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Adoption of renewable energy in power grids introduces stability challenges in regulating the operation frequency of the
electricity grid. Thus, electrical grid operators call for provisioning of frequency regulation services from end-user customers,
such as data centers, to help balance the power grid’s stability by dynamically adjusting their energy consumption based on
the power grid’s need. As renewable energy adoption grows, the average reward price of frequency regulation services has
become much higher than that of the electricity cost. Therefore, there is a great cost incentive for data centers to provide
frequency regulation service.

Many existing techniquesmodulating data center power result in signiicant performance slowdown or provide a low amount
of frequency regulation provision. We present PowerMorph, a tight QoS-aware data center power-reshaping framework,
which enables commodity servers to provide practical frequency regulation service. The key behind PowerMorph is using
łcomplementary workloadž as an additional knob to modulate server power, which provides high provision capacity while
satisfying tight QoS constraints of latency-critical workloads. We achieve up to 58% improvement to TCO under common
conditions, and in certain cases can even completely eliminate the data center electricity bill and provide a net proit.

CCS Concepts: · Hardware → Enterprise level and data centers power issues; · Software and its engineering →

Power management; · Computer systems organization→ Architectures.

Additional Key Words and Phrases: data center, power management, regulation service, quality of service, co-location

1 INTRODUCTION

Environmental regulations and falling costs are driving the rapid adoption of renewable energy resources (e.g.
wind and solar energy). During the past decade, electricity generation from wind energy has nearly tripled from
95,000 GWh to 254,000 GWh, and solar energy has grown nearly 40x from 2,200 GWh to 81,000 GWh [29, 41].
Overall, the percentage of total generation due to renewable energy has increased from 12.3% to 19.7% [41].
However, the integration of renewable energy and its intermittent behaviour present challenges in maintaining
electrical grid stability.
Electrical grids typically have an operating frequency of 50Hz (e.g. China, European countries) or 60Hz (e.g.

United States, Canada). The operating frequency of the electrical grid can easily lose balance if the supply

of electricity generation does not match the demand of electricity consumption. To combat this in modern
smart grids, regional electric grid operatorsÐalso known as Independent Service Operators (ISO)Ðcall for
conventional power plants and end-use customers, such as data centers, to provision for frequency regulation
services. The ISOs periodically send a frequency regulation signal to these entities which will accordingly adjust
their electricity consumption/generation to help stabilize the grid frequency. In return, participants receive

Authors’ addresses: Ali Jahanshahi, ajaha004@ucr.edu, University of California, Riverside, USA; Nanpeng Yu, nyu@ece.ucr.edu, University
of California, Riverside, USA; Daniel Wong, danwong@ucr.edu, University of California, Riverside, Winston Chung Hall, University of
California, Riverside, Riverside, California, USA, 92521.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst page.
Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s).

© 2022 Copyright held by the owner/author(s).
1544-3566/2022/1-ART1
https://doi.org/10.1145/3524129

ACM Trans. Arch. Code Optim.

HTTPS://ORCID.ORG/0000-0002-4301-7588
HTTPS://ORCID.ORG/0000-0001-5086-5465
HTTPS://ORCID.ORG/0000-0002-5376-7868
https://orcid.org/0000-0002-4301-7588
https://orcid.org/0000-0001-5086-5465
https://orcid.org/0000-0002-5376-7868
https://doi.org/10.1145/3524129


1:2 • A. Jahanshahi, N. Yu, and D. Wong

monetary beneits. With the increasing integration of solar and wind, and increasing grid instability, the price of
frequency regulation has increased signiicantly [29] providing growing incentives along with opportunities for
data center participation.

Conventional frequency regulation services are provided by electricity generators. However, generators tend
to be slow in adjusting electricity generation and it is only feasible for larger, longer luctuations in electrical
grid conditions. More recently, batteries distributed across the electrical grid have been utilized for providing
real-time frequency regulation services which require electricity adjustments every two seconds. However, using
batteries sufer from poor battery lifetime due to the need to charge/discharge every two seconds and also the
amount of regulation provisioned can fade if the battery is either fully charged or discharged [18, 35].

As an alternative, data centers have recently emerged as a compelling candidate for participation in frequency
regulation services by providing signiicant regulation service provision and providing the ability to vary
electricity consumption dynamically. Data centers consume 2% of US electricity usage, representing a large
portion of overall electricity usage [22], providing a large potential source of regulation service provision. In the
past, data centers have been explored to participate in various types of demand response including voluntary load
reduction [24, 85], and peak shaving/power capping [14, 20, 31, 31, 89] through techniques including DVFS [14, 89],
thread packing [12, 14], co-scheduling [31, 36, 70], and consolidating cores [6]. In addition, energy storage devices
(i.e. batteries) can be used to achieve peak shaving by discharging during peak electricity usage periods and
charging during low electricity usage periods [42, 48, 82]. However, relying on UPS batteries for peak shaving
can result in shorter battery lifetime and jeopardizing power backup, and also requires signiicant capital expense
investments.
Prior works [6, 8, 95] have attempted to adapt power capping techniques for participation in frequency

regulation services and for load following [48]. These works target batch (best-efort) or HPC workloads, which
typically run at maximum server power and are allowed to be slowed down (up to 200%) to track the regulation
signal. Furthermore, they rely on existing power management knobs which limits the amount of regulation
provision capacity that can be provided to the amount of power consumed by the workload.
Still, there are several signiicant limitations toward enabling practical frequency regulation services. First,

data centers typically run a mix of latency-critical workloads and best-efort workloads. These prior techniques
assume relaxed QoS targets and tolerated slowdowns of up to 200% QoS degradation [8, 95, 96], which would
be intolerable for latency-critical applications. Second, it is unclear how incoming request traic variability
can be handled in concert with frequency regulation signals. Finally, the majority of prior works have been
conducted through analytical models (at best, models derived from empirical measurements) which do not capture
the real-world variability of latency-critical workloads [11, 39]. In this work, we present PowerMorph , the
irst work to demonstrate support for data center frequency regulation in latency-critical environments. The main
novelty of this work is that it is the irst to achieve frequency regulation of servers running latency-sensitive
workloads through the introduction of a novel knob (complementary workloads). While co-location of LC and
BE workloads and throttling dummy load have been proposed in prior works, our work is the irst to show how
to carefully coordinate co-location, throttling of complementary workloads, and DVFS in order to maximize
frequency regulation provisioning under ms-scale latency constraints. This work opens up frequency regulation
to a whole new class of widely-used data center workloads/servers that previously was unattainable.

In this work, we make the following contributions:

• (ğ3) Identify the challenges of achieving frequency regulation service participation in commodity data
centers running latency-critical workloads.
• (ğ4) We propose PowerMorph, a QoS-aware server power reshaping framework, enabling data centers
to provide frequency regulation services using only computational resources under latency-critical data
center conditions.
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• (ğ5) We show that PowerMorph can accurately track frequency regulation signals in real-time and reshape
server power proiles. In a small-scale data center evaluation, we observed total electricity cost savings
of up to 71% and TCO ($ per throughput) improvement of up to 56% under common conditions. Under
favorable conditions, which occur 10% of the time, it is even possible to completely eliminate electricity
cost and achieve net proit. We also compare the total electricity cost of a data center providing frequency
regulation using energy storage technique (Flywheel) and a cluster-level frequency regulation technique
using CPU resource limiting and idle server modulation (EnergyQARE [8]) with PowerMorph .

2 BACKGROUND AND MOTIVATION

In this section, we will irst provide an overview of frequency regulation service and the potential opportunities
for electricity cost savings. Then we’ll provide an overview of other common techniques used to optimize data
center energy eiciency, such as power over-subscription and workload co-location. Then in the next section, we’ll
provide an overview of the limitations of existing work in providing practical data center frequency regulation
service and motivate the need for PowerMorph.

