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ABSTRACT The grid reinforcement, advanced grid stabilizing systems, and inverter-interfaced loads
have varied power system dynamics. The changing trends of various dynamic phenomena need to be
scrutinized to ensure future grid reliability. A dynamic behavior-based event signature library of phasor
measurement unit (PMU) data has great potential to discover new and unprecedented event signatures. This
paper presents an event signature library design that further defines more granular event categories within
the major event categories (e.g., frequency, voltage, and oscillation events) provided by electric utilities and
regional transmission organizations. The proposed library design embraces a supervised machine learning
approach with a deep neural network (DNN) model and manually-generated labels. The input of the model
uses representative PMUs that evidently express dominant event signatures. The performance of the event
categorization module was evaluated, via information entropy, against labels generated automatically from
clustering analyses. We applied the event signature library design to two years of over 1000 actual events in
the bulk U.S. power system. The module obtains remarkable event discrimination capability.

INDEX TERMS Classifier, clustering, deep neural network, event library, power system, PMU, residual
network, event signature.

I. INTRODUCTION

POWER system abnormal events have usually been cate-
gorized based on stability [1] or power outage scale [2],

[3]. These captured grid events have been listed according to
protective relay logs, system operator’s switching maneuver
logs, and monitoring system logs. The monitoring system-
based event detection has moved to fruition thanks to the
disseminating grid sensors, such as the phasor measurement
unit (PMU) [4], [5], frequency monitoring network (FNET)
[6], and digital fault recorder (DFR) [7]. Specifically, a
forced oscillation event across the Eastern Interconnection
(EI) in the U.S. in Jan. 2019 [8] turned engineers’ significant
attention to the need for new event feature extractions with

localization through grid-wide measurement devices [9].

Such prosperity of the PMU application studies also trig-
gers the industry’s new interest in event signature datasets.
Specifically, the Department of Energy in the U.S. launched
a new working group, titled “Grid Signature Library User
Group" in March 2022, inviting both academia (universi-
ties and research institutes) and the industry (transmission
system operator (TSO), regional system operator (RTO),
manufacturers, and PMU vendors). The major goal is to
establish a solid and reliable grid event signature library
based on the real-world grid events measured by PMUs
and event logs recorded by TSOs/RTOs (https://darknet-
01.ornl.gov/apps/siglib).
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The North American Electric Reliability Corporation
(NERC) reliability coordinator has dedicated efforts to ful-
filling sufficient energy security, by regulating severe incident
report forms with the definition of its severity level [2], [3].
Tracking the transition of the conventional event signature is
one of the most efficient ways to develop countermeasures
to the rapid change in grid performance due to the RES.
However, such event reports are not entirely sufficient in
scrutinizing the event signature transition mainly because:

• The current grid event categorization primarily relies on
the protective relay operations, including warning/alert
system operations,

• The aforementioned event categorization is limited to
the large-category level (e.g., frequency, voltage, and
oscillation events), and

• The smaller category is determined by TSOs/RTOs with
their own criteria.

The dynamic behavior-based categorization in conjunction
with unified criteria could be one of the promising ap-
proaches for enhancing the current event signature database
to track the above-mentioned signature transition from the
reliability council’s point of view as well as TSO/RTO’s
perspectives.

In light of the above, an event signature library design
that further defines more granular event categories within
the major event categories provided by TSOs/RTOs has been
developed. The proposed library design embraces a super-
vised machine learning approach with a deep neural network
(DNN) model and empirical labels.

The core of the event signature library (hereafter, we call
this the event library) is a power system event classification
module. The existing researches in event classification com-
prise data-driven methods and model-based methods [10]–
[28]. The former is predominant. Data-driven methods are
grouped into two approaches:

1) Supervised learning, such as cost-sensitive weighting
and imbalance-reversed bagging [18], cascading fail-
ures detection using convolutional neural networks [20],
time-frequency representation feature extraction in the
extreme learning machine [16], cluster-based sparse
coding [17], and diffusion kernel density estimation
with deep neural networks [19],

2) Unsupervised learning, such as moving window princi-
pal component analysis [22], the Teager Kaiser energy
operator [23], a brown measure based spectral distribu-
tion analysis [25], nonnegative sparse event unmixing
[21], continuity driven learning [26], the waveshape
similarity metric [24], DBscan [27], and Koopman
mode analysis [28].

The first data-driven approach based on supervised learn-
ing requires labeled data. However, no research deals with
a wide variety of dynamic behaviors in a holistic manner,
and the choice of labels differs from article to article, with
different perspectives shown below:

• Electric quantity (active power, reactive power, voltage)
[26]–[28],

• Fault (single-line-to-ground, line-to-line, 3-phase) [26],
[29], [30],

• Equipment trip (transmission, bus, generator, load) [17],
[21]–[23], [30], [31].

As shown above, the employed label is mainly generated
from the protective relay operation log and warning system
log instead of dynamic behavior-based distinction. Therefore,
those labels are not exploited for our dynamic behavior-based
event library for practical purposes.

The second data-driven approach based on unsupervised
learning requires preassigned large-category dynamic aspects
to be studied, i.e., it needs to narrow down the targeted event
signature. This approach cannot accurately handle the com-
bined event signatures, such as the mixture of voltage and
frequency events, specifically when multiple events occur
simultaneously. Although subsequent event classifications
have been studied [17], [21]–[23], only frequency signals
were exploited. Because many combined events have oc-
curred in the actual grid, unsupervised learning is not suited
for the event library design.

Our proposed event library leverages three predominant
signals among four signals (voltage, frequency, active power,
and reactive power), specifically designed to identify the
following simultaneous events:

• Voltage event and frequency event,
• Voltage event and oscillation event,
and the following distinctive detailed signatures:
• Frequency event with and without frequency transients,
• Voltage event with and without slow voltage recovery,
• Inter-area oscillation and local oscillation, including

sub-synchronous oscillation.
The developed event library is designed with the real-

world grid-wide event data in 2016-2017 in the U.S. recorded
by PMUs, and the corresponding event labels generated by
electric utilities and TSO/RTOs with further refinement by
Pacific Northwest National Laboratory (PNNL) [32]. How-
ever, the quality of not only PMU data [33] but also labels
[34] does not always suffice. Specifically, the following in-
consistencies or incompleteness in the provided labels are
prone to deteriorate the event log quality:

• Power equipment and power system phenomena are
categorized in the same group/level (e.g., transformer
and oscillation).

