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Abstract—The high instantaneous discharging capability of
battery energy storage systems (BESSs) make them ideal can-
didates for reducing peak loads in commercial buildings. An
efficient online BESS control algorithm can be beneficial for
reducing the monthly electricity bill of individual commercial
buildings. Conventional model-based BESS control algorithms
rely heavily on accurate long-horizon net load forecast, which
is difficult to obtain. To address this problem, we develop a
Lyapunov optimization-based online BESS control algorithm
and derive its theoretical performance bound. Comprehensive
numerical study results using real world commercial building
smart meter data in southern California show that our proposed
Lyapunov optimization-based online control algorithm with time-
varying weighting parameters yields higher savings in electricity
cost and requires less computation time in comparison to the
state-of-the-art baseline algorithms.

Index Terms—Battery energy storage system, stochastic opti-
mization, Lyapunov optimization, commercial building.

I. INTRODUCTION

BATTERY energy storage system (BESS) deployment has
been growing rapidly in the United States over past

years [1]. Commercial building managers have shown great
interest in adopting BESSs due to their capabilities in shaving
peak load and reducing electricity cost [2], [3]. As prices of
battery packs continue to drop in the near future, the adoption
rate of BESS in commercial buildings is expected to grow
significantly. For better cost savings, online BESS control
algorithms are needed to determine the battery charging and
discharging signals based on the real-time building net load
data. An efficient online BESS control algorithm can be crucial
for reducing both the energy and demand charge components
of the electricity bill of a commercial building.

BESSs are usually integrated with renewable energy re-
sources, such as rooftop solar panels in commercial buildings
[4]. This makes the design of a BESS control algorithm for
an individual commercial building more challenging due to
the high volatility and uncertainty in both electric load and
renewable generation. Widely used control algorithms such as
model predictive controls (MPCs) depend heavily on accurate
net load forecasts. However, it is challenging to develop
accurate net load forecasts that match typical billing cycles.
To tackle this challenge, we seek to develop an efficient online
BESS control algorithm for a commercial building that does
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not require any net load forecast. The control objective is to
minimize the electricity bill which includes the energy charge
and the demand charge.

Unlike residential buildings, the electricity bills of commer-
cial buildings in the United States are highly dependent on the
maximum power consumption and the peak demand charge
within a monthly billing cycle. For commercial buildings
with rooftop solar systems, the demand charges account for a
significant portion of electricity bills. A commercial building’s
demand charge is usually proportional to its monthly peak
load. The monthly peak load is highly volatile for an individual
commercial building due to substantial variability in weather,
building occupancy, and renewable generation. The presence
of excessive uncertainties make it challenging to develop
a BESS control algorithm that minimizes both energy and
demand charge in a single commercial building in practice.

The topic of battery energy storage management for build-
ings has been extensively studied in the literature. Most of the
previous research can be divided into two groups based on the
BESS control objectives. The first group of work focuses on
the BESS management for buildings that do not have demand
charge. The goals of the BESS control algorithms are usually
to minimize the costs (or equivalently maximize the benefits)
for the target buildings, although the specific objectives can
be diverse. For example, simple rule-based BESS control
policies are introduced to shave the peak loads of residential
buildings [5], [6], thereby reducing the energy costs. Stochastic
optimization-based BESS control algorithms are developed to
minimize energy costs [7], [8] and maximize economic gains
[9] for residential buildings. Deterministic model predictive
control algorithms based on forecasts are also proposed to
minimize the operating costs of the target buildings [10],
[11], [12]. An integrated management strategy for both renew-
able generation and BESS with controllable loads modeled
by Markovian processes is developed in [13] to reduce the
energy costs of residential buildings. [14] presents an adaptive
control algorithm based on load forecasts to operate BESSs
of residential building clusters so as to shave the peak load.
To reduce energy costs of a residential building, the BESS
control problem is solved using a reinforcement learning (RL)
approach with cyclic time-dependent Markov process [15].
The problem of energy cost reduction in residential buildings
with distributed energy resources is solved by multi-agent RL
[16]. It is worth noting that the adoption of BESSs in buildings
may not always be cost effective for all cases. For instance,
[17] shows BESSs might not be economical due to the high
investment cost and short lifetime.
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The second group of work develops BESS control algo-
rithms for buildings with both energy charge and demand
charge incurred. Since the demand charge often accounts for
a significant portion of the electricity bill, methods with a
focus on peak load shaving [18], [19], [20] have been devel-
oped to reduce the electricity bill for commercial buildings.
However, peak load shaving alone is not necessarily sufficient
for electricity bill minimization in buildings with large en-
ergy consumption. To address this problem, [21] proposed
an optimization algorithm that reduces the peak load and
the daily energy cost separately. Many researchers proposed
joint optimization algorithms to reduce the electricity costs
for commercial buildings. For example, peak load shaving
[22] and energy cost reduction [23] are jointly optimized
given benefits from providing ancillary services to the power
grid. An optimal coordination algorithm to provide energy
arbitrage, frequency regulation, and spinning reserve services
for buildings with energy storage resources is developed [24].

More relevant to our work, [25], [26], [3], [27] devel-
oped MPC-based BESS management approaches that jointly
minimize energy charge and demand charge for individual
commercial buildings. MPC-based approaches require accu-
rate forecast of future electric loads and renewable generation,
which can be very difficult to obtain for a single commercial
building due to the high uncertainty and long prediction
horizon. The demand charge, which depends on the peak load
within the monthly billing cycle, is extremely sensitive to
prediction model, hence prone to forecast errors. This problem
becomes more pronounced for small size commercial buildings
with irregular operation schedules. To address the net load
uncertainties, Lyapunov optimization-based control algorithms
have been developed for BESS management in various appli-
cations, such as optimal demand response [28], operational
cost reduction of a data center [29], optimal utility scheduling
of a power-harvesting network [30], long term operational
cost minimization of a microgrid [31], customer energy cost
reduction [32], [33], [34], and efficient routing of an energy
hub [35]. Nevertheless, none of existing studies investigate the
long-horizon joint minimization of energy charge and demand
charge for a commercial building. Similar previous studies,
for example [33] and [34], only consider residential buildings
without demand charge. The energy charge is simply a sum
of immediate electricity consumption costs billed at each time
step. The demand charge, which is proportional to the peak
power, can only be determined at the end of the billing
cycle. The introduction of demand charge brings additional
complexity in both problem formulation and solution method
that needs to be investigated and addressed rigorously, being
the primary motivation of this study. To bridge this research
gap, we propose a Lyapunov optimization-based online BESS
control algorithm to reduce the monthly electricity bill of a
commercial building. Our approach does not require any prior
information of future electric load or renewable generation
associated with the target commercial building. Instead, it
attempts to strike a balance between immediate cost and
resource reservation at each time step. For example, the
proposed approach is likely to release more battery energy
to reduce the immediate cost when it goes relatively high and
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Fig. 1: Diagram of a commercial building with solar PV
generation and BESS.

