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Abstract—With the rapid expansion of distributed energy
resources in the distribution network, system operators need
accurate and real-time estimations of system states in order
to actively manage the distribution system. However, existing
metering infrastructure does not provide adequate support for
real-time monitoring in the distribution system. In this paper, we
propose a real-time, data-driven approach to estimate the nodal
voltage magnitudes in the distribution system. In this approach,
we first train a neural network that maps historical measure-
ments from distribution phasor measurement units (DPMUs) to
smart meter data. The trained neural network is then used to
estimate real-time nodal voltage magnitudes based on streaming
DPMU data. In addition, we design an approach to identify the
optimal locations to install DPMUs based on the facility location
function selection method. Numerical study results on an IEEE
test feeder show that our proposed method produces accurate
nodal voltage magnitude estimates. The facility location function
selection method also recommends DPMU candidate locations
that yield lower voltage magnitude estimation error.

Index Terms—Distribution system, state estimation, distribu-
tion phasor measurement units, facility location.

I. INTRODUCTION

The rapid expansion of distributed energy resources (DERs)
is changing the operational regime of the electric distribution
system. DERs introduce bidirectional power flows and the
higher likelihood of voltage violations. To actively control the
power distribution network, system operators need advanced
tools to monitor the distribution network states in real-time.

The existing metering infrastructure of the distribution sys-
tem does not provide adequate support for real-time moni-
toring. Although the increasing penetration of smart meters
improves situation awareness, their measurements are usually
not transmitted back to the control center in real-time. The
distribution phasor measurement units (DPMUs) provide real-
time time synchronized measurements at a higher sampling
frequency. However, the penetration rate of DPMUs is much
lower than that of the smart meters due to the high costs. The
goal of this paper is to develop a data-driven, real-time distri-
bution system state estimation (DSSE) algorithm that uses a
large number of smart meters and a small number of DPMUs.
In addition, we propose an algorithm to select installation
locations for DPMUs that improves state estimation accuracy.

The topic of state estimation has been extensively studied
for power transmission systems. In the conventional approach,
the state estimation task is often formulated as a weighted

least square (WLS) optimization problem, and various en-
hancements to this approach have been proposed to improve
the state estimation performance and robustness [1]. However,
these methods perform poorly when directly applied to the
power distribution system. This is because distribution systems
do not have the high level of metering data redundancy in
transmission systems and are thus unobservable [2].

One way to deal with the unobservability is to use “pseudo-
measurement” data, which are generated from historical load
data of the power distribution system [3]. To model the dis-
tribution system loads and their uncertainty, probabilistic and
statistical approaches such as expectation maximization (EM)
[4], correlation analysis [5], and spatial-temporal modeling [6]
have been proposed. To generate pseudo load data, machine
learning methods such as artificial neural networks (ANNs)
[7] and clustering algorithms [8] are proposed. If the pseudo-
measurements appropriately capture the statistical distributions
of the actual field data, the state estimation results with
augmented data could be satisfactory. The disadvantage of data
augmented state estimation approach is that it relies heavily on
accurate modeling of the distribution network. However, it is
difficult for electric utilities to maintain a precise distribution
network model [9], especially for secondary feeders [10].

Several approaches based on machine learning and data
mining are proposed to monitor the unobservable distribution
system. Matrix completion [11] and tensor completion [12]
are proposed to recover unobserved states from available
sensor data. However, accurate feeder models and parameters
are needed to form physical constraints such as power flow
equations. A Bayesian state estimation approach using deep
learning is proposed in [13], which requires accurate feeder
models to prepare training data. Neural networks are trained
to estimate nodal voltages of a single-phase [14] and three-
phase distribution systems [15] using measurements from the
supervisory control and data acquisition (SCADA) system.
However, the topic of optimal sensor location selection for
improving DSSE accuracy has not been thoroughly studied.

Several algorithms are proposed to find the optimal locations
of time synchronized measurements for the purpose of state
estimation. Integer programming, exhaustive search, and their
variations have been adopted to find optimal locations of
phasor measurement units (PMUs) in transmission systems
[16] and distribution systems [17], [18]. However, these ap-



proaches are designed for observable systems with redundant
measurements from PMUs and DPMUs. Thus, they do not
work in distribution systems with limited sensor coverage.
Techniques such as depth of unobservability and observability
propagation are proposed for incomplete observability [19],
but they are not designed for extremely low PMU coverage.