• Cause and effect are categorized in the same group/level
(e.g., equipment failure and line trip).

• Only one event of subsequent multiple events is listed
(e.g., generator tripping is only indicated although a line
fault occurred before the tripping).

• A part of the phenomena is only listed (e.g., frequency
drop behavior is only depicted, although power swing
oscillation was also observed throughout the event).

Due to the aforementioned event label quality issues, the
only large-category label becomes capitalized as the starting
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point for our event library. Then, small-category labels are
manually specified by subject-matter experts reviewing indi-
vidual, real-world events. The onus is on engineers to prove
that these refinements have value. Such proof is one of the
primary goals of this paper. However, very little research in
the machine learning community exists on the justification
of labels themselves. Thus, motivated by the widely used
inception scores utilized in deep generative models [35], we
have decided to use an external classifier as a means of deter-
mining label value. The idea is that if a classification module
trains on these labels, then when a new event occurs, that
event should be assigned to just one of these labels without
confusion. To this end, the Shannon entropy of predictions is
employed as a quality of measure. This entropy is performed
by an external deep neural network (DNN) on future events,
relative to the events used to train the model. This quality
measure yields the additional benefit of allowing the user to
quickly identify a new/unprecedented event label to be added.

The developed event library is capable of displaying the
average dynamic characteristics for each category. Although
examples of event signatures are showcased in many text-
books, scholarly articles, and technical reports, the standard
dynamic responses for individual event signatures are not
mandated in a systemic manner. Therefore, illustrating the
representative waveforms for each event category is benefi-
cial for the engineer’s educational purposes.

It is emphasized that the event signature library is dif-
ferent from the event classification/identification. Generally,
the event classifier attempts to categorize all events into a
preassigned label. However, the event library may collect or
extract events of interest only. In other words, unconventional
events may also be present in the event library. The main
contributions of this paper are:

• To detect exceptionally rare event types or discover
unprecedented event types, through which TSOs/RTOs
can recognize how rare the event is and we may suggest
adding a new classification label

• To serve smaller event categories, such as
-- combined (e.g., voltage and frequency) events,
-- voltage events with/without slow voltage recovery,
-- oscillation events with/without local-area oscillation,
which appends a more detailed view to the current event
report that TSOs/RTOs prepare and more granular event
labels for machine learning research studies,

• To clarify the representative signature for each event
type, which may be embraced for research and educa-
tion purposes,

• To demonstrate that the manually created labels showed
a better classification performance with the event clas-
sifier compared to automatically-created labels, which
justifies the necessity of domain expert’s knowledge for
accurate event signature labels.

The rest of the paper is organized as follows: Section II
clarifies how to capitalize on the event library design, Sec-
tion III illustrates how to establish the event library design,

Section IV justifies the performance of the event library via
case studies, Section V manifests future work.

II. ARCHITECTURE OF EVENT SIGNATURE LIBRARY
DESIGN
This section articulates how the event library design enhances
the event report that the reliability coordinator currently
requires. Then, it reveals how to establish the event classifier
module in the event library.

A. FLOW OF EVENT SIGNATURE LIBRARY DESIGN
The event report typically consists of the cause, impact, and
action taken [36]. Both the power equipment loss or failure
and the excursions of electric quantities, such as voltage and
frequency, are the dominating criteria for declaring disruptive
events in the event report [2] (treated as high-level labels).

Figure 1 overviews the scope of the event library design,
contrasting the aforestated event report. The event library
assumes that the high-level (large-category) labels are known
through the event report. Low-severity events, such as fault
type and affected power equipment with its location, may be
recorded by electric utilities and TSOs/RTOs spontaneously.
However, they cannot be leveraged on their own for the
event library due to the deficient consistency of the low-level
(small-category) labels between TSOs/RTOs. It is empha-
sized that PMU locations are not disclosed by the PNNL.

The event library is separately designed depending on
high-level (large-category) labels. The event library design
starts to function once the high-level (large-category) label
and PMU data are provided as input. Then, the classifier
module in the event library design identifies the low-level
(small-category) labels for the designated high-level label.
Specifically, the established classifier module calculates the
probabilities of individual labels/clusters, and the label with
the highest probability is treated as the identified label. The
identified low-level label is scrutinized with the information
entropy. If the probability is not concentrated on a particular
label, the selected low-level label is rejected, and the possible
discovery of a new event type will be manually examined.

B. CLASSIFIER MODULE ESTABLISHMENT PROCESS
The classifier module in the event library design is estab-
lished through supervised learning algorithms. The overall
procedure for establishing the classifier module is illustrated
in Fig. 2.

Training the module requires corresponding labels (i.e.,
low-level event types) as well as PMU data. These labels
can be generated manually or automatically. Experienced
engineers can prepare the labels empirically by perceiving
a significant event signature, whereas clustering techniques
can be used for automation. This paper creates automatic
labels via the K-means clustering with dynamic time warping
(DTW) chosen as its distance metric. We will treat these
automatically-generated labels as the baseline module. The
performance of this baseline module is compared with the
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performance of the manually-generated labels. The afore-
mentioned information entropy is employed for the compari-
son. Specifically, the classifier module with the smaller mean
entropy (taken over all the samples) has labels that are more
easily distinguishable from each other by their corresponding
trained classifier and will therefore be considered the better
set of labels.

III. ESTABLISHMENT OF EVENT SIGNATURE LIBRARY
DESIGN
This Section embodies the event signature library design,
showcasing the preprocessing, manually-generated label,
electric quantity selection, DNN modeling, and event label
scrutiny.