2.1 Overview of Frequency Regulation Service

In order to maintain electrical grid stability, electrical grids must maintain operating frequency between 58.98Hz
- 60.02Hz in the United States. In traditional power grids, this is achieved by constantly adjusting the generator
output to match the electricity consumption of consumers. However, as renewable energy sources such as wind
and solar are integrated into the power grid, the intermittent nature of solar and wind causes signiicant variation
in the electrical generator side. These sources have limited ability to adjust electrical generation supply in order
to match consumer demand, and traditional power sources cannot vary power quickly enough to balance out the
nature of solar and wind variation. Therefore, power system operators have recently begun allowing end-use
customers to help maintain the electrical grid frequency.

Frequency Regulation Markets: In order to maintain the operating frequency of the electric grid at rated values,
power system operators call for the provision of frequency regulation services from end-user customers and
thermal power plants in day-ahead or real-time markets. The frequency regulation service provision resources,
such as a data center, submit their estimated energy consumption baseline and frequency regulation service
provision capability into the corresponding market either a day in advance (for day-ahead market), or an hour in
advance (for real-time market). The energy consumption baseline is denoted as Pavд (i.e. the average amount of
power the data center is expected to consume in the next day/hour) and the amount of frequency regulation
service is denoted by R (i.e. the amount of power the data center can vary on-demand).
For real-time markets, estimates can be made at the start of the hour at 60-minute granularity (e.g. energy

consumed over the next hour) or at 5-minute granularity (e.g. energy consumed for every 5-minute interval over
the next hour), depending on the ISO support. We ind that making hour-ahead 60-minute granularity bids in the
real-time market provides the ideal trade-of in forecasting accuracy, as it is diicult for data centers to forecast
its usage a day ahead, or to estimate usage over the next hour in 5-minute granularity. In this paper, we utilize
PJM real-time market which only allows bids at 60-minute granularity.

Regulation signal: The frequency regulation service provision resources (e.g. a data center) have to modulate
their power consumption to follow a frequency regulation signal, r (t ), which falls into the range of [−1, 1]. The
frequency regulation service signal is broadcast every 2 seconds by the ISO based on the current state of the
power grid. ISOs ensure that that the diference between two consecutive values of r (t ) does not exceed 0.5% of
R [67], which means that the frequency regulation signal is relatively slow-moving compared to the variability
experienced in servers. Examples of regulation signals can be seen in Figure 7.

By setting the energy consumption baseline (Pavд) and the amount of frequency regulation (R), the data center
should keep its power consumption at time t to be Pavд + r (t ) · R. The energy charge of the data center at time
period t equals to the product of Pavд and locational marginal price of energy at time t . The revenue (reward)
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Fig. 1. Electricity cost and corresponding Regulation reward pricing in 2018 [66]

that the data center receives at time period t from providing frequency regulation service equals the product of
the amount of frequency regulation service (R) and the price of frequency regulation service price at time period.

Quantifying Quality of Frequency Regulation Service Provision: The revenue received from frequency regula-
tion service is also dependent on, and proportional to, the quality of the provided regulation service. In other
words, the magnitude of the revenue depends on how well a frequency regulation service provision resource (e.g.
data center) can track the frequency regulation signal. The quality of tracking is quantiied by a performance

score [67]. In quantifying the performance score, the electricity market does not diferentiate between the uncer-
tainty of data center demand vs the inability to follow regulation demand. Performance score is calculated with
Equation 1:

Performance Score =
1

3
(Delay + Accuracy + Precision) (1)

Delay is the time delay between the frequency regulation signal and the point of its highest correlation with
the regulation service provision resource’s power consumption signal. Accuracy is the correlation or degree of
relationship between the frequency regulation signal and the regulation resources’ power consumption time
series. Precision is calculated based on the instantaneous error between the regulation signal and the regulating
resource’s response.
ISOs typically certify a resource for regulation service provision after the resource achieves a performance

score of 75% or better on three consecutive successful tests [67]. Once frequency regulation resources are qualiied
for regulation service provision, they have to maintain a performance score of 40% or higher, otherwise, they will
be disqualiied from future frequency regulation service provision [67].

Reward pricing and Electricity cost: Figure 1 shows the electricity cost (in $/MWh) and the reward pricing (in
$/MWh) combination for a 1-year period in 2018 from PJM Interconnection [66]. The top and right histogram
distribution shows the probability distribution function of electricity cost and reward pricing, respectively, in
order to show the density of the scatter plot. Based on this, we can observe that electricity cost is typically in the
$20 -$40 per MWh range and the reward pricing is typically in the $30 - $100 per MWh range. The diagonal lines
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in the scatter plot represent the reward to cost ratio, with the lowest line representing price parity. 75% of the
time we observe reward pricing greater than or equal to electricity cost. Therefore, ample opportunities exist for
data centers to take advantage of favorable reward pricing. In fact, we observed that there are certain reward

to cost ratios that result in net proit, as highlighted by the yellow-colored dots. That is, at reward to cost
ratios above 4, we observe that 10% of the time1 the reward revenue from frequency regulation completely ofsets
the electricity cost resulting in overall proit. With the increasing adoption of renewable energy, it is expected
that the reward to cost ratio will only become more favorable [29]. Clearly, there is a great inancial incentive for
data center participation in frequency regulation markets.

Regulation Service vs Reducing Power Consumption: Data center operators try to optimize diferent aspects of
the data centers to reduce costs and maximize monetary beneits as long as the optimization does not violate
the Service Level Agreement (SLA). Lowering data center energy consumption is of great importance because
electricity costs are a major operation expense in data centers. To reduce the data center energy costs, numerous
approaches have been proposed to minimize the energy consumption of servers [11, 39, 54, 56, 80, 87], or decrease
the server’s peak power without violating the SLA [3, 31, 71, 89].
Counter-intuitively, we show that regulation service mechanisms can enable data centers to reap monetary

beneits without the goal of minimizing server power consumption. As shown in Figure 1, the reward to cost ratio
is commonly 2x - 10x. Due to these reward to cost ratios, there may be greater monetary beneits to participating
in frequency regulation service than to minimize server power consumptionÐin many cases it may be beneicial

to have the server consume more power.

2.2 Overview of server co-location

The traditional data center technique to improve the energy eiciency of data centers revolved around increasing
the utilization of existing power infrastructure and servers. Typically, many servers run at lower utilization,
and therefore consume less power than its nameplate power [20]. This is especially true of servers running
latency-critical workloads which typically exhibit request-response patterns where its utilization depends on the
amount of incoming requests. A common technique to improve the energy eiciency of data center servers is to
increase the utilization of the servers. Since servers commonly are lowly utilized [20], co-locating many jobs can
signiicantly improve server utilization. For example, server virtualization is a commonly used technique to allow
co-location on a single hardware server.

More recently, there has been signiicant work done in exploring the safe co-location of common data center
workloads, such as best-efort batch-type workloads and latency-critical workloads. Manywork exist in supporting
safe co-location of latency-critical and batch workloads to increase server utilization and scheduling of safe
co-location pairs [9, 15, 16, 55, 57, 61, 62, 65, 72, 90, 91, 94]. For example, Heracles [57] dynamically manages
multiple hardware and software isolation mechanisms to ensure that latency-critical workloads meet their strict
QoS targets while maximizing the resource given to best-efort tasks. More recently, safe co-location works have
explored how to enable co-location of multiple latency-critical workloads [61, 65] by quickly adjusting resource
isolation in a ine-grain manner.
In our work, the goal is to provide practical data center frequency regulation for latency-critical data center

workloads. Due to their low utilization, the amount of frequency regulation provision available is severely
limited. In order to increase the amount of frequency regulation provision available, we aim to co-locate latency-
critical workloads with a complementary best-efort workloads with standard commercially available isolation
mechanisms. Incorporating more advanced co-location policies would enable even better isolation of latency-
critical and best-efort workloads, resulting in better tail latency results.

