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ABSTRACT

In light of the growing concerns of global climate change, the pace of transportation electrification1

has greatly accelerated in recent years as an effort towards net-zero greenhouse gas (GHG) emissions.2

However, it remains unclear how to effectively deploy and operate public charging infrastructure to3

best serve an electrified transportation system within a multi-modal context while maximizing the4

benefits of decarbonization. This is especially true when considering the GHG emitted by generating5

one kWh of electricity, i.e. the electricity carbon intensity, varies across a day due the change of6

generation mix between renewable and fossil fueled resources. To address this question, we propose7

a mechanism of shared charging hubs that can provide holistic energy management for both electric8

buses (EBs) and passenger electric vehicles (EVs).The deployment and operation of shared charging9

hubs is determined by a new spatio-temporal optimization model which aims to minimize GHG10

emission given a budget limit while avoiding the occurrence of massive spikes in peak power demand.11

This is achieved by coherently accommodating the charging demand of EBs and EVs, and explicitly12

integrating the time-varying electricity carbon intensity and vehicle-to-grid (V2G) technology. To13

demonstrate its effectiveness, the model is applied to the bus fleets operated by seven transit agencies14

and the park-and-ride facilities (for EVs) near twelve rail transit stations in Contra Costa County,15

California, USA. The results show that the shared charging hubs can lead to significant GHG emission16

reduction while mitigating the peak electricity demand. This research will help policymakers and17

transportation agencies make more informed decisions regarding the planning and design of charging18

infrastructure.19

Keywords Decarbonization · Shared charging hub · Electricity carbon intensity · V2G20

1 Introduction21

Achieving net-zero global greenhouse gas (GHG) emissions by the mid of this century is essential to reaching the well-22

below 2oC and 1.5oC objectives of the Paris Agreement [Obergassel et al., 2016]. Transport sector produces more than23

16% of the global GHG emissions measured in CO2 equivalent (CO2e). In the US, France and several other developed24

countries, the transport sector accounts for around a third of the overall GHG emissions, and its pace of growth is the25

fastest among all economic sectors [Ritchie and Roser, 2020]. Hence, proper analysis and planning to decarbonize the26

transport sector is critical to fight against climate change. Transportation electrification is well-recognized as a key27

pathway towards this goal [Lutsey and Sperling, 2009, Pan et al., 2018, Sofia et al., 2020].28

Page 1 of 26

Manuscript File Click here to view linked References

https://www.editorialmanager.com/trc/viewRCResults.aspx?pdf=1&docID=9917&rev=1&fileID=124016&msid=0f52a19b-f0f8-4848-98f4-184afdd28c16
https://www.editorialmanager.com/trc/viewRCResults.aspx?pdf=1&docID=9917&rev=1&fileID=124016&msid=0f52a19b-f0f8-4848-98f4-184afdd28c16


Ye, Yu, Wei, and Liu Page 2 of 26

There are a variety of transportation modes in the modern multimodal transportation system, all of which are quickly29

embracing electrification. For example, the sales of passenger electric vehicles (EVs) in 2021 increased by 168%30

and 104% in China [CAAM, 2022] and the US [Gohlke and Zhou, 2021, Zhou, 2022], respectively, compared with the31

previous year. In some European countries EVs are drastically taking over the market. For example, EVs made up more32

than 80% of Norway’s new sales in 2021[Kane, 2022]. In the public transport sector, the adoption of electric buses (EBs)33

started in China, and its pace is now accelerating worldwide [Sustainable-Bus, 2020]. In Western Europe, the number of34

new EB registrations was 2,062 in 2020, while this number was only 562 in 2018 [Sustainable-Bus, 2018]. In the US, the35

EB deployment has grown by 24% in 2021, reaching 3,364 EBs [CALSTART, 2021]. The fast expansion of EB fleets in36

the near future is foreseeable. Recently in California, the state regulation requires that beginning in 2029, 100% of new37

purchases made by transit agencies must be zero-emission buses, with a goal for full transition by 2040 [CARB, 2019].38

The growing popularity of electrified transportation requires a similar scale-up of the charging infrastructure. While39

many countries have been making significant investment in the deployment of charging infrastructure, they separate40

different modes (e.g., EV and EB) in their designs and planning, rather than jointly considering them together. Given41

the ever-increasing interactions among these electrified transportation modes, it is essential to holistically integrate all of42

these modes into the strategic planning and design of the charging infrastructure to produce an efficient and low-carbon43

electrified transportation ecosystem.44

In this paper we propose that policy makers deploy shared charging hubs to provide integrative energy management45

for two of the most important electrified transportation modes, EVs and EBs. There are quite a few unique benefits46

associated with such shared charging hubs. First of all, the EB chargers and EV chargers can share common power47

equipment, e.g. distribution wires, converters, inverters, and sub-stations. Such a sharing scheme produces an economy48

of scale and makes the charging hub a potentially more cost-effective option compared to charging stations dedicated to49

a single mode. Secondly, the peak power demand can be mitigated through coordinated operations of EBs and EVs,50

which further reduces the immediate power capacity investment as well as the long-term electricity bills. Thirdly, the51

shared charging hubs can bridge different transportation modes. An important factor that hinders the usage of public52

transportation is the lack of connections between communities and transit facilities, also known as the first-and-last mile53

issue [Zuo et al., 2020]. Especially in the US, a dispersed land-use pattern is predominant outside urbanized regions54

and the use of fixed-route transit systems is implicitly discouraged [Lesh, 2013]. Such a situation could be improved by55

establishing a charging hub close to the transit stations. The ridership of transit will be potentially boosted through56

attracting EV owners to park, charge, and finally travel with the public transportation system. Similar effects can be57

found with riders of e-scooters and e-bikes.58

This article is outlined as follows: Section 2 provides a comprehensive review of the literature. Section 3 highlights the59

contributions of this article. Section 4 formulates the overall optimization framework, including the objectives and the60

necessary constraints and assumptions. Section 5 introduces the selected study area and how the required input data are61

obtained and processed. Section 6 presents the optimization results and analyzes their impacts and implications. Finally,62

conclusions and suggestions for future research are presented in Section 7.63

2 Literature Review64

2.1 Charging Infrastructure Planning65

There are many inspiring works regarding charging infrastructure planning in the existing literature. Most of the66

studies attempted to determine where charging stations should be located and how many chargers should be installed.67

Early pioneering work focused on EVs. [Frade et al., 2011] introduced a maximal coverage model to serve the68

node-based EV demand. [Jung et al., 2014] presented a bi-level programming method to locate charging stations69

for electric taxis through dynamically bridging the gap between global optimal and user equilibrium solutions of70

time cost minimization. [Zhang et al., 2017] connected the charging demand with traffic flow to capture its time-71

varying characteristic and formulated a capacitated flow refueling location model to handle the planning problem.72

Considering the locations of charging stations can impact the route choice of EV users, which further affects the traffic73

flow pattern, [Ghamami et al., 2020] developed an integrated model to determine routes and locations simultaneously.74

The utilization of real-world vehicle GPS data improved the estimation of charging demand, and resulted in a more75

informative planning [Yang et al., 2017, Kontou et al., 2019]. Range anxiety is a well-known obstacle to the adoption76

of EVs and in order to reduce it, [Kavianipour et al., 2021] proposed to model the charging behaviors in detail when77

planning the charging infrastructure. While the aforementioned model-based methods analyze the system from a78

top-down point of view, agent-based methods start from modeling micro-scale user behaviors and obtain the macro-scale79

characteristics through interactions between EVs, candidate charging stations, and road networks. Related work can be80

found in [Sweda and Klabjan, 2011, Sheppard et al., 2016, Pagani et al., 2019, Wolbertus et al., 2021].81
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In contrast to EVs, for which the charging demand can be generally approximated via stochastic modeling or derived82

from traffic data, EBs have exact and rigid operational schedules. In addition, the cost of converting one conventional bus83

(using either diesel or compressed natural gas as fuel) to an EB is substantial and this cost needs to be considered as most84

transit agencies rely on public funding. Therefore, the deployment of charging infrastructure for EBs requires careful85

planning to ensure that the energy demand of each individual bus is satisfied. Terminal charging is the most common86

assumption made in the existing literature. Under this assumption, [Kunith et al., 2017] simultaneously determined87

the minimum number and location of required charging stations for a bus network as well as the adequate battery88

capacity for each bus line by solving a capacitated set-covering problem. [Wei et al., 2018] developed a spatio-temporal89

optimization model to identify which bus in a fleet can be electrified and where charging stations should be built while90

the overall cost is minimized. Targeting a fully electrified fleet, [Stumpe et al., 2021] conducted a joint optimization to91

determine both charging infrastructure locations and vehicle schedules, and analyzed the sensitivity of location decision92

to the system parameters. In addition to terminal charging, battery swapping stations [Moon et al., 2020] and charging93

lanes [Liu et al., 2017] have also been investigated for applications in EBs. The cost competitiveness of different types94

of charging infrastructure was analyzed by [Chen et al., 2018].95

Multistage deployment is another interesting aspect of charging infrastructure planning. In addition to where and how96

much investment should be made, literature in this direction strives to answer the question of when to invest, with the97

objectives of meeting the growing charging demand and reducing idling of resources [Xie et al., 2018, Lin et al., 2019].98