A. PREPROCESSING
PMU data contains various types of imperfections:

• Erroneous and missing data
• Data with low signal to noise ratios (SNR)
• Oscillatory signals

Various techniques have been studied to cope with the low-
quality data [37], [38] and are categorized into two groups:

1) Removing PMUs that have low-quality data
2) Replacing missing data with plausible data

The first group improves data reliability, but reduces the
available data volume. The second group increases the avail-
able data, but decreases the data integrity. As the volume of
data grows, the latter becomes less critical.

Not all PMU data and not all the events properly exhibit
noticeable signatures relative to the particular phenomenon.
Extracting a few remarkable signals from hundreds of PMUs
is more crucial than leveraging ample PMUs (some of which
could have low-quality data). Furthermore, the preprocessing
speed is not necessarily a problem because TSOs/RTOs are
permitted to spend anywhere from a few hours [39] up to a
month [2] generating their event reports.

1) Standard deviation-based thresholds

NERC and IEEE standards specify normal operation ranges
in voltage and frequency at steady-state [40]. However, such
normal ranges cannot be leveraged as threshold values to
identify malfunctioning PMUs because this would eliminate
important event data violating said normal range. Instead,
we must note that malfunctioning PMUs, including out-of-
service PMUs, present values outside of the normal range
continuously or intermittently. We thus filter out PMUs only
when their standard deviation exceeds a threshold - where the
standard deviation is calculated over a time period exceeding
that of a typical event. After reviewing over 700 events with
187 PMUs, the following standard deviation thresholds are
leveraged, as shown in Table 1.

As shown in Table 1, threshold values consist of lower
thresholds and upper thresholds. Lower thresholds are pri-
marily determined for the purpose of differentiating the
nearly constant electric quantities due to out-of-service or
malfunctioning PMUs from the ambient electric quantities,
such as active power. Upper thresholds are primarily deter-
mined for the purpose of excluding out-of-range or erroneous
measurements with sufficient margins. The fundamental cri-
teria of lower thresholds were determined based on probabil-
ities of recorded standard deviations of electric quantities in
the EI.
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TABLE 1. Thresholds for Excluding Malfunctioning PMUs

Standard deviation Lower limit Upper limit

Role of thresholds

1) Remove low
resolution signal∗∗

2) Remove out-of-
service PMU

1) Remove
oscillatory signal

2) Remove low
S/N signal

Active power, P pu∗ 0.003 30
Reactive power, Q pu∗ 0.003 30
Voltage, V pu 0.0001 0.02
Frequency, F Hz 0.0012 0.2

*: per unit value calculated with system complex power base of 100 MVA
**: data with small effective digits and data with no change for a second

a: Lower Threshold:
Thresholds of active power, P , and reactive power, Q, were
selected between the two modes of the P/Q histogram at
0∼5th percentile: 1) the histogram of the ambient P/Q fluc-
tuation, and 2) the histogram of the erroneous P/Q signals
(see Fig. 3). It is noted that P and Q standard deviations
are similarly distributed. Therefore, we may employ the same
lower thresholds of 0.003 for P and Q.

Similarly, the voltage magnitude, V, also contains two
modes on the histogram at 0∼5th percentile. Because the V
threshold is extremely small, we rounded the V threshold to
0.0001 (i.e., from 0.00006 to 0.0001).

However, the frequency, F , possesses only one mode on
the histogram at 0∼5th percentile. Because all the other
electric quantities have the threshold at the 1st percentile, the
same 1st percentile was employed for the F threshold, i.e.,
0.0012 Hz.

b: Upper Threshold:
The active power flow can potentially show immediate
change from the initial power flow to zero following grid
events. This power flow change would reach a few GW.
Not to exclude significant grid events with such large power
changes, 3 GW/Gvar (3000 MW/Mvar) was selected as the
threshold, which corresponds to 9 GW/Gvar of power devia-
tion (3 times the standard deviation covers the sojourn rate of
99.7%).

The transmission voltage is generally in the continuous
operation range of 0.05∼0.10 pu relative to the nominal
voltage (e.g., 1.0∼1.1 pu for 500 kV and 0.95∼1.05 for
69∼345 kV in the PJM). Considering the 0.02 pu margin and
assuming that the voltage peak-to-peak is equal to 6 times
the standard deviation of voltage, the threshold of 0.02 pu
was selected, which corresponds to 0.12 pu (= 0.1 pu + 0.02
pu margin) of the peak-to-peak voltage fluctuation.

The frequency nadir in the bulk power systems (such as
the EI and WECC) is generally less than 0.5 Hz that is used
as the lower operating limit in the PJM. Ensuring the 0.1 Hz
margin and assuming that the frequency deviation is equal to
3 times the standard deviation of frequency, the threshold of
0.2 Hz was selected, which corresponds to 0.6 Hz (= 0.5 Hz
+ 0.1 Hz margin) of the frequency deviation.

TABLE 2. Empirical Low-level Label of Frequency Event

Label Frequency change Voltage sag Remark
1 No frequency drop No no-event
2 Large transient Tiny/no
3 Large transient Large following voltage event
4 Tiny or no transient Tiny/no

2) K-shape clustering
Threshold values in Table 1 are not entirely effective in
removing oscillatory signals and low SNR measurements
because the amplitude of those signals varies widely depend-
ing on location, power system configuration, and operation
conditions. A clustering technique, called K-shape clustering
[41], is employed to take out these missed signals. Among
a wide variety of clustering methods, K-shape clustering is
adopted because it is both scale and shift-invariant.

K-shape clustering uses a shape-based distance (SBD), as
shown in Eq. (1). The vectors, X and Y , denote two time-
series data. The function, CC, denotes a cross-correlation
that is widely-used as the similarity index. The variable, S
BD, searches for the maximal inner product with the nor-
malized cross-correlation of the two time-series data.

SBD(X,Y ) = 1−max
w

(
CCw(X,Y )√

R0(X,X) ·R0(Y ,Y )

)
(1)

where,

CCw(X,Y ) = Rw−m(X,Y ), w ∈ {1, 2, ..., 2m− 1}

Rk(X,Y ) =

{
Σm−k

l=1 xl+k · yl, k ≥ 0

R−k(Y ,X), k < 0

K-shape clustering effectively distinguishes the event sig-
nature to be observed from oscillatory behavior that is irrele-
vant to the targeted event signature. Fig. 4 shows an example
of a frequency event with K-shape clustering. Event timings
are assumed to be known for each event and adjusted to
600 in this figure. This figure shows that the first cluster
includes a noisy signal, and the third cluster indicates inter-
area oscillation. In this example, the second cluster is the best
cluster to extract prominent frequency event signatures. It is
noted that K-shape clustering is embraced only for frequency
events and voltage events.

