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Abstract—The lack of sufficient labeled events and long train-
ing time limit the applicability of deep neural network-based
power system event identification using synchrophasor data. In
this paper, we propose to leverage transfer learning technique
to boost the reliability and reduce the required training time of
neural classifier for power system event identification. We use
the weights of a neural classifier trained on one transmission
system as the initial parameters of another neural classifier for a
different transmission system. Numerical tests with real-world
synchrophasor data from the Eastern and Western Intercon-
nections of the United States show that the proposed transfer
learning approach is very effective in not only improving the
training reliability but also reducing the training time.

Index Terms—Event identification, transfer learning, phasor
measurement unit, deep neural network, graph signal processing.

I. INTRODUCTION

Synchrophasor data recorded by phasor measurement units
(PMUs) make it possible to detect and classify abnormal
power system events in a timely manner. Although deep neu-
ral network-based power system detection and classification
algorithms have achieved high accuracy, they often require
a large amount of power system event training labels and
long training time. If a transmission grid operator only has
limited event labels and/or historical PMU data, then it is
difficult to reliably train a deep neural network that achieves
high event classification accuracy. Even if abundant event data
are available, training a deep neural network with random
initial parameters from scratch could be time and resource
consuming. To promote the adoption of deep neural network-
based power system event identification solutions, it is crucial
to address these two issues in the training process.

In this work, we attempt to mitigate the issues associated
with limited event labels and reduce the training time of
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deep neural network-based power system event identification
algorithms with transfer learning techniques. The key idea
of transfer learning is to facilitate the training process of a
new model by exploiting the information from a previously
trained model of a related task. Equipped with two years of
synchrophasor data from hundreds of PMUs across the United
States, we investigate the effectiveness of transfer learning by
considering the event identification of the Eastern Interconnec-
tion and the Western Interconnection as two individual tasks.
We would like to answer the question of “Does the neural
network trained to identify power system events for the Eastern
Interconnection could provide useful information and guidance
when building the event identification engine for the Western
Interconnection?” The answer is a resounding yes based on
the numerical study results with real-world PMU data.

Many power system event detection and identification al-
gorithms based on PMU data have been developed. The
related works can be divided into two groups. The first group
only detects abnormal events without identifying the event
type. The second group performs both event detection and
classification. The technical methods used in the first group
often falls into one of the following five domains: spectral
analysis [1], [2], [3], [4], estimation error [5], [6], spatial
correlation variation [7], [8], [9], low-rank property of PMU
data [10], [11], and data mining [12]. Event identification using
PMU data is a classification problem, which requires a large
amount of training data. Majority of the works in the second
group do not have access to sufficient labeled real-world PMU
data, thereby limiting their effectiveness. For example, the
datasets used by [13] and [14] only contain 32 and 57 labeled
events, respectively. Case studies in [15] only cover 4 PMUs.
Reference [16] focuses only on identifying frequency events.

Our previous work [17] is one of the first studies that
have leveraged a large labeled real-world PMU dataset. We
proposed a deep convolutional neural network (CNN) based
approach to automatically identify power system events in
real-time. The deep CNN is trained on two years PMU data,
which contain over one thousand labeled power system events
from the Eastern Interconnection in the U.S. In this work,
we extend [17] by investigating the effectiveness of transfer
learning in power system event identification based on deep
CNNs. Specifically, we aim to improve the reliability and
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Fig. 1: Overall framework of power system event detection
with transfer learning.

computation efficiency of training a deep CNN on the PMU
data gathered from the Western Interconnection by exploiting
the previously learned model for the Eastern Interconnection.

The contributions of this paper are summarized as follows:
• We validate the effectiveness of transfer learning in the

field of power system event identification with large
quantity of real-world PMU data.

• We show that the reliability of neural network training for
the Western Interconnection is significantly improved by
transferring the learned parameters from a model trained
on the PMU data from the Eastern Interconnection.

• We demonstrate that transfer learning can notably reduce
training time for deep neural networks designed for power
system event identification.

The rest of the paper is organized as follows: Section
II presents the overall framework and the technical details
utilized in this study. Section III validates the proposed transfer
learning technique for power system event identification with
a large real-world synchrophasor dataset. The conclusions are
stated in Section IV.

II. METHODOLOGY

The power system event identification problem with syn-
chrophasor data is treated as a supervised machine learning
problem. We propose to enhance and accelerate the training of
deep neural network-based event identification model with the
transfer learning technique. In the first subsection, the overall
framework of the proposed event identification approach with
transfer learning is presented. In the second subsection, we
provide the details for the key technical methods of the
proposed framework.

