active power curtailment.

3. Baseline 3: Slow-timescale VVC is executed for a look-ahead horizon of 4
hours following the method in Section 3.2.1. The fast-timescale VVC is
executed following the method in Section 3.2.2 for a look-ahead horizon
of 2 minutes. The look-ahead horizon enables the VVC algorithm to take
inverter degradation and the future smart inverter control actions into
account. It is assumed that the controller has perfect information for the
distribution network model, load, and renewable generation forecasts.

4. Baseline 4: A two-timescale VVC where the slow-timescale VVC and the
fast-timescale VVC are trained with the RL algorithm separately. The
slow-timescale VVC is solved using a soft actor-critic algorithm and the
fast-timescale VVC is solved using a DDPG-based algorithm. There is no
communication between the two agents.

The slow-timescale VVC in baseline methods 2 and 3 is formulated as a
mixed-integer nonlinear programming (MINLP) and solved by GUROBI using
the YALMIP toolbox [70] in MATLAB. The optimization-based fast-timescale
inverter control in baseline method 3 is solved using the Gurobi solver.

5.3. Operational Performance Comparison

We evaluate the performance of the proposed two-timescale reinforcement
learning-based VVC methods by comparing the total operational cost with the
four baseline control algorithms. A lower total operational cost indicates a
better control performance in voltage regulation. The total operational cost
includes the line loss, voltage violation cost, switching cost of the conventional
voltage regulating devices, and inverter degradation cost. Table 2 shows the
operational cost comparison of the proposed reinforcement learning-based two-
timescale VVC algorithm with the four baseline algorithms on the test dataset.
The result is based on the trained model, which achieves the best performance
out of 15 random experiments in the training dataset.

It can be observed from Table 2 that the slow-timescale VVC (Baseline 2)
alone does not provide sufficient voltage regulation as the rapid change in the
solar PV production within each hour causes high voltage violation. The pro-
posed RL-based two-timescale VVC algorithm achieves the second-lowest total
operational cost among all algorithms. Although the optimization-based two-
timescale VVC algorithm achieves the lowest operation cost, it requires complete
and accurate knowledge of primary and secondary distribution circuit models
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Table 2: Performance comparison of the Volt-VAR control algorithms in the test dataset

Operation
cost ($)

Baseline
1 (no
VVC)

Baseline
2 (slow-
timescale
VVC)

Baseline
3 (Opt-
based
VVC)

Baseline
4 (RL
sepa-
rately
trained
VVC

Proposed
two-
timescale
VVC

Proposed
two-
timescale
VVC
w/o
LSTM

Switching 0.0 42.68 42.68 0.70 66.40 4.80
Line loss 382.29 737.03 398.33 687.70 432.05 436.57
Voltage Vio. 7848.37 45.67 1.44 34.68 8.88 16.83
Inverter Deg. 12.15 12.15 32.65 25.33 27.93 26.70
Total 8242.82 837.53 475.10 748.41 535.27 484.92

and parameters, which are usually unavailable in practice. On the other hand,
the proposed RL-based two-timescale VVC algorithm is completely model-free.
Its performance is only slightly worse than the optimization-based VVC method
with perfect distribution network model and load forecast information. Finally,
an ablation study is performed to demonstrate the advantage of using an LSTM
network over a feedforward neural network to encode action and observation
time series. The last two columns of Table 2 show that the adoption LSTM
network in the RL-based algorithm further reduces the total operational costs.

The inverter degradation is the worst in Baseline 3 compared to the RL-
based algorithms because the MPC based optimization problem only has a
lookahead horizon of two minutes to minimize the inverter degradation whereas
the reinforcement learning algorithms can take the future inverter degradation
cost into account during the training via the reward function. As a result, the
optimization-based two timescale VVC changes the reactive power output of the
smart inverters frequently to achieve immediate lower operational cost which
ultimately results in a bigger inverter degradation cost. Although the current
level of inverter degradation cost is not affecting the performance ranking of
the proposed and baseline VVC algorithms, the size of the inverter degradation
cost is comparable to the difference between the proposed two-timescale VVC
algorithm and Baseline 3.