charge the battery when the immediate cost appears to be low.
The contributions of this work are summarized as below:

• We formulate the online BESS control problem for a
single commercial building as a stochastic optimization
problem with the goal to minimize both monthly demand
charge and energy charge.

• We develop not only a Lyapunov optimization-based on-
line control algorithm to solve the stochastic optimization
problem but also the corresponding performance bounds.

• Comprehensive numerical study results using real world
commercial building smart data show that the proposed
Lyapunov optimization-based control algorithm with mul-
tiple weighting parameters achieves not only lower elec-
tricity cost but also shorter computation time than state-
of-the-art baseline algorithms.

The rest of this paper is organized as the following: Section
II presents the formulation of the BESS control problem for a
single commercial building. Section III discusses the technical
details of the proposed Lyapunov optimization-based control
algorithm and its performance bounds. Section IV evaluates
the proposed framework with several numerical studies based
on net load data from a real world commercial building in
southern California. Section V concludes this study.

II. PROBLEM FORMULATION

In this section, we formulate the management of BESS for
a commercial building as a stochastic programming problem.
The objective of the optimization problem is to minimize the
monthly electricity bill of the commercial building through
efficient control of the BESS.

Fig. 1 shows the high level schematic diagram of the
commercial building’s energy system being studied. The com-
mercial building has access to three power sources: the solar
panel, the BESS, and the power grid. The direction of energy
flows follows the rules below:

• The electric energy flow between the commercial building
and the power grid is bidirectional.

• The electric energy flow between the commercial building
and the BESS is bidirectional.

• The electric energy can only flow from the solar panel to
the commercial building.
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Note that if the electric energy generated by the solar panel is
greater than the building energy demand, then the extra electric
energy has to go to either the power grid or the BESS.

In the next two subsections, we present the components
of the monthly electricity bill and the system operation con-
straints in the proposed control framework. The stochastic
programming problem is formulated in the last subsection.

A. Monthly Electricity Bill of Commercial Buildings

The monthly electricity bill of a commercial building in the
United States usually includes two parts: the energy charge
and the demand charge. The energy charge of the building in
different time-of-use periods are proportional to the quantity
of electricity consumed in the corresponding periods. The
demand charge is proportional to the maximum power drawn
by the building from the grid within a billing cycle. Let CE(m)
and CD(m) denote the energy charge and the demand charge
of a given commercial building in month m. Then CE(m) and
CD(m) can be formulated as:

CE(m) =∆T

T∑
t=1

[pE(t) max(PG(t), 0) + pF (t) min(PG(t), 0)]

(1)
CD(m) =pD ·max({0, PG(t)|t = 1, · · · , T}), (2)

where T is the total number of control time intervals in a
given month. ∆T is the length of each time interval. pE(t) is
the price of electricity sold to the commercial building at time
step t. PG(t) denotes the power transferred between the grid
and the commercial building. The sign of PG(t) defines the
direction of electric energy flow. Positive PG(t) indicates the
electric energy flows from the grid to the commercial building.
pF (t) is the price of electricity sold back to the grid by the
commercial building at time step t. pD denotes the demand
charge rate.

The sum of CE(m) and CD(m) is the electricity bill of a
commercial building for a given month m, which is denoted
by EB(m):

EB(m) = CE(m) + CD(m). (3)

Note that the calculation of CE(m) follows net metering
policy, which allows the building to offset retail electricity pur-
chase using output from on-site distributed energy resources.
Thus, CE(m) could be negative when the benefit from the
solar generation outweighs the energy cost. pF (t) can be set as
zero if no credit is provided by feeding electricity back to the
grid. If the load factor of the building is small, then the demand
charge CD(m) can dominate the electricity bill. Finally, if the
battery degradation costs can be clearly quantified, it can also
be included in the objective function. In this study, we assume
the battery degradation cost to be marginal, hence not included.

B. Operational Constraints

In this subsection, we formulate the operational constraints
of the BESS control and optimization problem.

1) Power grid: The distribution lines connecting buildings
and the power grid have limited capacities, which limit the
power transfer between the commercial building and the power
grid as follows:

−Pbound ≤ PG(t) ≤ Pbound, (4)

where Pbound is a positive constant. Note that we could
easily modify the constrain if the maximum energy inflow
and outflow limits are different.

2) Battery Energy Storage System: A battery energy storage
system has its maximum capacity which can degrade over
time. To slow down the degradation process, the actual usable
range of the BESS is usually set below the maximum capacity
[3], yielding the following constraint:

Emin ≤ E(t) ≤ Emax (5)

where E(t) is the remaining energy of BESS at time step t.
Emin and Emax are the minimum and maximum values of
the remaining energy of BESS, respectively.

The BESS also has maximum charging/discharging rate,
which is determined by both the battery materials and the
power electronic components. The two constraints below
model the charging and discharging rate limits of the BESS:

0 ≤ c(t) ≤ Pmax (6)
0 ≤ d(t) ≤ Pmax, (7)

where c(t) and d(t) are the charging and discharging power
at time step t. Note that the formulation can be extended to
consider different maximum charging and discharging power.