B. EMPIRICAL (MANUALLY-GENERATED) LABELS
As described earlier, high-level (large category) labels pro-
vided by the PNNL, consist of three categories:

1) Frequency-related event
2) Voltage-related event
3) Oscillation event
Based on the rigorous review of several hundreds of those

events, low-level (small category) labels, are established for
each category (see Tables 2, 3, and 4). Those low-level labels
nearly cover the labels listed in a similar research study using
the same datasets [34], [42]. It is noted that domain experts
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FIGURE 4. Example result of K-shape clustering for frequency using Z-score normalization.

TABLE 3. Empirical Low-level Label (Small-category Label) of Voltage Event

Label Voltage
deviation/drop

Reactive power
deviation

Slow voltage
recovery

Subsequent
voltage

dynamics
Remarks

1 Less than 0.5% N/A Imperceptible No Non-event and nearly non-event
2 N/A N/A Perceptible Yes Subsequent dynamics with voltage recovery
3 N/A N/A Clearly perceptible No Pronounced slow voltage recovery
4 Greater than 3.0% Greater than 30 pu Imperceptible No Large voltage drop
5 Greater than 0.5% Less than 100 pu Imperceptible No Medium-scale voltage drop with no slow voltage recovery

derived the listed labels shown in references [34], [42]. The
cause of events is out-of-scope for the low-level label because
of the deficiency of relevant information, e.g., no information
on the placement of PMUs, which could deteriorate the low-
level label accuracy. Identifying the affected power equip-
ment is also excluded in this study for the same reason.

1) Frequency Event
Frequency event signatures are differentiated by the presence
of voltage events (label 3) and significant voltage phase
jumps (labels 2 and 3). Label 1 is assigned for non-event
signatures.

2) Voltage Event
Voltage event signatures are distinguished by the presence
of slow voltage recovery (labels 2 and 3), significant voltage

dip (label 4), and subsequent voltage sag (label 2). Label 1 is
allocated to non-event signatures.

3) Oscillation Event
Oscillation event signatures are separated by the presence of
voltage events (label 2) and have two different participation
rates of local area oscillations (labels 1 and 3). The inter-area
oscillation is assumed to be observed in the oscillation event
explicitly. Signals with weak inter-area oscillation are treated
as non-events (label 5).

C. ELECTRIC QUANTITY SELECTION
Prominent signals emerge in specific electric quantities.
PMU data captures voltage and current data as time-domain
phasor information, allowing us to derive active power, reac-
tive power, frequency, and rate of change of frequency. The
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TABLE 4. Empirical Low-level Label of Oscillation Event

Label Voltage
dip

High-
frequency
component

Low-
frequency
component

Remark

1 N/A Weak Strong Low participation of
local-area oscillation

2 Large N/A Strong Voltage event with
inter-area oscillation

3 N/A Strong Strong High participation of
local-area oscillation

4 Small No Strong Switching event with
inter-area oscillation

5 No No Weak Non-event

TABLE 5. Used Electric Quantity for Each Event Type

Event Active
power (P )

Reactive
power (Q)

Voltage
(|V |)

Frequency
(F )

Frequency X X X
Voltage X X X

Oscillation X X X

available electric quantities should be capitalized to acquire a
better classifier performance in the event library. The electric
quantities selected for each event type are shown in Table 5.
Each type of large category label ignores one type of data.

Tiny reactive power changes caused by compensators, or
tap changers, are generally irrelevant to frequency drop-
ping/rising behavior. Therefore, reactive power is skipped for
frequency events. In the same manner, frequency is excluded
for voltage events because frequency fluctuation does not
usually affect voltage events. Furthermore, frequency is also
omitted for oscillation events. The frequency resolution is not
always high enough to capture high-frequency oscillations,
which would worsen the event library performance, espe-
cially when the frequency deviation is nearly zero.

D. SELECTION OF PMUS
The numbers of valid PMUs for the event signature library
in the EI and WECC are 187 and 43, respectively. Although
numerous PMUs are available for the event library, only a
few PMUs significantly exhibit the behavior of some events.
Influential factors vary depending on the event type. In this
work, we train our models on a fixed number of PMUs which
have the largest amount of set criteria. These criteria and the
number of selected PMUs vary by high-level (large-category)
event types.

Voltage events use three PMUs and voltage dip magnitude
as criteria. In other words, the PMUs that have the first,
second, and third-largest voltage deviations are extracted as
the top 3 PMUs for voltage events. As the slow voltage
recovery is more remarkable when the voltage dip increases,
this factor works well not only for label 4 but also for labels
2 and 3 in Table 3. Considering that voltage events are
generally local incidents, the number of selected PMUs is
limited to three for voltage events.

On the other hand, frequency events may be treated as grid-
wide incidents. Therefore, the number of selected PMUs is

raised to five for frequency events. The transient/immediate
frequency change that is observed right when the frequency
event occurs is used as a criterion. This criterion is a good
indicator since transient frequency behavior corresponds with
the significant power flow change and voltage phase jump.
Therefore, the top 5 PMUs with this criterion are highly
likely to be the top 5 PMUs that have a notable voltage
(magnitude) deviation. That means this criterion is effective
in capturing the dominant behavior of label 3 as well as label
2 in Table 2.

Oscillation events exhibit quite a different spatiotemporal
aspect compared to frequency and voltage events. The os-
cillation event occurrence is recognized using the frequency
domain analysis (fast Fourier Transform-based spectrum
analysis). The adoption condition of PMUs for oscillation
events is illustrated in Fig. 5. Three AND conditions are
employed to properly extract PMUs that contain oscillatory
signals, excluding noisy signals and periodically dropped out
(square wave) signals. This procedure is applied to active
power, reactive power, voltage, and frequency, respectively,
and append the PMU that satisfies the aforementioned three
conditions for each oscillation event.

