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Abstract

Volt-VAR control (VVC) is a critical tool to manage voltage profiles and re-
active power flow in power distribution networks by setting voltage regulating
and reactive power compensation device status. To facilitate the adoption of
VVC, many physical model-based and data-driven algorithms have been pro-
posed. However, most of the physical model-based methods rely on distribution
network parameters, whereas the data-driven algorithms lack safety guarantees.
In this paper, we propose a data-driven safe reinforcement learning (RL) algo-
rithm for the VVC problem. We introduce three innovations to improve the
learning efficiency and the safety. First, we train the RL agent using a learned
environment model to improve the sample efficiency. Second, a safety layer is
added to the policy neural network to enhance operational constraint satisfac-
tions for both initial exploration phase and convergence phase. Finally, to im-
prove the algorithm’s performance when learning from limited data, we propose
a novel mutual information regularization neural network for the safety layer.
Simulation results on IEEE distribution test feeders show that the proposed al-
gorithm improves constraint satisfactions compared to existing data-driven RL
methods. With a modest amount of historical data, it is able to approximately
maintain constraint satisfactions during the entire course of training. Asymptot-
ically, it also yields similar level of performance of an ideal physical model-based
benchmark. One possible limitation is that the proposed framework assumes a
time-invariant distribution network topology and zero load transfer from other
circuits. This is also an opportunity for future research.

Keywords: Volt-VAR control, data-driven, deep reinforcement learning,
pathwise derivative, safe exploration

Nomenclature

Functions
f̂σ(uψ) Approximated safety layer
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h(x) Penalty function in the safety layer
φ(s) Voltage deviation estimation neural network
πψ(s) Parameterized policy function
f(uψ) Safety layer
J(φ) Loss function of the safety layer
J(ψ) Objective function of policy network
J(T ) Objective function for mutual information estimation
Jβ(φ) Regularized loss function of the safety layer
P (s′|s, a) State transition probability
qπ(s, a) Action value function
qϕ(s, a) Estimated action value function
r(s, a) Reward function
vπ(s) State value function
Parameters
β Regularization constant of the safety layer
∆V Maximum allowable voltage deviation
σ Penalty coefficient in the safety layer
σξ Exploration noise standard deviation
Cl, Cs, Cv Cost coefficient of line loss, device switching, and voltage devia-

tion
K Total number of VVC devices
M cap Capacitor size
M reg,M tsf Regulator and OLTC step size
r`, x` Line resistance and reactance of branch `
Sets
A Action space
D Replay buffer
E Set of edges of distribution networks
S State space
T Optimization horizon
Variables
pt Real power injections of all nodes at time t
qt Reactive power injections of all nodes at time t
xct All device status at time t before rounding operation
xt All devices status at time t
ξ Exploration noise
a Action
At Action at time t
lijt Squared current magnitude from node i to node j at time t
pit Real power injection of node i at time t
plt Total active power loss at time t
pijt Real power flow from node i to node j at time t
qit Reactive power injection of node i at time t
qi,capt Capacitor reactive power of node i at time t
qijt Reactive power flow from node i to node j at time t
Rt Reward at time t
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s State
St State at time t
uψ Primitive action before the safety layer
V it Voltage magnitude of node i at time t
xcapt Capacitor status at time t
xregt Tap position of voltage regulator at time t
xtsft Tap position of OLTC at time t

1. Introduction

Volt-VAR control (VVC) is one of the key technologies for voltage and reac-
tive power management in smart grids. It determines the set points of voltage
regulating devices such as voltage regulators and on-load tap changers (OLTCs),
as well as reactive power compensation devices such as capacitor banks to con-
trol voltage profiles and reactive power levels. VVC is an indispensable tool for
power distribution system management and is implemented in many distribu-
tion systems worldwide. Most electric utility companies adopt the legacy VVC
approach, where the substation capacitors and field capacitors are controlled
by a set of simple rules (for example, switch the capacitor on if the voltage is
below a threshold and switch the capacitor off if the voltage is above another
different threshold); the voltage regulator and OLTCs are controlled such that
an estimated voltage level at the load center is maintained within a specific
band. These control approaches have served the industry for many years and
were effective in the past. However, the high penetration of distributed energy
resources (DERs) and electric vehicles (EVs) brings about additional challenges
such as rapid voltage fluctuations and reversed power flow [1]. These challenges
make the aforementioned legacy control approaches insufficient.

More advanced control schemes and VVC algorithms have been studied in
the literature. The concept of physical model-based VVC provides a number
of benefits over the legacy ones. It computes the control actions by power
flow based algorithms using the field measurements collected by the distribu-
tion management system (DMS) metering and communication facilities. This
scheme allows closed loop, coordinated control based on the system-wide op-
erating conditions. Recently, the physical model-based VVC algorithms have
been further enhanced by leveraging mathematical programming and heuristic
optimization techniques. A sensitivity analysis-based algorithm is proposed to
improve the standard discrete coordinate-descent (DCD) VVC implementation
[2]. The VVC has also been formulated as a deterministic optimization problem
and solved using mixed-integer linear programming (MILP) [3], mixed-integer
quadratically constrained programming (MIQCP) [4], and bi-level mixed-integer
programming [5] algorithms. The deterministic formulation of VVC has been
extended to robust optimization or stochastic programming formulations to han-
dle uncertainties in loads/distributed generations (DGs) [6] [7] [8] [9]. Meta-
heuristic algorithms such as genetic algorithm [10], particle swarm optimization
(PSO) [11], and parallelized PSO with high performance computing [12] have
been proposed.

3



The coordinated control of slow timescale VVC devices and fast timescale
inverters have been studied in two-timescale VVC frameworks. Stochastic pro-
gramming with scenario reduction techniques have been proposed [13] [14] for
two-timescale control. Local controls for grid edge VVC devices are also consid-
ered [15]. In addition to the two-timescale optimization, a third stage real-time
droop controller is designed to mitigate the local voltage violation [16]. A modi-
fied alternating direction method of multipliers (ADMM) algorithm is leveraged
to develop a bus-level distributed two-timescale smart inverter control strategy
[17].

Physical model-based distributed algorithms for VVC have also been pro-
posed to overcome the communication bottleneck. Simulated annealing-based
methods [18] and distributed decision making algorithm [19] has been devel-
oped. The ADMM algorithm is leveraged for distributed discrete control by
using continuous relaxation of discrete control variables [20]. The control vari-
ables can then be discretized by the adaptive threshold discretization technique
[21].

Despite the theoretical advantages offered by physical model-based VVC
algorithms, they have a number of practical limitations. First, physical model-
based methods require that the distribution network/load models are available
and accurate. However, the network data in the utility companies’ geographic
information system (GIS) are usually neither complete nor accurate [22]. It is a
challenging task to build an accurate and reliable physical model of distribution
network to apply the physical model-based VVC algorithms. Second, the com-
putation time of many physical model-based algorithms remains a bottleneck
due to the difficult underlying mixed-integer programs. This problem becomes
more pronounced for large-scale distribution networks.

