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Abstract—Online event classification is crucial to enhancing
the reliability of the power transmission system. With the recent
success of deep learning based methods in various domains such
as computer vision and natural language processing, researchers
started adopting these techniques to solve the power system event
identification problem and achieved excellent results. However,
the previous work does not consider the vulnerability of deep
learning models to adversarial attacks, which could potentially
make them unreliable in real world applications. In this paper, we
adopt several adversarial attack mechanisms by adding tailored
noise signal to the input Phasor Measurement Units (PMU) time
series and make the deep learning model misclassify the power
system event. Qur results reveal that current state-of-the-art
deep learning based power system event classifiers are extremely
vulnerable to adversarial attacks, which may jeopardize the
reliability of the power transmission system.

Index Terms—Adversarial attacks, deep learning, event iden-
tification, phasor measurement unit.

I. INTRODUCTION

Phasor Measurement Units (PMUs) have been increasingly
deployed in many countries mainly to enhance situational
awareness in the bulk power system. The high sampling rate of
PMUs enabled the development of data-driven power system
event detection and classification algorithms. The provision
of large-scale real-world PMU dataset and event labels by
the U.S. Department of Energy has advanced the field of
deep learning-based power system event identification and
classification. A deep convolutional neural network (CNN)
with information loading and graph signal processing (GSP)-
based sorting algorithms is proposed to classify power system
events using PMU data [1]. Different variations of CNN-
based models are designed to classify power system events,
for instance, [2] designs the spatial pyramid pooling (SPP)-
aided CNN, and [3] establishes a hierarchical CNN.
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Although deep neural network-based classifiers achieved
great success in many fields, they were shown to be vulnerable
to adversarial attacks [4], i.e., small modifications to the input
data may lead to misclassification [5]-[9]. Most of adversar-
ial attacks on neural networks literature focused on image
recognition tasks. The existing work studied how to create a
modified/adversarial image, which will be misclassified by the
neural network. A fast gradient-based attack [5] was developed
as an alternative to expensive optimization techniques [4],
where the authors hypothesized that the presence of such
adversarial examples are due to the linearity for deep learning
models. This adversarial attack was extended by a more costly
iterative procedure [6]. Another iterative method to compute a
minimal norm adversarial perturbation for a given image was
proposed [7], where the authors also introduced a metric to
quantify the robustness of the classifiers.

While adversarial attack has been extensively researched
in the image recognition field, it has not been well studied
in the sub-field of deep learning-based power grid event
identification. Cyberattacks against the power grid such as
false data injection attacks on the state estimation, protection,
and control sub-modules of the power system have received
a lot of attention from researchers. However, little attention
has been paid to attacks against deep neural network-based
monitoring tools in the bulk power systems.

In this paper, we leverage adversarial attack schemes that
are effective on image datasets to modify the PMU data and try
to quantify the robustness/vulnerability of the state-of-the-art
deep learning-based power system event classification models.
We also perform a large-scale case study using the real-world
PMU data during power system events in the Eastern and
Western Interconnections of the U.S. transmission grid to
demonstrate that the deep learning-based event classification
models are prone to adversarial attacks.

Adversarial attacks can be divided into white-box attacks
and black-box attacks based on whether the deep learning
model and dataset are available to the attacker [10]. In this
initial study on the topic of adversarial attacks against power
system event classification models, we explore white-box
attacks and plan to investigate black-box attacks in the future.

The main contributions of this paper are:

+ We define and formalize the adversarial attacks on deep
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Fig. 1. Adversarial attacks on power system event classifiers with PMU data.

neural network-based power system event classification
models that use PMU dataset.

e We demonstrate that the state-of-the-art deep learning-
based power system event classification algorithms are
extremely vulnerable to adversarial attacks.

o We quantify the robustness of different deep learning-
based event classification models by calculating the mini-
mum false data injection level to fool them, which heavily
depends on the original and target event class/label.

The rest of this paper is organized as follows: Section II in-
troduces the overall framework of adversarial attack on power
system event classification models and the key notations.
Section III presents the technical methods of three adversarial
attack algorithms. Section IV quantifies the effectiveness of
the adversarial attacks using a large-scale power system event
datasets. Section V concludes the paper.

II. OVERALL FRAMEWORK AND KEY NOTATIONS

We first present the overall framework of adversarial attack
on the deep learning-based event classification models in the
power system. Then, we provide the notations for the power
system event classification models and the adversarial attacks.

A. Overall Framework

The overall framework of our proposed method is illustrated
in Fig. 1. Suppose we have a trained deep neural network-
based classifier that correctly identifies the event type of most
PMU data samples. The adversarial attack algorithm has the
ability to create a small perturbation from the PMU data
sample. By adding the subtle and imperceptible perturbation
to the original PMU data sample, the well-trained deep neural
network based classifiers will misclassify many power system
events.