Because the significant PSD that is over PSD0 in Fig. 5
needs to contain 0.2 ∼ 10 Hz frequency components, the
number of selected PMUs with the oscillatory behavior is
widely distributed from event to event in the range of 0 and
70 in the EI. Therefore, PMUs that represent conspicuous os-
cillatory behavior are manually identified individually, using
frequency domain analysis. In other words, the number of
selected PMUs for oscillation events is variable. The low and
high-frequency components in Table 4 are defined as follows,
referring to [43], [44]:

High-frequency: Mode oscillation range of 1-10 Hz
Low-frequency: Mode oscillation range of 0.15-1 Hz

According to the NERC guideline, high-frequency oscil-
lation is again categorized into two mode oscillations: the
local-area oscillation and sub-synchronous/converter-driven
oscillation. Due to the limited volume of available data for the
latter oscillation, this paper integrates these two mode ranges
into a single category, called high-frequency oscillation. It is
noted that the number of significant digits is 15 due to the
double-precision data, which enables us to select the top 3/5
PMUs without the same ranking.

E. TRAINING DATASET GENERATION VIA
AUGMENTATION MEASURE
Training datasets are generated using 121 real frequency
events and 189 real voltage events in the EI, which requires
the data augmentation to increase the number of instances
we train on. There are two measures to augment the PMU
measurement for training datasets: using the detailed dy-
namic bulk power system model that TSOs/RTOs own, and
generating the realistic synthetic PMU data using the real
PMU measurement. However, such models are not avail-
able/disclosed, and such synthetic data generation is still in
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PSD3: Mean PSD at high freq.
0.1‐5 [1/Hz]

PSD4: Mean PSD at high freq.
<0.1 [1/Hz]

PSD2: Max PSD at high freq.
0.1‐5 [1/Hz]

PSD1: Max PSD at low freq.
5‐8.5 [1/Hz]

PSD1<PSD2

&PSD2>PSD0

PSD3>PSD4

Append 
PMU ID

To
PMU
List
For
Osc.
Event

FFT Analysis 
for

Active 
power
or

Reactive
Power
or

Voltage
or

Frequency

PSD: power spectrum density
PSD0: 40.0 for active power and reactive power, 1.0E‐6 for voltage, 1.0E‐5 for frequency

FIGURE 5. PMU selection procedure for oscillation events.

TABLE 6. Training Dataset (Number of Event/Number of Sample)

Event type Label
1

Label
2

Label
3

Label
4

Label
5

Frequency 18/2250 43/5375 18/2250 42/5250 N/A
Voltage 34/918 22/594 45/1215 34/918 54/1458

Oscillation 3263* 6350* 777* 5332* 1891*

*: Number of samples only

the research stage [45]. Unlike the random horizontal flip,
random resize crop, and random rotation widely applied for
images, the distilled PMUs are mixed and matched across
data types. For example, if three PMUs are extracted from
an event, and PQV data is used, then one of the augmented
training samples consists of the P data from the first PMU,
the Q data from the second, and the V data from the third.
All such enumerations are used, multiplying the number of
training points by a factor of nr, where n and r denote the
number of extracted PMUs per event and the number of
employed electric quantities, respectively.

It is evident that the enumeration exponentially increases
with the number of extracted PMUs. Because the number
of these PMUs for a specific oscillation event is large, e.g.,
70, the enumeration becomes huge. This causes a too-heavy
weight for a particular event among the training dataset,
which could deteriorate the dataset quality. Therefore, the
augmentation strategy above is applied for oscillation events,
only when the number of selected PMUs is no greater than
3. Nevertheless, since the number of PMUs exhibiting oscil-
latory event signatures is naturally high, 17613 total training
datapoints can be obtained for this event type (see Table 6).

F. DEEP CONVOLUTIONAL NEURAL NETWORK MODEL
The proposed categorization module consists of two compo-
nents: the encoder and the classifier modules (see Fig. 6). The
encoder transforms the input data into representative features.
The feature maps are then fed into the classifier, which
identifies the high-probability (i.e., predominant) grid event
signature. The input PQ|V |f tensors are arranged using
the selected PMUs described in Section III-D. A widely-
used deep convolutional neural network (CNN), the second
version of ResNet-50 (ResNet-50 V2) [46], is embraced as
the key building block of the encoder. The ResNet50 V2

TABLE 7. Hyperparameter of Categorization Module

Hyperparameter Group Category Value/function

Momentum SGD Optimizer
0.95 (Freq)
0.97 (Volt)
0.99 (Osc.)

Learning rate SGD Optimizer
0.0020 (Freq)
0.0025 (Volt)
0.0020 (Osc.)

Dropout rate Dropout
layer Model structure Not used

Function type —
Activation
function
in classifier

Softmax

Convolutional
Neural
Network
(ResNet 50)

Feature map

Dense
(Fully‐

connected)
Layer

Global
averaged
pooling

1‐D 
tensor

100‐1000 
neurons*

Softmax

PMU 
time‐series

data

Predicted 
category

True 
category

Categorial
cross‐
entropy
loss

function

Loss

Labels

Encoder Classifier
* 100 neurons for oscillation events, 1000 neurons for frequency events and voltage events

Training Modules

FIGURE 6. Categorization module in event signature library.

Batch 
Normalization

ReLU Weight
Batch 

Normalization
ReLU Weight

AdditionXl Xl+1

FIGURE 7. Block level architecture of ResNet 50 V2.

model has achieved excellent success on some classification
tasks, especially for images.

The block-level architecture of ResNet-50 V2 is illustrated
in Fig. 7. The classifier is designed as one dense layer of 100-
1000 neurons with a softmax activation function. Stochastic
gradient descent (SGD) with the momentum is selected as
the optimizer. The categorical cross-entropy loss is chosen
as the loss function. Once the training session is completed,
the aforementioned optimizer, loss function, and labels are
no longer needed, and the established ResNet-50 model will
serve as a standalone unit to identify the event signatures
for the newly recorded PMU data. The leveraged hyper-
parameters are summarized in Table 7.