To this end, data-driven algorithms, which leverage advanced signal pro-
cessing or artificial intelligence techniques, have been proposed. These methods
work by learning VVC control strategies from online or historical operational
data. Reference [23] combined a support vector regression (SVR) modeling the
power flow equation with a model predictive control (MPC) framework. A k-
nearest neighbor (kNN) power loss and voltage change estimator is combined
with a heuristic approach to determine the device status [24]. When consid-
ering device switching cost, the VVC problem becomes a sequential decision
making task with uncertainties. Many reinforcement learning (RL)-based VVC
frameworks have been proposed in which the uncertainty is accounted by esti-
mating the expectation of the objective. A consensus-based distributed tabular
Q-learning algorithm is developed to solve the VVC problem [25]. The con-
sensus protocol has been combined with maximum entropy RL to balance the
exploration-exploitation [26]. Reference [27] developed a multi-agent deep Q-
network (DQN) framework by decoupling the large combinatorial action space.
To improve the RL performance when learning from limited data, a batch RL
algorithm with data augmentation is proposed in [28]. Reference [29] achieved
physical-model-free VVC by training a surrogate model for the distribution net-
work and an RL algorithm utilizing the trained surrogate model. To improve
the safety of the RL algorithms, [30] extend the traditional Markov decision
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process (MDP) formulation of VVC as a constrained MDP. A safe off-policy RL
algorithm is developed to improve the operational constraint satisfaction.

In contrast to physical model-based VVC methods, data-driven methods
could achieve coordinated control without requiring accurate and complete sys-
tem parameter information. Nonetheless, they still face practical implementa-
tion challenges related to safety and sample efficiency. Most of the data-driven
methods do not have an explicit mechanism to ensure the safety of the action
(e.g., whether a particular combination of tap positions will result in voltage
dropping below the recommended range).

Some literature have considered the safety aspect of RL in VVC problems
[30] and other power system applications. A backup controller is proposed
for demand response [31] and service restoration [32]. The control Lyapunov
functions is developed to pre-determine safe actions in damping power system
oscillations [33]. Barrier functions are added to the reward for safe load shedding
[34]. To improve the safety of resource dispatch, policy neural network is trained
using the gradient of the Lagrangian relaxation function for real-time optimal
power flow [35]. However, these methods either require an accurate system
model or have weak constraint satisfaction performance during early stage of
learning. Other than the safety issue, many data-driven methods needs to learn
from a large amount of training data. Thus, it is difficult to apply data-driven
methods when the amount of training data is small or covers a small region of
the operating scenarios. In this case, the model could overfit the training data
[36].

In this paper, we propose a model-based reinforcement learning (RL) algo-
rithm with state-wise safety constraint for the Volt-VAR control problem. The
main differences between our proposed RL method and the existing RL-based
VVC studies are two-fold. First, we leverage model-based RL training. This
method is more sample-efficient than the existing model-free RL training meth-
ods because model-based RL learns an environment model, then derives a policy
from the model, whereas model-free RL directly learns policies from data. Note
that by model-based we mean a supervised learning model (e.g. a neural net-
work) that represents the VVC operating environment rather than the otherwise
unavailable distribution system physical model itself. Second, we strategically
incorporate a quadratic programming (QP)-based neural network layer in the
RL model to execute actions that are safe for each state. This safety layer sig-
nificantly improves the operating constraint satisfaction performance over the
existing standard RL models. To improve the quality of the constraint function
estimate, we propose an information-theoretic regularizer to overcome the over-
fitting issue for the constraint layer. This regularizer allows the constraint layer
to learn accurate representation of the constraint function, while minimizing
the overfitting caused by the correlated samples in the training dataset. The
QP-based safety layer properly addresses the early safety issues of the exist-
ing asymptotically safe RL approach [30]. Simulation results on three IEEE
test feeders show that the proposed algorithm yields similar asymptotic perfor-
mance compared to other RL and physical model-based benchmarks. What’s
unique for the algorithm is it can maintain the voltage magnitude within the
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acceptable range during the entire learning process.
The contributions of this paper are as follows:
• This paper proposes a model-augmented RL algorithm for the VVC prob-

lem to boost the sample efficiency.
• We propose a quadratic programming-based policy neural network archi-

tecture to enhance the safety.
• A mutual information regularizer is proposed to improve the quality of

the constraint layer accuracy when learning from limited or correlated training
samples.

The remainder of the paper is organized as follows: Section II presents the
VVC problem formulation. Section III provides the technical methods. Section
IV discusses the setup and results of experimental studies. Section V provides
the conclusion.

2. Problem Formulation

In order to present the proposed model augmented reinforcement learning
VVC framework, we first present the mathematical formulation of the VVC
problem, then formulate the problem as a Markov decision process (MDP).

2.1. Mathematical Formulation of VVC

We consider a radial distribution network with nodes numbered from 1 to
N . The 1-st node corresponds to the substation. The set of branches is denoted
as E . The nodal voltage magnitude, real and reactive power injection at time
t is denoted as V it , pit, and qit; the branch real and reactive power flow of line
ij is denoted as pijt and qijt . The Volt-VAR control is done by controlling
three types of devices listed as follows. First, a voltage regulator is placed at
the substation node. The voltage regulator sets the discrete tap positions and
produces a variable sets of reference voltages V 1

t = 1p.u. + xregt ·M reg. xreg is
the tap position; M reg is the fixed step size. Second, one or more on-load tap
changers (OLTCs) are connecting certain feeder portions, which are modeled as
a transformer with a variable turns ratio. The branch power flow for lines with
OLTC is given by [8]:

(V jt /ut)
2 = (V it )2 − 2(r`pijt + x`qijt ) + [(r`)2 + (x`)2]lijt , (1)

where lijt is the current magnitude squared; ut = 1 + xtsft ·M tsf is the turns
ratio. Third, one or more capacitor banks are placed at certain nodes. The
capacitor’s reactive power is given by qi,capt = xcapt ·M cap · (V it )2. The symbol
xcapt ∈ {0, 1} denotes the on-off status. Putting it all together, the power flow
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model with VVC controls is given by (1)-(5).

pit =
∑
j:i→j

pijt −
∑
j:j→i

(pjit − r`lijt ) ∀i = 2, ..., N (2)

qit + qi,capt =
∑
j:i→j

qijt −
∑
j:j→i

(qjit − x`lijt ) ∀i = 2, ..., N (3)

lijt = [(pijt )2 + (qijt )2]/(V it )2 ∀ij ∈ E (4)

V 1
t = 1p.u.+ xregt ·M reg (5)

The total active power loss is calculated as plt =
∑N
i=1 p

i
t. The VVC problem

can be formulated mathematically as:

min
xt,t∈T

∑
t∈T

Clplt + Cs|xt−1 − xt|

s.t. V ≤ V it ≤ V̄ ∀t ∈ T , i = 2, ..., N

(1)− (5) ∀t ∈ T

(6)

where T is the optimization time horizon; xt is the vector of all device status at
time t; Cl and Cs are cost coefficients of network loss and device switching. To
approach this problem using RL, we need to formulate it as a Markov decision
process (MDP) below.