B. Key Notations

The key notations are summarized below for ease of under-
standing of the technical methods:

Notation 1: A PMU time series sample X = [x1, X2, ..., XT]
is an ordered set containing PMU measurements at time steps
t =1,...T. x¢ consists of measurements of active power (P),

reactive power (Q), voltage magnitude (V), and frequency (F)
from multiple PMUs at time step ¢. The sampling rate of the
PMUs is 30 Hz, and each data sample has a 12-second (360
timestamps) window.

Notation 2: A power system events dataset, D =
{(X1,Y1),(X2,Y2),...,(Xn, YN)}, is a set consists of the
PMU time series sample and event label pair. X; is the ith
PMU time series sample and Yj; is the corresponding one-hot
encoded event class vector. There are four different classes:
normal behavior (non-event), voltage-related event, frequency-
related event, and oscillation event.

Notation 3: f(-) denotes a deep learning-based event clas-
sification model. It maps the input X; to a vector Y, which
reflects the the confidence of the corresponding class.

Notation 4: J;(-,-) denotes the cross-entropy loss function
of the deep neural network-based classification model f.

Notation 5: X’ represents the adversarial example com-
prised of a perturbation and X (the original data sample).

III. TECHNICAL METHODS

First, we describe the design of a state-of-the-art CNN-
based power system event classifier. Then, we present three
adversarial attacks that are used to generate adversarial PMU
time-series examples to fool the above-mentioned classifier.

A. CNN-based Power System Event Classifier

The CNN-based neural network classifier used in this paper
was proposed in [1], and it combined the residual network, the
graph signal processing (GSP)-based PMU sorting algorithm,
and the information loading-based regularization techniques.

1) Residual Network: This classifier estimates the event
type, taking in the pre-processed streaming PMU data. The
architecture of the classifier is a CNN, called ResNet-50 [11].

The ResNet-50 may be split into an encoder and an estima-
tor in terms of functions. The encoder is a CNN that primarily
consists of the input layer, a max-pooling layer, a series of
different convolutional building blocks, and a global average
pooling layer.

Mathematically, a building block can be expressed as: Y; =
g(U;,6;) + U;, where U; and Y; are the input and output of
the i-th block, respectively. 6; is the parameter vector for the
i-th block. g(-) is the nonlinear activation function.

The estimator is the last layer of the ResNet-50, which
is a fully connected layer with outputs normalized by the
softmax function. The classifier is trained using the categorical
cross-entropy loss function. The training is performed with
stochastic gradient descent and the Adam optimizer [12].

2) GSP-based PMU Sorting: Convolutional layers use con-
volution filters to process local information. They function
perfectly, especially when the local patches of data are highly
correlated. The GSP-based sorting algorithm rearranged the
sequence of PMUs, where the PMUs with high correlations
will be placed close to each other [1].

The detailed derivation of the GSP-based sorting algorithm
can be found in [1]. We only show the procedure of this al-
gorithm in this paper. The GSP-based PMU sorting algorithm
can be summarized in the following four steps:



(1) Derive the Pearson correlation coefficients between
PMUs’ measurements in the interconnection.

(2) Obtain the graph Laplacian matrix L.

(3) Execute eigenvalue decomposition on L.

(4) Sort PMUs according to eigenvector that corresponds to
the second smallest eigenvalue of the L.

3) Information Loading-based Regularization: The infor-
mation loading-based regularization technique is motivated by
the recent theory related to the information losses through
the neural classifier [13]. The information loading-based reg-
ularization can adjust the information quantity between the
input and the hidden representation of a deep neural network.
Like the GSP-based PMU sorting, we do not include this
technique’s detailed problem formulation and derivation in this
paper. Interested readers can find them in [1].

The information loading-based regularization technique de-
signs an estimator for estimating the mutual information
between the input and last hidden layers. Moreover, the
estimated mutual information is added as a weighted penalty
term to the original cross-entropy loss function to control the
information compression of the classifier. In this paper, we
trained classifiers with the same parameter settings in [1].

B. Three Adversarial Attack Algorithms

This subsection provides the details of the three different
adversarial attack algorithms that were adopted in this paper
to fool the power system event classifiers.

1) Fast Gradient Sign Method: The fast gradient sign
method (FGSM) was proposed in [5] to generate adversarial
images that fooled the well-known GoogLeNet model. The
FGSM attack updates the sample along the direction of the
gradient’s sign. The perturbation process is expressed as:

n=e€- szgn(VzJ(X, thrue))a (l)

where e denotes the magnitude of the perturbation (a hyperpa-
rameter). The adversarial event sample, X', is easily generated
with X’ = X + 7. The gradient is efficiently computed using
back-propagation.