In summary, while numerous research efforts have been dedicated to the planning of charging infrastructure, they are99

either solely focused on EBs or EVs. The shared charging hub concept for both vehicle types is rarely mentioned.100

2.2 Time-varying Electricity Carbon Intensity101

It must be recognized that electrification alone only reduces the GHG emissions of the transport sector, at the cost of102

increasing the emissions of the upstream power generation. The rate of GHG emission from power generation is usually103

termed as electricity carbon intensity (ECI) and measured by gCO2e/kWh. The ECI can vary significantly from time to104

time, depending on the real-time generation mix. In areas with high penetration of solar generation, the ECI is usually105

low at noon and high after sunset. For example, on a specific day (Oct 21, 2021) in California, the lowest and highest106

ECIs are 222 and 374 gCO2e/kWh, found at around 11 AM and 9 PM, respectively [CAISO, 2021]. A study of the Great107

Britain grid indicates the range of ECI can be as large as 79 to 447 gCO2e/kWh [Dixon et al., 2020]. The time-varying108

ECI implies an opportunity to reduce GHG emissions through demand-side management. [Hoehne and Chester, 2016,109

Brinkel et al., 2020] proposed to schedule the charging sequences of EVs based on the real-time ECI of the grid such110

that the EVs’ carbon footprint is minimized. On the other hand, the charging of EVs can also be coordinated to absorb111

excess wind generation to lower the effective grid ECI [Dixon et al., 2020]. Increasing the number of chargers for112

ECI-oriented scheduling [Tu et al., 2020] and incentivizing consumer charging behavior to use less carbon-intense113

electricity [Santarromana et al., 2020] can also greatly reduce the overall GHG emissions. All of these studies show114

great potential for considering time-varying ECI in charging scheduling. While in the past, electricity price was the most115

commonly used signal to shift charging demands, ECI is expected to be a new type of signal, especially in recent years116

as containing GHG emissions is becoming more urgent in global affairs and carbon trade has been adopted by more and117

more districts. However, most of the existing planning studies of charging infrastructure use either first-come-first-serve118

or cost-oriented charging schedules. It remains largely unclear how ECI-oriented smart charging scheduling can impact119

the planning outcome.120

2.3 Vehicle-to-Grid121

Another aspect worth noting is that the vehicle-to-grid (V2G) setting is rarely considered in the existing charging122

infrastructure planning studies, whose major goals are to satisfy the charging demand or to maximize the total123

energy-charged. Sending electricity back to the grid through the V2G function is likely to contradict these objectives.124

However, for a large portion of charging events, EVs are connected to charger outlets much longer than the necessary125

time to meet their charging needs [Sadeghianpourhamami et al., 2018, Gerritsma et al., 2019]. Under this scenario,126

owners of individual vehicles or charging infrastructure might be willing to inversely trade energy with the grid if127

they are incentivized. The applications of V2G in energy arbitrage, load shifting, frequency regulation, and other128

power system regulation services are covered by a great number of studies [Sarker et al., 2016, López et al., 2015,129

Pillai and Bak-Jensen, 2010]. Similar ideas can be extended to reducing GHG emissions by shifting the triggering130

signal from electricity prices or grid requests to time-varying ECI. It is important to examine whether and how the V2G131

could contribute to the reduction of GHG emissions in the planning and operation of charging infrastructure.132
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3 Contribution133

To fill the gaps in the literature and provide necessary information to the policymakers, this paper proposes a mechanism134

for the planning of shared charging hubs for the two most prevailing transportation modes: EBs and EVs. The primary135

objective of the planning model is to minimize the GHG emissions in a regional area under a given annual budget,136

considering smart charging scheduling enabled by the awareness of time-varying ECI and the application of V2G137

technology. The output of the planning framework consists of decisions on the deployment of charging infrastructure,138

the electrification of existing conventional buses, as well as the optimized charging schedules. The contributions of this139

paper are highlighted as follows:140

1) A scheme of shared charging hubs is proposed to serve the charging demand of multiple transportation modes. To the141

best of our knowledge, most charging infrastructure planning studies have focused on a single transportation mode,142

but a shared scheme between multiple modes is rarely examined. To address this gap, this paper studies the shared143

charging hubs for EBs and EVs as an illustration and analyzes the benefit of reducing required power capacity through144

coordinated charging. In addition to EBs and EVs, this framework can be easily extended to other electric transportation145

modes, such as e-bikes and e-scooters, to form a comprehensive multi-modal ecosystem of electrified mobilities.146

2) The proposed framework pays special attention to the time-varying ECI and V2G technology. Currently, the impacts147

of time-varying ECI and V2G are mostly analyzed in the charging scheduling algorithms, but how they could influence148

the upstream deployment of charging infrastructure remains largely unexplored. This paper analyzes the potential of149

decarbonization through integrating ECI-oriented charging scheduling and V2G technology in the planning phase and150

identifies the optimal resource allocation under these settings to minimize GHG emissions.151

4 Model Formulation152

4.1 Problem Description153

In a regional area, suppose there are a set I of public conventional buses and a set J of private EVs. The goal of local154

public decision-makers is to minimize the GHG emissions from buses and EVs sectors through the following strategies:155

1) converting the conventional buses to EBs, 2) providing charging services to both EBs and EVs in a set K of candidate156

charging hubs, and 3) optimize the charging schedules of EBs and EVs according to the time-varying ECI. Note that157

converting non-electric private vehicles to EVs is relying on the decisions of individuals and it is hence not within the158

scope of this study. The deployment of these strategies is subject to constraints of operational schedule of buses, energy159

limits of EBs and EVs, number of installed EB/EV chargers, number and power capacities of the deployed charging160

hubs, and most importantly, the budget. Table 1 lists the notations used in this study. The following assumptions are161

made in the proposed model:162

• The public transit agencies will be leasing charging infrastructure and EBs from private vendors on an163

annual basis to reduce the financial risk of high upfront costs and the costs associated with large fleet164

maintenance, as proposed in [Electrification Coalition, 2010, Li et al., 2018, Jattin, 2019] and practiced by165

[Lunden, 2018, Proterra, 2022].166

• EBs can be charged in a charging hub or its depot and EVs can be charged in a charging hub or at home. For167

the EBs/EVs to be charged in a charging hub, there need to be sufficient EB/EV chargers. On the other hand, it168

is assumed that the charging facilities in bus depots are ready for use as buses are congregated in depots and169

charging infrastructure can be established in an economically efficient way by corresponding transit agencies.170

It is also assumed EVs have access to low-power chargers at home, which does not rely on the budget of public171

transit agencies.172

• An EB can be charged in a charging hub if the following two conditions are satisfied: The EB’s terminal173

station(s) is within a certain threshold distance (e.g. 0.5 mile) of a charging hub and its dwell time in the174

terminal is longer than a threshold time (e.g. 10 minutes). Given the first condition, the energy consumption175

and time to drive EBs to/from the charging hub can be neglected. For example, in Figure 1, a bus dwelling at176

terminal T1 will have access to Charging Hub 1 if d is less than 0.5 mile and its dwelling time is more than 10177

minutes. Being close to a stop rather than a terminal does not qualify a charging hub to be used by an EB, as a178

bus usually has very limited dwell time at a stop. Binary parameters βikt are used to indicate if bus i at time t179

is having access to candidate charging hub k.180

• An EV can be charged in a charging hub when it is parked in a charging hub. Binary parameters γjkt are used181

to indicate if EV j at time t is parked at the location of candidate charging hub k. The EV chargers can be182

shared among EVs through a smart charging scheme such that when one EV’s charging demand is satisfied,183
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the charger can be moved to other waiting EVs, reducing the cost of leasing extra chargers. Such a scheme can184

be achieved through multiple ways, e.g. mobile chargers [Doll, 2022].185

• The schedules of individual buses are kept unchanged after they are converted to EBs, relieving the potential186

frictions in transit agencies during the transition phase. The schedules of individual buses are known parameters.187

For bus i, T departure
i , T depot

i , and T b,hub
i are the sets of time steps for departure from a terminal, being in188

the depot, and having access to a candidate charging hub, respectively. It is worth noting that T b,hub
i = {t ∈189

T |
∑

k∈K βikt > 0}.190

• The behavior of EVs will be derived from certain surveys and is assumed to be known parameters. T v,hub
j191

and Thome
j are the sets of time steps at which EV j is parked in a charging hub and parked at home, respectively.192

193

The above assumptions are made to greatly enhance the flexibility of charging. It can help obtain an optimistic194

estimation of decarbonization potential that can serve as a baseline and reference for future policy decisions.195

T1 T2

T3
Charging Hub 2

B

V

B

V V

Charging Hub 1

B

V V d

EB charger

EV charger

Grid

EV

EB

Conventional bus

B

V

Charging hub

Terminal

Route 1

Route 2

Figure 1: Illustration of the proposed problem.