1Assumes a data center at moderate 40% load and 80% performance score.
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2.3 Overview of data center power capping

A common technique to improve the utilization of power infrastructure is to over-subscribe the number of
servers in the data center and then limit the power consumption to safe levels under power emergencies. Power
emergencies can occur when the amount of power consumed by servers exceed the amount of power that can be
provided by the data center. Typical techniques to handle these power emergencies are known as peak shaving
or power capping. A lot of research has been conducted on power-capping across single server, clusters/data
center, or combination of them.
Server-level power capping: Peak shaving (power capping) limits the peak power consumption either the

data center- or server-level resulting in lower peak demand charge. Power capping can be achieved with a wide
range of techniques, which leverage computational resources. These techniques include DVFS [14, 89], thread
packing [14], CPUJailing [37], co-scheduling of power-complementary workloads [31], consolidating cores [6],
and using batteries [1, 27, 42, 82].

Data center-level power management: Most power management techniques at data center rely on meticulous
coordination of server-level power capping techniques [20, 31, 37, 50, 84, 88] in conjunction with leveraging
power distribution units (PDUs) [51, 73, 92].

Supporting power capping has some similarities to supporting frequency regulation. For example, both require
the data center (or server) power consumption to meet a certain power level. In the case of power capping, this
power level is a static power level, while in frequency regulation this power level is time-varying based on
the regulation signal. However, there exists a critical distinction that presents unique challenges for frequency
regulation. In power capping, the nominal utilization and power consumption level is at a maximal level and
power capping techniques aim to decrease the power consumption through various means (i.e. DVFS, resource
limiting, etc.). In the case of frequency regulation, the data center power level must be able to be decrease or
increase, depending on the regulation signal. In addition, the capacity for power increase / decrease must be
signiicant enough to provide a suicient level of frequency regulation provisioning in order to obtain suicient
reward. In comparison to power capping techniques, PowerMorph not only requires servers to reduce power,
but also follow and increase power.

3 CHALLENGES TOWARD PRACTICAL DATA CENTER FREQUENCY REGULATION UNDER
LATENCY-CRITICAL CONSTRAINTS

Due to the large electrical load that data centers consume, data centers make a good candidate for participation
in regulation services. Prior works have investigated the challenges and beneits of incorporating data centers
into power grids as regulation resources [54] for demand response and frequency regulation service. However,
most work focuses on the electricity market mechanisms on how to incentivize data centers to participate [54] or
explores potential beneits through extensive modeling [30, 49]. However, these prior works do not adequately
demonstrate practical implementations, and their challenges, for realizing data center participation in frequency
regulation services. In our work, we speciically address how data center frequency regulation can be supported
under more realistic environments which run latency-critical workloads. In this section, we will highlight the
challenges towards achieving practical data center frequency regulation with commodity servers and our approach
to overcome it.

How to maximize regulation provision? A key challenge that latency-critical workloads present is that servers
tend to be lowly utilized due to the request-response nature of the workload [2]. This presents a challenge since
the lower utilization of latency-critical workloads limits the amount of frequency regulation provision that can
be provided. This contrasts to best-efort batch workloads which tend to run at near maximum utilization and
provide a readily available large dynamic power range to modulate power.
Another key challenge to maximizing the amount of regulation service provision is the need to provide

symmetric frequency regulation. While many power modulation techniques, such as DVFS and core shutdown,
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can already provide symmetric frequency regulation, their provision amount can be limited. For example, if a
server commit a total of 20W for regulation service, then it must be able to either increase (up to Pavд + 20) or
decrease (down to Pavд − 20) power consumption as requested. However, certain scenarios can lead to violations.
For example, if core sleep states are used to reshape power and the server utilization is low, then there may not
be enough cores to put to sleep to regulate the power down to satisfy the regulation signal which negatively
afects the performance score. To maintain quality regulation performance, only a limited amount of power can be
provisioned for frequency regulation.

To address these limitations and to maximize regulation provision, we pair the latency-critical workload with a
co-located complementary workload to provide ofset power which symmetrically increases the amount of room
to modulate power up and down.
How to practically support complementary workloads? A key contribution of PowerMorph is the use of

complementary workloads to regulate server power. Essentially, we co-locate a best-efort workload that we
can modulate. Utilizing complementary workloads presents several challenges. Speciically, the complementary
workload needs to be able to handle the high variability of the latency-critical workload and need to avoid
performance-degrading contention with the latency-critical workload. Due to the request-response nature of the
latency-critical workload, server utilization tends to exhibit high short-term variability and is prone to bursty
behavior [11]. This presents a unique challenge for the complementary workload as it needs to modulate its
utilization to complement the latency-critical workload and at the same time aim to accurately track the moving
regulation signal.

If not carefully co-located, the complementary workload may also contend with the latency-critical workload
causing QoS degradation. As shown previously, there exist a large body of work that propose co-location frame-
works to allow latency-critical and best-efort workloads to safely co-locate. Although co-location frameworks
that support multiple latency-critical workloads exist, we do not consider co-locating multiple latency-critical
workloads as a complementary workload since the strict QoS requirement of the latency-critical workloads would
eliminate any possible power modulation opportunity. In order to maintain the tight QoS of the main workload,
the goal of this work is to answer "What level of isolation is required to safely co-locate complementary workloads

with latency-critical workloads for regulation service?" and also to see "How does co-located workloads variance

impact regulation service quality?"
How to reshape power? A major challenge of data center frequency regulation is the selection of techniques

to modulate power to track the regulation signal. The challenge here is the time granularity of the regulation
signal requires the data center to vary its power every 2 seconds and the need to provide suicient and symmetric
regulation provision. We mainly focus on servers since they consume the largest portion of the total data center
power [38, 86]. Furthermore, servers provide a large dynamic power range for providing regulation service.
Therefore, these computational resources are a large source of untapped regulation service provision that does
not require the capital expense overheads of utilizing energy storage devices (i.e. lywheels, batteries)2 and
are readily available in commodity data centers. Within servers, by far the largest consumer of power is the
processor, followed by main memory [38, 86]. Memory tends to not be signiicantly energy proportional as main
memory has signiicant static power due to the need for DRAM refresh [58, 74]. Processors, on the other hand,
are extremely energy proportional due to aggressive low power states such as idle power states (power gating)
and dynamic voltage frequency scaling, which makes them an ideal candidate.
Table 1 shows a list of common techniques that can modulate data center power and their limitations. At

the cluster-level, power can be potentially reshaped by migrating load in order to consolidate workloads to a
subset of active servers and turn of idle servers. In addition, idle servers can be turned on / of such that the idle
power can act as a form of power modulation. However, load migration takes in the order of seconds or minutes,

2See Section 5 for frequency regulation comparison against lywheel.
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Table 1. Overview of limitations of existing works enabling data centers to provide regulation service. PowerMorph (the last
row) enables data centers with co-located batch and latency-critical applications (very tight QoS constraint) participate in
regulation service to reduce the data center electricity costs.

Power Modulation Techniques Server/
Cluster

Workload
Support 1

QoS Criteria Workload
Service Time
Constraint

RS
Provision

DVFS [49] Server Sim. No QoS Support ms Low
Forced idle injection [59] Server BE No QoS Support s Medium
CPU resource limit [6] Server BE BE sojourn

time 2
s Medium

Power Capping, Job sched. [96] Cluster Sim. BE sojourn time min/hour Medium
CPU res. lim., Idle server [8] Cluster BE BE sojourn time s Medium
RE, EES, VM Allocation3 [63] Cluster Sim. BE sojourn time min High
RAPL, Job sched./Queue [95] Cluster BE BE sojourn time s High
Dummy load, DVFS [83] Cluster Sim No QoS Support ms High
Complementary Workload,
DVFS4

Cluster LC&BE LC tail latency ms High

1 BE: Best-efort/Batch, LC: Latency-critical, Sim: Simulation || 2 sojourn time = queue time + execution time
3 RE: Renewble Energy, EES: Electrical Energy Storage || 4 This work: PowerMorph

and turning idle servers on / of can take in the order of seconds, both of which are not responsive enough to
track regulation signals. Load can also be modulated by queuing up jobs that are going into the cluster. While
potentially more responsive, this approach can result in signiicant delays in job processing time. In many cases,
these techniques can tolerate and enforce QoS targets with up to 200% performance degradation. Due to this high
tolerance, standby jobs are able to be used while delaying requests is not tolerable for latency-critical workloads.