Targeted Fast Gradient Sign Method: Instead of making
the model misclassify the given sample, an extension of
the FGSM approach demonstrated by [9], shows that the
algorithm was able to specify a class as the attack target.
This enhanced method is called the “targeted FGSM”. The
adversarial example is crafted using the following equation:

X' =X — e sign(VyJ (X, Yiarget)) )

2) Basic Iterative Method: The basic iterative method
(BIM) [6] evolves the FGSM by changing the one-step update
to the multiple small-step updates. Moreover, it clips the
accumulated perturbations after each step to limit its .. The
result of the image dataset shows that this iterative perturbation
is more negligible compared to FGSM.

Algorithm 1 shows the procedure of this iterative attack
which requires three hyper-parameters: (1) the number of
iterations, [; (2) the amount of maximum perturbation, 7; and

Algorithm 1 Basic Iterative Method (BIM)
Parameter: I, 7, o
Input: event sample X, label Yy,
Output: perturbed event sample X'
X' =X
fori=1to I do
. untargeted: n = ¢ - sign(V,J (X, Yirue));

1:

2:

3

4:  targeted: n = e sign(V,J (X, Yiarget));
5s:  untargeted: X' = X' +n;

6: targeted: X' = X' —n;

7. X' '=min(X +¢,max(X — e, X'));

8: end for

(3) the per step small perturbation, . We set I = 100, n =
0.1 and o = 0.005 in our experiment.

Like the targeted FGSM, as shown in Algorithm 1, BIM
can also be extended to the targeted BIM by changing the
calculation of the perturbation, 7, and the adversarial example,
X', for each iteration.

3) DeepFool: The DeepFool [7] is a cutting-edge technique
that can effectively deteriorate deep neural network-based im-
age classification performance. The DeepFool can efficiently
estimate the minimal norm adversarial perturbation that makes
the trained classifier misclassify the given sample.

DeepFool is an iterative method that accumulates the per-
turbation until it successfully makes the classifier misclassify.
Each step of the DeepFool contains two procedures. First,
it looks for the closest decision boundary from all classes
except the label. Then, it updates the sample by orthogonally
projecting to that closest decision boundary. Due to space
limitations, this paper does not include the implementation
details of DeepFool, which can be found in [7]. Note that the
Deepfool algorithm does not need any parameters.

IV. NUMERICAL STUDY

In this section, we validate the three adversarial attack algo-
rithms with the myriad real-world PMU datasets in the Eastern
and Western Interconnections of the United States. Also, we
quantify the robustness of the trained event classifiers, and
we clarify the impact of the GSP-based sorting algorithm and
information loading techniques on the robustness.

First, we briefly describe the PMU data used in this work.
Then, we evaluate the untargeted and targeted performance
of the three adversarial attacks and analyze the impact of the
GSP-based sorting algorithm and information loading tech-
niques. Finally, we quantify the robustness of neural network-
based power system event classifiers.

A. Data Source

Each dataset contains the PMU measurements from a sepa-
rate transmission network with 179 valid PMUs in the Eastern
interconnection and 41 valid PMUs in the Western intercon-
nection of the U.S. The raw measurement data contains the
sequence of the voltage phasor, current phasor, and frequency.
We follow the same procedure in Section III-F of [14] to
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Fig. 2. Power system event detection accuracy with respect to the amount of
perturbation for FGSM attacks on Eastern and Western Interconnection.

clean raw data and convert this cleaned data to the tensor
that consists of active power P, reactive power (), voltage
magnitude |V, and frequency F. The pre-processing data
pipeline includes the bad PMU removal using the PMU status
flag or outlier thresholds, the missing data replacement, and
the real and reactive power calculation. The event labels were
generated from the electric utility and network operators’ event
log. There are a total of 1,147 (1,204) labeled PMU data
samples in the dataset, and are separated into four different
types: 825 (625) line events (voltage events), 84 (333) genera-
tor events (frequency events), 118 (147) oscillation events and
120 (99) normal system operation behavior, for the Eastern
(Western) Interconnection. Each sample in the dataset is a
12-second window. The sampling frequency of the PMUs
is 30 Hz. Therefore, the shape of each PMU data sample
in Eastern (Western) Interconnection dataset is [360; 179;
4] ([360; 41; 4]). These three dimensions correspond to the
timestamp (360), the number of PMUs 179 (41), and the four
measurement channels: P, @, |V, and F.

The datasets are divided into training datasets (80% of the
total samples) and testing datasets (20% of the total samples).
The event classifier is trained on a machine with four RTX
2080 Ti GPU, the batch size of 16, and 200 training epochs.

B. Adversarial Attack Performance

1) Fast Gradient Sign Method (FGSM): Figure 2 shows
the change of the accuracy in the testing dataset with the
increasing amount of the perturbation e added to every sample.
All four of these classifiers are extremely vulnerable to the ad-
versarial attack. When the perturbation fraction of € increases
from O to 0.1, the accuracy of system event classification
algorithms plummet below 50% for all these four classifiers.