4.2 Objective Function196

The objective function is the minimization of the sum of GHG emissions from the bus and the EV sectors:197

min U b + Uv, (1)

where U b and Uv are the GHG emissions from the bus sector and EV sector respectively, and:198

U b =
∑
i∈I

(1− zi)u
b
i +

∑
i∈I

∑
t∈T

gtxit∆t, (2)

Uv =
∑
j∈J

∑
t∈T

gtyjt∆t, (3)

For the bus sector, U b is jointly determined by conventional buses and EBs. The GHG emission from conventional199

buses is measured by
∑

i∈I(1− zi)u
b
i where ub

i is the daily GHG emission from bus i when it is a conventional bus.200

zi = 1 indicates that bus i is converted to an EB such that its GHG emission from consuming fossil fuels is removed.201

On the other hand, despite zero on-road emission, EBs still create GHG emissions on the upstream power generation.202

The amount of GHG emissions from EBs is measured by
∑

i∈I

∑
t∈T gtxit∆t, where gt is the ECI at time t and xit is203

the charging power on bus i at time t. ∆t is the length of time corresponding to one time step. For the EV sector, Uv is204

solely determined by EVs and it is measured by
∑

j∈J

∑
t∈T gtyjt∆t, where yjt is the charging power on EV j at time205

t.206
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Table 1: Summary of notations for sets, parameters, and decision variables.

Sets
I Set of buses.
J Set of EVs.
K Set of candidate charging hubs.
T Set of time steps of the study time horizon.
T departure
i Set of time steps at which bus i departs from its terminal stations.

T depot
i Set of time steps at which bus i is parking in its depot.

T b,hub
i Set of time steps at which bus i is having access to a candidate charging hub.

T v,hub
j Set of time steps at which EV j is parking in a candidate charging hub.

Thome
j Set of time steps at which EV j is parking at home.

Parameters
ub
i Daily carbon emission of bus i if it uses diesel as the fuel.

gt Electricity carbon intensity of the grid at time t.
eb,min/eb,max Minimal/maximal battery energy of an EB.
ev,min/ev,max Minimal/maximal battery energy of an EV.
xmin/xmax Minimal/maximal charging powers of a bus charger.
ymin/ymax Minimal/maximal charging powers of an EV charger.
yhome,min/yhome,max Minimal/maximal charging powers of an EV home charger.
sbit Power consumption rate of bus i at time t.
svjt Power consumption rate of EV j at time t.
ηb Energy efficiency of EBs.
ηv Energy efficiency of EVs.
κ Cycle efficiency of charging/discharging batteries.
di One-way distance of the route served by bus i.
βikt βikt = 1 indicates bus i has access to candidate charging hub k at time t. Otherwise, βikt = 0.
γjkt γjkt = 1 indicates EV j is parking in candidate charging hub k at time t. Otherwise, γjkt = 0.
cb Cost of one EB charger.
cv Cost of one EV charger.
cp Cost of providing one kW of power capacity at a charging hub.
cf Cost of make-ready, including licensing, construction, and etc.
ceb Cost of one EB.
cet Cost of charging 1kWh electricity at time t in a charging hub (commercial rate).
ce,home
t Cost of charging 1kWh electricity at time t at home (residential rate).
cdeg Cost of battery degradation by charging/discharging 1kWh of electricity.
B Budget.

Decision Variables
U b Daily GHG emission of the bus sector.
Uv Daily GHG emission of the EV sector.
zi Binary variable, zi = 1 indicates bus i is electrified. Otherwise, zi = 0.
xit Charging power on bus i at time t.
yjt Charging power on EV j at time t.
P cap
k Power capacity of charging hub k.

P b
kt Power demand of EBs in charging hub k at time t.

P v
kt Power demand of EVs in charging hub k at time t.

N b
k Number of EB chargers installed at charging hub k.

Nv
k Number of EV chargers installed at charging hub k.

nb
kt Number of EBs charging in hub k at time t.

nv
kt Number of EVs charging in hub k at time t.

N̂k N̂k = 1 indicates the candidate charging hub k is deployed. Otherwise, N̂k = 0.
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4.3 Constraints207

4.3.1 Bus Sector208

ebit′ = ebit +
[
xit − (1−

√
κ)|xit| − zis

b
it

]
∆t, ∀i ∈ I, ∀t ∈ T, t′ = Next(t) (4)

ebit ≥
di
ηb

− (1− zi)G, ∀i ∈ I, ∀t ∈ T departure
i , (5)

zie
b,min ≤ ebit ≤ zie

b,max, ∀i ∈ I, ∀t ∈ T, (6)

zix
min ≤ xit ≤ zix

max, ∀i ∈ I, ∀t ∈ {T b,hub
i ∪ T depot

i }, (7)

xit = 0, ∀i ∈ I, ∀t /∈ {T b,hub
i ∪ T depot

i }, (8)

zi ∈ {0, 1}, ∀i ∈ I, (9)

Constraint (4) defines the transition rule of the battery energy level of the bus i from time t to the next time step t′.209

The Next(·) function is defined as follows: If t is the last time step of the day, Next(t) will be the first time step210

of the day. Otherwise, Next(t) = t +∆t. Under such arrangement, the energy level of a bus will form a repeated211

closed-loop, which guarantees sustained inter-day operation. The energy loss due to charging/discharging is considered212

and measured by −(1 −
√
κ)|xit| (refer to [Foggo and Yu, 2017]), where κ is the battery cycle efficiency. sbit is the213

power consumption rate of bus i at time t. Constraint (5) requires that a bus needs to have enough energy to cover an214

entire trip upon departure, where di is the one-way distance of the route served by bus i and ηb is the electricity fuel215

efficiency of EBs. G is a relatively large positive number such that constraint (5) is only binding for EBs but not for216

conventional buses. Constraint (6) specifies the range of bus energy level, while constraint (7) specifies the range of bus217

charging power. When xmin < 0, the EBs are allowed to be discharged and send energy back to the grid. Note that218

when a bus is not in a charging hub or its depot, its charging power is zero as stated in constraint (8).219

Constraints (4)-(9) are simultaneously applicable to conventional buses and EBs. When bus i is a conventional bus, i.e.220

zi = 0, constraints (4), (5), (6), (7), and (8) are satisfied automatically with ebit = 0, xit = 0,∀i ∈ I, t ∈ T . This also221

means that there is no energy or power constraint for conventional buses, considering the fact that conventional buses222

can easily obtain fuel supply from existing fossil fuel infrastructure.223

4.3.2 EV Sector224

evjt′ = evjt +
[
yjt − (1−

√
κ)|yjt| − svjt

]
∆t, ∀j ∈ J, ∀t ∈ T, t′ = Next(t) (10)

ev,min ≤ evjt ≤ ev,max, ∀j ∈ J, ∀t ∈ T, (11)

ymin ≤ yjt ≤ ymax, ∀j ∈ J, ∀t ∈ T v,hub
j , (12)

yhome,min ≤ yjt ≤ yhome,max, ∀j ∈ J, ∀t ∈ Thome
j , (13)

yjt = 0, ∀j ∈ J, ∀t /∈ {T v,hub
j ∪ Thome

j } (14)

Constraint (10) defines the transition rule of the battery energy level of EV j from time t to the next time step t′. Similar225

to EBs, the energy loss due to charging/discharging is measured by −(1−
√
κ)|yjt|. svjt is the power consumption rate226

of EV j at time t. While EBs need to have sufficient energy upon every departure, EVs are more flexible. Hence, it227

is assumed that the only requirement is that the daily amount of electricity charged into an EV is equal to their daily228

energy consumption, such that they can maintain sustained operation, as implied by (10). Constraint (11) specifies229

the range of an EV’s battery energy level. Constraints (12) and (13) determine the range of EV charging power in a230

charging hub and at home. Specifying different charging power limits in different places is due to the fact that home231

charging is usually under alternating current and lower charging powers. Constraint (14) mandates that when an EV is232

not in a charging hub or at home, its charging power is zero.233
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4.3.3 Power Capacity234

P cap
k ≥ |P b

kt + P v
kt|, ∀k ∈ K,∀t ∈ T, (15)