A. Overall Framework

The overall framework of the proposed power system event
identification approach with transfer learning is illustrated in
Figure 1. Suppose we have two electric power systems. The
top system has a large dataset of synchropahsor data and event
labels, whereas the bottom one only gathers a dataset with
limited number of event labels. We will first train a CNN-
based classifier for the top system and then transfer the learned

parameters of the CNN to the that of the bottom system as
initial values. This way, we could learn a decent power system
event classifier for the bottom system with a small dataset.

The input features, data preprocessing technique and the
power system event classifier are introduced below. The input
features include: active power P , reactive power Q, voltage
magnitude |V |, and frequency f , which are derived based
on the voltage and current phasor readings from the PMUs.
Measurement matrices can be formed by putting different
PMUs’ time series data together for each input feature. A
3-dimensional tensor can be constructed by stacking the
measurement matrices of P , Q, |V |, and f for all power
system event and non-event samples. We call these tensors the
PQ|V |f tensors. PMU Dataset 1 and PMU Dataset 2 shown
in Fig. 1 contain the PQ|V |f tensors and the corresponding
event labels.

Instead of directly feeding the 3-dimensional tensor data
into the deep neural network-based event classifier, we lever-
age graph signal processing (GSP) technique to sort the PMUs.
To goal of this sorting is to place highly correlated PMUs
close to each other, which facilitates the classifier to learn
the spatio-temporal correlations among the PMU measurement
time series.

The classifier employed in this study is a deep convolutional
neural network, which can be considered as a combination
of an encoder and an estimator. The encoder strives to
transform the input features into meaningful low-dimensional
representations, based on which the estimator can interpret and
classify the input data accurately. Note that once the training
process for the top classifier is finished, we only transfer the
parameters of the encoders instead of the whole classifier from
one model to the other as shown in Fig. 1.

B. Technical Methods

In this subsection, we provide the technical details of the
methods used in the proposed power system event identifica-
tion approach with transfer learning. Specifically, we present
the GSP based PMU sorting technique, the design of the
classifier, and the implementation of transfer learning.

1) GSP-based PMU Sorting: The GSP-based PMU sorting
technique aims to improve the effectiveness of the parameter
sharing scheme of CNN-based event classifier. It strategically
rearrange the sequence of PMUs in the given PQ|V |f tensors
such that the highly correlated PMU measurement time series
are placed close to each other [17].

We only present the final sorting algorithm in this
manuscript and refer the interested readers to [17] for the
detailed problem formulation and mathematical derivation:

• Step 1: Calculate the Pearson correlation coefficients
between the PMUs in the given system;

• Step 2: Build the corresponding graph Laplacian matrix;
• Step 3: Obtain the eigenvalues and eigenvectors of the

graph Laplacian by performing eigendecomposition;
• Step 4: Sort PMUs according to the eigenvector that

corresponds to the second smallest eigenvalue of the
graph Laplacian matrix.



model top-1 err. top-5 err.

VGG-16 [41] 28.07 9.33
GoogLeNet [44] - 9.15
PReLU-net [13] 24.27 7.38

plain-34 28.54 10.02
ResNet-34 A 25.03 7.76
ResNet-34 B 24.52 7.46
ResNet-34 C 24.19 7.40
ResNet-50 22.85 6.71
ResNet-101 21.75 6.05
ResNet-152 21.43 5.71

Table 3. Error rates (%, 10-crop testing) on ImageNet validation.
VGG-16 is based on our test. ResNet-50/101/152 are of option B
that only uses projections for increasing dimensions.

method top-1 err. top-5 err.

VGG [41] (ILSVRC’14) - 8.43†

GoogLeNet [44] (ILSVRC’14) - 7.89
VGG [41] (v5) 24.4 7.1
PReLU-net [13] 21.59 5.71
BN-inception [16] 21.99 5.81
ResNet-34 B 21.84 5.71
ResNet-34 C 21.53 5.60
ResNet-50 20.74 5.25
ResNet-101 19.87 4.60
ResNet-152 19.38 4.49

Table 4. Error rates (%) of single-model results on the ImageNet
validation set (except † reported on the test set).

method top-5 err. (test)
VGG [41] (ILSVRC’14) 7.32
GoogLeNet [44] (ILSVRC’14) 6.66
VGG [41] (v5) 6.8
PReLU-net [13] 4.94
BN-inception [16] 4.82
ResNet (ILSVRC’15) 3.57

Table 5. Error rates (%) of ensembles. The top-5 error is on the
test set of ImageNet and reported by the test server.