In this paper, we propose a real-time, data-driven approach
to estimate nodal voltages in the distribution system. In this
approach, we first train a feedforward neural network (FNN)
based on historical data of DPMU and smart meters. The
trained FNN is then used to estimate real-time nodal voltages
with DPMU data. In addition, we design an approach to find
the optimal locations of DPMU installation, based on facility
location analysis. Compared with the existing methods, our
proposed method is directly applicable to practical unobserv-
able distribution systems with limited real-time measurements.

The rest of the paper is organized as follows. Section II de-
scribes the problem setup and assumptions. Section III presents
the machine learning methodology for state estimation and the
optimal location selection for DPMU. Section IV evaluates
the performance of the proposed state estimation method and
DPMU location selection with a numerical study. Section V
states the conclusion.

II. PROBLEM SETUP

A. Objective of Selecting Installation Location of DPMU for
Data-Driven State Estimation

It is assumed that the distribution feeders already have
high penetration of smart meters. To further improve real-
time situational awareness, the system operator tries to install a
small number of DPMUs. In real-time distribution system state
estimation, we try to infer the voltage magnitudes recorded by
smart meters based on DPMU measurements. The objective of
selecting the installation location of DPMUs is to minimize the
estimation error of the data-driven state estimation algorithm.

B. Assumptions

1) Data and Model Availability: First, for a single-phase
load on phase i, the smart meter measures the voltage mag-
nitude of phase i. Second, for a two-phase delta-connected
load between phase i and j, the smart meter measures the
voltage magnitude across phase i and j. Third, for a three-
phase load on phase i, the smart meter measures the voltage
magnitude of one of three phases. Fourth, a DPMU is installed
at one of the nodes in the distribution network. The DPMU
measures the voltage of that node and the current of a primary
line connecting that node. The voltage measurement includes
three phases’ voltage magnitude and phase angle; the current
measurement includes three phases’ current magnitude and
phase angle. Thus, each DPMU has 12 input features. Since
the DPMU has a much higher sampling frequency than the
smart meter, the DPMU data is represented by the average
reading of the DPMU during the same measurement period
of the smart meter, so that the DPMU data and smart meter
match in terms of time instances. Fifth, we know the times-
tamp of the smart meter and DPMU, including hour, month,

weekday/weekend, holiday, and month. Sixth, the connectivity
model and the parameters of the primary feeder are known.
This assumption is used to identify the optimal installation
location of DPMU. All the measurement data of smart meters
and DPMUs are converted to per unit.

2) Input and Output of the State Estimation: As mentioned
earlier in this Section, the output of the state estimation is the
smart meter voltage magnitude. The input includes two types
of data. The first type is the DPMU measurement data. The
second type is the timestamp of the state estimation, which
includes hour, weekday/weekend, holiday, and month.

III. THE DATA-DRIVEN STATE ESTIMATION AND
OPTIMAL LOCATION SELECTION FOR DPMU

A. Machine Learning-based DSSE Method

We adopt a supervised machine learning model, feedforward
neural network (FNN), to learn the nonlinear mapping between
DPMU, timestamp information and the smart meter voltage
magnitudes. The development and validation of the machine
learning-based DSSE algorithm consists of three steps. First,
we preprocess the dataset and split it into training, valida-
tion, and testing datasets. The training dataset and validation
dataset represent the historical dataset recorded by the data
management system of the distribution network. The testing
dataset is used to perform and evaluate the real-time state
estimation. Second, we train the FNN based on the training
dataset and determine when to stop the training by using the
validation dataset. Third, we evaluate the performance of the
trained model using the testing dataset. Technical details of the
machine learning-based DSSE method are provided below.