It is noted that a different model is trained for each high-
level event type (voltage, frequency, oscillation), though the
structure of each model remains the same.

G. LABEL SCRUTINY
The generated categorization module outputs probabilities
of all assigned event signature categories, individually ex-
pressed as Pr(X = x1, x2, ..., xncluster). The category that
has the largest probability is selected as the derived event
signature category. However, the obtained probabilities can
be equally distributed to multiple categories. To evaluate
the likelihood of the model output, the information entropy,
I(X), is utilized as an indicator, shown in Eq. (2). The
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information entropy is tiny when a sample (i.e., an event)
is classified into one particular category and becomes large
when the sample is decentrally classified into multiple cat-
egories. Therefore, the mean information entropy across a
validation set is scrutinized when comparing the performance
of the classifier module with empirical clustering and K-
means clustering.

I(X) = −
∑

Pr(X = x) · log2 Pr(X = x) (2)

It is also addressed that the large information entropy
represents the weak similarity to any pre-assigned categories.
Therefore, the large information entropy may justify that
the examined event signature is unprecedented. Thus, the
information entropy contributes not only to justifying the
classification performance, but also to discovering an un-
precedented signature that is not recognized in historical
events (see Subsection IV-D).

H. REPRESENTATIVE EVENT SIGNATURE
IDENTIFICATION
Once the event signature library is created, representative
event signatures may be extracted for each event signature
category/cluster. Several approaches can be employed. For
our work, because vast quantities of data are available for
each cluster, a single PMU representing the closest dynamic
behavior of each cluster centroid is identified and treated
as the representative signal for the specific event signature
category/cluster. Cluster centroids, cj , can be obtained when
the objective function of K-means, J , is minimized, as shown
in Eq. (3).

J =

ncluster∑
j=1

nsample∑
i=1

∥xj
i − cj∥2 (3)

IV. CASE STUDY
The created event signature library’s performance is in-
tensively analyzed using both manually-created labels and
automatically-created labels. Automatic labels are created
via the K-means clustering and dynamic time warping
(DTW) [47], respectively. Then, the new event signature
mining performance is also examined using the Shannon
entropy (information entropy) in the created event signature
library. The case study was performed using the computer
with the CPU of Intel Core i7-11800H, 16 GB GPU memory,
and 64 GB RAM.

A. BENCHMARK ALGORITHMS
Low-level (small category) labels in our classification sub-
module are manually-generated by the domain expert review
of over 1000 actual events in the bulk U.S. power grid.
To demonstrate the utility of these labels, another set of
competing labels is generated. As already described in Sub-
section II-B, the comparison set is created with unsupervised
machine learning - specifically K-means clustering with dy-
namic time warping (DTW) used as a distance metric.

K-means clustering is one of the most common forms
of unsupervised clustering used in practice. The method
relies on a metric of the distance between two points. For
time-series data, the Euclidean distance is typically the de-
fault choice. However, the Euclidean distance is neither
shift-invariant nor length-scale invariant. Lacking the shift-
invariance means that two remarkably similar events could
be far apart if the events happen to start at different time
indices. Lacking the time-scale invariance means that two
very similar events could be very far apart if one of those
events resolves more quickly than another.

To avoid the pitfalls of Euclidean distance, we opt to use
the dynamic time warping instead. Essentially, the DTW is
just a version of Euclidean distance that enumerates all possi-
ble scale and shift factors between the two time-series inputs,
and outputs the shortest such distance. Its exact formula is
shown in Eq. (4):

DTWdistance(X,Y ) = min
π

√ ∑
(i,j)∈π

(xi − yj)2 (4)

π = {(0, 0), ..., (ik, jk), ..., (m− 1,m− 1)}{
0 ≤ ik < m, ik−1 ≤ ik ≤ ik−1 + 1,

0 ≤ jk < m, jk−1 ≤ jk ≤ jk−1 + 1,

where, X and Y are two different time-series composed of
the elements shown below:

X = {x0, x1, x2, ..., xm}, Y = {y0, y1, y2, ..., ym}

For a thorough comparison, we have also created a set
of labels using the Euclidean distance. The labels using
Euclidean distance will hereafter be called the “K-means”
set of labels, and the set using dynamic time warping will
be called the “DTW” set of labels.

B. COMPARISON OF PERFORMANCE OF CLASSIFIER
MODULE USING K-MEANS CLUSTERING AND
EMPIRICAL CLUSTERING
The performance of the classifier module with K-means la-
bels, DTW labels, and manual (empirical) labels is illustrated
in Table 8. The mean information entropy for the testing
datasets is calculated individually. The testing data is all
from the western electricity coordinating council (WECC)
with high-level labels (i.e., frequency, voltage, and oscillation
events). As the numbers of labels are four for frequency
and five for voltage and oscillation events, the maximum
information entropy becomes 2.00 for frequency events and
2.32 for voltage and oscillation events. The distribution of the
information entropy is displayed in Fig. 8.

As shown in Table 8, the classifier module with empirical
labels presents the smallest mean information entropy against
its competitors, i.e., the best performance, in every case. The
DTW labels present the second smallest mean information
entropy for all categories.
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TABLE 8. Performance of Classifier Module for Event in WECC

Approach Frequency event Voltage event Oscillation event
1 2 3 1 2 3 1 2 3

Clustering method Empirical
clustering

K-means
clustering

DTW
clustering

Empirical
clustering

K-means
clustering

DTW
clustering

Empirical
clustering

K-means
clustering

DTW
clustering

Number of clusters (labels) 4 5 5
Number of sample/event 1119/373 1776/592 416/ Not applicable

Mean of information entropy 0.170 0.302 0.216 0.066 1.259 1.225 0.194 0.390 0.344

TABLE 9. Probability of Each Cluster/Label and Information Entropy for Event in WECC

Frequency event Voltage event Oscillation event
PMU#850 PMU#209 PMU#864 PMU#992 PMU#789 PMU#641 PMU#641 PMU#789 PMU#193

Probability (label 1) 0.572 0.084 0.536 0.296 0.533 0.862 0.434 0.434 0.000
Probability (label 2) 0.427 0.891 0.452 0.000 0.000 0.000 0.099 0.099 0.000
Probability (label 3) 0.000 0.016 0.011 0.003 0.004 0.003 0.122 0.122 0.999
Probability (label 4) 0.000 0.009 0.002 0.001 0.001 0.001 0.250 0.250 0.000
Probability (label 5) Not applicable 0.699 0.462 0.134 0.095 0.095 0.001
Information entropy 0.989 0.607 1.089 0.921 1.046 0.610 2.046 2.046 0.009

0

200

400

600

800

1000

1200

1400

1600

-0
.0

5
0.