Next, we compare the voltage profiles of two baseline VVC algorithms with
that of our proposed RL-based two-timescale VVC. The voltage magnitude time
series of node 71 corresponding to the no VVC, slow-timescale VVC only, and
the proposed two-timescale VVC are shown in Fig. 4. Node 71 is selected
for the comparison because it experiences the worst voltage violation when no
VVC is employed. It can be seen that our proposed RL-based two-timescale
VVC significantly improves the voltage regulation performance. Furthermore,
our proposed two-timescale VVC is capable of maintaining the voltage within
1± 0.05 p.u. for almost the entire operating week.

To help exploration, we follow a uniformly random policy for a certain num-
ber of steps (see Table 1 for the hyperparameter) before running the real policy.
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Figure 4: Comparison of voltage deviations at node 71 for three VVC algorithms in the test
dataset

During this time, the load flow may not converge. If the load low does not
converge, the environment is programmed to return a large bounded line loss
and 0 for every node voltage, making it a large but bounded voltage violation
cost. Our proposed VVC algorithm quickly learns to avoid actions that lead to
divergence in load flow.

We employ two additional methods to facilitate the convergence of the pro-
posed two timescale VVC algorithm. First, during training, we collect a number
of environment interactions before gradient descent updates both in the slow and
fast timescale, as shown in the hyperparameter settings in Table 1. Second, we
start updating the slow timescale agent after the fast timescale agent has learnt
a reasonable policy and does not have a high negative reward.

To quantify the impacts of inverter degradation on the operational costs
of fast-timescale Volt-VAR controllers, a comparison analysis is conducted by
performing fast-timescale optimization-based VVC with 1-minute and 2-minute
look ahead horizon. As shown in Table 3, the total operational cost of the 2-
minute look-ahead control approach is lower than that of 1-minute look-ahead
control approach. The majority of the difference between the two schemes can
be explained by the inverter degradation cost. Thus, it is crucial to include the
inverter degradation cost in the proposed model and adopt a RL-based approach
to solve the VVC problem.

5.4. Sample and Computational Efficiency

Finally, the RL algorithm employed to solve the VVC problem should be
sample efficient. Here, we demonstrate the sample efficiency of the proposed
two-timescale VVC algorithm. The average biweekly return (AVR) on the test-
ing weeks is plotted against the number of training samples collected in Fig.
5. The AVR is defined as the summation of all the components of the reward
function accumulated over the testing period. The colored lines show the mean
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Table 3: Comparison of optimization-based VVC with 1-minute and 2-minute look-ahead

Operational cost ($) Optimzation based VVC
(2 minute look-ahead)

Optimzation based VVC
(1 minute look-ahead)

Switching 2.66 2.66
Line loss 27.65 28.09
Voltage violation 0.09 0.10
Inverter degradation 1.99 2.48
Total 32.39 33.33
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Figure 5: AVR vs number of weeks of training for the proposed, w/o LSTM, and separately
trained VVC algorithms
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algorithms

Table 4: Average computation time of the baseline and proposed VVC algorithms required to
process one hour of data

Computation
Time (Seconds)

Optimization-
based slow-
timescale VVC

Optimization-
based fast-
timescale VVC

Proposed
two-timescale
VVC

Operational time 182 913 -
Training time - - 2.08
Testing time - - 0.63

AVR calculated over 15 independent runs. The light-colored region corresponds
to the error bounds. It is observed that with about twenty weeks of training
data, the proposed algorithm is able to learn a very effective VVC policy. Figure
6 shows the boxplot of the mean AVR calculated over 15 independent runs with
40 weeks of training data. It is observed that the results are consistent across
different random initialization and training sessions. This demonstrates that
the training procedure for the proposed two-timescale VVC algorithm is fairly
robust.