1) Data Preprocessing and Split: We apply z-score nor-
malization on the DPMU data, i.e., the data is centered and
normalized by their standard deviation. This improves the
convergence in training. The weekday/weekend information is
represented by a binary variable. The binary variable is 1 if it is
a weekend, and 0 otherwise. Similarly, the holiday information
is represented by a binary variable, which is 1 if it is a holiday
and 0 otherwise. The cyclical encoding is used to encode
hour and month information. The k-th hour (k = 1, 2, ..., 24)
is encoded by [cos 2πk24 , sin

2πk
24 ]. Similarly, the k-th month

(k = 1, 2, ..., 12) is encoded by [cos 2πk12 , sin
2πk
12 ]. The dataset

is split randomly into three parts. 64% of the samples are
used as the training dataset. 16% of the samples are used as
the validation dataset for early stopping. The remaining 20%
of the samples are used as the testing dataset to evaluate the
FNN’s voltage estimation performance.

2) The Architecture and Training of FNN: The FNN con-
sists of three components: an input layer, three hidden layers
of 200 neurons, and an output layer. The number of neurons
in the input layer is equal to the number of input features,
and the number of neurons in the output layer is equal to the
number of smart meters. Each neuron has directed connections
to the neurons of the subsequent layer and each connection
has a corresponding weight. In the input layer, each neuron
corresponds to an input variable. In the hidden layer, each
neuron takes in the weighted sum of neurons from the previous
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layer (plus a bias term) and produces an output value by the
ReLU activation function. The output layer is a linear function
of the neurons in the last hidden layer. The FNN learns the
mapping from the input (DPMU data ad timestamp data) to
the output (smart meter voltage magnitudes) by minimizing
the mean squared error (MSE) between the estimated value
and the true value of smart meter voltage magnitudes.

In the training process, to avoid being trapped in a local
minimum, the training dataset is often randomly grouped into
small mini-batches. The FNN parameters (weights and biases)
are then updated based on samples of one mini-batch at a
time. When the model goes through all the mini-batches for
one time, it is called an “epoch”.

We use “early stopping” to determine when to stop training
the FNN model. When training FNN, the model may be over-
fitting after too many epochs. In the early stopping scheme,
we use the validation dataset to evaluate the accuracy of the
model on unseen data. If the performance on the validation
dataset is not improved after a number of epochs (called
“patience”), then the training is stopped. The model with the
best performance on the validation dataset is then chosen as
the trained model.

3) Evaluating the State Estimation Performance: After
training the machine learning model, its performance is eval-
uated based on the testing dataset. The trained model takes
DPMU and timestamp data as inputs to produce real-time
voltage magnitude estimates. Mean absolute percentage error
(MAPE) is used to measure the estimation accuracy.

B. Selection of Optimal DPMU Locations

Due to the high cost of DPMU, only a limited number of
DPMUs can be installed in a distribution system. We propose a
method to find the optimal locations of DPMUs that minimizes
voltage magnitude estimation errors of a data-driven DSSE.

Our proposed approach is based on the facility location
selection method [20]. The working principle is as follows.
Suppose we select a subset of locations Dselect ⊆ D, where
D is the set of all potential sensor locations. S is the set
of smart meters, and aij is the similarity or score between
sensor location di and smart meter sj . When the size of
Dselect is limited, the optimal selection of Dselect is derived
by maximizing the facility location selection function (1).

r(Dselect) =
∑
sj∈S

max
di∈Dselect

aij (1)

We need to solve two problems when selecting the opti-
mal DPMU locations based on the facility location selection
method. The first problem is how to combine the selection
of voltage measurement and current measurement locations.
For each DPMU, the node whose voltage is measured must
be connected to the branch whose current is measured. The
second problem is that the optimizing the facility location
function is in general NP-hard.

We design an algorithm to find the optimal DPMU locations.
In this algorithm, to combine the selection of voltage and

current measurement locations, we first rank the voltage mea-
surement nodes and current measurement branches separately
and then select the node-branch combination that has the
lowest sum of rankings. To make the optimization easier to
solve, we use a greedy algorithm, i.e., the DPMU locations are
selected one by one, and each time the best available DPMU
location is selected. Such a greedy optimization method has
been shown to provide a good approximation to the optimal
solution [21]. The details of the DPMU selection method
are shown in Algorithm 1. In the algorithm, step 1 ini-
tializes the set of selected DPMU locations to empty sets.
Step 2 calculates the similarity between voltage measurement
nodes/current measurement branches and the smart meters.
Step 3–8 represent the greedy algorithm and it stops when
N DPMU locations are selected. Step 9 returns the selected
DPMU locations in terms of the selected nodes and branches.
The calculation of φij and ψij in step 2 is explained below.