05
0.

15
0.

25
0.

35
0.

45
0.

55
0.

65
0.

75
0.

85
0.

95
1.

05
1.

15
1.

25
1.

35
1.

45
1.

55
1.

65
1.

75
1.

85
1.

95

Voltage event1.
57

 1
03

44 22 18 20 18 17 10 14 20 11 3 2 1 1 1

N
um

be
r o

f s
am

pl
es

Information entropy

0

200

400

600

800

1000

-0
.0

5
0.

05
0.

15
0.

25
0.

35
0.

45
0.

55
0.

65
0.

75
0.

85
0.

95
1.

05
1.

15
1.

25
1.

35
1.

45
1.

55
1.

65
1.

75
1.

85
1.

95
2.

05

Frequency event

81
7

58 39 23 25 27 24 8 17 25 21 5 8 4 5 4 1 2 6

N
um

be
r o

f s
am

pl
es

Information entropy

0

20

40

60

80

100

120

140

160

-0
.0

5
0.

05
0.

15
0.

25
0.

35
0.

45
0.

55
0.

65
0.

75
0.

85
0.

95
1.

05
1.

15
1.

25
1.

35
1.

45
1.

55
1.

65
1.

75
1.

85
1.

95
2.

05
2.

15
2.

25
2.

35

Oscillation event

15
0

39 35 31
24

13 13
19 14
22 18

6 3 4 4 2 3 1
15

N
um

be
r o

f s
am

pl
es

Information entropy

FIGURE 8. Histogram of information entropy with empirical clustering for frequency, voltage, and oscillation events.

C. VISUALIZATION OF LOW-LEVEL EVENT TYPES

According to the empirical label set, all testing signals have
been categorized into their assigned low-level event types.
These assigned signals and all training signals are combined,
then plotted, along with their centroids (red), in the following
figures.

1) Frequency Events

Frequency event subclass signatures are plotted in Fig. 9. The
event occurs at the 100th time index. The second and third
clusters have an immediate drop at this index, whereas the
fourth cluster has no such drop. A significant voltage drop at
the event start emerges only for the third cluster. Therefore,
the cluster centroid at each cluster captures the predominant
event signature. Note that the first cluster is the non-event
cluster.

The signature of centroid PMUs from frequency events
is depicted for each cluster in Fig. 10. The second and
third clusters possess the immediate frequency drop, and the
second cluster demonstrates the immediate voltage drop. The
fourth cluster includes the inter-area oscillation following the
event, which is not illustrated in the fourth cluster centroid.
Although the first cluster is the non-event cluster, it seems
to be a frequency event. However, this must be either a slow

frequency change due to gradual generation/load change or
a subtle frequency event, such as a 25% dump test of small
capacity generators in the bulk power grid.

2) Voltage Events

Each cluster centroid overall represents distinct dynamic
voltage behaviors at the 100th time index, especially in terms
of voltage dip levels (see Fig. 11). However, the distinction
sensitivity to five clusters is not high, especially for the
slow voltage recovery characteristics for the subsequent tiny
voltage drop in the second cluster. It can be considered that
the timing of the subsequent voltage sag is distributed from
event to event, which reduces the sensitivity to extracting the
distinctive feature.

Fig. 12 displays the selected PMU responses for each
cluster as the centroid PMU. The second centroid PMU
shows the apparent subsequent tiny voltage dip with the
slow voltage recovery. The third centroid PMU represents
prominent slow voltage recovery after the voltage dip. The
fourth centroid PMU has a significant voltage sag without
slow voltage recovery. The fifth centroid PMU expresses the
small voltage dip different from the insensible voltage drop
with no particular voltage event in the first centroid PMU. It
is recognized that all centroid PMU signals properly capture
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FIGURE 9. Low-level event type centroids for frequency events.

FIGURE 10. Centroid PMU for frequency event.

the distinctive features of dynamic voltage responses.

3) Oscillation Events

Fig. 13 demonstrates all the oscillatory signals that are split
into five groups. The second cluster centroid successfully
expresses a significant voltage dip. The fraction of high-
frequency oscillation components in the third cluster centroid
is decidedly higher than that in the first cluster centroid.
However, the fourth cluster centroid has no fluctuation that
is also observed in the fifth cluster centroid, i.e., non-event
signals. The oscillation frequency can be slightly different
from sample to sample due to the different power system
configurations and conditions. Besides, the phase of oscil-
latory signals at the time of t is more likely to be equally

FIGURE 11. Low-level event type centroids for voltage event.

FIGURE 12. Centroid PMU for voltage event.

dispersed as the number of samples increases. Therefore,
fluctuated signals must be canceled out when deriving the
cluster centroid.

Extracted centroid PMUs are illustrated in Fig. 14. The
active and reactive power in the third centroid PMU shows
a higher fraction of high-frequency oscillation components
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than those in the first centroid PMU. Although the first
and fourth voltage centroid PMUs depict similar inter-area
oscillation, the first centroid PMU in active and reactive
power contains the high-frequency oscillation component.
The second centroid PMU possesses a voltage dip much
more extensive than that in the third centroid PMU. The non-
event centroid PMU, i.e., the fifth centroid PMU successfully
displays the white noise with tiny amplitude.

D. NEW EVENT SIGNATURE MINING
As mentioned earlier, the information entropy index is capa-
ble of mining unprecedented/new event signatures. This sub-
section discusses how the event library that is designed ex-
plicitly for frequency, voltage, and oscillation events, mines
new event signatures, respectively.