P b
kt =

∑
i∈I

βiktxit, ∀k ∈ K, ∀t ∈ T, (16)

P v
kt =

∑
j∈J

γjktyjt, ∀k ∈ K,∀t ∈ T, (17)

There must be enough power capacity P cap
k in each charging hub k to fulfill the combined peak charging power of EBs235

and EVs at any time t, as shown in constraint (15). The charging power of EBs P b
kt or EVs P v

kt at a charging hub k236

at time t is the sum of the charging power of individual EBs/EVs that are dwelling at the charging hub k at the time,237

indicated by binary parameters βikt for EBs, or γjkt for EVs. The use of the absolute sign in the right-hand side of238

constraint (15) considers the potential negative charging power (i.e. discharging) under the V2G function. The power239

capacity in a charging hub is determined by the capacity of sub-station, inverters, converters, wires, and other factors. A240

higher power capacity usually comes with a higher cost. In a shared charging hub, EBs and EVs can share common241

power facilities. When their charging schedules are coordinated to reduce the maximum combined charging power, the242

required power capacity in a charging hub can potentially be reduced, leading to significant cost savings.243

4.3.4 Number of Chargers244

N b
k ≥ nb

kt, ∀k ∈ K,∀t ∈ T (18)

Nv
k ≥ nv

kt, ∀k ∈ K,∀t ∈ T, (19)

nb
kt =

∑
i∈I

x̂ikt, ∀k ∈ K, ∀t ∈ T, (20)

nv
kt =

∑
j∈J

ŷjkt, ∀k ∈ K,∀t ∈ T, (21)

x̂ikt =

{
1, if βiktxit ̸= 0

0, otherwise,
(22)

ŷjkt =

{
1, if γjktyjt ̸= 0

0, otherwise,
(23)

In addition to power capacity, the number of chargers should also match the charging demands. Constraints (18) and245

(19) require that the number of installed EB chargers N b
k and EV chargers Nv

k should be no less than the number of246

in-use chargers at any time, where nb
kt and nv

kt are the number of EB and EV chargers in-use at time t, respectively. A247

binary variable x̂ikt is introduced to indicate whether a bus i is connected to a charger in charging hub k at time t. As248

shown in constraint (22), x̂ikt = 1 if the following two conditions are true: a) Bus i is dwelling at charging hub k at249

time t, i.e. βikt = 1, b) Bus i has none-zero charging power, either being charged or discharged, i.e. xit ̸= 0. When250

x̂ikt = 1, bus i must be occupying one EB charger at charging hub k. Then the number of in-use EB chargers at time t251

is the sum of x̂ikt over the set I of buses, as shown in constraint (20). Similar relationships between nv
kt and ŷjkt can252

be found in constraints (21) and (23) for EVs.253

4.3.5 Investment Decision on Candidate Charging Hubs254

N̂k =

{
1, if N b

k +Nv
k > 0

0, otherwise
(24)

When the number of EB chargers or EV chargers is greater than zero, a candidate charging hub is said to be deployed255

or built, indicated by a binary variable N̂k as shown in constraint (24). In other words, if a charging hub k is not256
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established, i.e. N̂k = 0, then both of N b
k and Nv

k are zero. As a result, no EBs or EVs can get charged at charging hub257

k according to constraints (18)-(23). How the deployment of a charging hub constrains the charging of EBs and EVs is258

explained as follows. Taking EB for example, N b
k = 0 indicates that nb

kt = 0,∀t ∈ T according to (18), as nb
kt is the259

sum of non-negative numbers. In this case, x̂ikt must be 0 ,∀i ∈ I, t ∈ T , i.e. βiktxit = 0,∀i ∈ I, t ∈ T . This can be260

broken down into two scenarios. First, if βikt = 1, then xit must be zero. Second, if βikt = 0, this means that the bus is261

not dwelling in the charging hub k, so xit must be zero according to constraint (8). Hence, when N̂k = 0, no EBs can262

be charged in this unbuilt charging hub. The same effect can be explained in a similar way for EVs.263

4.3.6 Budget264 ∑
k∈K

(cbN b
k + cvNv

k + cf N̂k + cpP cap
k ) +

∑
i∈I

cebzi +D
∑
t∈T

∑
i∈I

cetxit∆t ≤ B, (25)

The public transit agencies will lease EBs and charging infrastructure from private vendors on an annual basis. The265

overall project is constrained by an annual budget B, and the total annual cost consists of two categories: 1) Property-266

leasing cost, which includes cost of leasing EB chargers
(
cbN b

k

)
and EV chargers (cvNv

k ), cost of leasing charging hubs267 (
cf N̂k

)
and paying for enough power capacity (cpP cap

k ), and cost of leasing electric buses
(
cebzi

)
. 2) Operational268

cost, or electricity cost (cetxit), where D is the number of days in a year and cet is the electricity price at time t.269

4.3.7 Electricity Cost of EVs270

D

 ∑
t∈Tv,hub

j

cetyjt +
∑

t∈Thome
j

ce,home
t yjt +

∑
t∈T

cdeg|yjt|

∆t ≤ CEV,min
j ,∀j ∈ J (26)

While EV chargers are covered by public budget, the EV owners are still supposed to pay for their own electricity usage.271

On the other hand, we also want to ensure that EVs are incentivized to participate in reducing GHG emissions. For272

this purpose, we require that the charging scheduling results will not lead to a cost higher than the minimal cost of273

home charging. This requirement is applicable to each individual EV, as shown in constraint (26), where ce,home
t is the274

electricity price of home charging, which can be different (usually lower) than that in the charging hub. For private EVs,275

battery degradation needs to be considered as a cost. This is in contrast with EBs, whose batteries are leased and the276

degradation cost is reflected in the leasing price. In (26), cdeg is the battery degradation cost for charging/discharging277

1kWh of electricity. CEV,min
j is the annual minimal electricity cost of EV j and it can be obtained by slightly modifying278

and solving (10)-(14) with home charging only and with the objective of minimizing electricity cost. The process of279

obtaining CEV,min
j is included in Appendix A.280

4.4 Summary of the Model281

As a summary of the model formulation in this section, the model is solved under objective function (1) and subject to282

constraints (2) - (26). Specifically, (22), (23) and (24) will be linearized using standard techniques (see Appendix B)283

such that the optimization problem is transformed to a mixed-integer linear program (MILP), which can be handled by284

commercial solvers.285

5 Data Description286

5.1 Study Area287

Contra Costa, California is selected as the study area to illustrate the effectiveness of the proposed model. The public288

ground transportation in this area is served by one rail agency (Bay Area Rapid Transit or BART) and seven bus289

agencies. There are twelve BART stations within Contra Costa. Serving as an efficient travel mode between Contra290

Costa and downtown San Francisco, BART connects with several bus lines and has a large demand of private vehicles291

to park-and-ride in the vicinity of its stations. Therefore, BART stations are ideal locations for shared charging hubs.292

We identify the twelve BART stations in Contra Costa as candidate charging hubs as shown in Figure 2.293
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Figure 2: The selected bus routes and candidate charging hubs within the study area: Contra Costa, California.

5.2 Bus Sector294

The data of bus sector is obtained from the General Transit Feed Specification (GTFS) of each transit agency295

[511 Open Data, 2021]. GTFS data consists of detailed information on bus routes, schedules, stops, and other necessary296

information. It is assumed that an EB can be charged in a charging hub if at least one of its terminal stations is within297

0.5 miles of the charging hub. In such a scenario, the energy cost and time required to reach a charging hub from a298

nearby terminal is considered to be negligible. There are 55 identified bus routes, of which at least one terminal station299

is within 0.5 miles of a candidate charging hub, as shown in Figure 2.300

While the schedule of a bus route can be extracted from the GTFS data, the information regarding individual buses that301

serve a route or their depot locations are unavailable to the public. A first-in-first-out (FIFO) model is adopted to address302

this problem [Ceder, 2016]. The FIFO model takes the schedule of a bus route as input and then outputs the required303

number of buses and the schedule of each bus on this route, by assuming: 1) no interlining of buses or deadhead trips (i.e.304

a bus only serves one specific route) and 2) a bus is at its depot during the longest break between services and in this case,305

the time returning to depot is neglected. Specifically, the FIFO model works as follows in determining the bus schedules306

for a two-terminal route: 1) A bus will be created at a terminal for the earliest scheduled trip; 2) Then this bus will make307

the first feasible connection with a departure after it has dwelt for more than 10 minutes at the other terminal of the308

route. Such connections will continue until this bus finishes the final applicable trip of the day; 3) Initiate a new bus for309

the earliest unassigned trip, and repeat steps 1) and 2) until all of the trips in the time table are assigned. After the three310

steps, we will obtain the number of buses serving this route and the detailed schedule of each bus. A similar process is311

also applicable to one-terminal routes, or round routes. The only change is in step 2) where the connection will happen312

in the same terminal. Through the FIFO model, a set I of 234 buses is obtained. It should be noted that the FIFO model313

could potentially exaggerate the number of buses. Reducing the number of buses through well-designed dispatching314

strategies is an ongoing research topic [Janovec and Koháni, 2019, Kang et al., 2019, Li et al., 2019]. Nevertheless, the315

existing bus schedule is just an input into the modeling framework. The proposed framework can be equally applied316

once the actual detailed bus-level data becomes available.317

For each bus i, we identify sets of departure time points T departure
i , in-hub time points T b,hub

i , in-terminal time318

points T b,terminal
i , and in-depot time points T depot

i . The in-depot time of a bus is determined to be the longest period319

between one arrival and the next departure. Also, the in-hub time points is a subset of in-terminal time points, i.e.320