Based on the above definitions, the dynamics of the remain-
ing energy of BESS can be represented by the following state
transition equation derived from [36]:

E(t+ 1) = E(t) + [c(t)− d(t)] ·∆T
−|d(t)− c(t)|·∆T · (1−

√
κ)︸ ︷︷ ︸

Energy loss

, (8)

where κ denotes the round-trip efficiency of the entire BESS.
The round-trip efficiency is defined as the percentage of
electricity put into storage that is later retrieved. The higher
the round-trip efficiency, the less energy is lost in the storage
process [37]. The last term on the right hand side of the above
equation accounts for the energy loss during each time interval.

When the remaining energy of the BESS approaches the
boundaries of the usable range, additional constraints on the
charging/discharging rate need to be enforced:

∆T · c(t) ·
√
κ ≤ Emax − E(t) (9)

∆T · d(t) · (2−
√
κ) ≤ E(t)− Emin (10)

It is worth noting that these two inequalities are equivalent to
energy storage constraint Emin ≤ E(t + 1) ≤ Emax. Please
refer to Appendix A for details.

3) Electric Power Balance: According to the law of con-
servation of energy, the following relationship among the load
and different energy sources can be derived as (Fig. 1):

PG(t) = LB(t)− PS(t) + c(t)− d(t), (11)
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where LB(t) denotes the electric load of the commercial
building at time step t. PS(t) is measures the electric power
generated by the solar panel at time step t. Note that LB(t)
is always greater than or equal to zero.

C. Stochastic Programming Problem

In the real-world, the electric load of a commercial building
is affected by various random factors such as the weather
condition and the number of occupants. The solar generation
is also subject to significant uncertainties caused by the time-
varying cloud cover and ambient temperature. Therefore, the
electric load of the commercial building LB(t) and solar gen-
eration PS(t) are treated as random variables with unknown
distributions in this study.

The energy charge CE(m) and the demand charge CD(m)
of the building for month m are also random variables due
to the uncertain electric load and solar generation. To account
for the uncertainties, the objective of BESS control problem
is to minimize the expectation of the monthly electricity
bill EB(m). The stochastic programming problem for BESS
control is formulated as:

minimize
c(t),d(t)

E[CE(m) + CD(m)] (12)

subject to (4)− (11)

It is difficult to obtain the global optimal BESS control policy
because of the deep uncertainties introduced by the long
control/optimization horizon of a month and the unknown
distributions of LB(t) and PS(t). In next section, we will
present an online BESS control strategy using Lyapunov op-
timization, which can find a satisfactory sub-optimal solution
to the stochastic programming problem.

III. TECHNICAL METHODS

In this section, we propose a Lyapunov optimization-based
approach to control BESS in real-time operations by solving
the stochastic programming problem formulated in previous
section. In Lyapunov optimization, a Lyapunov function is
leveraged to control a dynamical system. The proposed ap-
proach does not require any information about the distribution
of electric load and solar generation and can be implemented
easily as an online algorithm. We refer the interested readers
to [38] for a detailed discussion of Lyapunov optimization.
In the following subsections, we present the technical details
of the proposed BESS control strategy based on Lyapunov
optimization.

A. Battery Energy Queue

Lyapunov optimization was first introduced to optimize the
management of queueing systems. It aims to strike a balance
between system performance and queue congestion. Regarding
the proposed BESS control problem, the depth of discharge
(DoD) of the BESS can be considered as a queue backlog.
The goal of Lyapunov optimization-based control strategy is to
maintain a good balance between BESS’s DoD and immediate
energy costs.

To fit our problem into the Lyapunov optimization frame-
work, a queue needs to be defined. In this study, we define a
queue Q(t) as:

Q(t) = Emax − E(t)−∆T · Pmax ·
√
κ. (13)

We call Q(t) the battery energy queue, which indicates the
amount of discharged energy. To comply with the BESS usable
range defined by (5), Q(t) should be restricted as follows:

−Pmax∆T
√
κ ≤ Q(t) ≤ Emax − Emin − Pmax∆T

√
κ
(14)

The purpose of introducing the term ∆T ·Pmax·
√
κ is to ensure

that the BESS’s energy level never exceeds Emax, which will
be explained in detail in Section III-C.

Based on the dynamics of remaining BESS energy (8)
and the definition of queue (13), the update of Q(t) can be
calculated by:

Q(t+ 1) = Q(t)+[d(t)− c(t)] ·∆T
+|d(t)− c(t)|·∆T · (1−

√
κ) (15)

Note that the last two terms on the right hand side (RHS) of
the above equation only depend on the control variables. Let
U(t) denote the input as the sum of the two RHS terms. The
above equation can be simplified as:

Q(t+ 1) = Q(t) + U(t) (16)

The proposed queue can also be interpreted as an indicator
of battery size requirement. Suppose we do not impose any
limit on Emax and let Q(t) evolve with the input U(t), then the
maximum value of Q(t) will determine the required capacity
of the BESS. A larger maximum value of Q(t) corresponds
to a larger capacity of the BESS.

B. Lyapunov Optimization-Based BESS Control

The goal of Lyapunov optimization is to achieve a low
overall operation cost in the long run by making reasonable
trade-off between immediate cost and queue backlog for each
time interval. In this work, the queue backlog is equivalent
to the battery energy queue Q(t). The immediate commercial
building energy cost g(t) at each time step t includes both
immediate energy charge and corresponding control action’s
contribution to the total demand charge. In this study, g(t) is
computed as:

g(t) = ∆T · [pE(t) ·max(PG(t), 0) + pF (t) ·min(PG(t), 0)]︸ ︷︷ ︸
Immediate energy charge

+ pD ·max(0, PG(t)−M(t))︸ ︷︷ ︸
Immediate demand charge

,

(17)

where M(t) = max (M(t− 1), PG(t− 1)),∀t = 1, 2, · · · , T
and M(0) = Mini. With the notations defined above, we
can see that the sum of the initial demand charge and the
cumulative immediate building energy cost is equal to the
electricity bill of the commercial building:

pD ·Mini +

T∑
t=1

g(t) = CE(m) + CD(m) (18)
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The immediate cost g(t) can be divided into two parts:
• The first part is the immediate energy charge, which

is simply the energy cost for one time interval. It is
determined by the electricity prices and electric energy
consumption. The sum of all the immediate energy
charges across all time steps in a given month m equals
CE(m).