Therefore, in order to modulate cluster-level power, we would require coordination with server-level techniques
which are more responsive. Potential knobs here involve DVFS [49] and core sleep states [59] which can be
modulated in the order of milliseconds. However, DVFS can only reshape dynamic power, which limits the
amount of regulation provision that it can provide. Core sleep states can provide more beneits by also taking
advantage of static power. Techniques such as CPU resource limits [6] can be combined with DVFS and core sleep.
Hardware power limiting mechanisms, such as RAPL [40], provides power capping through hardware-controlled
DVFS. Many of these server-level techniques are coordinated with cluster-level techniques [8, 95] to provide
higher levels of frequency regulation provisions. However, a major limitation of these techniques is that they can
signiicantly slowdown the running workload, which is detrimental in latency-critical environments.
To solve these aforementioned limitations, we introduce using complementary workload where we utilize

a co-located application as a knob for power reshaping. By modulating a complementary workload, we can
provide millisecond power reshaping (to mask the high variability of the latency-critical workload and meet the
granularity of the regulation signal), provide a high provision for frequency regulation (to both increase and
decrease power consumption), and can meet tight QoS targets.
How to coordinate cluster-level power reshaping? Another challenge of data center frequency regulation

is in coordinating regulation service across all servers in the data center in order to maximize cost beneits.
Cluster-level coordination occurs at two time-scales. Every hour the data center has to make a bid for the amount
of frequency regulation (R). Every 2 seconds the data center as a whole has to follow a regulation signal. This
2-second regulation signal does not provide ample opportunity for complex cluster-level optimizations. On top of
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Fig. 2. PowerMorph overview. a) hierarchical coordination of servers for data center-level regulation service. b) Server-level
components of PowerMorph. Grey dashed boxes are PowerMorph inputs. Profiler runs on each server only one time to
obtain the power model of the server. Optimizer runs every hour to determine if the server participates in RS. R and Pof f are

computed by Optimizer. Since the profiled power model can vary for diferent applications, we adapt the computed power to
the application’s power behavior. Application adapted power (AAP) is the target power of the server to be set in the next
2-second time step which is the adaption of the power model interpolation error (e in black circle) for currently running
applications on the server. The controller runs every 2-second to control the co-location policy module.

that, the data center can have various cluster scheduling policies (such as load-balanced or consolidated) which
can interfere with cluster-level coordination of frequency regulation.
Therefore, we propose a hierarchical approach where servers are allocated individual frequency regulation

provisions and enforced locally to meet the timing requirements of the regulation signal, and regulation provisions
are reallocated every hour globally which enables more time-intensive optimization policies to maximize cost
beneits. We found this hierarchical approach provides good provisions and adapts to various cluster scheduling
policies.

4 POWERMORPH

The goal of PowerMorph is to provide practical data center-wide frequency regulation using commodity servers.
The PowerMorph framework coordinates server power reshaping using DVFS and complementary workload
provides performance isolation tomaintain tight QoS, andmaximizes rewards by providing symmetrical regulation
service provision. Intuitively, PowerMorph utilizes complementary workload to add ofset power to maximize
the amount of regulation service provision. PowerMorph dynamically adapts to the power behavior of diferent
types of applications running on the server resulting in more lexibility and robustness. Figure 2 demonstrates
the server- and date center-level components of PowerMorph. In this section, we describe how server-level
components of PowerMorph work, then expand the proposed server-level regulation service approach to enable
data center participation in regulation service.

4.1 PowerMorph Profiler

Targeting data centers with commodity servers in this paper, each server has a speciic power consumption
pattern based on its hardware resources and the workload running on it. In order to control a server’s power, i.e.
providing regulation service, PowerMorph requires the power consumption pattern of the server which we
call Power model. Proiler is run once on each server to sample and capture the Power model of the server with a
workload running on it. Depending on the granularity of frequency scaling that the server’s hardware supports,
the proiling operation takes about 1-3 minutes.

We use deep learning training workload on the server since they are both computation- and memory-intensive.
The captured power model is built by interpolating the samples of (utilization, frequency) pairs each of which
corresponds to a PCPU and PDRAM . Due to interpolation and using one workload type to proile the power
consumption pattern of a server introduces an error to the power model, e in Figure 2.b. We use a 1D Kalman
ilter to make PowerMorph capable of adapting to diferent workloads which will be explained in Section 4.3.3.
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Fig. 3. PowerMorph processor core organization and operation.

4.2 PowerMorph Optimizer

The proit of providing regulation service depends on the average power usage of the server which is determined
by the workload (Pavд) and the regulation provision (R) that the server is able to provide. Optimizer is responsible
for picking a (Pavд) and (R) that maximize the data center proit.
4.2.1 Maximizing regulation provision with ofset power: Using power range lines, Figure 3 gives an
illustrative overview of how PowerMorph adjusts the server’s CPU cores to reshape its power, while avoiding
impacting the latency-critical workload adversely. The circle markers on the power range lines are points of
interest for the server’s power when running its target workload. Pmin and Pmax represent the server’s minimum
(active idle) and maximum power consumption. Pavд is the average power consumption of the latency-critical
workload running on the server (with no participation in regulation service). Due to natural variations in workload
load, there is a natural variance in the power consumption of the server at a given utilization. This variance
range is represented by the smaller solid circles. In this illustrative example, we assume we have 16 cores on the
server, where the workload on the server can be serviced by packing all of its work in the irst 5 cores. Therefore,
on average, the amount of power consumed is due to the irst 5 cores. This represents a case where the workloads
utilization is typically ∼30%, but can vary from ∼20%-40% due to real-world short-term variation. We note that
all cores typically do not consume the same amount of power as the utilization-power curve is non-linear.
In order to maximize the amount of regulation service provision, we need to provide a large symmetrical

range. Our approach is to introduce ofset power (through the use of complementary workload) so that we have a

larger dynamic power range to utilize. In the igure, Pof f set is the ofset power added to Pavд . Therefore, the
efective average power of the server is P ′ = Pavд + Pof f set . 2R is the regulation server provision that is available.
Therefore, the server’s power can range from P ′ − R to P ′ + R, represented by the smaller square markers. These
regulation service parameters are readjusted by Optimizer every 60 minutes depending on the regulation service
market, data center workload, and workload variance.
4.2.2 Determining regulation provision and offset power: PowerMorph tries to minimize the total
electricity cost by picking a proper ofsetted power P ′ (reported to ISO as the average power) and |R |, for any
given workload (i.e. Pavд and Pvar ), reward (rew), and electricity cost (cost ). Equation 2 shows the optimization
formula solved by PowerMorph .

minimize : Total elec . cost = P ′cost − Reward

st : P ′cost = P ′ × cost

Reward = |R | × rew

Pavд +
Pvar

2
< P ′ < Pmax

Total elec . cost < threshold × Pavд × cost

(2)

Recall that [-R,+R] has to be symmetrical around P ′. Therefore, for any given P ′, |R | is calculated as follows:

|R | =min

(

Pmax − P
′
, P ′ −

(

Pavд +
Pvar

2

)

+ sa f e ranдe

)

(3)

As P ′ increases, |R | increases up to a point, then begins to decrease (because +R eventually becomes restricted
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by Pmax ). Similarly, as P ′ gets close to Pavд +
Pvar
2 , it becomes restricted by the safe range (shown as an arrow

with a hollow circle in Figures 3) which represents the limit of lowering frequency while safely meeting QoS. To
ind the optimal P ′, we solve the optimization formulated in equation 2 with exhaustive search (as illustrated
in Figure 4) by gradually increasing Pof f set from Pavд +

Pvar
2 to Pmax , which we call it sweeping. For every P ′,

we estimate the total monetary beneit of participating in regulation service and select the combination that
maximizes the beneit. This optimization runs every hour when the data center bids how much regulation service
provision it can provide. Based on our experiments, this step takes under a second. Therefore, this algorithm has
negligible overheads.