T b,hub
i ⊆ T b,terminal

i , as an EB can only be charged in a hub when it is dwelling in a terminal according to the321

assumption made in Section 4.1.322

Once the schedule of a bus is obtained, its daily GHG emission ui can be estimated by assuming the current conventional323

bus fleet uses diesel as fuel. Based on the fuel efficiency of diesel buses ηd and the carbon intensity of diesel CId:324
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ui =
fi · di · CId

ηd
, (27)
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Figure 3: The distribution of daily GHG emissions of the bus fleet.

where fi is the daily dispatch frequency. di is the one-way route distance. ηd is selected to be 3.26 miles/gallon325

[U.S. Department of Energy, 2021], and CId is 10.19 kgCO2e/gallon [U.S. Environmental Protection Agency, 2021].326

Figure 3 shows the histogram of GHG emissions of buses. Depending on the dispatch frequency and route distance, the327

daily GHG emissions of buses have wide variations, ranging from less than 50 kgCO2e/day and up to more than 1,000328

kgCO2e/day.329

When a conventional bus is converted to an EB, its battery capacity is assumed to be eb,max = 225kWh and eb,min =330

22.5kWh. The maximum charging/discharging power is 150kW, i.e. xmax = 150kW and xmin = −150kW. The331

energy efficiency of EBs ηb is 0.56 mile/kWh. The energy levels, charging power limits, and energy efficiency are332

selected based on information from the state-of-the-art bus vendor [Proterra, 2021]. The battery cycle efficiency κ is set333

at 0.95. The power consumption rate sit is determined through the following approximation: an EB consumes zero334

energy when it is in a terminal or a depot. Otherwise, its power consumption rate sit is a constant depending on the335

one-way distance, electricity fuel efficiency ηb, and the duration of running τ ti between two terminals, as shown in (28).336

Note that the duration of running between two terminals is time-dependent and it can vary during the day due to traffic337

conditions. This information is already reflected in the schedules derived from GTFS data.338

sbit =

{
0, if t ∈ {T b,terminal

i ∪ T depot
i }

di/(η
b · τ ti ), otherwise,

(28)

5.3 EV Sector339

As the candidate charging hubs are located near the BART stations, the majority of users are expected to be EV drivers340

who park-and-ride. From the annual average hourly entry- and exit-pattern of the BART stations shown in Figure 4341

[BART, 2021], it is found that leaving in the morning and returning in the evening is a clear pattern for BART riders342

in Contra Costa county. Assuming that park-and-ride EV drivers follow similar travel behavior, a stochastic Poisson343

arrival model for EVs can be established, with the hourly arrival rate in BART station k at hour h to be:344

λ(k, h) = Ridership(k, h)× EV penetration rate × park-and-ride rate, (29)

The EV penetration rate is set at 30% to reflect the growth of EV population in the near future. The park-and-ride rate is345

assumed to be 10%. Upon arrival, it is assumed that the parking time for EVs follows Gaussian distribution N (8, 22),346

i.e. the mean parking time is eight hours and the standard deviation is two hours. This is in-line with the exit pattern347

shown in Figure 4 (right). In total, a set J consisting of 1,527 individuals EVs is identified for the twelve BART stations.348

The time horizon T is split into three parts for an EV j: at-home Thome
j , in-hub T v,hub

j , or on-road for the rest of the349

time. An EV is on-road one hour before it arrives at the charging hub and one hour after it leaves the hub. An EV requires350

an energy supply that covers its daily consumption. As indicated by [Burns, 1979, Spillar, 1997, Holguı et al., 2012],351

the majority of park-and-ride users are located within 10 miles of the facility. Hence, the daily travel distance of an EV352

is a stochastic number generated by following the distribution of vehicle daily travel distance in the National Household353

Travel Survey [Federal Highway Administration, 2017], excluding the population that travel more than 10 miles in354
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Figure 4: The annual average number of entries (left) and exits (right) of twelve BART stations in Contra Costa,
California.

one-way trips. Similar to (28) for EBs, the power consumption rate of EVs svjt is determined by the daily travel distance355

and the electricity fuel efficiency of EVs ηv (3.33 mile/kWh [Eco Cost Savings, 2021]).356

EVs have options to be charged either at home with low-power AC chargers or at the charging hubs with DC-fast357

chargers, both having V2G functions. The maximum charging/discharging power is 50kW in a charging hub and 10kW358

at home, i.e. ymax = 50kW, ymin = −50kW, yhome,max = 10kW, and yhome,min = −10kW. Without the loss of359

generality, an EB’s battery capacity is assumed to be ev,max = 100kWh and ev,min = 10kWh. The battery cycle360

efficiency of charging EV batteries is the same as EBs.361

5.4 Electricity Carbon Intensity362

Electricity carbon intensity (ECI) measures the amount of GHG emissions by generating one kWh of electricity. In363

the previous literature, there are two types of ECIs adopted to study the GHG reduction of EVs, namely average and364

marginal ECI. The average ECI is derived by taking the weighted average emission factors of all electricity generation365

units at a certain time point [Dixon et al., 2020, Santarromana et al., 2020], while the marginal ECI is determined by366

the generation units that are responding to the near-term increase in electricity demand [Hoehne and Chester, 2016,367

Tu et al., 2020]. The average ECI is suitable for GHG emission auditing purposes, and the marginal ECI is believed to be368

more accurate in near-term charging optimization [Brinkel et al., 2020]. In this study, since the focus is long-term GHG369

reduction, the average ECI is chosen. If not specified, the ECI mentioned in the rest of this paper is the average ECI.370

In California, the calculation of ECI is relatively straightforward. California Independent System Operator (CAISO)371

[CAISO, 2021] provides the total real-time grid GHG emissions and power demand every 5 minutes. The ECI gt at a372

time t can be obtained by dividing the total grid GHG emissions by the total power demand. The ECI of a typical day is373

shown in Figure 5. The lowest ECI is found around 9 AM-3 PM when the solar generations reach their peak. In the374

evenings and early mornings, the electricity is mainly generated by natural gases power plants, which led to higher ECI.375
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Figure 5: The electricity carbon intensity (ECI) and the electricity prices at different time of the day.

Page 12 of 26



Ye, Yu, Wei, and Liu Page 13 of 26

5.5 Cost376

5.5.1 Property-leasing Cost377

The leasing costs of charging infrastructure and EBs will be closely related to the lifespan of the properties. The annual378

leasing price c of a property is determined by that the net present value of leasing over the lifespan shall be no less than379

the initial investment:380

c+
c

1 + r
+

c

(1 + r)2
+ ...+

c

(1 + r)(n−1)
≥ I0, (30)

where c is the annual leasing price, r is the interest rate, n is the lifespan of the property (in years), and I0 is the initial381

investment of the property. Here we assume that the NPV is equal to the initial investment. By solving (30) with an382

equality sign, we will obtain c ∝ 1− 1
(1+r)n , from which we can infer that a shorter lifespan implies higher leasing383

cost.384

The public transportation agencies will lease five different types of properties as stated in (25). The initial invest-385

ment of an EB is taken from [Johnson et al., 2020]. An EB consists of a frame and a battery, which have different386

lifespans. While a frame can typically last 12-14 years [Noel and McCormack, 2014, Bi et al., 2017], a battery will387

need to be replaced every 6 to 8 years [Noel and McCormack, 2014, Franca et al., 2017]. A new lithium-ion battery388

will cost around $140 per kWh [Edelstein, 2021] and as a result, an EB battery with a capacity of 225kWh will389

cost $35,000. The initial investment of chargers are determined by multiple factors, including material and labor.390

[Nicholas, 2019, Nelder and Rogers, 2019] summarized the ranges of unit cost to install DC-Fast chargers. The lifespan391

of a charger is estimated to be 10 years. The initial investment of power equipment on a per-kW basis is derived392

from the cost of transformers and other necessary make-ready investments, including wires, conduits, meters, and etc.393