2.2. Review of MDP

An MDP (S, A, P , r, γ) consists of a state space S, an action spaceA, a state
transition probability P (s′|s, a), a reward function r(s, a) : S×A 7→ R, and a dis-
count factor γ ∈ (0, 1). An “agent” can interact with the MDP by taking actions
At at each time step, the environment then provides the reward Rt+1 = r(St, At)
to the agent and transitions to some other states St+1. The goal of the agent is
to find a policy π(a|s), which maps states to probability distribution of actions,

such that the expected discounted return vπ(s) = Eπ
[∑T

t=0 γ
tRt+1|S0 = s

]
is

maximized. The notation Eπ[·|S0 = s] means starting from state s and follow-
ing the policy π thereafter; the discount factor γ controls the contribution of
far future reward to the optimizing objective; T is the operating horizon which
may be infinite. vπ(s) is called state value function. A related function com-
monly used in reinforcement learning is the action value function defined as

qπ(s, a) = Eπ
[∑T

t=0 γ
tRt+1|S0 = s,A0 = a

]
.

2.3. MDP Formulation of VVC

The MDP formulation of the VVC is as follows.
Action: the action is continuous and multi-dimensional. Each action dimen-

sion corresponds to one VVC device. We denote the action as At = xct =
[xc,1, xc,2, ..., xc,K ]. K is the total number of VVC devices. Since the device
tap positions are discrete, when applied to device control, each dimension of the
actions will be rounded to their nearest tap position.
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State: the state is given by St = [pt, qt,x
c
t−1, t]. The bold vectors group

variables from all nodes and devices. For example, pt is the real power injection
of all nodes. We also include the previous action as part of the state.

Reward: the reward function is given by

Rt+1 = −Clplt −
∑
k

Cs|[xc,kt−1| − [xc,kt || − CvCt+1, (7)

where the [·| notation denotes rounding to the nearest tap position. For example,

if the k-th device is an OLTC, then [xc,kt | = xkt . In this study, the number of
tap position change is considered as part of the objective function rather than a
hard constraint. In distribution system VVC, one of the primary objectives is to
ensure acceptable voltage for all customers under various operating conditions
[22]. Therefore, the term Ct+1 which discourages voltage deviation from the flat
voltage profile (1.0 per unit) is added:

Ct+1 =
∑

i=1,...,N

|V it − 1.0| (8)

The constant Cl, Cs, Cv are cost coefficients of each of the reward components.
Their detailed value will be given in Section IV.A.

In the next section, we present the technical details of the proposed model-
based RL algorithm.

3. Technical Methods

For the technical methods, we start with an overview of the proposed frame-
work. Then we describe the individual components. We first review basics
of model-based reinforcement learning and the model-augmented actor-critic
algorithm. We then introduce a constrained policy network to improve the
safety, along with a mutual information regularization technique to improve the
constrained actor network’s accuracy. Finally, we provide the implementation
details.

3.1. Overview

This subsection provides an overview of the proposed RL based VVC frame-
work. This consists of the environment model, the actor-critic architecture,
the constrained neural network layer, and the mutual information regularizer as
shown in Fig. 1. The Supervisory Control and Data Acquisition (SCADA) data
including real power and VVC device tap, as well as advanced metering infras-
tructure data including real power and voltage magnitude, are first collected
by the DMS and converted to the appropriate format for algorithm training.
Both historical and online data will be leveraged for this framework. In the
model-based RL block, these operational data will be used to train the model
pθ(s

′|s, a), rθ(s, a), whose output will be used to train the critic network qϕ(s, a)
and the actor (policy) network πψ(u|s). We need to train an environment model
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Fig. 1. Safe model-based RL for VVC

from operational data because in practice the system model is often unknown.
This environment model is critical to improving the training efficiency for the
RL algorithm. The output of the policy network u is a primitive action. The key
to our proposed safe RL is a quadratic programming (QP) layer f(u) which cor-
rects the primitive action u such that the operational constraints are satisfied.
The final corrected action is denoted by a = f(u). In other words, the action
a is the output of the RL-based VVC controller. We denote the composition of
the policy network πψ(u|s) and the QP f(u) as πfψ(a|s) = f (πψ(u|s)). As part
of the inputs to the QP layer, the voltage constraint function estimator network
φ(s) and its corresponding regularizer network T (φ(s), a) will be trained using
the operational data. The regularizer network improves the constraint network’s
performance when the training data is limited. In the next subsections, we will
describe each component of this framework.

3.2. Overview of Model-Based Reinforcement Learning

Model-based RL trains a parametric model for the environment from which
the value/policy functions are learned. Model-based RL is sample efficient for
the VVC problem because it separates an RL problem into a model learning
problem (a supervised learning task) and a policy learning problem. Addition-
ally, model-based RL allows the environment prior information to be incorpo-
rated in the model learning phase. Section III.F will explain how the prior
information about the VVC problem facilitates the model design. Nevertheless,
model-based RL’s performance is held back by the model accuracy. As such, we
need to make the asymptotic performance the most important design criterion
when developing and tailoring model-free RL methods for VVC problem.
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In this paper, we denote the parametric model of the VVC environment
as pθ(s

′|s, a) and rθ(s, a). θ = [θp, θr] groups two sets of parameters, one for
the transition probability p and one for the reward r. The exact form of the
parameterization will be presented in Section III.F. To develop tractable pol-
icy learning algorithms, we also parameterize the value function and policy as
qϕ(s, a) and πfψ(a|s) by artificial neural networks. Two important equations,
namely the n-step Bellman equations for the value functions are as follows:

vπ(s) = Eπ[

n−1∑
t=0

γtRt+1 + γnvπ(Sn)|S0 = s] (9)

qπ(s, a) = Eπ[

n−1∑
t=0

γtRt+1 + γnqπ(Sn, An)|S0 = s,A0 = a] (10)

for n = 1, 2, .... Note that when n = 1, (9)-(10) become the conventional one-
step Bellman equations. They will be referred to by later sections.