In order to pick R and P ′, we need to know the server’s Pavд and its variance power (Pvar ). Many research has
been done on predicting these parameters for data centers based on their historical load traces [4, 5, 17, 21, 53,
81, 93]. In this work, our aim is not in proposing new load prediction algorithms for data centers. Instead, we
can rely on these prior works to be able to predict the average load of the data center, which we can then use to
estimate the server’s Pavд and Pvar . We evaluate the impact of power prediction inaccuracy in Section 5.

When to participate: Figure 4 shows illustrative examples of our algorithm in picking P ′. Figure 4(a) shows
a case with high reward/cost ratio. The dotted line shows the Pavд cost of the server without participating in RS.
By increasing Pof f set , reward (|R |) irst increases, and then decreases (dashed line). Meanwhile, by increasing
Pof f set the electricity cost increases (dash-dotted line). Since reward/cost is high, monetary reward outweighs
the electricity cost introduced by Pof f set , resulting in savings (green shaded region). However, at some point
(after the "Highest Reward" point), due to shrinking |R |, the total electricity cost begins to increase to the point
that it exceeds the Pavд cost (dotted line), i.e. red area. In other words, after some point, it is not beneicial to
increase Pof f set anymore. PowerMorph picks P ′ that minimizes total electricity cost (solid line).
Figure 4(b) shows an example in which reward/cost is low. Since reward is low and electricity price is high,

electricity cost savings is only observed with small Pof f set before electricity cost overheads dominate. As P ′

increase, total cost quickly exceeds the Pavд cost (dotted line), i.e. red area. In such scenarios, in which the
green area is very small, an even small misprediction of either Pavд or Pvar leads to losing money. To avoid
such scenarios, PowerMorph uses a threshold to be conservative in participating in regulation service. If the
minimum total electricity cost (for the best P ′) is higher than threshold ∗ (Pavдcost ), PowerMorph decides not
to participate in RS. We use threshold = 0.95 in our experiments. The impact of reward and electricity cost:

We also performed a space exploration to investigate how the total electricity cost is afected by reward to cost
ratio and Pavд . Figure 5 shows total electricity cost normalized based on the average server power (Pavд) for all
possible reward prices and electricity cost values. We ran the experiment for the scenarios in which the server
is running with 10, 50, and 70% utilization each of which corresponds to a Pavд . In this experiment we assume
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there is no workload variation, and PowerMorph is able to follow the regulation signal with a performance
score of 80%.

In Figure 5, normalized total electricity cost equal to 1 means the total electricity cost of the server participating
in regulation service is equal to the electricity cost of the same server without participating in regulation service.
There is a point at which the reward (R) outweighs the electricity cost introduced by Pof f set , the area at which
normalized total electricity cost is greater than 1.
PowerMorph withdraws from regulation service for all points that have normalized total electricity cost of

greater than 1, which is dark blue-colored area in Figure 5. The lower the normalized total electricity cost the
more monetary beneit we get. Negative normalized total electricity cost (less than zero) means not only we
do not pay for the electricity we use, but we also earn money at that point, which is shown by grayish color in
Figure 5. In Figure 5, the area at which we earn money (negative normalized total electricity cost) shrinks as the
server utilization (Pavд) increases. The reason is that at higher utilization regions, the amount of R that we can
provide starts to decrease, and as a result we do not get a large beneit.
4.3 PowerMorph Controller

To provide regulation service, the server power needs to be adjusted every 2 seconds. PowerMorph Controller

calculated the target power of the server (Pt+1) based on the regulation signal (r (t )), regulation provision (R) and
P
′

calculated by PowerMorph Optimizer, as well as issuing the proper commands to the co-location policy module.

4.3.1 Core organization: To provide isolation between the complementary workload and the latency-critical
workload to maintain tight QoS, we pin tasks to speciic groups of cores. Based on real-time utilization of the
latency-critical workload, the Working core set is pinned with the latency-critical workload, and other resources,
such as cache, are allocated to them to meet their target QoS. The power consumption of the working cores is
Pavд with some power variance, due to workload variance.

The Ofset cores are dynamically assigned between either the latency-critical workload or the complementary
workload as the server’s utilization varies. These cores increase the server’s power consumption in order to
provide symmetry to increase or decrease server power, as well as to increase the amount of regulation service
provisioning that we can provide. The Free core set is used to increase target power by adjusting the complementary
workload when needed. By organizing PowerMorph into three core types, we can provide diferent functionalities
for regulation service, along with the server’s original latency-critical workload, in a way that decouples the
performance impact with reshaping server power.

The number of cores assigned to the latency-critical workload is readjusted in real-time to dynamically provide
performance isolation. If latency-critical workload needs more computation resources, an ofset core (or free
core if no ofset cores exist) is reallocated and converted into a working core instantly. Then, other cores are
reevaluated in a way that the server’s power follows the regulation signal.
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Due to variation in server load, the ofset cores also act as cores that absorb this noise and minimize core
reallocation events. In order to remove the switching overhead, we added hysteresis to the switching. Switching
an ofset core to a working core occurs instantly when the workload requires more core. On the other hand, if a
working core has not been used for a while, we convert it into either an ofset core or free core, whichever can
preserve P ′. Adding this hysteresis makes the isolation more robust, reliable, and has almost no overhead.

4.3.2 Complementary workload: By artiicially inlating the utilization of the server by Pof f set , we can
essentially follow regulation signals solely by scaling the utilization of the complementary workload and varying
power around P ′. Fundamentally, there is a trade-of between how much power we ofset by (extra electricity
cost) and how much reward we get by increasing our regulation service provision (more regulation reward).
Supporting utilization scaling requires us to explore 1) what type of complementary workloads to use, and 2)
how to control the complementary workload.

Best-effort complementary workload selection: A common approach to improve the energy eiciency of data
centers is to co-locate best-efort workloads with latency-critical workloads in order to increase the utilization of
the servers. To select a best-efort complementary workload, we assume the server can rely on a multitude of
prior works that select safe co-location workload pairs [9, 55, 57, 61, 62, 65, 91].
Complementary workload isolation: One of our goals is to identify the level of isolation required to safely

co-locate complementary workload with latency-critical workloads. Towards this end, we evaluate using isolation
mechanisms that are readily available in commercial of-the-shelf servers. While more sophisticated workload
co-location mechanisms exist [61, 62, 91], our evaluation is conservative and would obtain even better results
with more advanced techniques.

To provide isolation and preserve QoS in co-location scenarios with best-efort workloads, we follow a
similar scheme to Heracles [57]. Since latency-critical workload has priority over the best-efort workload, we
continuously monitor the resource requirement latency-critical workload and adjust hardware resources allocated
to that. Using taskset command, we pin the latency-critical and best-efort workloads to separate cores so that
there is no interference between them. In order to help latency-critical workload run faster, we increase the
priority of its processes using nice command. To isolate shared resources such as LLC, we utilize Intel’s Cache
Allocation Technology [34] which allows partitioning of cache between tasks. Currently, no memory bandwidth
isolation techniques exist. In [57], memory bandwidth availability was maintained by scaling down the number
of BE cores. In our experiments, we observed that the main sources of contention come from core and cache
contention, memory contention has a minuscule efect.