[Nelder and Rogers, 2019]. The lifespan of power equipment is estimated to be 20 years [Biçen et al., 2014]. The initial394

investment of a charging hub can vary from location to location, depending on the local real estate price, complexity of395

engineering, and other factors. For simplicity, here we assume that it is the same for the twelve candidate charging hubs396

and use 10 years as an estimated lifespan. Note that the model formulation allows us to use a different initial investment397

for each location if such information becomes available. Table 2 lists the initial investments, lifespans, and the resultant398

annual leasing costs for each property based on an annual interest rate of 10%.399

Table 2: List of Initial Investments, Lifespans, and the Annual Leasing Costs

Property Initial Investment ($) Lifespan (years) Leasing Cost ($/year)
EB charger (150kW) 100,000 10 14,795

EV charger (50kW) 30,000 10 4,439

Power equipment 200 (per kW) 20 21 (per kW)

Charging hub 1,000,000 10 147,950

EB, include: 900,000 - 122,715
· Battery 35,000 6 7,306
· Frame 865,000 12 115,409

5.5.2 Electricity Cost400

Similar to ECI, electricity price varies across a day. Typically, utility companies will specify time-of-use schedules based401

on the load levels of the electricity market. The price will be higher during on-peak hours and lower during off-peak402

hours. The electricity prices are also different for commercial and residential users. While charging hubs will pay for a403

commercial rate, EVs performing home-charging will be billed under a residential rate. Typical commercial rates are404

higher than residential rates. We adopt the electricity prices from the service provider of Contra Costa [MCE, 2022], as405

shown in Figure 5.406

5.5.3 Battery Degradation Cost407

The degradation of a lithium-ion battery is impacted by multiple factors and it is a non-linear process. How-408

ever, linearized degradation models could approximate the nonlinear model quite well [Foggo and Yu, 2017,409
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Cardoso et al., 2018, Tang and Wang, 2022]. Here we assume that the degradation is proportional to the cycle numbers410

and the per kWh degradation cost cdeg is estimated through the following equation:411

Ibattery0 = 2 · cdeg · Cap ·DoD ·N cycle, (31)

where Ibattery0 is the initial investment of a new battery, Cap is the capacity of the battery, DoD is the cycling depth of412

discharge, and N cycle is the end-of-life (EoL) cycle numbers of the battery. As suggested by [Ortega-Vazquez, 2014,413

Xu et al., 2016], N cycle falls in the range of 2 ∼ 3 × 103 at DoD = 90%. Hence, we estimate N cycle = 2.5 × 103,414

and with the battery price $140 per kWh introduced in 5.5.1, we obtain cdeg = $0.031/kWh by solving (31).415

6 Results and Discussion416

This section presents the study results based on the optimization problem (1)-(26) and the input data introduced in417

Section 5. First of all, a comprehensive cost-benefit analysis is conducted to quantify the reductions of GHG emissions418

under different annual budget levels and how the budget is allocated to different sectors. Secondly, load profiles419

of charging hubs are presented and discussed, highlighting the benefit of the shared charging scheme. Thirdly, the420

impacts of considering time-varying ECI and V2G function in the operation are analyzed. Finally, a priority analysis is421

conducted to address the questions of resource allocations under budget limitations, providing necessary information to422

local decision-makers.423

The optimization problem is solved using Gurobi solver on AWS cloud server with AMD CPUs. To balance the424

operational time accuracy requirement and the solver time, the control time intervals are set to be 5 minutes for the bus425

sector and 60 minutes for the EV sector. The study time horizon is one day.426

6.1 Cost-Benefit Analysis427

A cost-benefit analysis is conducted in this subsection to understand the potential of decarbonization under different428

annual budget levels. The optimization problem (1)-(26) is solved under a range of annual budget scenarios from $0 to429

$44 million. The level of decarbonization is measured by R, the reduction of GHG emissions. The value of R under430

a certain budget B′ is calculated by R(B = B′) = U(B = B′)− U(B = 0), i.e. the difference of GHG emissions431

between budget B′ and $0. The latter case serves as a baseline for performance comparison. The overall results are432

presented in Figure 6. First of all, the total reduction of GHG emissions is increasing with the budget, as shown433

in Figure 6(a). The marginal benefits of having a higher budget gradually reduce as the total GHG reduction curve434

becomes flat with high budgets. Under the budget level of $44 million, the total GHG reduction is 62.6 metric tonnes435

CO2e per day (mTCO2e/day), in which the bus sector yields a reduction of 54.2 mTCO2e/day or 86.6%, while the EV436

sector contributes to a reduction of 8.4 mTCO2e/day or 13.4%. The results of other key parameters under different437

annual budget levels are presented in Figure 6(b)-(g). Figure 6(b) shows the number of deployed charging hubs. Figure438

6(c) shows the number of leased EBs and the number of EVs that get charged in a charging hub. Figure 6(d) shows the439

number of EB and EV chargers. Figure 6(e) shows the total power capacity required for all charging hubs and the power440

demands for EB and EV sectors. Figure 6(f) and (g) presents the allocation of budgets in the form of absolute values441

and percentages, respectively. Based on the observation in Figure 6, system planning can be split into five phases:442

• Phase 1: Budget $0-$2 million. In this phase, budget is mainly allocated to the EV sector. Specifically, when443

B = 2 million, 5 charging hubs are deployed as shown in Figure 6(b) and a significant amount of EVs are444

being charged in the charging hubs as shown in Figure 6(c), while the number of EBs and EB chargers are445

both limited, as shown in Figure 6(c) and (d). In this phase, the EV sector contributes more GHG reduction446

than the bus sector.447

• Phase 2: Budget $2-$8 million. The development of the bus sector accelerates starting from B = 2 million.448

The amount of budget allocated to EBs outpaces the amount spent in EV chargers, as shown in Figure 6(g).449

The contribution to GHG reduction from the bus sector exceeds that from the EV sector.450

• Phase 3: Budget $8-$34 million. In this phase, the bus sector continues to grow, while the EV sector is451

saturated. The number of EBs and EB chargers is increasing steadily with the budget, leading to significant452

GHG reductions in the bus sector. On the other hand, the GHG reduction from the EV sector has very limited453

improvement when the budget increases. The number of EVs that choose to charge in charging hubs reaches a454

high level in the early stage of this phase and grows slowly in later stages, as shown in Figure 6(c). Although455

the number of EV chargers continues to grow, it only eases the scheduling congestion of EV charging, with456

limited contribution to the GHG reduction. The majority of the budget is allocated to electrifying buses as457

shown in Figure 6(g).458
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Figure 6: Overview of the planning results under different budget levels.

• Phase 4: Budget $34-$40 million. In this phase, the number of EB/EV chargers and the associated power459

capacity are soaring to accommodate a few EBs and EVs, as shown in Figure 6(d) and (e). While the budget460
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increased significantly compared with phase 3, the GHG reduction has very limited improvement. This marks461

a significant drop in the marginal benefit of investment.462

• Phase 5: Budget $40 million and above. When the budget reaches $40 million, both the bus sector and the463

EV sector are saturated. No more reduction of GHG emissions is observed as budget increases. All eligible464

conventional buses are converted to EBs. The constant number of chargers and power capacity indicates that465

the charging demand is fully satisfied. There are a few conventional buses that are not electrified, because of466

extremely long route distance or high frequency of dispatches.467

Based on the above cost-benefit analysis, it is suggested that the investment should focus on phases 1 and 2, in which468

the marginal benefit is substantial. If more funding is provided, reaching a certain stage of phase 3 is also a good choice.469

However, investing heavily in phase 4 or 5 is not recommended as the marginal benefit is low.470

6.2 The Advantages of Shared Charging Hubs471
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Figure 7: Reduction of GHG emissions under three different planning scenarios: 1) Shared charging hubs for both EBs
and EVs, 2) EB charging stations only, and 3) EV charging stations only.

Figure 8: Load profiles of three charging hubs. Gray arrows indicate coordinated charging between EBs and EVs to
limit the increase of total peak power demand.