Algorithm 1 DPMU Location Selection
Input: Set of potential DPMU voltage measurement nodes V

and current measurement branches C, set of smart meters
S, number of DPMU installations N .

1: Set n = 0, V = ∅, C = ∅.
2: Calculate the similarity φij between each node vi ∈ V

and each smart meter sj ∈ S. Calculate the similarity ψij
between each branch ci ∈ C and each smart meter sj ∈ S.

3: repeat
4: Calculate rv(i) =

∑
sj∈S maxvk∈(V∪{vi}) φkj , ∀vi ∈

V and rc(i) =
∑
sj∈S maxck∈(C∪{ci}) ψkj , ∀ci ∈ C.

5: Rank all vi ∈ V in descending order of rv(i), and rank
all ci ∈ C in descending order of rc(i).

6: For each pair of vi ∈ V and cj ∈ C, such that the vi is
connected to cj in the distribution network, calculate the
the sum of the ranking of rv(i) and the ranking of rc(j).
The pair with the lowest sum of ranking is the chosen
voltage and current measurement location.

7: Suppose the chosen pair is vk and cl. Then V = V ∪
{vk}, C = C∪{cl}, V = V\{vk}, C = C\{cl}, n = n+1.

8: until n = N .
9: return The selected DPMU location V and C.

1) Similarity Score φij Between Node vi and Smart Meter
sj: Meter sj measures the voltage magnitude of 1 of the 6
phase connections: A, B, C, AB, BC, or CA. First, using
power flow, we can derive historical voltage magnitudes of
these 6 phase connections at node vi based on the connectivity
model, the parameters of the primary feeder model, and the
historical smart meter data. Second, we calculate sj’s voltage’s
absolute correlation coefficient with each of the 6 phases’
voltage. These correlation coefficients are different due to the
unbalanceness in the feeder. The highest absolute correlation
coefficient is then defined as the similarity score φij .

2) Similarity Score ψij Between Branch ci and Smart Meter
sj: Calculating φij is similar to ψij in Section III-B1. First,
using power flow, we can derive historical current magnitudes
in phase A, B, and C of branch ci based on the primary feeder
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model and historical smart meter data. Second, we calculate
meter sj’s voltage’s absolute correlation coefficient with each
of the 3 phases’ current. The highest absolute correlation
coefficient is defined as the similarity score ψij .

IV. NUMERICAL STUDY

A. Setup for Numerical Tests

We evaluate the performance of our proposed real-time,
data-driven state estimation method and DPMU location selec-
tion method with a modified IEEE 37-bus test feeder, which is
shown in Fig. 1. We modify the standard 37-bus test feeder by
introducing loads with all 7 types of phase connections, AN ,
BN . CN , AB, BC, CA, and ABC. The test circuits’ primary
feeder contains 21 line segments and 22 nodes, which serve
25 loads. The smart meter of the ABC-phase load is assumed
to measure the voltage of phase AN . We assume only one
DPMU is installed, which measures the voltage of one node
and the current of one primary line connecting the node. Thus,
there are 42 possible different DPMU locations.

Fig. 1. Schematic of a modified IEEE 37-bus test feeder.

We aggregate the half-hourly electricity load data (kWh)
from the London households [22] to simulate the instantaneous
real power (kW) of each load. The length of the real power
consumption time series is 17520, which represents 365 days
of measurements. The reactive power time series are calculated
by assuming a lagging power factor, which follows a uniform
distribution U(0.9, 1). The peak load of the 37-bus test feeders
is 2.4MW respectively. After running the power flow of the
test feeder using OpenDSS, we obtain the measurement of
smart meter and DPMU. To simulate the smart meter measure-
ment noise, we use zero-mean normal distributions with three
standard deviation matching 0.1% of the nominal values. The
0.1% accuracy class smart meters established in ANSI C12.20-
2015 represents the typical noise level in real-world advanced
metering infrastructure. To simulate the DPMU measurement
noise, we add simulated noise phasor to the measurement
phasor. The phasor’s angle noise follows a uniform distribution
U(0, 2π), and its magnitude follows a half-normal distribution
whose original normal distribution has a standard deviation
matching 1% of the nominal values. This 1% total vector
error (TVE) established in IEEE standard C37.118 represents
the typical noise level in real-world DPMUs. Note that the
simulated DPMU data is the average of measurements from
the device with a 60 Hz sampling frequency.