Controlling utilization of best-effort workloads: One challenge of using best-efort complementary workloads
is that we cannot direct the best-efort workloads to limit utilization directly. Therefore to limit the utilization
(and the power consumed by the server), we need to throttle these workloads’ utilization using existing Linux
system tools. We observed taskset achieves a better performance score as this method is more robust to noise
introduced by variation.

4.3.3 Morphing server power: Power morphing is guided by a sampled proiled power model that interpolates
the power curves shown in Figure 6. For each (utilization, frequency) pair, we have PCPU and PDRAM , separately.
Every cycle (2 seconds) we need to determine the target power (Pt+1 = rt+1 ∗R + P ′ ) based on the new regulation
signal rt+1, the chosen R, and determine if we should increase/decrease power.

Mapping target power to target utilization/frequency: Utilization (on ofset/free cores) and frequency scaling
(on working cores) are the knobs we use to morph server power. To achieve a target power, we need to select a
utilization/frequency point given our current operating point (as illustrated in Figure 6).
To decrease power, PowerMorph irst removes free/ofset cores allocated to best-efort complementary

workload ( 3→ 2 ). If still necessary, PowerMorph further decreases the frequency of the working cores while
remaining within the safe range ( 2→ 1 ). To increase power, PowerMorph irst increases the frequency of cores
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allocated to the working cores ( 1→ 2 ). Next, PowerMorph increases the server power by allocating ofset/free
cores to the best-efort complementary workload until the target power is reached ( 2→ 3 ).

Adapting to noise and application types: Due to noise/error introduced by inaccuracies to the proiled power
model, non-deterministic nature of real systems, and application type-dependent power consumption pattern,
setting the server utilization/frequency may not lead to the target power. To address this problem, a 1D Kalman

ilter is integrated into PowerMorph . The noise/error of the previous cycles (et ) is fed into the ilter to get an
estimate of the error (et+1) we predict for the power model to have for the next 2-second interval. Adding et+1 to
the target power (Pt+1) we will have the Application adapted power (AAPt+1) for the next interval. Then, using
the power model obtained by the Proiler, PowerMorph maps AAPt+1 to utilization/frequency which is going to
be set.
The adaptive capability of PowerMorph provides high-quality regulation service with diferent application

types, i.e. memory- or compute-intensive. For example, for memory-intensive applications, the extra memory
power (compared to the memory power in the proiled power model) is inputted as noise/error to the ilter.
Therefore, the application adjusted power (AAPt+1) would be less than the target power (Pt+1) to alleviate the
adverse efect of extra memory power usage. We also noted that depending on the workload, the maximum
server power varies while the shape of the power curve remains similar. To account for this diference, we derive
a scaling factor that scales the proiled power curve to the running workload’s power at a given utilization when
making power predictions.

Maintaining QoS: In order to maintain QoS under varying loads and regulation signals, we monitor the amount
of latency slack (the diference between observed latency and target tail latency) at run-time. If the observed
latency approaches the target tail latency, then we would need to increase the amount of latency slack available to
avoid any QoS violations. The way to do this is by lowering the amount of best-efort workload that is co-locating.
By opting to maintain the latency slack, we essentially trade-of the performance score (and amount of reward
we can obtain) to ensure QoS levels are met.

4.4 Data center-level regulation service

As illustrated in Figure 2.a, to provide frequency regulation across the data center, we utilize a hierarchical
approach where each server is allocated its own responsibility of frequency regulation provision. For example,
Server A (due to its workload or hardware resources) can provide 10W for frequency regulation service and
Server B can provide 20W for frequency regulation service. The regulation signal is then broadcast to every
server, where every server is responsible for tracking a regulation signal with respect to their own regulation
provision.
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To support this, we reallocate regulation provision (R) responsibility every hour. Every hour, we broadcast
the reward and electricity pricing to each server and each individual server will determine its average power
(P
′

) during the 1-hour interval as well as the amount of frequency regulation provision (R)it can provide. The
server’s regulation provision will then be aggregated at the data center-level and sent to the ISO. To determine
the data center’s estimated power consumption, we aggregate the estimated power of all running servers. Since
this reallocation occurs once every hour, this process can utilize more complex optimization.

5 EVALUATION

Platform setup, tools, and benchmarks: We run all experiments on a small-scale data center of 6 servers with an
Intel Xeon E5-2620 v4 processor, which has 16 physical cores, 128GB of DDR4 DRAM. Power of the server is
sampled through Intel PCM [33]. TheWeb Search benchmark from CloudSuite [64] is used as a representative
latency-critical workload. The target tail latency was selected as the 95th percentile tail latency of Web Search
running in isolation. To obtain the target tail latency, we adopt the same methodology established in prior
works [11, 91]. We obtain the target tail latency at the łkneež of the utilization3-tail latency curve, where queues
and tail latency begins to growÐwhich we observe to occur at ∼90% of the maximum supported RPS.

Workload utilization traces: We evaluate Web Search under realistic varying workload utilization traces from
Table 2. We use two workload traces of difering variance (email, and msg-store1) from [87]. These traces were
collected from institutional data centers representing a wide range of workloads including web serving, email
services, and data stores.

Table 2. Workload utilization trace properties. email and msg-store1 are from [87].

Trace name Avg. load (%) Variance Min (%) Max (%)

email 10.38 10.5 3 34
msg-store 32.1 10.77 21 59
high-util 50.5 15.32 25 75

According to [2], the utilization of servers running latency-critical workloads is typically around 20-40% of
max RPS. However, to evaluate PowerMorph at higher utilization ranges, we used a synthetic high utilization
load (high-util). We also evaluate a scenario where the cluster has mixed workload utilization where each trace is
run by 2 servers.
Best-effort complementary workloads: When selecting a complementary workload, it is imperative that this

workload would not degrade the QoS of the latency-critical workload. Complementary workloads can simply be
safe co-located best-efort workloads in co-located data centers. While outside the scope of this work, we assume
that safe co-location workload pairs can be assigned dynamically to the servers from a multitude of prior works
on identifying safe co-location pairs at run-time [9, 55, 57, 61, 62, 65, 91]. To select a candidate complementary
workload in our experiments, we evaluated a range of applications from SPEC2017, PARSEC3.0, and machine
learning training (AlexNet, VGG, LeNet) built on Keras. We observed that all of these best-efort workloads
can safely co-locate with our target latency-critical workload using existing isolation mechanisms available in
commodity servers. For our complimentary workload, we selected AlexNet training. ML workloads give us a
throughput metric (training epochs per second) [32] which we can use to quantify throughput and TCO impacts.

Regulation signal selection: We select three regulation signals from PJM regulation signal archive [68] selected
from 2018. Figure 7 shows the regulation signals we chose for evaluating PowerMorph . Since we are participating
in hour-ahead regulation market, we picked one hour slices. We chose Extreme (E) with regulation signal that
stays in the highest and the lowest power points for extended periods of time. We chose High Transition

3Our metric for utilization is with respect to the maximum achievable request-per-second of the LC workload and not the OS reported CPU
utilization (i.e. as reported in top).
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(HT) which have frequent min-to-max power change requests. We select Noisy (N) to evaluate how accurate
PowerMorph can track small changes in the regulation signal.

Regulation reward and Electricity cost selection: The regulation reward and electricity cost is broadcast every
hour (for hour-ahead regulation market). We selected three pairs of (regulation rewards, elec. cost) shown with
hollow black circles in Figure 1. (70, 20) is selected from the area with the highest density (the most common
scenario). (101, 12) represents a high reward/cost ratio pair. (102, 100) represent a reward/cost ratio that is
approximately 1 where electricity cost is high. Note that with high electricity pricing, reward price is typically high

and of similar magnitude. For ratios where price is greater than reward, PowerMorph typically decides not to
participate in regulation service.
Evaluation scenarios: In our evaluation, we consider the following scenarios. LC + BE represents a baseline

scenario where best-efort (BE) workloads are co-located to increase the utilization and eiciency of the servers.
LC + BE + RS represents the co-location case that is participating in regulation service where the best-efort
complementary workload is being regulated by PowerMorph.