The average computation time needed to process one hour of data for the
baseline and the proposed VVC algorithms are shown in Table 4. The computa-
tions for the proposed VVC algorithm are performed using a 3.30GHz Intel(R)
Core(TM) i9-9940X CPU and CUDA version 10.0.130 enabled GeForce RTX
2080 GPU. The training time and testing time for processing an hour of data
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are calculated by averaging the execution time of 10 weeks of training data and
2 weeks of testing data respectively. The convergence in our proposed two-
timescale algorithm required 20 weeks of training data and is achieved in about
two hours. The fast-timescale optimization-based VVC algorithm from baseline
3 is implemented using an Intel Xeon silver 4210 CPU with 15 parallel threads
workers for MATLAB. Lastly, the slow-timescale VVC algorithm from baseline
2 and 3 is implemented using an Intel Core i5-5200U CPU. It can be observed
from Table 4 that once trained, the proposed RL-based VVC algorithms can
make control decisions much faster than the GUROBI solver used in the non-
convex optimization-based VVC methods. Thus, the proposed two-timescale
RL-based VVC algorithm can be adopted for online implementations.

Table 5: Robustness analysis of the proposed VVC algorithm

Operational cost ($) Proposed
two-timescale
VVC

Proposed two-timescale
VVC with sample
inaccuracy

Switching 4.80 5.78
Line loss 436.57 487.38
Voltage violation 16.83 31.23
Inverter degradation 26.70 29.45
Total 484.92 544.84

5.5. Robustness Analysis

In practice, the reported voltage readings from smart meters are often time
synchronized, which lead to inaccurate training samples. To validate the robust-
ness of our proposed algorithm against inaccurate sensor data, we introduce a
1-minute shift in the voltage with a small probability of 1% during both training
and testing. The performance under this scenario is compared to the proposed
VVC algorithm with no voltage reading synchronization issue in Table 5. It is
observed that the performance of the proposed RL-based VVC algorithm de-
clines by 16.80%. However, it is still an 37.36% improvement over the separated
trained VVC in Baseline 4. In addition, it can be observed that the inaccu-
rate voltage readings mostly led to increased voltage violations and line losses.
This result is intuitive because the voltage violation cost and line losses highly
depend on the accurate voltage readings.

6. Conclusion

In this paper, we propose a model-free two-timescale Volt-VAR control al-
gorithm that does not depend on accurate primary or secondary feeder models.
Two hierarchically arranged policies are run at two different timescales. In the
slow-timescale, a soft actor-critic agent determines the tap positions of con-
ventional voltage regulating devices, such as the voltage regulator, on-load tap
changers, and switchable capacitor banks. On the fast-timescale, a DDPG agent
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determines the reactive power setpoints of the smart inverters. These two poli-
cies are coupled via a communication protocol and are learned concurrently.
The proposed RL-based two-timescale VVC algorithm is capable of maintain-
ing the voltage of the distribution grid within a reasonable range and almost
achieve the same operational cost as a model-based controller with perfect net-
work information, load, and renewable generation forecast. In addition, our
proposed VVC algorithm can handle unobservable distribution system as long
as measurements from critical parts of the network can be be gathered.

Our proposed RL-based algorithm approximates the value function, action-
value functions, and policy networks with neural networks. With a large number
of conventional VVC devices and smart inverters, the number of input features
and outputs in the neural networks will increase along with the size of the hidden
layers. However, neural networks are scalable and capable of handling thousands
of outputs. Therefore, in theory, our proposed algorithm will be able to handle
a large network. However, there are many challenges associated with large-
scale systems. For example, a large amount of training data would be required.
The VVC performance may degrade with a large number of features. As such,
feature selection techniques should be carefully developed. The training could
be slow and computationally intensive. In the future, We plan to extend our
proposed VVC algorithm and validate it on large-scale distribution networks
such as the the IEEE 8500-node test feeder.

There are several ways to further enhance the proposed RL-based VVC
algorithm. First, our proposed framework assumes that the topology of the
distribution network does not experience significant change during the training
and testing periods. If such changes occur, then the RL-based control policy
needs to be re-tuned using new samples corresponding to the updated topol-
ogy. In the future, we plan to develop RL-based VVC algorithms that can be
easily adapted to handle updated network topology and voltage controllers. Sec-
ond, integrating the existing local controllers for OLTCs, considering the hourly
reactive power dispatch of PVs along with the traditional VVC devices, or for-
mulating the two-timescale problem as a multi-timescale optimization problem
will further improve the performance of the baseline methods.
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