• The second part is the immediate demand charge. It
measures the increase in demand charge due to the
increased peak demand. Similarly, the sum of pD ·Mini

and all the immediate demand charges in a given month
m gives CD(m).

Note that Mini is a tunable hyperparameter. The average daily
peak demand in previous month could be a good initial value.

Following the typical Lyapunov optimization framework
[38], we define a quadratic Lyapunov function L(t) as:

L(t) =
1

2
Q(t)2 (19)

The primary reason for using quadratic Lyapunov function is
that, when computing the change in the Lyapunov function
from one slot to the next, the quadratic Lyapunov function
has important dominant cross terms that include an inner
product of queue backlogs and transmission rates [38]. Note
this Lyapunov function is non-negative by definition. Then,
the one-slot conditional Lyapunov drift can be derived as:

∆L(t) = E[L(t+ 1)− L(t)|Q(t)]. (20)

The Lyapunov drift describes the expected change of the
Lyapunov function over one time interval. In the proposed
BESS control problem, this term indicates the change of
BESS’s DoD. The following Lemma provides an upper bound
of the Lyapunov drift.The proof of Lemma 1 is presented in
Appendix B.

Lemma 1. The one-slot conditional Lyapunov drift ∆L(t)
satisfies the following inequality ∀t:

∆L(t) ≤ B +Q(t)E[U(t)|Q(t)], (21)

where B = 1
2 [∆T · Pmax + 2∆T · Pmax · (1−

√
κ)]

2

Recall that the core idea of Lyapunov optimization is to
strike a balance between immediate cost and queue backlog
variation. To this end, the following optimization problem
based on Lyapunov drift ∆L(t) and immediate cost g(t) is
formulated at each time step to determine the control signals.

minimize
c(t),d(t)

∆L(t) + V · E(g(t)|Q(t)) (22)

subject to (6) and (7)

The objective function (22) is called drift-plus-penalty, which
is a weighted sum of the Lyapunov drift and the expected
immediate cost given current queue backlog. V is a weighting
parameter. However, we can not directly solve the above
optimization problem due to the presence of Lyapunov drift.
To convert the optimization problem into a tractable one, we
show that there exists an upper bound of the drift-plus-penalty.
We then minimize this upper bound instead of the drift-plus-
penalty. In the next subsection, we present the converted
problem and show that it can be efficiently solved online.

C. Online BESS Control Algorithm

First, let ∆J(t) denote the objective function in (22). By
following Lemma 1, the inequality below always holds:

(23)∆J(t) ≤ B +Q(t)E[U(t)|Q(t)] + V · E(g(t)|Q(t))

For an arbitrary time step ta, the above equation can be
reduced to a deterministic expression by observing LB(ta),
PS(ta), and E(ta):

(24)∆J(ta) ≤ B +Q(ta) · U(ta) + V · g(ta)

Now, our goal is to obtain the BESS’s control signals by
minimizing this upper bound:

minimize
c(ta),d(ta)

Q(ta) · U(ta) + V · g(ta) (25)

subject to (6) and (7),

where U(ta), g(ta), and PG(ta) can be derived as:

(26a)U(ta) = [d(ta)− c(ta)] ·∆T
+ |d(ta)− c(ta)|·∆T · (1−

√
κ)

(26b)
g(ta) = ∆T · pE(ta) ·max(PG(ta), 0)

+ ∆T · pF (ta) ·min(PG(ta), 0)

+ pD ·max(0, PG(ta)−M(ta))

(26c)PG(ta) = LB(ta)− PS(ta) + c(ta)− d(ta)

Note that (25) can be considered as a continuous piece-wise
linear function with respect to a single variable [d(ta)−c(ta)].
Therefore the global optimum of this converted optimization
problem can be efficiently found by comparing the values of
change points and endpoints.

Note that the queue backlog Q(t) corresponds to the dis-
charged battery energy, which is physically constrained by
the BESS capacity. Now we need to select the weighting
parameter V for trade-off between queue backlog reduction
and immediate cost. The following theorem claims that Q(t)
satisfies the physical constraint for all time intervals if V is
set within proper range. The proof of Theorem 1 is presented
in Appendix C.

Theorem 1. If the immediate cost g(t) is finite at each
time step, then the following inequality with respect to queue
backlog Q(t) and weighting parameter V holds for all time
steps:

Q(t) ≤ V · (gmax − gmin)

∆T · Pmax ·
√
κ
, (27)

where gmin and gmax are the lower bound and upper bound
of g(t), respectively.

It is worth noting that the tightness of this bound on Q(t)
depends on the distribution of g(t). An extreme case would be
g(t) = gmax = gmin,∀t. In this scenario, g(t) is independent
of control variables. The queue backlog Q(t) will remain 0 at
the corresponding bound.

Meanwhile, we can also derive a lower bound of Q(t),
which is denoted by QL. Note that U(t) is monotonically
increasing with respect to [d(t)− c(t)]. g(t) is monotonically
decreasing with respect to [d(t) − c(t)]. Therefore, once
Q(t) < 0, U(t) will be positive by solving (25), leading to
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increase of Q(t) at next time step. Given that our system is a
discrete system, it is possible that Q(t) goes from a positive
value to a negative value between two subsequent time steps.
Clearly, such negative value is bounded by the minimum value
of U(t). Therefore, the following inequality holds:

Q(t) ≥ QL = −∆T · Pmax ·
√
κ (28)

As ∆T → 0, QL → 0. This lower bound gives rise to the
introduction of ∆T · Pmax ·

√
κ into (13), which ensures the

BESS’s energy level E(t) never exceeds Emax.
The proposed online BESS control algorithm does not re-

quire any prior information or forecasts of future uncertainties.
It seeks to maintain a balance between system performance
and resource reserved for unknown look-ahead perturbations
regardless of time interval length. Regarding the proposed
BESS control problem, the remaining energy of the BESS
can be considered as available resource. The goal of Lyapunov
optimization-based control strategy is to maintain a good bal-
ance between BESS’s remaining energy and immediate energy
costs. In other words, it sacrifices certain immediate benefits
based on current states in return for delayed rewards, which
explains its fundamental logic in handling future uncertainties.