5.1 Comparative Results

Figure 8 shows a comparative design-space exploration of various frequency regulation techniques across a range
of reward-to-cost ratios. This igure runs every technique with our 3 workload utilization traces. We deine total
electricity cost = (cost of electricity consumption) ś (reward obtained from regulation service) + (capital expense
cost). Capital expense only applies to the Flywheel scenario.

Comparison to traditional data center-level energy-saving approaches To reduce the data center energy costs,
numerous approaches have been proposed to minimize the energy consumption of servers [11, 39, 54, 56, 80, 87],
decrease the server’s peak power without violating SLA [3, 31, 71, 89], or consolidate servers to turn of idle
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servers [13, 23, 52, 69, 77ś79, 86]. Data center-level scheduling policies typically fall into two broad categories:
Uniform load balanced and Right-sizing which consolidates workloads in order to save power. In Figure 8, the
electricity cost savings due to right-sizing is shown with the black horizontal lines and are normalized to each
workload’s electricity cost using Uniform scheduling. Themixed scenario is omitted for igure clarity. As workload
utilization decreases, this results in more power-saving opportunities for right-sizing, with email resulting in
∼80% electricity cost savings.

We evaluate PowerMorph on top of both Uniform and Right-sizing scheduling. In the case of PowerMorph +
right-sizing, the idle servers are not shut of to save power, but instead used entirely by the complementary
workload to provide regulation service. For scenarios where reward-cost ratio is above 3 (a common scenario),
PowerMorph consistently saves more in electricity cost compared to right-sizing. Despite PowerMorph con-
suming more power by not shutting down idle servers, the amount of reward far outweighs the cost of increased
power consumption. In certain cases, PowerMorph even provides net electrical cost proit where the amount of
reward exceeds the electricity consumption cost! Counter-intuitively, we show that regulation service mechanisms

can enable data centers to reap monetary beneits without the goal of minimizing server power consumption.

Comparison with Flywheel energy storage system We compare against Flywheel [60], a data center-level
energy storage system that has been shown to be one of the best suited for frequency regulation applications [7].
Energy storage devices facilitate frequency regulation service by either charging or discharging to change the
data center’s power consumption proile without impacting the underlying workload. However, energy storage
devices incur high upfront capital cost expenses. In our small-scale experiment, we provision the Flywheel to
be similar to the peak power consumption of our cluster with capital expense cost of $2,400 / KW spread over
20 years and power-energy ratio of 0.25 which is typical of commercial products today [60]. Overall, we found
that Flywheel is efective and can save up to ∼90% of the total electricity cost with reward-to-cost ratio of 10.
However, we found that the capital expense of the Flywheel can signiicantly reduce the overall monetary beneit.
PowerMorph by comparison can provide signiicant regulation provision without any upfront capital cost,
leveraging the available power lexibility in servers.

Comparisonwith alternative data center-level frequency regulation techniqueWe compare against EnergyQARE[8]
which runs on top of right-sizing scheduling policies and coordinates server-level CPU resource limiting with
turning idle servers on / of for additional regulation provision capacity. Even though EnergyQARE can enforce
QoS targets of up to 200% slowdown, the amount of monetary beneits is limited (averages ∼80% savings) due to
the relatively smaller capacity of regulation provision that CPU resource limiting and idle servers can provide.

5.2 PowerMorph evaluation results

As shown in Figure 8, PowerMorph consistently outperforms alternative techniques for data center frequency
regulation. When running on top of Right-sizing, PowerMorph is more sensitive to utilization load as the
amount of idle servers luctuate, and hence, the amount of regulation provision. Running on top of Uniform
scheduling is more challenging for PowerMorph as every server has our complementary workload co-located
with a latency-critical workload which introduces more workload variance. Towards this end, the remainder of
this evaluation focuses on PowerMorph on top of Uniform scheduling which is more challenging.

Figure 9 shows our experimental results for total electricity cost and total cost of ownership. The igure shows
the result of the co-location case with regulation service (LC + BE + RS) normalized to the baseline co-location
case (LC + BE). These scenarios are evaluated against various (reward,cost) conditions, regulation signal patterns,
and workload utilization patterns as discussed previously. For certain scenarios, PowerMorph determines that
it is not worth it to participate in regulation service; these are indicated when both total electricity cost and
$/Throughput are both 1.0. We note that due to PowerMorph’s hierarchical approach to cluster-wide coordination
we observed similar results as we scale across diferent server counts and hence our result is representative of
larger clusters.
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Fig. 9. Total Electricity Cost and Cost per Throughput for LC+BE+RS (PowerMorph) normalized to LC+BE. Bars of 1.00
represents scenarios that decides to not participate in RS. In all scenarios, PowerMorph improves total electricity cost.

5.2.1 Total Electricity Cost. In the common case of (70, 20), PowerMorph can save 59% - 74% of the total
electricity cost. Even when the reward-cost ratio is not favorable, (102, 100), LC + BE + RS can still save 28% -
38% of total electricity cost when participating in frequency regulation. For favorable cases (101, 12), we observed
that the amount of monetary reward can outweigh the total electricity cost. In these scenarios, we observed that
we can earn a net proit equivalent to up to 65% of the original total electricity cost!

In general, we observe that total electricity cost savings remain relatively stable across diferent regulation signals.
Thus, demonstrating that PowerMorph is able to eiciently handle arbitrary regulation signals.

5.2.2 Total Cost of Ownership. In order to estimate the impact of PowerMorph on total cost of ownership,
we evaluate the dollar spent on electricity per throughput ($ / throughput). This gives us a more holistic evaluation
metric that incorporates both throughput impact and electricity cost to evaluate if the throughput reduction of
best-efort workloads justiies the gains in frequency regulation service participation.
Measuring TCO: To capture impact to the total cost of ownership, we evaluate $ per throughput. Note that

typically the metric throughput per $ is used; however, due to having negative electricity cost this metric becomes
diicult to understand. We simply take the inverse to represent TCO. This metric can simply be understood as
the cost (or reward) for every unit of throughput the data center provides.
Measuring throughput: For best-efort workloads, we use the number of training epochs per minute as the

throughput metric. For latency-critical workloads, we use queries per second as the throughput metric. In order
to quantify these two throughput metrics into a single metric, we use the System Throughput (STP) metric [19]
which is commonly used to capture throughput in multiprogram environments. STP quantiies the total system
throughput as follows:

STPserver =
ThrouдhputLCw/RS

ThrouдhputLC
+

ThrouдhputBEw/RS

ThrouдhputBE

For a single server, ideal STP is equivalent to 2 since we’re running two workloads (LC + BE). Values less than
2 indicates overall throughput decrease. The throughput in the denominator is the throughput when running the
baseline co-location, while the numerator is the throughput when participating in regulation service. To quantify
STP for a data center cluster, we simply take the summation of each server’s STP where ideal STP is two times
the number of servers.

TCO results: For the typical case (70,20), we observe TCO improvements of 28-58%. For favorable reward-cost
ratio (101,12), we are now basically earning money for every unit of computational throughput. In this scenario,
we are earning up to 87%, per unit of throughput, of what we would have paid for electricity cost per throughput
unit.
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For scenarios where reward-cost ratio is not favorable, (102,100), the $ / throughput is around parity ranging
from 1.03 to 1.15. The throughput decrease is mainly from the complementary workload and is due to Power-

Morph deciding that the additional electricity cost of ofset power does not out-weight the reward beneit of
providing a larger regulation provision. Therefore, PowerMorph decides to participate with less ofset power
(and thus, less complementary workload). Even with a worse case $ / throughput decrease of 15%, we still save
31% of total electricity cost. Therefore, system designers will need to carefully identify whether total electricity
cost is more important or throughput is more important when running in these reward-cost range.