1) Frequency Events
The event library for frequency events is leveraged for an
event with the high-level label of a frequency event. The
historical data is depicted in Fig. 15. Three PMUs that
include apparent frequency drops are only showcased in this
figure for their visibility. It can be seen from Table 9 that the
first and second clusters show a high probability. Specifically,
PMU 850 and PMU 864 have nearly the same probabilities
for label 1 and label 2. Besides, the information entropy is
incredibly high (Note that most information entropy is less
than 0.1, as shown in Fig. 8).

The event timing is set at 20 s in Fig. 15. The first cluster
stands for non-event and the second cluster corresponds to
the frequency drop with frequency transients (see Table 2).
However, it is tangible that no signals possess the frequency
drop and frequency transient. On the contrary, the frequency
rise is obviously observed until 27 s, which is quite rare in
frequency events that TSOs/RTOs picked and has been out-
of-scope for manually labeled frequency events in Table 2.
Therefore, frequency rise events should be recognized as an
unprecedented or non-categorized event with high informa-
tion entropy.

2) Voltage Events
The event library for voltage events is used for an event with
the high-level label of a line event that is generally treated
as a voltage event. The historical data is depicted in Fig. 15,
limiting PMUs with significant voltage dip to three for its
presentability. The line tripping event occurred at the time
of 20 s and the system frequency started to decline. Due to
the conspicuous frequency drop signature, it is evident that
a generator tripping/disconnection had occurred along with
the line tripping event. The predetermined labels in Table 3
do not include the combined voltage and frequency event
because frequency events are not supposed to be missed
in the high-level frequency label, i.e., frequency events can
never be categorized in events labeled as voltage events.
Then, frequency signals are skipped for the voltage event
(See Table 5). It is emphasized that the event library can
identify frequency events as the uncategorized voltage event

FIGURE 13. Low-level event type centroids for oscillation event.

FIGURE 14. Centroid PMU for oscillation event.

without frequency signals, i.e., with active power, reactive
power, and voltage signals only.

Each probability and information entropy are summarized
for the three PMUs in Table 9. The first cluster and the
fifth cluster show a high probability. Besides, the information
entropy ranges from 0.6-1.0 that correspond to the 96-99th
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(a) Frequency (rise) event (b) Voltage (line tripping) event (c) Oscillation event

FIGURE 15. Example of unprecedented event signatures the event timing of which is 20 s for frequency and voltage events.

percentiles of Fig. 8. Thus, this mixture of voltage and
frequency events may be recognized as an unprecedented or
non-categorized event with high information entropy.

3) Oscillation Events
The event library for an oscillation event is used for a
representative oscillation event. The recorded data is demon-
strated in Fig. 15, highlighting three PMUs that have distinct
oscillations. The characteristics of this event can be curated
as gradually disappearing high-frequency oscillations.

Each probability and information entropy are presented
for the representative 3 PMUs in Table 9. It is noted that
the PNNL randomly assigned 43 PMU IDs in the WECC in
the range of 100 and 999 for security reasons. The first and
the fourth clusters show a high probability for PMU 641 and
PMU 749. Besides, the information entropy is extraordinarily
high, which corresponds to the 96th percentile in Fig. 8. As
shown in Table 4, the first label corresponds to an oscillation
with low and high-frequency components, whereas the fourth
label contains only low-frequency components in the oscilla-
tory signals. PMU 641 and PMU 789 include two signatures:

1) Oscillation with high and low-frequency components
(before 137 s)

2) Oscillation with low-frequency components only
(after 137 s)

Therefore, it is seen that PMU 641 and PMU 789 have a
significant probability for both label 1 and label 4 in Table
4. Table 9 also demonstrates a similar event signature of
PMU 193. Although the frequency signal is entirely the
same as those in PMU 641 and PMU 789, the low-frequency
oscillation is not involved in the active power, reactive power,
and voltage of PMU 193. Because slight fluctuations remain
even after 137 s, PMU 193 has a specific label 3 with small
information entropy, as shown in Table 9.

4) Requirements for Additional Labels
A new category constantly enlarges the information entropy.
On the other hand, an event with large information entropy

does not always indicate that a new category is requested.
For example, the large information entropy can also indicate
the mixture of two different signatures at distinct periods.
Therefore, further investigation is required to add one more
label. Also, a sufficient number of samples is vital to insert
the new label. Whenever a new label is showcased, the
ResNet-50 V2 model will be re-trained.

V. FUTURE WORK

The event signature library design was individually crafted
for frequency events, voltage events, and oscillation events.
Properly selecting electric quantities with manually-created
labels improved the selectivity of each event signature cate-
gory/label. Newly added small category labels (i.e., low-level
labels) are based on expert reviews of over 1000 real events
in the bulk U.S. power grid. The low-level labels are carefully
distilled, considering remarkable features for each event type.
The classifier with empirical labels exhibits nearly half of
the information entropy on average compared to the classifier
with automatic labels.

The Eastern Interconnection event data was used for train-
ing the model. The WECC event data was employed for
testing the model. Because the established event signature
library design not only successfully trained but properly
validated the model, the developed design shows outstanding
performance for the two different interconnections.

A simple but effective single indicator is devised, using
the information entropy to confirm whether the identified
event signature category is clear or not, and to find unprece-
dented event signatures effectively. Newly obtained lower-
level (small category) labels from the event signature library
would be paramount for future data-driven research studies
in academia as well as for the power engineers at the control
centers.

Although the prototype of the event signature library has
been successfully created, there is room for further refine-
ment shown below:
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• Frequency rise due to load change, including pumped
storage unit tripping under the pumping mode

• Multiple (more than two) subsequent voltage drops
• Distinction between local oscillations and converter-

driven oscillations
• Distinction between ringdown oscillations and grow-

ing oscillations towards out-of-step (including poorly
damped or sustained oscillations)

Specifically, increasing penetration of renewable energies
must augment the frequency of converter-driven oscillation
events. Currently, the number of available data with the
converter-driven oscillation is insufficient and needs to be
accumulated to generate the classifier module.

The lower thresholds shown in Table 1 are also indicated
with blue arrows.
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