ResNet reduces the top-1 error by 3.5% (Table 2), resulting
from the successfully reduced training error (Fig. 4 right vs.
left). This comparison verifies the effectiveness of residual
learning on extremely deep systems.

Last, we also note that the 18-layer plain/residual nets
are comparably accurate (Table 2), but the 18-layer ResNet
converges faster (Fig. 4 right vs. left). When the net is “not
overly deep” (18 layers here), the current SGD solver is still
able to find good solutions to the plain net. In this case, the
ResNet eases the optimization by providing faster conver-
gence at the early stage.

Identity vs. Projection Shortcuts. We have shown that
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Figure 5. A deeper residual function F for ImageNet. Left: a
building block (on 56×56 feature maps) as in Fig. 3 for ResNet-
34. Right: a “bottleneck” building block for ResNet-50/101/152.

parameter-free, identity shortcuts help with training. Next
we investigate projection shortcuts (Eqn.(2)). In Table 3 we
compare three options: (A) zero-padding shortcuts are used
for increasing dimensions, and all shortcuts are parameter-
free (the same as Table 2 and Fig. 4 right); (B) projec-
tion shortcuts are used for increasing dimensions, and other
shortcuts are identity; and (C) all shortcuts are projections.

Table 3 shows that all three options are considerably bet-
ter than the plain counterpart. B is slightly better than A. We
argue that this is because the zero-padded dimensions in A
indeed have no residual learning. C is marginally better than
B, and we attribute this to the extra parameters introduced
by many (thirteen) projection shortcuts. But the small dif-
ferences among A/B/C indicate that projection shortcuts are
not essential for addressing the degradation problem. So we
do not use option C in the rest of this paper, to reduce mem-
ory/time complexity and model sizes. Identity shortcuts are
particularly important for not increasing the complexity of
the bottleneck architectures that are introduced below.

Deeper Bottleneck Architectures. Next we describe our
deeper nets for ImageNet. Because of concerns on the train-
ing time that we can afford, we modify the building block
as a bottleneck design4. For each residual function F , we
use a stack of 3 layers instead of 2 (Fig. 5). The three layers
are 1×1, 3×3, and 1×1 convolutions, where the 1×1 layers
are responsible for reducing and then increasing (restoring)
dimensions, leaving the 3×3 layer a bottleneck with smaller
input/output dimensions. Fig. 5 shows an example, where
both designs have similar time complexity.

The parameter-free identity shortcuts are particularly im-
portant for the bottleneck architectures. If the identity short-
cut in Fig. 5 (right) is replaced with projection, one can
show that the time complexity and model size are doubled,
as the shortcut is connected to the two high-dimensional
ends. So identity shortcuts lead to more efficient models
for the bottleneck designs.

50-layer ResNet: We replace each 2-layer block in the

4Deeper non-bottleneck ResNets (e.g., Fig. 5 left) also gain accuracy
from increased depth (as shown on CIFAR-10), but are not as economical
as the bottleneck ResNets. So the usage of bottleneck designs is mainly due
to practical considerations. We further note that the degradation problem
of plain nets is also witnessed for the bottleneck designs.
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Fig. 2: A typical building block of ResNet50 [18].

2) CNN-based Event Classifier: The classifier is an essen-
tial component in the proposed power system event identifica-
tion framework. It takes in the preprocessed streaming PMU
data and outputs the event type estimation. In this work, a
deep convolutional neural network called ResNet-50 [18] is
adopted as the classifier.

The ResNet-50 can be considered as concatenation of an
encoder and an estimator. The encoder covers all the layers
except for the last fully connected layer which is left for
the estimator. Specifically, the encoder is formulated primarily
by stacking individual building blocks. As displayed in Fig.
2, a typical building block is made up of a sequence of
convolutional filters. For example, “3 × 3, 64” represents a
layer of 64 convolutional filters with dimension of 3 × 3.
Mathematically, a building block can be represented by the
following equation:

Yi = f(Ui,θi) + Ui, (1)

where Ui and Yi are the input and output of the ith building
block. θi denotes the parameter vector of the ith building
block. The parameterized nonlinear function f(·) is the resid-
ual mapping to be learned through neural network training.
The complete structure of the encoder is built by concatenating
an input convolutional layer, a max pooling layer, a series of
different building blocks, and a global average pooling layer.
We refer the interested readers to [18] for further details.