5.2.3 uality-of-Service. QoS has been deined as the sojourn time of BEworkload in previous work [8, 63, 96].
In this work, however, the QoS is deined as the latency of LC workload. Table 3 shows the average normalized
tail latency of PowerMorph across diferent (reward, cost) conditions and individual utilization traces. Across all
scenarios, not only is PowerMorph able to maintain QoS levels but also the QoS tail latency has been improved.
Since PowerMorph regulates the utilization of the complementary workload to follow a regulation signal, we
will always introduce less interference compared to the baseline co-location case. The co-location techniques
utilized by PowerMorph are not the strictest which shows by utilizing more advanced co-location techniques,
PowerMorph is capable of performing even better. Therefore, there is a large room to isolate workloads even
more and get more proit in regulation service. Table 3 also shows the BE throughput (QoS) normalized to that of
baseline co-location case.

Although the QoS of BE workload is not considered in the PowerMorph optimizer, the result shows that the
QoS degradation is about 60% on average and within the range of 45-86% when PowerMorph participates in RS
which still meets the QoS limit deined in previous works which allow up to 200% QoS degradation [8, 63, 96].
According to [8], 200% QoS degradation is translated to 0.33 throughput degradation. As shown in Table 3, for
some scenarios, PowerMorph is not able to keep BE QoS within the range reported by prior works.

5.2.4 Performance score. Table 4 shows average performance score of providing regulation service for diferent
scenarios. Across all scenarios, PowerMorph is able to provide performance scores of >80 with an overall average
of 83.05. Of all the regulation signals, Noisy signal is the hardest to track due to the need to track small changes in
regulation signal. Even in this scenario, PowerMorph is able to obtain a performance score of 80.52. We observe
that as the number of servers in the cluster increases, the overall data center performance score improves due to
variation across servers having a masking efect of under-performing individual servers.

5.2.5 Impact of average power / variation misprediction. One of the goals of this paper is to investigate
how co-located workload variance impacts regulation service quality. To investigate this, we artiicially inject
variation errors (misprediction) of -10, -5, +5, and +10W for one scenario. Figure 10 shows the impact of artiicially
injecting misprediction errors when predicting workload variation for msg-store and Noisy regulation signal. We
ind that performance score is not greatly impacted by variation misprediction, but normalized TCO is impacted
slightly; no more than 5% diference in the worse case.

5.3 Mixed workload cluster

Figure 11 shows total electricity cost and total cost of ownership of a 6-server cluster with combinations of
workloads described in Table 2. Overall, we observe similar trends at the data center-scale similar to that of the

Table 3. QoS (Tail latency) of LC workload normalized to the target tail latency as well as BE workload QoS (throughput)
normalized to baseline co-location case for diferent utilization traces in PowerMorph.

Trace name
Normalized LC tail latency Normalized BE throughput

(101, 12) (70, 20) (102, 100) (101, 12) (70, 20) (102, 100)

email 0.52 0.64 0.68 0.55 0.19 1.01

msg-store 0.52 0.63 0.52 0.43 0.14 0.22
high-util 0.49 0.52 0.52 0.45 0.29 0.43

1 In this case, PowerMorph decides not to participate in RS.
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Table 4. Average performance score of providing regulation service by PowerMorph for diferent scenarios.

Regulation Signal Trace Overall
AverageE HT N email msg-store high-util

85.02 83.62 80.52 81.53 83.62 84.01 83.05
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Fig. 11. Normalized Total Electricity Cost and Cost per
Throughput of mixed workload utilization traces (2 servers
per trace) normalized to LC+BE

single server scenario, thus, highlighting the feasibility of scaling out PowerMorph across the data center. In
favorable cases, we observe proit of up to 46% of the total electricity cost. In the common case (70,20) we save up
to 71% of total electricity cost with 56% improvement to TCO. In the non-favorable cases, we achieve up to 37%
improvement to total electricity cost with near parity TCO.

6 DISCUSSION

Frequency regulation, public vs private data centers: PowerMorph utilizes the server’s performance metrics
to maintain the QoS for the latency-critical application. Since workload performance metrics are required, this
work assumes private data centers where the applications’ QoS requirement is known. Many previous works on
data center frequency regulation [8, 63, 95, 96] use sojourn time as performance metric to measure the QoS of the
batch workload which also is not practical in a public data center and is limited to private data centers.
Aggressively provisioned data centers: Without frequency regulation participation, the data center would
aggressively provision and safely co-locate latency-critical and best-efort workloads. In this baseline case, the
best-efort workload would run unconstrained. If we participate in frequency regulation, PowerMorph will
utilize the co-located workload to modulate power. This means that under frequency regulation the co-located
workload will always be consuming less power (to track the regulation signal) compared to the baseline case. If
there is a workload burst, we would handle this scenario similar to the baseline case by throttling the best-efort
workload and prioritizing the latency-critical workload. However, aggressively provisioned data centers operate at
higher utilization and have less power headroom, which can potentially limit the amount of frequency regulation
provision that PowerMorph can provide in order to maintain availability.
Security concerns: Power attacks can create power emergencies that threaten the availability of aggressively-
provisioned data centers [46]. In general, data center frequency regulation techniques are susceptible to such
power attacks which can impact workload performance and overall cost returns. Power attacks can be detected
based on attack features, feature extraction, or abnormal user behavior [10]. However, the attacker can evade this
by changing the attack patterns and even attack the data centers with power attack detectors. PowerMorph can
potentially provide a ground truth for power attack detection. For any given average power of the server (P ′) and
r (t ), at any given time, the target power can be calculated and monitored by an automated system. The moment
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the power of a server does not follow the expected target power, it can be a sign of power attack which can be
further investigated by more complex power attack detection methods.
Currently, PowerMorph relies on the workload average load and its variance which can be manipulated by

attackers. We assume the data center is not compromised and it is secured from power or DDoS attacks which
interfere with the predicted workload behavior of the data center leading to power consumption misbehavior.
PowerMorph is most suitable for private data centers which have more control over the security. Also, Power-

Morph framework runs on each server independent from the other servers in the data center resulting in more
security isolation in case attackers manage to compromise a small portion of servers.

7 RELATED WORK

The most relevant work in providing frequency regulation service in data centers was discussed previously in
Section 3.
Renewable energy-powered data center: This intermittent nature of renewable energy pose many workload
scheduling problems [25, 26, 75] and scheduling/design of power sources [26, 44, 45]. A major problem is load
matching, where there is a need to balance the load power demand and local/global power generation. Load
matching has been proposed at the processor-level [43, 47] by using DVFS to tune load, by using stored energy
devices [27, 28], and by coordinating local power generators to track power and power shaving to trim load demand
[48]. These prior techniques mainly target batch workloads without tight millisecond-level QoS requirements,
and also load matching at 15-minute granularities. In contrast, frequency regulation requires power readjustment
every 2s and PowerMorph maintains ms-level QoS requirements. Due to this, PowerMorph can also be applied to
load matching of renewable energy data centers, but not vice versa.
Batteries for RS: Leveraging UPS has also been considered to enable data centers participating in RS [30, 76]
reduce the electricity costs of data center. While UPS can be leveraged to participate in regulation service, they
incur signiicant capital expense and they are mainly designed for backup power, and not for the charge and
discharge cycles required for regulation service which leads to lifetime issues.

8 CONCLUSION

In this work, we have proposed PowerMorph, a QoS-aware server-level power-reshaping framework which
enables data centers to participate in regulation service by dynamically adjusting the servers’ power consumption,
providing us with up to 71% savings in electricity costs and up to 58% TCO improvement in common conditions.
To the best of our knowledge, PowerMorph is the irst practical demonstration of frequency regulation service
under realistic latency-critical data center environments.
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