In the proposed model, the planning of the bus and EV sectors are carried out in a collaborative manner through472

the scheme of shared charging hubs. Here we illustrate how such a scheme improves the overall reduction of GHG473

Page 16 of 26



Ye, Yu, Wei, and Liu Page 17 of 26

emissions. To make this point, a comparison between the shared and the isolated charging schemes is conducted. The474

proposed model is solved under three different schemes: 1) Shared charging hubs, 2) EB charging stations only, and 3)475

EV charging stations only. For scheme 2, the number of EV chargers is set to be zero, i.e. Nv
k = 0,∀k ∈ K. Similarly,476

for scheme 3, the number of EB chargers is set to be zero, i.e. N b
k = 0,∀k ∈ K. The reductions of GHG emissions of477

these three schemes under different budget levels are shown in Figure 7. First of all, it is noticed that under low budget478

levels, the GHG reductions for schemes 1, 2 and 3 are very close, indicating that developing either EB or EV charging479

stations is equally as good as developing shared charging hubs. However, in scheme 2 when the budget increases,480

the marginal benefit of EB charging stations decreases faster than scheme 1. The performance of Scheme 3 is even481

less ideal in the high budget region. Actually, in the high budget region of scheme 3, most of the GHG reduction is482

contributed by electrifying buses that can be operated without terminal charging (with depot charging only). This can483

be inferred from Figure 6(a) where the GHG reduction from the EV sector is saturated at low budget levels. On the484

other hand, though the marginal benefits of scheme 2 is similar to scheme 3 at low budget levels, the growth of GHG485

reduction in scheme 2 is faster in high budget levels compared to scheme 3, because the establishment of EB charging486

stations makes it possible for more buses to be converted to EBs. Overall, the shared charging hubs of scheme 1 show487

the best performance under various budget levels among the three schemes. The reason behind the superior performance488

of scheme 1 is that with shared charging hubs, the model can implicitly determine the optimal allocation of resources489

between the bus and EV sectors. This contrasts with the isolated charging stations, where the resources are entirely490

poured into a single transportation mode without the flexibility to achieve collaborative development across different491

modes.492

Reducing peak power through coordinated charging is another potential benefit of the shared charging hubs. To analyze493

this effect, the charging powers of EB and EV sectors at different times of the day are presented in Figure 8 for three494

deployed charging hubs. The results are obtained under a budget of $12 million. Based on the observation of Figure 8,495

the peak charging demands of EBs and EVs all occur around 9 AM-3 PM when both the ECI and the electricity cost are496

low due to excess power from solar plants, while discharging usually happens at night to offset GHG emissions when497

both the ECI and the electricity cost are high. An interesting phenomenon is that neither charging or discharging is498

preferred in the early morning, as the signals of ECI and electricity price contradict each other. During the period of499

peak charging demand, clear patterns of coordinated charging can be found in all of the three charging hubs, as indicated500

by the gray arrows in Figure 8. Taking charging hub El Cerrito Del Norte as an example, there are two outstanding501

peak stages of EVs’ charging power between 9 AM-3 PM, correspondingly, the charging power of EBs experience two502

valleys at the same time as the peaks of EVs, such that the peak power of the charging hub is not exceeded. Similar503

phenomena can be observed in the other two charging hubs. Keeping peak power consumption at a low level has504

multiple benefits. On one hand, the initial capital required for power equipment is reduced immediately. This effect has505

been considered in the proposed model. On the other hand, the charging hubs will receive lower electricity bills due to506

reduced peak demand charges, which implies profound benefit in the long run.507

6.3 The Impacts of ECI and V2G508

The time-varying ECI and V2G technology are included in the proposed planning model. In this subsection, we quantify509

their contributions to the decarbonization effort. To do this, the proposed planning problem is solved under three510

different settings: 1) with awareness of time-varying ECI and V2G is enabled (w/ ECI, w/ V2G), 2) with awareness511

of time-varying ECI, but V2G is disabled (w/ ECI, w/o V2G), 3) without awareness of time-varying ECI and V2G is512

disabled (w/o ECI, w/o V2G). For case 2, the proposed planning problem is solved by setting xmin = 0, ymin = 0, and513

yhome,min = 0 in (7), (12), and (13), respectively, i.e. not allowing discharging from EBs or EVs. For case 3, besides514

the modifications made in case 2, the daily average ECI ḡ is adopted to replace gt in (2) and (3), where ḡ = 1
|T |

∑
t∈T gt515

is a constant throughout the study time horizon T (|T | measures the number of time steps in T ), such that the modified516

model is unaware of the time-varying ECI and charging at different time of the day makes no difference to its objective517

function (1). After obtaining the optimization results for case 3, its actual GHG emissions are calculated based on the518

time-varying ECI. In most of the existing charging infrastructure, there is no ECI-oriented scheduling or V2G function.519

This situation is represented by case 3.520

Figure 9(a) shows the GHG emission reductions of the above three cases under different budget levels. Using case 3 as521

the baseline, a considerable improvement of GHG reduction is observed when the time-varying ECI is considered in522

case 2. Further enabling the V2G in case 1 results in an even more significant improvement. Taking the budget of $30523

million as an example, the GHG reductions are 59.4, 50.6, and 47.8 mTCO2e/day, for cases 1, 2, and 3, respectively.524

The awareness of time-varying ECI increases the GHG reduction by 5.8% from case 3 to case 2. The better performance525

in case 2 comes from the optimized charging schedule that avoids charging in high ECI periods. Enabling V2G further526

increases the GHG reduction by 17.3% from case 2 to case 1, and 24.1% from case 3 to case 1. The reason behind such527

a substantial improvement is that the V2G function allows discharging EBs/EVs to serve the demand of the grid, such528

that less electricity is requested from power generation units. This is especially meaningful when the ECI is high. It529
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(c) Total No. of EV chargers under different cases.
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Figure 9: The impacts of time-varying ECI and V2G to the (a) GHG reductions, (b) required number of EB chargers,
and (c) required number of EV chargers.

should be noted that the V2G function is only beneficial when there is awareness of time-varying ECI, which serves as530

the triggering signal of charging or discharging.531

Comparing the planning results under different settings provides additional insights. By checking the total number of532

EB chargers shown in Figure 9 (b), it is found that more EB chargers are installed in cases 2 and 3 compared with case533

1. The reason behind is that when the V2G function is disabled, the EV owners will find it uneconomical to use the534

charging hubs where the electricity price is high, but selling electricity through V2G is not feasible. In this case, most535

of the budget will be devoted to the bus sector. This can be inferred from Figure 9 (c) where EV chargers are not getting536

attention in case 2/3. The large difference in the number of EV chargers between case 1 and case 2/3 also points to the537

additional benefit provided by EVs in the system as energy storage units. When there is no V2G function as in case 2/3,538

the relative importance of the EV sector is reduced significantly.539

6.4 Priority Analysis540

The available budget is usually limited for the initial deployment of charging infrastructure. Under such circumstances,541

identifying the priorities of investment and development in different sub-sectors can greatly assist the decision making542

of policymakers. For this purpose, the planning results under four relatively low budget levels ($0.5, 1, 2, and 4 million)543

are analyzed in this subsection. The deployed charging hubs, the number of EB/EV chargers in these charging hubs,544

and the routes in which at least one bus is electrified are presented in Figure 10. At low budget levels, e.g $0.5 and 1545

million, all of the budget is allocated to lease charging hubs and EV chargers, as indicated in Figure 10 (a) and (b). The546

first EB and EB charger is introduced when the budget is $2 million as shown in Figure 10 (c). Further increasing the547

budget to $4 million results in more EBs, but the increase of EB chargers is moderate. For example, when there are 15548

EBs, only three EB chargers are needed as shown in Figure 10 (d), benefiting from the optimized charging schedules.549

Table 3 lists the planned number of EB/EV chargers in each candidate charging hub. A worth-mentioning phenomenon550

is that when budget increases, the number of EV chargers in a deployed charging hub remains largely unchanged. One551

of the possible explanations is that when the budget increases, new charging hubs are deployed such that the marginal552

benefit of adding EV chargers in the new charging hubs is greater than that of the existing charging hubs.553

In terms of deciding which buses have higher priorities to be electrified, a straightforward idea is to select those that554

have higher daily GHG emissions. However, there are other factors that can affect this rule. Table 4 lists the top buses555

ranked by daily GHG emissions. Generally speaking, the order of a bus being electrified when the budget increases556

follows the order of its daily GHG emissions, but buses 65, 41, and 163 are exceptions as shown in Table 4. By checking557

each bus in detail, two reasons are found that prevent the electrification of a bus with high daily GHG emissions.558

One reason is the operation limits of buses, represented by buses 65 and 41. Bus 65 is dispatched nine times a day559
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(b) Annual Budget $1.0 million
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(c) Annual Budget $2.0 million

Route 12: [57]
Route 14: [66, 67, 68]
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(d) Annual Budget $4.0 million

Route 7: [30]
Route 11: [47, 48, 49, 50]
Route 12: [57]
Route 13: [62]
Route 14: [66, 67, 68]
Route 23: [96]
Route 33: [125]
Route 38: [145, 146]
Route 53: [228]
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Figure 10: Planning results under four low budget levels: deployed charging hubs, number of EB/EV chargers, and bus
routes with buses being electrified. Each vertical bar represents a deployed charging hub and the height of the bar

indicates the number of EB/EV chargers leased in this charging hub. The individual buses being electrified are listed
behind its route ID and the format is "Route ID: [Bus ID1, Bus ID2, ...]".