The estimator is represented by the last layer of the ResNet-
50, which is a fully connected layer with outputs normalized
by the softmax function. This estimator is intrinsically a linear
model, requiring the learned representations to be linearly
separable. In other words, the estimator’s performance is
highly dependent on the quality of encoded representations.

The entire classifier is trained through stochastic gradient
descent with Adam optimizer [19]. The training objective is
to minimize the categorical cross-entropy loss function:

loss = −
Nc∑
i=1

yi · log ŷi, (2)

where Nc is the dimension of output layer, i.e., the number of
event classes. yi and ŷi are the true value and estimated value
of the ith entry in the output array.

3) Transfer Learning: The core idea of transfer learning is
to reuse the information of a previously trained model to train

Filter dimension

Fig. 3: Illustration of a convolutional layer.

a new model. Rigorously speaking, given two domains D1 and
D2 as well as two corresponding learning tasks T1 and T2, the
objective of transfer learning is to improve the learning of the
predictive function f2(·) in D2 using the previously gained
information in D1 and T1, where D1 6= D2 or T1 6= T2 [20].

In this work, domain D1 and D2 correspond to the PMU
data collected from the Eastern Interconnection and the West-
ern Interconnection of the United States. The learning tasks
T1 and T2 are to identify the power system events based on
the corresponding steaming PMU data. Let f1(·) and f2(·)
represent the Encoder 1 and Encoder 2 in Fig. 1, respectively.
Then the transfer learning technique will facilitate the training
process of f2(·) in terms of speed and robustness by exploiting
the previously learned parameters of f1(·).

Specifically, we first train the Classifier 1 (shown in Fig.
1) with the PQ|V |f tensors calculated from the PMU data
of the Eastern Interconnection. After the training session is
completed, the learned parameters of encoder f1(·) are utilized
as the initial values of the parameters of encoder f2(·). The
parameters of the Estimator 2 are initialized randomly. Lastly,
we train the entire Classifier 2 with the PQ|V |f tensors
derived from the PMU data of the Western Interconnection.

It is worth noting that the input features from D1 and D2

could have different dimensions due to the different numbers
of PMUs. The proposed transfer learning can still work with
this dimensionality mismatch since the encoders are built
upon the convolutional layers. Fig. 3 illustrates a typical
convolutional layer in a CNN. The convolutional filters scan
the input features and output the convolution results arranged
as stacked matrices. Therefore, the encoders can work with
any input dimension with proper zero padding.

III. NUMERICAL STUDIES

In this section, we carry out several numerical studies to
quantify the effectiveness of the proposed transfer learning
framework for power system event identification. We start this
section by providing a brief description of the PMU data used
in this work. Then, we evaluate the performance of the GSP-
based PMU sorting technique. Finally, we present the settings
and results of the proposed transfer learning technique.

A. Data Source

The synchrophasor dataset used in this study includes the
measurements from more than two hundred PMUs deployed



across the continental United States. The whole dataset comes
from two transmission networks: the Western Interconnection
(41 valid PMUs) and the Eastern Interconnection (179 valid
PMUs)1. The raw measurements, which include positive se-
quence voltage and current phasors as well as the frequency,
are gathered by electric utility companies and regional system
operators (RTOs) and then compiled by the Pacific Northwest
National Laboratory. Note that the specific PMU locations are
not made available to us due to confidentiality concerns.

The raw PMU data are converted to active power P , reactive
power Q, voltage magnitude |V |, and frequency f , which are
put into PQ|V |f tensors. The corresponding power system
event labels are created by domain experts from electric
utility companies and RTOs. In this work, a total number
of 1,147 (1,204) labeled data samples, which include 825
(625) line events, 84 (333) generator events, and 118 (147)
oscillation events, and 120 (99) non-events, are provided for
the Eastern (Western) Interconnection. The time length of each
data sample is 20 seconds with the labeled line or generator
event starting time placed in the middle of the window2. The
reporting frequency of the PMUs is 30 Hz. Therefore, each
PQ|V |f tensor in the Eastern (Western) Interconnection has
a dimensionality of [600, 179, 4] ([600, 41, 4]), where the first
entry represents the number of time steps. The second entry
corresponds to the number of PMUs. The last entry stands for
the four measurement channels: P , Q, |V |, and f .