3.3. Model-Augmented Actor-Critic

Model-augmented actor-critic (MAAC) [37] is a model-based RL algorithm
that learns the policy rapidly by training the value and policy networks using
the gradient information of the environment model. Specifically, we start from
a state S0 experienced in the environment, then take an action according to the
policy Aψ0 ∼ πfψ(a|S0) (we use superscript ψ for the action Aψ0 to emphasize
its dependency on ψ). Then we utilize the environment model parameterized

by θ to generate a reward and a next state, denoted as Rθ,ψ1 = rθ(S0, A
ψ
0 ) and

Sθ,ψ1 ∼ pθ(s
′|S0, A

ψ
0 ). The above process is repeated starting from Sθ,ψ1 and so

forth. Thus we obtain the following parametric trajectory τ :

τ = S0, A
ψ
0 , R

θ,ψ
1 , Sθ,ψ1 , · · · , Aθ,ψH−1, Rθ,ψH , Sθ,ψH , Aθ,ψH , (11)

where H is the length of the trajectory which is a tunable hyperparameter. The
value of H will be given in Section IV. Based on the n-step Bellman equation
(10), the objective of the policy neural network is formulated as:

max
ψ

Ĵ(ψ, τ) = max
ψ

H−1∑
t=0

γtRθ,ψt+1 + γHqϕ(Sθ,ψH , Aθ,ψH ) (12)

Ĵ(ψ, τ) is an estimation of the right hand side of (10). To reduce the variance
of the gradient we collect multiple parametric trajectories and average them
J(ψ) = Êτ Ĵ(ψ, τ) before taking the maximum (the symbol Ê denotes the aver-
age). The derivative of J(ψ), called pathwise derivative, will be used to update
the actor (policy) network’s parameter:

ψ ← ψ + δ∇ψJ(ψ), (13)
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where δ is the step size parameter. (13) is the policy improvement step. Sim-
ilarly, the critic network’s weights will also be learned based on the n-step
Bellman equation:

ϕ← ϕ− δ∇ϕÊτ (qϕ(S0(τ), A0(τ))− Ĵ(ψ, τ))2, (14)

where S0(τ) and A0(τ) is the first state and action of the trajectory τ . (14)
is the policy evaluation step. Thanks to the pathwise derivative, MAAC can
provide actor neural network with strong learning signal hence significantly
improve the learning efficiency. The only requirement is that parameterizations
of both environment model and the actor-critic model are differentiable, and
the derivatives are informative (i.e. non-zero). Thus, it is more convenient
to work with continuous action space rather than discrete ones since sampling
actions from a discrete distribution is a non-differentiable operation. When
generating the training data for the neural network, the action is still continuous.
It is when actuating the VVC device that the rounding operation takes place.
Note that we can plug in a physical model for the reward and environment
transition function to evaluate the gradient of (12). However, since the model is
often unavailable to the electric utility companies, we instead train a parametric
model. Nevertheless, we shall see in Section III.F that we can still optimize the
design of the reward and environment transition model by utilizing the system
information as much as possible.

When interacting with the environment, some exploration is needed to gather
sufficient training data. To add stochasticity to the actor in the MAAC frame-
work, one can use the maximum entropy regularization to the reward function
to learn a stochastic policy [37]. Alternatively, we can learn a deterministic
policy and add random noise ξ ∼ N (0, σξ) after the policy neural network to
make the action exploratory:

uψ = πψ(s) + ξ. (15)

When combined with other algorithm components, the exploration scheme (15)
is easier to implement and tune compared with the maximum entropy approach.
Therefore we adopt the exploration scheme in this paper.

However, explorations can lead to unsafe actions particularly during early
stage of learning. In the next subsection, we introduce a neural network mech-
anism to improve the safety of action exploration in (15).

3.4. Safe Exploration by Embedding Quadratic Programming Layers

In this subsection, we introduce a quadratic programming (QP) based neural
network layer for the actor network to improve the safety of the exploration
process. The QP layer is the key mechanism we use to achieve safe exploration
and safe RL. It is added on top of the standard feedforward architecture of the
policy neural network. Embedding optimization routines in neural networks
have been described in some safe reinforcement learning literature [38, 39]. For
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VVC problems, the safety refers to keeping all voltage magnitudes within the
allowable range. That is:

|V it (s, a)− 1| < ∆V ∀i ⇔ max
i
|V it (s, a)− 1| < ∆V (16)

We use ∆V = 0.05 p.u. in this study. Other practical constraints such as
power flow limit can be enforced in a similar way. In this paper, we propose the
following method to enforce the voltage constraint. Let uψ = πψ(s) + ξ be the
output of the actor network, then uψ is further corrected by the final constraint
layer:

aψ = f(uψ) (17)

where f is given by the solution of the optimization problem:

f(uψ) = argmin
a

||a− uψ||2

s.t. max
i
|V i(s, a)− 1| < ∆V

− 1 � a � 1

(18)

The final layer f(uψ) finds a perturbed action a that differs the least from the
original network output uψ in terms of the 2-norm, such that the nodal volt-
ages under aψ are within the operation limit. From the VVC perspective, aψ
is the output of the VVC controller. If the function maxi |V i(s, a) − 1| has
been estimated before RL agent training, then the safety constraint can be
significantly improved. While conceptually simple, this layer is difficult to im-
plement for two reasons. First, since accurate and reliable distribution network
parameters are difficult to obtain, constructing the voltage constraint function
is intractable. Second, the problem has a quadratic cost function with multi-
ple inequality constraints. There is no straightforward analytical solution, even
with linearizations.

To resolve these difficulties, we propose to estimate the voltage constraint
function using operational data, and employ iterative numerical algorithms to
approximately solve (18). We create another neural network φ(s), which takes
states as input and output K + 1 values φ0(s), φ1(s), ..., φK(s), where K is
the dimensionality of the action vector. Then we approximate the constraint
function as:

max
i
|V i(s, a)− 1| ≈ φ0(s) +

K∑
k=1

φk(s)ak (19)

That is, the constraint function is bilinear in a = [a1, a2, ..., aK ]ᵀ and the nonlin-
ear features φ(s) learned from the states s. In particular, φ0(s) is the bias term
for the regression model (19). We choose (19) to approximate maxi |V i(s, a)−1|.
This is because the function is linear in action and hence easier to formulate
in optimization model. We can also write the LHS as φ(s)ᵀ[1; a]. To obtain
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these nonlinear features, the neural network φ(s) will be trained by supervised
learning. The training data include power injections and VVC device tap po-
sitions, which forms s and a; as well as voltage magnitudes, which are used to
calculate the regression target maxi |V i − 1|. All data are taken from SCADA
and AMI. The training method will be introduced later. Then we replace the
constraint function in (18) with φ(s)ᵀ[1; a] < ∆V to obtain a standard quadratic
programming (QP) problem.