We also compare the performance between the classifiers
with and without the techniques used in [1]: GSP-based
PMU sorting algorithm and information loading-based reg-
ularization. It is observed that both the GSP-based PMU

sorting algorithm and information loading-based regularization
contribute to increasing the resistance to adversarial attacks
although this increase is quite limited.

TABLE I
AVERAGE PERTURBATION /2 NORM FOR DIFFERENT METHOD WITH 50%
OF MISCLASSIFICATION ON EASTERN/WESTERN INTERCONNECTION

Classifier FGSM BIM DeepFool
ResNet50 (RN50) 5.95/5.92 5.37/4.93 2.69/3.05
RN50-GSP 10.61/7.89 8.96/6.59  4.97/3.96
RN50-Info 13.76/15.06  6.91/7.94  3.54/4.83
RN50-GSP-Info 27.34/17.95  13.24/8.26  6.86/5.17

2) Average lo Norm for Three Adversarial Attack Algo-
rithms: Table I shows the necessary amount of the perturbation
of three adversarial attack algorithms that makes the power
system event classifier misclassify 50% of the PMU samples
in the Eastern/Western Interconnection. The average [, norm
is used as the scalar to quantify the amount of perturbation.

Although the classifiers are highly vulnerable to the FGSM
algorithm, as shown in this table, the BIM and DeepFool algo-
rithms can fool the classifier with even smaller perturbations.
Figure 3 displays an example of the perturbation generated by
DeepFool algorithm that fools the RN50-GSP-Info classifier
from identifying a normal behavior to a generator event. It is
evident that the injected perturbation is imperceptible. Table
I also reveals that the ResNet-50 combined with GSP-based
PMU sorting and information loading-based regularization has
the most effective resistance to adversarial attacks, which
justifies that this classifier shows the highest distinctive com-
petence for power system events.

3) Targeted Adversarial Attack: As described in Section
III-B, the FGSM and BIM algorithms can be enhanced so that
we can freely/actively specify the target class.

TABLE I
AVERAGE l2 PERTURBATION TO FOOL CLASSIFIER FROM THE LABEL TO
THE TARGET CLASS BY TARGET BIM ON WESTERN INTERCONNECTION

Target gt
Label g€l Normal Voltage Frequency Oscillation

Normal 3.93 3.67 3.16

Voltage 9.05 6.13 7.85
Frequency 5.18 4.94 5.91
Oscillation 3.20 4.29 4.376

We adopt the targeted BIM algorithm and derive the average
I, of the perturbation to fool a sample from the classified label
to the target class, as shown in Table II. The classifier used
in this experiment is RN50-GSP-Info. This table demonstrates
that the voltage event is the hardest to be fooled compared to
other types, which is in line with the domain expert’s intuition
because only the voltage event data generally include single
or more significant impulse responses.

C. Power System Event Classifier Robustness Quantification

The robustness of the classifier, f, at point X may be
defined as the norm of the minimal perturbation, r, that can
fool the classifier [7]. The robustness p of the classifier,
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Fig. 3. Example of a tiny perturbation computed by DeepFool that make the model misclassify from normal behavior to generator event.

f, is expressed as the point robustness expectation over the
distribution of data:

A, f)
[1X1l2
The minimal normal perturbation A (X, f) to fool the classifier

can be estimated via the DeepFool algorithm in (5).

A(va) :minrHTH%f(X—i_r) # f(X)

p=Ex 3)
4)

TABLE III
CLASSIFIER’S ROBUSTNESS AGAINST DEEPFOOL PERTURBATION

Classificer Robustness (East) Robustness (West)
ResNet50 (RN50) 0.0099 0.0221

RN50-GSP 0.0137 0.0249

RN50-Info 0.0194 0.0347
RN50-GSP-Info 0.0245 0.0385

Table III quantifies the robustness of four trained classifiers
for Eastern and Western interconnection data. It can be seen
that both GSP-based sorting and information loading-based
regularization increase classifiers’ robustness. Nevertheless,
the robustness of all four of these classifiers indicates that the
perturbation with the /5 norm, less than 4% of the sample, will
make the classifiers completely useless. Therefore, significant
development is needed to improve the robustness of the state-
of-the-art neural network-based power system event classifiers.

V. CONCLUSION

This paper adopts three adversarial attacks to fool power
system event classifiers and evaluates them on the large-
scale real-world Phasor Measurement Units (PMU) dataset.
We showed that adding small perturbation signals to the PMU
dataset could significantly degrade the performance of the
state-of-the-art power system event classifiers. Our result man-
ifests the current power system event classifiers’ vulnerability
and reveals the necessity of future research to design more
robust deep learning models to classify power system events.
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