Bad readings and missing values are prevalent in the raw
dataset. We follow the same procedure listed in Section IV.B
of [17] to detect and replace the bad and missing values. Two
issues still exist after the data preprocessing. First, the PQ|V |f
tensors are severely imbalanced because of the large number
of line events. Second, the starting time stamps of line and
generator events are always at the center of the event window,
yielding a biased distribution of event timing. To address these
two issues, we augment the original PQ|V |f tensors following
the same approach discussed in Section IV.D of [17], which
produces more balanced datasets for both the Eastern and the
Western Interconnections as shown in Table I.

We divide the input PQ|V |f tensors randomly into a
training dataset and a testing dataset, which account for 80%
and 20% of the total samples, respectively. Note that the
training and testing datasets are determined before the data
augmentation to avoid potential data leakage. Throughout this
study, the training batch size is 16. The total number of training
epochs is 200. The learning rate of Adam optimizer is 0.001.

B. Performance of GSP-based PMU Sorting Technique

Fig. 4 shows the weight matrices of the original and the
sorted PMU sequence for the 41 valid PMUs in the Western
Interconnection. The elements in the weight matrices quantify
the correlation levels between corresponding PMUs. It can

111 PMUs from the original dataset are considered invalid due to prevalent
bad measurements.

2Oscillation event samples do not have labeled starting times in dataset. The
oscillation signature covers the entire 20-second window for each oscillation
event sample.

TABLE I: Distribution of Augmented PQ|V |f Tensors

Class Non-event Line-event Generator-event Oscillation-event

Eastern 720 825 756 708

Western 594 625 666 588

Unsorted Sorted

0

0.2

0.4

0.6

0.8

1

Fig. 4: Weight matrices of the original and the sorted PMU
sequence for the 41 PMUs in the Western Interconnection.

TABLE II: F1 Scores for Different Event Classes

Class Non-event Line-event Generator-event Oscillation-event

No Sorting 0.858 0.904 0.903 0.941

With Sorting 0.890 0.928 0.932 0.949

be observed that GSP-based PMU sorting arranged highly
correlated PMUs into clusters. This approach enables the
classifier to better capture the spatial-temporal correlations in
the data, thereby yielding more accurate event classification
results. To quantify the benefits of the GSP-based PMU
sorting, we train the neural network ten times with different
random initial parameter and evaluate the performance of
each trained neural network on the testing dataset. Table II
shows the average F1 score for each event class at the end
of training session. Clearly, the proposed GSP-based PMU
sorting technique improves the classification performance in
terms of F1 scores for all event classes.

C. Benefits of Transfer Learning

In this subsection, we try to illustrate the benefits of transfer
learning. First, we train ten neural networks with different
random initial parameters using the PMU data from the East-
ern Interconnection. We then train ten neural networks on the
PMU data from the Western Interconnection with the encoder’s
initial parameters transferred from that of the ten encoders
trained based on the Eastern Interconnection data. Serving as
the baseline, another ten neural networks with random initial
parameters are also trained using the PMU data from the
Western Interconnection. We evaluate the performance of these
neural networks on the testing dataset during their training
sessions. The average accuracy as well as the 95% confidence
intervals are depicted by the red dotted lines and shaded areas
in Fig. 5. Clearly, the transfer learning significantly reduces the
required training time to reach a desirable event classification
accuracy level. In addition, the transfer learning helps shrink
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Fig. 5: Power system event classification accuracy comparison
on the testing dataset of the Western Interconnection given
different amount of training data.

the uncertainty bounds considerably, especially during the
early stage of training.

A single system operator usually has limited labeled event
training data, especially in the initial stage of PMU deployment
and operation, which can lead to unstable training behavior for
the neural classifier. We investigate how transfer learning could
improve the event classification performance with a small
amount of training data. To this end, we carry out three sets
of experiments and report the testing accuracy with half, 1/4,
and 1/8 of training data with and without transfer learning.
The results are shown in Fig. 5. Without transfer learning, the
training sessions become increasingly unstable and slower to
converge as the amount of training data decreases. Even with
limited training dataset, the transfer learning scheme leads to
more stable training sessions with faster convergence rates.

IV. CONCLUSION

This paper proposes a transfer learning framework to im-
prove the applicability of deep neural network-based power
system event identification algorithms. This technique is par-
ticularly useful for power systems with limited event labels or
stringent neural network training time requirement. The core
idea is to set the initial values of the target neural network
parameters the same as that of a network previously trained
on a different power transmission network. The testing results
on real-world synchrophasor data gathered from hundreds of
PMUs across the Eastern and the Western Interconnection in
the U.S. show that the proposed transfer learning approach
significantly increases the stability of the neural network
training sessions and decreases the required training time.
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