Now to employ the iterative algorithm to solve the QP, the number of iter-
ations should be kept small to save the computation during both forward pass
and backpropagation. The popular interior point methods are also difficult to
adopt in this context because finding a feasible initial solution creates addi-
tional computation burden. To this end, we apply the Newton’s method to the
penalty-approximated problem:

f̂σ(uψ) = argmin
a
||a− uψ||2 + σh(φ(s)ᵀ[1; a]−∆V )

+ σh(a− 1) + σh(−a− 1)
(20)

The penalty function h should satisfy that h(x) > 0 when x > 0 and that
h(x) = 0 when x ≤ 0. It also needs to be continuously differentiable. In this
paper we choose the squared maximum h(x) = max(0, x)2. To solve (20), we

start from the initial guess a
(1)
ψ = uψ, then fix a relatively small σ and perform

certain number of Newton steps of the form:

a
(ν+1)
ψ = a

(ν)
ψ −

[
∇2f̂σν (a

(ν)
ψ )

]−1
∇f̂σν (a

(ν)
ψ ) (21)

where ν is the iteration count. After that we increase σ and continue the Newton
process. The final iterate will be the output (the corrected action). Note that

a
(ν+1)
ψ is differentiable with respect to a

(ν)
ψ , thus the backpropagation applies.

Fig. 2 illustrates this architecture. The sequence of values σ1, σ2, ..., σk are
hyperparameters and will be given in the experiment section.

Fig. 2. Policy neural network architecture.

The penalty-based QP layer improves the safety of the actions produced by
the actor network. However, a critical bottleneck of the constraint satisfaction
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performance is the accuracy of the constraint function estimate (19). Standard
training process for φ(s) would consists of the following cost function and the
stochastic gradient descent:

J(φ) = Ê(s,a,V i)∼B(φ(s)ᵀ[1; a]−maxi|V i − 1|)2 (22)

φ← φ− δ∇φJ(φ) (23)

where B are mini-batch. We expect this estimate to be reasonably accurate if
the training data are sufficient. Nonetheless, they can be limited in practice.
The problem becomes even worse when the tap positions data lacks diversity or
strongly correlates with the power injection patterns. In either case the neural
network φ(s) can easily overfit.

3.5. Improving Constraint Layer Accuracy: The Minimum Mutual Information
Regularization

To reduce overfitting, instead of using the standard mean-squared error loss
function (22), we propose to regularize the neural network with the mutual
information between the nonlinear feature and action. In order words, we train
the φ(s) network by the following regularized loss function:

Jβ(φ) = J(φ) + βI(φ(s), a) (24)

where the J(φ) term is defined in (22); the mutual information between two ran-
dom vectors X and Y is defined as I(X,Y ) =

∫
x

∫
y
pXY log PXY

PXPY
dxdy. Mutual

information can be interpreted as the reduction of uncertainty of one random
variable upon knowing another [40]. That is, it measures how much the two
random vectors X,Y are dependent. The interpretation of the loss function
(24) is as follows: we would like the nonlinear representation φ(s) and a to form
an accurate prediction of the voltage magnitude constraint function (the first
term); while the learned nonlinear representation φ(s) should not contain any
irrelevant correlation with the tap position variables a (the second term). We
suspect such correlation is one of the main reasons overfitting happens if trained
by the first term only, which degrades the quality of the constraint satisfaction
performance.

Mutual information regularization has been used as a reward regularization
method in RL. Reference [41] studied the effect of adding mutual information
between state and action to the reward function and its connection to the soft
Bellman equation. However, mutual information is used in a different context
in the present study. Here, we use it to regularize the training of the safety layer
to reduce overfitting.

Since the computation of mutual information is intractable, to form a com-
putable loss function we adopt the mutual information neural estimation (MINE)
method detailed in [42]. We briefly introduce the MINE method here. The mu-
tual information is first expressed as a dual representation:

I(φ(s), a) ≥ sup
T

Ep(φ(s),a)[T ]− Ep(φ(s))p(a)[eT−1] (25)
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where T (φ(s), a) ∈ R is any admissible function. The first expectation is with
respect to the joint distribution; the second one is with respect to the marginal
distribution. Next, an estimator for I(φ(s), a) is constructed as follows. Let
T be parameterized by a neural network, which is trained with the stochastic
gradient ascent:

J(T ) =
∑

(s,a)∈B

[T (φ(s), a)]−
∑

(s,G(a))∈B

[eT (φ(s),a)−1] (26)

T ← T + δ∇TJ(T ) (27)

where B is the mini-batch. In the first term of (26), the state s along with a
are jointly sampled from the training dataset, and then s is passed through the
network φ; in the second term, a are randomly shuffled (denoted by the operator
G) within the mini-batch to obtain samples from the marginal distribution.
Upon convergence, the objective function J(T ) will serve as an estimate for the
mutual information.

To combine the learning of the regularizer (26) with the objective function
(24), we could iterate between the following two steps: first, the T network
(26-27) is trained until converge; second, minimize (24) with the T network
parameters fixed and use J(T ) as an estimate for I(φ(s), a). Alternatively,
we could combine the two steps to train the two neural networks φ and T
simultaneously as:

Jβ(φ, T ) = J(φ)− βJ(T ) (28)

φ← φ− δ∇φJβ(φ, T (φ)) (29)

T ← T − δ∇TJβ(φ, T ) (30)

We use the latter approach in this paper since it requires much less iterations
and works equally well. The effectiveness of the regularization technique will be
verified in Section IV.C.

3.6. Algorithm Implementations and Summary

In this section, we provide additional implementation details. Then we sum-
marize the proposed model-augmented safe RL-based VVC algorithm.

3.6.1. Environment Model Architectures

To design the architecture for the environment model pθ(St+1|St, At) we
identify the estimation components. Recall that the state is defined as St =
[pt, qt,x

c
t−1, t]. As the transition for device status xct and time index t are known

and deterministic, we only need an estimator for the dynamics of [pt, qt]. As
such we need consider the aleatoric uncertainty and the epistemic uncertainty
[43]. The former describes the uncertainty inherent in the environment; the
latter is the uncertainty caused by a lack of training data. To account for both
uncertainties, we adopt the bootstrap ensemble of probabilistic neural networks
[44] for the power injection time series model. That is, we train N neural net-
works θ = [θ1, θ2, · · · , θN ] with identical architectures. Each neural network k
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has a Gaussian output [pt+1, qt+1] ∼ N (p, q;µθk(pt, qt, t),Σθk(pt, qt, t)), where
Σθk is a diagonal matrix. The parameters θ is trained by the maximum log-
likelihood:

P (θk) = N (pt+1, qt+1;µθk(pt, qt, t),Σθk(pt, qt, t)) (31)

θk ← θk + δ∇θk Ê logP (θk) (32)

To reduce the dimensionality of the input and output, the power injection pat-
tern [pt+1, qt+1] is projected to its first principal component before feeding into
the neural network. The principal component approximation is legitimate if the
power injections across different nodes are strongly correlated.