D. Theoretical Performance of Online BESS Control Policy

It is desirable to analyze the theoretical performance of the
proposed BESS control strategy with respect to the optimal
control policy. In this subsection, we derive an upper bound
for the difference between the expected electric bill of the
commercial building under the proposed control approach and
the theoretical optimum.

By taking expectation on both sides of (18), we have:

pD ·Mini +

T∑
t=1

E[g(t)] = E[CE(m) + CD(m)] (29)

The RHS of the above equation is exactly the objective
function of the original stochastic optimization problem. Given
that pD ·Mini is a constant, the value of

∑T
t=1 E[g(t)] thereby

determines the performance of a BESS control policy. The
following theorem provides an upper bound for the differ-
ence between the performance of the proposed BESS control
strategy and the global optimum. The proof of Theorem 2 is
presented in Appendix D.

Theorem 2. Let π∗ be an optimal control policy that mini-
mizes (12). Let πg be the proposed control policy. Let Q∗(t)
and L∗(t) be the queue backlog and Lyapunov function under
the optimal control policy π∗, respectively. Suppose LB(t) and
PS(t) are i.i.d. over different time steps. Then the following
inequality holds:

T∑
t=1

E[gπg (t)] ≤
T∑
t=1

E[gπ∗(t)] +
T · C
V

+
L∗(1)

V
, (30)

where gπg (t) is the immediate cost under the proposed control
policy πg . gπ∗(t) is the immediate cost under the optimal
control policy π∗. C = B + Pmax

2∆T 2κ.

Note that if C is very large, then this upper bound on the
performance difference might not be very tight. Nevertheless,

selecting a large value of V can help improve the performance
of the proposed online BESS control algorithm. Recall that
the queue backlog Q(t) and V are inversely proportional to
each other in (42). An excessively large V can lead to a Q(t)
that is beyond the feasible range. Thus, there exists a trade-off
between BESS control algorithm performance and the required
capacity for Q(t). Selecting a good value of V is, therefore,
the key to the successful application of the proposed control
approach.

To conclude, the proposed Lyapunov optimization-based
control strategy has several pros and cons. First, the proposed
approach does not require any load forecasting or prior infor-
mation of future electric load profile. Second, it is extremely
lightweight and computationally efficient, which can be eas-
ily deployed on embedded controllers. Third, the proposed
Lyapunov optimization-based control strategy only has one
hyperparameter, making the tuning process relatively easy.
The major con of the proposed Lyapunov optimization-based
control strategy is its sensitivity regarding the hyparparameter
V . The numerical studies in the next section will demonstrate
that the performance of the proposed approach is highly
dependent on the value of V .

IV. NUMERICAL STUDY

In this section, we evaluate the proposed Lyapunov
optimization-based online BESS control algorithm using real-
world data collected from a commercial building in southern
California. We start from analyzing the impact of hyperpa-
rameter V on control performance so as to identify the proper
value for V . Then, we compare the monthly electricity bills
achieved by the proposed control approach and the selected
baseline algorithms. Finally, we analyze the impact of control
time interval and the scalability of the proposed control
algorithm.

A. Numerical Setup

1) Data Source: In this study, we use the net load data of
the Children Center of San Diego State University, which is
located in San Diego, California. This commercial building
is equipped with solar panels. The net load data are sampled
every 15 minutes from April 2021 to July 2021. Fig. 2 shows
the net load profile of April 2021. Note that the negative
net loads indicate backfeed of electricity into the power
distribution network.
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Fig. 2: Net load of the commercial building in April 2021.
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Fig. 3: Electricity prices during winter and summer months.

TABLE I: System Parameters

Parameter Value Unit

Bound of grid power Pbound 60 kW

Maximum charging speed Pmax 60 kW

Maximum battery energy Emax 270 kWh

Minimum battery energy Emin 30 kWh

Round-trip efficiency κ 0.88 -

Initial state of charge SoCini 0.5 -

Initial value of M(t) Mini 20 kW

Control time interval ∆T 15∗, 30, 60 min
* ∆T = 15 minutes is the default control time interval except otherwise

noted.

2) System Parameters: The prices of energy charge pE(t)
and demand charge pD(t) are obtained from an electric utility
in southern California [39]. Specifically, pE(t) varies with
time-of-use periods and seasons, as shown in Fig. 3. Under the
net-metering program, the price of electricity sold back to the
grid is the same as the purchasing price, i.e. pF (t) = pE(t).
The demand charge price pD is $9.39/kW monthly. Other
system parameters such as charging/discharging limits, battery
energy capacity, efficiency, and control time interval are listed
in Table I.

3) Baseline Methods: We select the theoretical optimal
control solution and two MPC schemes as baseline algorithms
for comparison purpose. The optimal control solution can
be obtained by solving the optimization problem (12) with
constraints (4)-(11) and the exact information of future loads.
The first MPC baseline algorithm solves the same optimization
problem with 7-day rolling windows and predicted future net
loads. We adopt a simple yet effective prediction approach
called similar-day method, which directly uses electric load
data of the previous week as the forecast for the next week.
Given electric load data has strong weekly seasonality, load
profiles between two adjacent weeks can be quite similar
to each other. This simple prediction method is surprisingly
powerful in many cases [40]. We also include an ideal MPC
method as a baseline where the net load forecasts are replaced
with ground-truth values.

B. Selection of V for Lyapunov Optimization

The selection of proper V values is crucial for the suc-
cess of the proposed BESS control approach as discussed in
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Fig. 4: Total monthly electricity bills (top), energy charge
CE (middle), and demand charge CD (bottom) obtained by

the proposed approach under different single V values.