Table 3: List of deployed charging hubs and number of EB/EV chargers.

Candidate
Charging Hub

ID

Candidate
Charging Hub

Name

No. of EB/EV Chargers

Annual Budget ($ Million)
0.5 1 2 4

1 Richmond 0/16 0/16 0/17 0/17
2 El Cerrito Del Norte - - 1/36 2/36
3 El Cerrito Plaza 0/21 0/21 0/21 0/21
4 Orinda - - - -
5 Lafayette - - - -
6 Walnut Creek - 0/22 0/24 1/24
7 Pleasant Hill - - - 0/12
8 Concord - 0/16 0/22 0/22
9 North Concord - - - -

10 Pittsburg - - - -
11 Pittsburg Center - - - -
12 Antioch - - - -

resulting in a total of more than five hundred miles of travel distance. Bus 41 has a one-way travel distance of more560

than seventy miles and its dwelling time in BART Walnut Creek is only 14 minutes. As a result, the currently available561

battery capacity and charging power fail to satisfy the electricity demand of buses 65 and 41. Another reason is that562

the corresponding charging hub has not been deployed, represented by bus 163. The applicable charging hub for bus563

163 is BART Pittsburg Center, which has not been deployed due to budget limit. This means that electrifying bus 163564

requires leasing a charging hub at BART Pittsburg Center at the same time, leading to a higher bundled cost compared565

to electrifying bus 96 that uses an existing charging hub.566
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Table 4: Rank of buses based on daily GHG emission and analysis of planning results.

Bus ID Route ID Agency, Route Name
Terminal Stations

Emission
(kgCO2e/day)

Budget Level
When Electrified

($ Million)
Reason Not Electrified

65 14 SolTran, R
BART El Cerrito Del Norte - Suisun City 1042 High frequency dispatches

66 14 SolTran, R
BART El Cerrito Del Norte - Suisun City 926 2.0

57 12 SolTran, R
BART El Cerrito Del Norte - Vallejo 736 2.0

41 9 Fairfield and Suisun, BLUE
BART Walnut Creek - Sacramento 708 Long route distance and

short dwelling time at terminal

68 14 SolTran, R
BART El Cerrito Del Norte - Suisun City 694 2.0

62 13 SolTran, Y
BART Walnut Creek - Vallejo 644 4.0

145 38 The County Connection, 21
BART Walnut Creek - San Ramon 635 4.0

163 41 TriDelta, 391
BART Pittsburg Center - Brentwood Park & Ride 631 Charging hub Pittsburg Center

BART has not been deployed.

96 23 The County Connection, 96X
BART Walnut Creek - Bishop Ranch 615 4.0

7 Conclusion567

This study focuses on the optimal deployment and operation of the shared charging hubs and the electrification of568

public transits to decarbonize the transportation sector within a regional area. With the objective to minimize the GHG569

emissions under given budgets, the optimization problem jointly determines which bus in the fleet shall be electrified,570

the locations of the charging hubs, and the necessary number of chargers and level of power capacities in these charging571

hubs. The optimization problem also determines coordinated charging schedules, which are developed with awareness572

of the time-varying ECI, electricity prices, and battery degradation, and largely benefited from the utilization of V2G573

technology.574

Based on the results of the case study, there are several interesting aspects worth highlighting: (1) The development of575

charging infrastructure and electric bus fleets is roughly split into five different phases, in which the preferences and576

focuses of development are different. (2) The shared charging hubs enables coordinated charging between EBs and EVs,577

reducing the peak power demands in charging hubs and leading to savings in both initial capital investment of power578

equipment and long-term peak demand charges. (3) A lack of awareness of time-varying ECI or the V2G function579

will decrease the effectiveness of decarbonization and also result in drastically different allocations of resources. (4)580

Under relatively low budget levels, once a charging hub is initially deployed, increasing the budget does not increase the581

number of EV chargers in this charging hub because higher marginal benefits of adding EV chargers are generally found582

in newly deployed charging hubs. (5) The priority of electrifying conventional buses generally follows the ranking of583

the buses’ daily GHG emissions. However, if constrained by operation limits or if there is a high bundled cost, a bus584

may not be electrified even if it has high daily GHG emissions.585

It is worthwhile to mention the control of charging schedules. While the EB charging schedules can be predetermined586

given their fixed operation schedules, the day-to-day random arrivals and departures of EVs require online scheduling587

algorithms to achieve coordinated charging in real-world applications. The use of off-line optimization in this study is588

intended to provide an initial evaluation of the decarbonization potential. The development of online control algorithms589

with the proposed model is a promising future research direction.590
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Appendices789

A Obtaining the Minimal Home Charging Cost CEV,min
j790

To determine CEV,min
j , the minimal cost of home charging for each individual EV j, we solve the following optimization791

problem (32)-(36):792
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min
∑
t∈T

(
ce,home
t yjt + cdeg|yjt|

)
∆t, (32)

Subject to:793

evjt′ = evjt +
[
yjt − (1−

√
κ)|yjt| − svjt

]
∆t, ∀t ∈ T, t′ = Next(t) (33)

ev,min ≤ evjt ≤ ev,max, ∀t ∈ T, (34)

0 ≤ yjt ≤ yhome,max, ∀t ∈ Thome
j , (35)

yjt = 0, ∀t /∈ Thome
j (36)

Finally, we can obtain CEV,min
j = D

∑
t∈T

(
ce,home
t yjt + cdeg|yjt|

)
∆t, ∀j ∈ J .794

B Linearization of Constraints795

B.1 Linearization of (22) and (23)796

First of all, (22) is equivalent to the following two equations (37) and (38):797

x̂ikt = {0, 1}, ∀i ∈ I, ∀t ∈ T (37)

∣∣∣∣βiktxit

G

∣∣∣∣ ≤ x̂ikt ≤ |βiktxitG| , ∀i ∈ I, ∀t ∈ T (38)

where G is a large positive number and G ≫ βiktxit. Then, (38) can be linearized to (39a)-(39e):798

x̂ikt ≥
βiktxit

G
, (39a)

x̂ikt ≥ −βiktxit

G
, (39b)

x̂ikt ≤ βiktxitG+XiktG
g, (39c)

x̂ikt ≤ −βiktxitG+ (1−Xikt)G
g, (39d)

Xikt = {0, 1} (39e)

where Gg is also a large positive constant, and Gg ≫ βiktxitG.799

The constraints (37) and (39a)-(39b) work in the following way to ensure (22) is satisfied: 1) When βiktxit = 0, (39a)800

and (39b) both require x̂ikt ≥ 0. One of (39c) and (39d) will requires x̂ikt ≤ 0, regardless of Xikt is 0 or 1. The801

combined effect will be x̂ikt = 0. 2) When βiktxit ̸= 0, (39a)-(39e) will force x̂ikt = 1. For example, if βiktxit > 0,802

Xikt must be 0 to ensure (39d) is valid. Since (39a) requires x̂ikt ≥ a small positive number, the result will be x̂ikt = 1.803

Similar effect can be found with βiktxit < 0.804

By referencing (37) and (39a)-(39b), we further linearize (23) as shown below:805

ŷjkt = {0, 1}, ∀j ∈ J, ∀t ∈ T (40)
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ŷjkt ≥
γjktyjt

G
, (41a)

ŷjkt ≥ −γjktyjt
G

, (41b)

ŷjkt ≤ γjktyjtG+ YjktG
g, (41c)

ŷjkt ≤ −γjktyjtG+ (1− Yjkt)G
g, (41d)

Yjkt = {0, 1} (41e)

B.2 Linearization of (24)806

(24) can be linearized to the following equations:807

(N b
k +Nv

k ) ≥ −Gδk + g, ∀k ∈ K (42a)

(N b
k +Nv

k ) ≤ G(1− δi), ∀k ∈ K (42b)

N̂k ≥ 1−Gδk, ∀k ∈ K (42c)

N̂k ≤ 1 +Gδk, ∀k ∈ K (42d)

N̂k ≥ −G(1− δk), ∀k ∈ K (42e)

N̂k ≤ G(1− δk), ∀k ∈ K (42f)
δk = {0, 1}, ∀k ∈ K (42g)

where g ≪ 1 is a small positive number.808

The constraints (42a)-(42g) work in the following way to satisfy (24): 1) When the number of chargers is greater than809

0, i.e. (N b
k + Nv

k ) > 0, (42a) and (42b) combined require δk = 0, in which case N̂k = 1 as enforced by (42c) and810

(42d). 2) On the other hand, When the number of chargers is 0, i.e. (N b
k +Nv

k ) = 0, (42a) and (42b) combined require811

δk = 1, and in this case, (42e) and (42f) will limit N̂k to be 0.812
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