The state transition for the device status xct−1 and the time index t are known
and deterministic. Thus we simply use their original arithmetic to calculate the
transition, without any neural architecture. For device status we use xct ← At;
for time index, we additionally use the cosine encoding [cos(ωt), sin(ωt)] for t
and update them according to the sum rule of trigonometry. ω is set to be the
one week period 2π/168. These arithmetics are continuously differentiable.

The structure of the reward function (7) allows us to optimize the model

architecture as well. The switching cost term
∑
k C

s|xc,kt−1−xc,kt | can be directly
evaluated using simple arithmetics without an estimator. Therefore, we create
a neural network to estimate the sum of costs due to loss and voltage deviation
Clplt + CvCt+1; then we sum the output with the switching cost term as the
overall model architecture. Note that we used the original continuous variable
xc,kt in the switching cost term without rounding. This is because we need a
non-zero gradient when back-propagating through the model. Since the Clplt +
CvCt+1 term is deterministic when given a state and action, we use an ensemble
of deterministic neural networks rθk(St, At), k = 1, 2, ..., N to only capture the
epistemic uncertainty:

L(θk) = (rθk(St, At)− Clplt − CvCt+1)2 (33)

θk ← θk + δ∇θk Ê logL(θk) (34)

3.6.2. Safety Layer Architectures

The ensemble design can be carried over to the constraint function φ(s) as
well. That is, the nonlinear feature network consists of an ensemble of feed-
forward neural networks φ(s) = [φ1(s), φ2(s), ..., φN (s)]. As such, the voltage
magnitude constraints becomes φk(s)ᵀ[1; a] < ∆V, ∀k. This leads to more con-
servative action choice compared to having only one constraint function. Ac-
cordingly, we create a separate regularizer network for each φk: T (φ(s), a) =
[T 1(φ1(s), a), T 2(φ2(s), a), ..., TN (φN (s), a)]. Each regularizer network is a stan-
dard feed-forward neural network.

3.6.3. Generating the Parametric Trajectories

The parametric trajectories (11) are generated as follows. We randomly
sample a batch of states {si}i=1,2,...B from the replay buffer D. For each si, we
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take an action using the current policy ai = πf̂ψ(si). Then we randomly sample

a single model θk from the environment ensemble to evaluate the reward and
next state: ri = rθk(si, ai), s

′
i ∼ pθk(s′|si, ai). We continue this model rollout

for H steps to obtain one parametric trajectory τi = si, ai, r
1
i , r

2
i , ..., r

H
i , s

H
i , a

H
i .

Note that in each step, a new model is randomly sampled. The above process
is carried out for each state in the minibatch to obtain the batch of trajectories
{τi}i=1,2,...,B .

3.6.4. Algorithm Summary

The proposed model-based safety layer augmented RL algorithm for Volt-
VAR control is summarized in Algorithm 1. The algorithm is first pre-trained
on the historical dataset, then it will start controlling the VVC devices and
continuing the learning indefinitely.

Algorithm 1 Safety layer augmented actor critic (SAAC) for VVC

Input: Historical dataset D
Output: Policy πfψ(a|s)

1: Initialize pθ(s
′|s, a), rθ(s, a), qϕ(s, a), πψ(u|s), φ(s), T (φ(s), a)

2: for i = 1, ..., L do % pre-train
3: Sample Bk = {(s, a, r, s′)}k ∼ D, ∀k = 1, ..., N
4: Train pθk and rθk on Bk by (32) and (34)
5: Train φk and T k on Bk by (29) and (30)

6: for t = 1, ..., do % agent-environment interaction
7: St = [pt, qt,x

c
t−1, t]

8: At ∼ πf̂ψ(a|St)
9: St+1 = [pt+1, qt+1, At, t+ 1]

10: Obtain Rt+1 by (7)
11: D ← D ∪ {(St, At, Rt+1, St+1)}
12: for i = 1, ..., l do % agent training
13: Sample B = {(s)} ∼ D
14: Train πψ, qϕ by (13) and (14)
15: Sample Bk = {(s, a, r, s′)}k ∼ D, ∀k = 1, ..., N
16: Train pθk and rθk on Bk by (32) and (34)
17: Train φk and T k on Bk by (29) and (30)

4. Numerical Studies

4.1. Distribution Test Feeders and Load Data

We use the IEEE 4-bus, 34-bus, and 123-bus radial distribution test feeders
[45] for our numerical studies. For illustration purposes the test feeders have
been converted to their positive sequence representations. However, the pro-
posed algorithm is applicable for unbalanced systems as well. The RL-based
VVC controller output is the action, which actuates the following VVC devices
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of the feeders. The substation voltage (reference voltage) is controlled by an
11-step voltage regulator. The step size is M reg = 0.01, which sets the reference
voltage between 0.95 and 1.05 p.u. The OLTCs also have 11 tap positions with
turns ratios ranging from 0.95 to 1.05. These OLTCs are placed at branch (2, 3)
for the 4-bus feeder, branches (814, 850) and (852, 832) for the 34-bus feeder,
and branches (10, 15), (67, 160), and (25, 26) for the 123-bus feeder. The capac-
itors have two tap positions corresponding to the on/off status. For the 4-bus
feeder, a capacitor with rating M cap = 200 kVar is placed at node 4; for the
34-bus feeder, two capacitors with rating 100 kVar and 150 kVar are placed at
node 844 and node 847, respectively; for the 123-bus feeder, four capacitors are
placed at node 83 (200 kVar), 88 (50 kVar), 90 (50 kVar), and 92 (50 kVar), re-
spectively. Although all devices have discrete tap positions, they are internally
represented as continuous variables by the RL algorithm. They will be rounded
to the nearest tap positions when the action actuate the device. The energy
cost Cl, switching cost Cs, and the voltage violation cost Cv are set as 40.0
$/MWh, 0.1 $/switching, and 1.0 $/p.u., respectively. In practice, these values
can be chosen according to the application requirements.

The London smart meter dataset [46] is used to represent the nodal power
injection patterns. We convert the half-hourly kWh measurements to hourly
values and take the first 4000 hours for our numerical study. The kWh mea-
surements are then aggregated across the individual customers, and scaled ap-
propriately to produce a realistic loading level for each test feeder. The spatial
load distribution and power factors are set to be the same as that of the standard
IEEE test feeders.

4.2. Algorithm Setup

The hyperparameter setup of the proposed algorithm and two benchmarks
are provided in this subsection. The first benchmark is the discrete action
space soft actor critic (SAC) [47] with action space decoupling and ordinal
variable encoding [30]. The second benchmark is the vanilla model-augmented
actor critic (MAAC) described in Section III.C, which is a simplified version of
the proposed SAAC by removing the safety layer introduced in Section III.D.
The hyperparameters are given in Table 1. The first section of Table 1 shows
the parameters shared by all algorithms. We will use these parameters for all
numerical studies. If a hyperparameter is chosen differenly based on the feeder,
that parameter will be written in a curly bracket to represent the values for
4-bus, 34-bus, and 123-bus, respectively.