Section III-D. Here, we analyze the impact of V values on
the monthly electricity bills obtained by the proposed method.
We will start from using a single V value throughout the
control process and then discuss how the performance can
be improved by using two different V values for peak and
non-peak periods.

1) Single V: In this case, we use the same V value through-
out the control process. We gradually increase the value of
V starting from 10. As shown in Fig. 4, the total monthly
electricity bill decreases as V increases and then bounces
up when V becomes too large. Through further visualizing
the energy charge CE and demand charge CD, we find that
the impacts of V can be split into two regimes. Taking the
summer months (Jun and Jul) for example, when V increases
but is below 103, the energy charge CE is gradually reduced
and the demand charge CD is kept the same. On the other
hand, when V is above 103, both CE and CD are found to
increase with V . This result matches our theoretical analysis in
Section III-D that increased value of V within certain range
can help improve the performance when the corresponding
queue backlog is within the feasible operating range. When
V becomes too large, the required queue backlog size will
exceed the limit of the BESS capacity. The performance bound
provided by Theorem 2 is no longer valid in this scenario.
The performance of the proposed control strategy dramatically
degrades due to the lack of balance between remaining battery
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Fig. 5: Actual performance and theoretical upper bound with
various values of V in April, 2021.

energy and the instantaneous energy cost.
We record the actual performance and the derived upper

bound of the proposed approach with various values of hy-
perparameter V using the electric load data of the target
commercial building in April, 2021. Fig, 5 shows the actual
performance and the theoretical upper bound given different
values of V . Clearly, the theoretical bound appears to be tighter
as the value of V increases.

Note that in summer months the monthly electricity bills are
most sensitive to the change in V , as indicated by the slopes
of curves in Fig. 4 when V < 103. This implies that it is more
difficult to select a proper value of V for the summer months.
In practical applications, we can address this issue by using
multiple values of V for different hours in a day as discussed
below.

2) Multiple Vs: We notice that the electricity price dif-
ferences between peak and non-peak hours during summer
months are much larger than that of winter months. Recall
that V is a weighting factor that balances the remaining
battery energy and the instantaneous energy cost. Therefore,
we should use higher values of V during peak hours to reduce
the immediate energy cost and lower V values during non-peak
hours to incentivize the replenishment of battery energy.

Fig. 6 shows the 2-D heatmaps of the monthly bills by using
two different values of V for peak and non-peak hours. First,
it is observed that months within the same season show similar
performance patterns across different values of V . The white
dashed lines correspond to the results using a single fixed value
of V . Clearly, the performance of the proposed approach is
more sensitive to V in summer months compared to that in
winter months. This is consistent with our observation of the
single V case. Most importantly, we identify the regions of V
value combinations that consistently achieve low electricity
bills. For winter months, we can select V for peak hours
roughly in the 2× 103 ∼ 3× 103 range, and V for non-peak
hours in the 1× 101 ∼ 1× 103 range. Similarly, for summer
months, we can select V in the 8× 102 ∼ 1× 103 range for
peak hours and the 1 × 101 ∼ 1 × 102 range for non-peak
hours to achieve consistently good control performance.

Without loss of generality, we will use fixed values of V in
the following performance comparison. The fixed values of V
are listed in Table II.

TABLE II: Selected Values of V

V Winter Summer

Peak Hours 2.5 × 103 1 × 103

Non-peak Hours 5 × 102 5 × 101

C. Electricity Bill Comparison

The performance of the Lyapunov optimization-based con-
trol policy is compared with other baseline methods in Fig. 7.
We observe significant electricity bill reduction by adopting
the proposed Lyapunov-based BESS control policy throughout
the four months in comparison to the original electricity bills
without BESS.

The electricity cost reduction is more pronounced in sum-
mer months than that in winter months. It is worth noting
that the monthly electricity bills obtained by the Lyapunov
optimization-based control policy are lower than that of the
MPC method for all four months. Moreover, the Lyapunov
optimization-based control policy can achieve a performance
close to the theoretical optimum during the winter months.
Specifically, the electricity bill under the proposed approach
is only 112% and 110% of the theoretical minimum in April
and May, respectively. For the summer months, these ratios
become larger (226% and 159% for June and July, respec-
tively) due to the increased electricity price variation during
the day. The ideal MPC approach can efficiently handle this
price variation assuming that perfect net load forecasts for the
entire month are available. Nevertheless, the ideal MPC results
are unattainable in practice because of the existence of load
forecasting errors. Table III displays the average root mean
square error (RMSE) of the load forecasting for each month
in this study. It is worth noting that obtaining an accurate
electric load forecast of a single commercial building is usually
difficult due to the high randomness of events and weather
conditions, making the MPC-based approaches less effective.
By comparison, the proposed approach does not have this issue
by virtue of its zero dependency on prior information of future
load profile.

Recall that we assumed net-metering rates in the previous
analysis. However, consider the sustainable development of the
grid, the sell-back price pF (t) shall be less than the purchasing
price pE(t) to compensate for the additional costs of the grid
(e.g. infrastructure and management). To demonstrate if the
proposed method is still effective in asymmetrical rates, we
further consider the following three scenarios:

• Net-metering, i.e. pF (t) = pE(t),
• The selling price is 5% less than the purchasing price,

i.e. pF (t) = 0.95pE(t),
• The selling price is 30% less than the purchasing price,

i.e. pF (t) = 0.70pE(t).
In Fig. 8, the electricity bill (Apr 2021) is shown under

different control methods and pricing schemes. From the figure
we can see that with the widening of the gap between selling
and purchasing prices, the total electricity bills are raised in
all five methods. However, the rises are all limited, even in
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Fig. 6: Monthly electricity bills obtained by the proposed approach using two different values of V for peak hours and
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Fig. 7: Comparison of monthly electricity bills under
different control policies.

the extreme case where the selling price is 30% less than the
purchasing price. This phenomenon indicates that the proposed
method, as well as other baseline methods, is capable of
handling the asymmetrical rates. This is in line with our
expectation as the proposed method explicitly differentiated
selling and purchasing prices in (26b).
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Fig. 8: Comparison of the electricity bill (Apr 2021) under
different control policies and pricing schemes.