To evaluate the DSSE performance with different DPMU
locations, we build an FNN model for each of the 42 possible
DPMU locations. The input of FNN includes 12 DPMU
features (voltage and current magnitude and angle in three
phases), 1 binary variable representing weekday/weekend, 1
binary variable for holiday, 2 features for hour, and 2 features
of month. Thus, the input layer of FNN has 18 nodes. The
FNN’s output layer has 25 nodes corresponding to 25 smart
meters. The 17520 samples are randomly split into training
(64%), validation (16%), and testing (20%) datasets. The size
of mini-batches is 10 samples, the early stopping patience is
100 epochs. The FNN is trained using the Adam algorithm.

B. Performance of the State Estimation Method

We use MAPE to quantify the error of the proposed data-
driven DSSE algorithm. The average MAPE of the 42 tests
using different DPMU locations is 0.056%. The distribution
of the MAPE of each of the 42 tests is shown in Fig. 2. From
Fig. 2, we can see that the overall MAPE of these tests are
very low and the proposed data-driven DSSE is very accurate.
Fig. 3 shows two sample smart meters’ voltage estimations
versus the true values in 50 hours. Fig. 3 (a) is one of the
least accurate scenarios with MAPE=0.141%; Fig. 3 (b) has
the average performance with MAPE=0.055%. From Fig. 3
we can see that on average the voltage estimation is highly
accurate and even the worst case has decent estimation result.
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Fig. 2. Histogram of the MAPE of 42 tests using different DPMU locations.
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Fig. 3. Examples of voltage estimation.

C. Performance of the Optimal DPMU Location Selection

We rank the DPMU locations using our proposed selection
method in Section III-B. The selection method is evaluated
by examining the DSSE MAPE of using the top and bottom
ranked DPMU locations. Fig. 4 shows the DSSE MAPE of
using the top 5 and bottom 5 ranked DPMU locations. The
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box plot represents the distribution of the MAPE of all the
42 tests with different DPMU locations. The green diamond
and the red bar represent the mean and median MAPE of
all tests. From Fig. 4, we can see that the proposed facility
location selection method can find DPMU locations that have
higher DSSE accuracy. Although the selected top 5 locations
do not match exactly to the lowest 5 MAPE results of the
tests, the selection method still produces significantly lower
MAPE than random selection. The lowest MAPE of all the 42
tests is 0.048%, the average MAPE of using the top 5 ranked
DPMUs is 0.052%, the average MAPE of using the bottom
5 ranking DPMUs is 0.057%, and the highest MAPE of all
tests is 0.068%. We highlight the top 5 DPMU locations in
Fig. 1 using arrows. The arrow body aligns with the current-
measurement line segment and the arrow head points to the
voltage-measurement node.
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Fig. 4. MAPE of top and bottom ranked DPMU locations.

D. Distribution of Nodal Voltage Magnitude Estimation Error
System operators are also interested in the voltage magni-

tude estimation error of specific smart meters. To illustrate
this, we choose one of the top 5 DPMU locations identified
in Section IV-C and then choose a smart meter that has low
state estimation accuracy. Fig. 5 shows the distribution of the
absolute percentage error (APE) of this smart meter’s voltage
magnitude estimates. In Fig. 5, the estimation error of 3504
time samples in the testing dataset is organized by hour. We
can see that except for a small number of outliers (marked by
red plus signs), the absolute percentage error of the voltage
magnitude estimates are below 0.2%. This result shows that
the voltage magnitude estimates are extremely accurate.
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Fig. 5. Distribution of APE of a smart meter’s voltage magnitude estimates.

V. CONCLUSION

In this paper, we develop a real-time, data-driven state
estimation method for the distribution system. Our proposed
method is broadly applicable as it uses the readily available
smart meter data and limited DPMU data. The machine
learning model is trained to estimate nodal voltage magnitudes
using historical data of DPMU and smart meters. We also
design an approach to find the optimal locations of the DPMUs
based on the facility location selection method. Numerical
study results on an IEEE test feeder show that our proposed
method estimates the voltage states accurately, and the location
selection method can find the DPMU locations that have higher
estimation accuracy.
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