In this study, we assume that one thousand hours of operational data are
available from the historical dataset before the agent start interacting with the
system. The historical dataset collects the load/DG, voltage and network loss, as
well as the corresponding tap positions. The purpose of this historical dataset is
to mimic the database of a typical electric utility company. As such, we can pre-
train certain components of the RL-VVC framework to provide a slightly better
initial policy [48]. For the SAAC algorithm, we pre-train the environment model
and the constraint layer using these historical data. To make the comparison
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fair, the same set of historical data will be used to pre-train the policy and value
networks for the benchmark algorithms SAC and MAAC as well.

Unfortunately, we were unable to find an open-source dataset for the de-
vice tap positions. Thus, we create them by following a mixed-integer conic
programming (MICP) VVC algorithm. The created tap positions rarely change
and correlate with the power injection pattern. As a result, the training samples
have a significant lack of diversity and pose challenges for the RL algorithms.
However, this is necessary to reproduce the difficulty of real world datasets.

The proposed SAAC algorithm and the SAC, MAAC baseline algorithms are
implemented in Python using the PyTorch deep learning library [49]. The power
flow and VVC program are also implemented in Python using the NumPy nu-
meric computation library. The MICP and the model predictive control (MPC)
benchmarks are implemented in MATLAB using the YALMIP optimization
modeling toolbox [50].

4.3. Sample Efficiency and Constraint Satisfaction

The purpose of this subsection is to show the sample efficiency and constraint
satisfaction performance of the proposed algorithm. As an example, Fig. 3-
4 shows the voltage profile of the first and 16-th operating week for the 4-
bus and 34-bus feeder. Each bar corresponds to 168 hours. The acceptable
voltage range [0.95, 1.05] is highlighted by the dashed dark lines. Although all
algorithms produce acceptable voltage profiles after 16 weeks of training, for the
first operating week, the SAC and MAAC baseline algorithms need to explore
actions with no guarantee of safe voltage level. On the other hand, the proposed
SAAC maintains acceptable voltage levels during both weeks.
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Fig. 3. Voltage profile of 4-bus system

More comprehensively, Fig. 5-7 plot the single time step reward and the
maximum voltage magnitude deviation over the distribution network for all
three test feeders. The maximum voltage magnitude deviation plot is added to
help us assess the flatness of system-wide voltage magnitude, which is one of
the most important criteria to evaluate the VVC performance. The solid curve
is the average of five independent runs; the shaded regions are the correspond-
ing error bounds. The reward curves in Fig. 5-7 show that the model-based
reinforcement learning generally converge faster than the model-free SAC, even
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Fig. 4. Voltage profile of 34-bus system

if the latter has been pre-trained on the historical data. Asymptotically, the
performance of model-based RL match the model-free SAC as well. Most im-
portantly, the proposed SAAC has the best constraint satisfaction performance
during the entire course of learning in all three test feeders. As indicated by the
shaded regions, the constraint satisfaction performance is relatively consistent
across different runs, although small violations can still happen occasionally. In
contrast, other algorithms need to explore different actions and violate a certain
number of constraints before converging to a useful policy.
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Fig. 5. Hourly reward and voltage deviation of 4-bus feeder.

To quantify the constraint satisfaction performance of SAAC, we provide a
detailed look of how the QP-based constraint layer and the regularizer network
affect the voltage magnitude deviation during early stage of learning. We first
show the maximum voltage deviation estimate of (19) with and without the
regularizer on a testing set. In order to mimic the exploratory behavior of RL
agents, the tap position data of this testing set includes 70% randomly sampled
taps with uniform distribution from the range of all taps, and 30% sampled
using the same distribution as the training data. The results in Fig. 8 shows
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Fig. 6. Hourly reward and voltage deviation of 34-bus feeder.
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Fig. 7. Hourly reward and voltage deviation of 123-bus feeder.

that when combined with the mutual information regularizer, the out-of-sample
testing performance has been improved significantly for all test feeders.

Next, we show the constraint satisfaction performance combined with the re-
inforcement learning agent. Starting with the policy network without any safety
layer, we add the φ(s) based QP layer and the regularizer network T (φ(s), a)
one by one and compare their voltage constraint satisfaction performance. Fig.
9 shows the maximum voltage deviation of the 34-bus system for the first 480
hours. The constraint satisfaction performance is improved appreciably by the
QP-based constraint layer. With the regularizer network T (φ(s), a), the amount
of voltage violation is further reduced, especially during early stage of learning.
Although the two architectures cannot guarantee strict constraint satisfaction,
the amount of violation is very small and acceptable in practice.
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Fig. 9. Voltage deviations of 34-bus feeder for different policy networks: {} denotes no safety
layer; {φ(s)} denotes with safety layer but no regularization network; {φ(s), T (φ, a)} denotes
with both safety layer and regularization network.

4.4. Comparison with Model-Based Benchmark

In this subsection, we evaluate the asymptotic performance of the proposed
algorithm against the physical model-based benchmark, which approximate the
ground truth solution of the VVC problem. Using the DistFlow equation, the
VVC problem with objective function (7) can be formulated as a mixed-integer
conic programming (MICP) model [8] [26], with the term |V it −1| being replaced
by 1

2 |(V it )2 − 1|. This approximation is very accurate for 0.95 ≤ V it ≤ 1.05.
The MICP approach can be extended to a rolling horizon model predictive
control (MPC) [51] framework to better capture the long term effect of the
actions. In this work, we have used a horizon length of 10 for the 4-bus feeder
and 2 for the 34-bus and 123-bus feeders. These values have been tested to
produce results closer to the optimal than the MICP. We omit results for longer
horizons since the increase of cumulative rewards is rather incremental while
the computation time is significantly longer. We assume the ground truth load
and distributed generations are known for both MICP and MPC models. We
evaluate the negative of cumulative reward, cumulative voltage violation, and
the total number of switches over the last 168 operating hours. The last 168
hour out of the 4000 hours are selected since the data-driven RL algorithms
have converged to a relatively stable policy, thus are indicative for asymptotic
performance. Table 2 shows that our proposed method yields similar level of
asymptotic performance as that of the data-driven benchmark SAC and the
physical model-based approaches.
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5. Conclusion

This paper proposes a model-augmented safe reinforcement learning frame-
work for the power distribution network Volt-VAR control problem. The frame-
work addresses two of the most crucial problems with data-driven control method-
ologies: sample efficiency and safety. A model-augmented pathwise derivative
is utilized to train the reinforcement learning algorithm to improve the sample
efficiency. Then we embed an iterative quadratic programming based constraint
satisfaction layer in the actor neural network to improve the safety. Finally, a
novel mutual information regularizer is proposed to improve the performance
of the constrained satisfaction layer. Simulation results confirm the superior
sample efficiency and constraint satisfaction of our approach compared with
other reinforcement learning benchmarks. In the future, we plan to improve
the efficiency of the presented random exploration. We also plan to simplify the
algorithm design and the associated parameter tuning process. One possible lim-
itation is that the proposed RL-based VVC framework assumes a time-invariant
distribution network topology and there is no load transfer between other cir-
cuits and the circuit being controlled. We will address this challenge in our
future work.
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mans, Residential demand response of thermostatically controlled loads us-
ing batch reinforcement learning, IEEE Transactions on Smart Grid 8 (5)
(2017) 2149–2159.