TABLE III: Average RMSE of load forecasting error for
each month.

Month April May June July

Average RMSE (kW) 8.39 8.83 9.84 9.39
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Control Time Interval T (min)

300

400

500

600

700

800

900

M
on

th
ly

 B
ill 

($
)

Apr
May
Jun
Jul

Fig. 9: Comparison of monthly electricity bills with different
control time intervals.

D. Impact of Control Time Interval
In the above analysis, we select ∆T = 15 minutes as

the default control time interval, which is the same as the
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TABLE IV: Comparison of Computational Time per Step
with Different Control Time Intervals

Control Time Interval Computation Time per Step (s)
MPC Lyapunov

∆T = 60min 4.0
∼ 1.0 × 10−5∆T = 30min 8.9

∆T = 15min 20.1

data sampling interval. It is interesting to investigate how
the performance of the proposed BESS control algorithm
changes when a different time interval is selected. Note that
when calculating the electricity bills for a different control
time interval, the demand charge still needs to be calculated
based on the 15-minute interval data as it is determined
by the electric utility company. We re-evaluate the control
experiments with ∆T = 30 and 60 minutes. The results are
shown in Fig. 9. The monthly electricity bills increase when
we use a larger control time interval for all four months.

Note that the data sampling frequency can be increased
in practical applications, where the Lyapunov optimization-
based control policy is expected to achieve even lower monthly
electricity bills. More importantly, the adoption of a shorter
control time interval barely affects the computation time of
the proposed algorithm. We record the computation time per
step for the MPC-based method and Lyapunov optimization-
based control policy under different control time intervals in
Table IV. The computation time of the MPC-based method
is roughly a million times larger than that of the Lyapunov
optimization-based control policy. Moreover, the computation
time doubles when the control time interval is reduced by
half for the MPC-based method. Meanwhile, for the proposed
approach, the computation time almost remains the same when
the control time interval is shortened. This test result shows the
great advantage of using Lyapunov optimization-based control
policy with more granular control time intervals.

V. CONCLUSION

This paper develops an efficient online control algorithm for
battery energy storage system based on Lyapunov optimization
to reduce the electricity bill of an individual commercial
building. The proposed control strategy helps reduce both
the energy charge and the demand charge of the commercial
building in a billing cycle (month). The proposed control
algorithm seeks to find an appropriate trade-off between the
remaining battery energy and the instantaneous energy cost in
each control interval. Neither prior information nor forecasts
of future net loads are required for the proposed control
algorithm. Numerical results with real world building data
show that the proposed Lyapunov optimization-based control
algorithm not only yields higher energy cost savings but also
consumes computation time magnitudes less than that of the
baseline algorithm.
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APPENDIX A
PROOF OF THE EQUIVALENCE OF ENERGY STORAGE

CONSTRAINT AND INEQUALITIES (9) AND (10).

In this appendix, we prove that the energy storage constraint
Emin ≤ E(t+1) ≤ Emax is equivalent to inequalities (9) and
(10). Eq. (8) describes the transition of remaining energy in
the battery:

E(t+ 1) = E(t) + [c(t)− d(t)] ·∆T
− |d(t)− c(t)|·∆T · (1−

√
κ) (31)

Therefore, Emin ≤ E(t+ 1) ≤ Emax indicates:

Emin ≤ E(t) + [c(t)− d(t)] ·∆T
− |d(t)− c(t)|·∆T · (1−

√
κ) ≤ Emax (32)

If the battery is being discharged, then d(t) ≥ 0 and c(t) = 0:

Emin ≤ E(t)− d(t) ·∆T (2−
√
κ) ≤ Emax (33)

Note E(t) − d(t) ·∆T (2 −
√
κ) ≤ Emax is always satisfied

because d(t) ≥ 0. The above inequality is thereby equivalent
to:

d(t) ·∆T (2−
√
κ) ≤ E(t)− Emin (34)

If the battery is being charged, then d(t) = 0 and c(t) ≥ 0:

Emin ≤ E(t) + c(t) ·∆T
√
κ ≤ Emax (35)

Note Emin ≤ E(t) + c(t) ·∆T
√
κ is always satisfied because

c(t) ≥ 0. The above inequality is thereby equivalent to:

c(t) ·∆T
√
κ ≤ Emax − E(t) (36)

Therefore, the energy storage constraint Emin ≤ E(t + 1) ≤
Emax is equivalent to inequalities (9) and (10).

APPENDIX B
PROOF OF LEMMA 1

Lemma 1. The one-slot conditional Lyapunov drift ∆L(t)
satisfies the following inequality ∀t:

∆L(t) ≤ B +Q(t)E[U(t)|Q(t)], (37)

where B = 1
2 [∆T · Pmax + 2∆T · Pmax · (1−

√
κ)]

2.
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Proof. Based on (19), we have:

L(t+ 1)− L(t) =
1

2

[
Q(t+ 1)2 −Q(t)2

]
=

1

2

{[
Emax−E(t+ 1)−∆T ·Pmax ·

√
κ
]2

−
[
Emax − E(t)−∆T · Pmax ·

√
κ
]2}

=
1

2

{
E(t+ 1)2 − E(t)2 + 2(Emax −∆T

· Pmax ·
√
κ) [E(t)− E(t+ 1)]

}
=

1

2
[E(t+ 1)− E(t)][E(t+ 1) + E(t)

− 2(Emax −∆T · Pmax ·
√
κ)]

=
1

2
[E(t+ 1)− E(t)]

[
2E(t)− U(t)

− 2
(
Emax −∆T · Pmax ·

√
κ
)]

= U(t)[Q(t) +
1

2
U(t)]

=
1

2
U(t)2 + U(t)Q(t)

(38)

Given (6) and (7), an upper bound of U(t) can be derived:

U(t) ≤ ∆T · Pmax + ∆T · Pmax · (1−
√
κ) (39)

By substituting (39) into (38), we have:

(40)
L(t+ 1)− L(t) ≤ 1

2

[
∆T · Pmax + ∆T · Pmax

· (1−
√
κ)
]2

+ U(t)Q(t)

Taking conditional expectation on both sides yields:

(41)
∆L(t) ≤ 1

2

[
∆T · Pmax + ∆T · Pmax · (1−

√
κ)
]2︸ ︷︷ ︸

B

+Q(t)E[U(t)|Q(t)]

APPENDIX C
PROOF OF THEOREM 1

Theorem 1. If the immediate cost g(t) is finite at each
time step, then the following inequality with respect to queue
backlog Q(t) and weighting parameter V holds for all time
steps:

Q(t) ≤ V · (gmax − gmin)

∆T · Pmax ·
√
κ
, (42)

where gmin and gmax are the lower bound and upper bound
of g(t), respectively.

Proof. Let a(t) = [d(ta)− c(ta)] + |d(ta)− c(ta)|·(1−
√
κ).

Based on (6) and (7), we have:

−Pmax ·
√
κ ≤ a(t) ≤ Pmax · (2−

√
κ) (43)

In the proposed online BESS control algorithm, the following
objective function is minimized at each time step t:

obj(a(t)) = ∆T ·Q(t) · a(t) + V · g(t) (44)

Let’s assume Q(t) = ε+R, where ε > 0 and R satisfies:

−∆T ·R · Pmax ·
√
κ+ V · gmax = V · gmin (45)

Note that gmin ≤ g(t) ≤ gmax,∀t. Then, the following two
arguments hold:

• For any a(t) = a+ ≥ 0, we have obj(a+) ≥ V · gmin;
• Let a∗ be the optimal solution. For a(t) = −Pmax ·

√
κ,

we have:

obj(a∗) ≤ obj(−Pmax ·
√
κ)

= −∆T ·Q(t) · Pmax ·
√
κ+ V · g(t)

= −∆T · (ε+R) · Pmax ·
√
κ+ V · g(t)

= −∆T · ε · Pmax ·
√
κ−∆T

·R · Pmax ·
√
κ+ V · g(t)

< V · gmin
(46)

These two arguments indicate the optimal solution a∗ has to
be negative in this situation. In other words, once the queue
backlog Q(t) ≥ ε + R, it will decrease at the following time
step. Let ε→ 0, we have Q(t) ≤ R. Substituting (45) into R
yields:

Q(t) ≤ V · (gmax − gmin)

∆T · Pmax ·
√
κ

(47)

APPENDIX D
PROOF OF THEOREM 2

Theorem 2. Let π∗ be an optimal control policy that minimizes
(12). Let πg be the proposed control policy. Let Q∗(t) and
L∗(t) be the queue backlog and Lyapunov function under the
optimal control policy π∗, respectively. Suppose LB(t) and
PS(t) are i.i.d. over different time steps. Then the following
inequality holds:

T∑
t=1

E[gπg (t)] ≤
T∑
t=1

E[gπ∗(t)] +
T · C
V

+
L∗(1)

V
, (48)

where gπg (t) is the immediate cost under the proposed control
policy πg . gπ∗(t) is the immediate cost under the optimal
control policy π∗. C = B + Pmax

2∆T 2κ.

Proof. Based on Lemma 1, we have:

∆L∗(t) + V E[gπg (t)|Q∗(t)] ≤ B +Q∗(t)E[Uπg (t)|Q∗(t)]

+ V E[gπg (t)|Q∗(t)] (49)

Note that πg minimizes Q(t)E[U(t)|Q(t)]+V E(g(t)|Q(t)) at
each time step. Therefore, we have:

Q∗(t)E[Uπg (t)|Q∗(t)] + V E[gπg (t)|Q∗(t)] ≤
Q∗(t)E[Uπ∗(t)|Q∗(t)] + V E[gπ∗(t)|Q∗(t)] (50)

Combining (49) and (50) yields:

(51)∆L∗(t) + V E[gπg (t)|Q∗(t)] ≤ B
+Q∗(t)E[Uπ∗(t)|Q∗(t)] + V E[gπ∗(t)|Q∗(t)],
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where Uπ∗(t) denotes the control input under π∗. Note that π∗

is a feasible solution to the original stochastic programming
problem (12). Therefore, Q∗(t) satisfies the following bound:

−Pmax∆T
√
κ ≤ Q∗(t) ≤ Emax − Emin − Pmax∆T

√
κ
(52)

We can also derive a bound for E[Uπ∗(t)|Q∗(t)] based on
(26a):

−Pmax∆T
√
κ ≤ E[Uπ∗(t)|Q∗(t)] ≤ Pmax∆T (2−

√
κ)
(53)

Given our only random variables LB(t) and PS(t) are i.i.d.
over different time steps, there exists an optimal control policy
that satisfies E[Uπ∗(t)|Q∗(t)] ≤ 0 according to Theorem 4.5
in [38]. Combining this inequality with (52) and (53) yields:

Q∗(t)E[Uπ∗(t)|Q∗(t)] ≤ Pmax2∆T 2κ (54)

Let C = B+Pmax
2∆T 2κ. Substituting (54) into (51) yields:

(55)∆L∗(t) + V E[gπg (t)|Q∗(t)] ≤ C + V E[gπ∗(t)|Q∗(t)]

Taking expectation over Q∗(t) on both sides of (55) gives:

(56)E[L∗(t+ 1)− L∗(t)] + V E[gπg (t)] ≤ C + V E[gπ∗(t)]

By summing (56) over t = 1, 2, 3, · · · , T , we have:

E[L∗(T + 1)− L∗(1)] + V

T∑
t=1

E[gπg (t)] ≤ T · C

+V

T∑
t=1

E[gπ∗(t)] (57)

Rearranging the terms in the above equation yields:
T∑
t=1

E[gπg (t)] ≤
T∑
t=1

E[gπ∗(t)] +
T · C
V

+
E[L∗(1)]− E[L∗(T + 1)]

V
(58)

Note that L∗(1) is deterministic and L∗(T +1) ≥ 0. Thus, we
have:

T∑
t=1

E[gπg (t)] ≤
T∑
t=1

E[gπ∗(t)] +
T · C
V

+
L∗(1)

V
(59)
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