[32] L. R. Ferreira, A. R. Aoki, G. Lambert-Torres, A reinforcement learning
approach to solve service restoration and load management simultaneously
for distribution networks, IEEE Access 7 (2019) 145978–145987.

[33] M. Glavic, D. Ernst, L. Wehenkel, Combining a stability and
a performance-oriented control in power systems, IEEE Transac-
tions on Power Systems 20 (1) (2005) 525–526. doi:10.1109/
TPWRS.2004.841146.

[34] T. L. Vu, S. Mukherjee, R. Huang, Q. Hung, Barrier function-based safe
reinforcement learning for emergency control of power systems, arXiv
preprint arXiv:2103.14186 (2021).

[35] Z. Yan, Y. Xu, Real-time optimal power flow: A Lagrangian based deep
reinforcement learning approach, IEEE Transactions on Power Systems
35 (4) (2020) 3270–3273. doi:10.1109/TPWRS.2020.2987292.

[36] C. M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006.

[37] I. Clavera, Y. Fu, P. Abbeel, Model-augmented actor-critic: Backpropa-
gating through paths, in: International Conference on Learning Represen-
tations, 2019.

[38] T.-H. Pham, G. De Magistris, R. Tachibana, Optlayer-practical constrained
optimization for deep reinforcement learning in the real world, in: 2018
IEEE International Conference on Robotics and Automation (ICRA),
IEEE, 2018, pp. 6236–6243.

[39] G. Dalal, K. Dvijotham, M. Vecerik, T. Hester, C. Paduraru, Y. Tassa, Safe
exploration in continuous action spaces, arXiv preprint arXiv:1801.08757
(2018).

[40] T. Cover, J. Thomas, Elements of Information Theory, Wiley, 2012.

26

https://www.sciencedirect.com/science/article/pii/S030626192101285X
https://www.sciencedirect.com/science/article/pii/S030626192101285X
https://www.sciencedirect.com/science/article/pii/S030626192101285X
https://doi.org/https://doi.org/10.1016/j.apenergy.2021.117982
https://www.sciencedirect.com/science/article/pii/S030626192101285X
https://www.sciencedirect.com/science/article/pii/S030626192101285X
https://doi.org/10.1109/TSG.2019.2962625
https://doi.org/10.1109/TSG.2019.2962625
https://doi.org/10.1109/TPWRS.2004.841146
https://doi.org/10.1109/TPWRS.2004.841146
https://doi.org/10.1109/TPWRS.2020.2987292


[41] F. Leibfried, J. Grau-Moya, Mutual-information regularization in markov
decision processes and actor-critic learning, in: Conference on Robot Learn-
ing, PMLR, 2020, pp. 360–373.

[42] M. I. Belghazi, A. Baratin, S. Rajeswar, S. Ozair, Y. Bengio, A. Courville,
R. D. Hjelm, Mine: mutual information neural estimation, arXiv preprint
arXiv:1801.04062 (2018).

[43] M. Janner, J. Fu, M. Zhang, S. Levine, When to trust your model: Model-
based policy optimization, in: Advances in Neural Information Processing
Systems, 2019, pp. 12519–12530.

[44] K. Chua, R. Calandra, R. McAllister, S. Levine, Deep reinforcement
learning in a handful of trials using probabilistic dynamics models, arXiv
preprint arXiv:1805.12114 (2018).

[45] W. H. Kersting, Radial distribution test feeders, in: IEEE Power Engineer-
ing Society Winter Meeting, Vol. 2, 2001, pp. 908–912.

[46] UK Power Networks, Smart meter energy consumption data in London
households, https://data.london.gov.uk/dataset/smartmeter-
energy-use-data-in-london-households.

[47] T. Haarnoja, A. Zhou, P. Abbeel, S. Levine, Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor, in:
International conference on machine learning, PMLR, 2018, pp. 1861–1870.

[48] G. Dulac-Arnold, D. Mankowitz, T. Hester, Challenges of real-world rein-
forcement learning, arXiv preprint arXiv:1904.12901 (2019).

[49] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, S. Chintala, Pytorch: An imperative style, high-
performance deep learning library, in: H. Wallach, H. Larochelle,
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Table 1: Hyperparameters

All
replay buffer size 4000
discount factor γ {0.95, 0.95, 0.99}
number of hidden layers 2
optimizer Adam
pre-train steps 500

SAC
reward scale 5
temperature parameter α {0.4, 0.4, 0.3}
learning rate 0.001
number of hidden units {80, 90, 110}
hidden activation (actor-critic) tanh-tanh
smoothing parameter ρ 0.99
minibatch size 32

MAAC
reward scale 5
model rollout length H {16, 16, 13}
number of ensemble N 10
learning rate 0.001
number of hidden units (actor-crtic) {80, 80, 130}
number of hidden units (model) {80, 100, 100}
hidden activation (actor-crtic-model) tanh-relu-relu
minibatch size 16
exploration noise Std σξ 0.1

SAAC
reward scale {5, 5, 10}
model rollout length H {6, 6, 3}
number of ensemble N 10
learning rate 0.001
number of hidden units (actor-crtic) {80, 90, 130}
number of hidden units (model) {80, 100, 100}
hidden activation (actor-crtic-model) relu-relu-relu
minibatch size 32
exploration noise Std σξ 0.1
penalty coefficient sequence σ [10., 10., 100., 100.,

1000., 1000.]
regularization constant β 1.0
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Table 2: Asymptotic Performance Comparisons between the Proposed Method and
Model-Based Methods

Negative cumulative
reward ($)

Voltage
violation (p.u.)

Switching
number

System 4 34 123 4 34 123 4 34 123
SAC [47] 76.26 65.24 85.25 0.00 0.00 0.00 5 0 0
MAAC [37] 77.69 51.35 91.79 0.00 0.00 0.00 11 20 22
SAAC (ours) 75.82 54.38 76.03 0.00 0.00 0.00 2 24 16
MICP [8] 78.09 56.91 73.55 0.00 0.00 0.00 1 50 16
MPC [51] 75.20 52.98 72.81 0.00 0.00 0.00 9 74 17
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