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ABSTRACT The grid reinforcement, advanced grid stabilizing systems, and inverter-interfaced loads
have varied power system dynamics. The changing trends of various dynamic phenomena need to be
scrutinized to ensure future grid reliability. A dynamic behavior-based event signature library of phasor
measurement unit (PMU) data has great potential to discover new and unprecedented event signatures. This
paper presents an event signature library design that further defines more granular event categories within
the major event categories (e.g., frequency, voltage, and oscillation events) provided by electric utilities and
regional transmission organizations. The proposed library design embraces a supervised machine learning
approach with a deep neural network (DNN) model and manually-generated labels. The input of the model
uses representative PMUSs that evidently express dominant event signatures. The performance of the event
categorization module was evaluated, via information entropy, against labels generated automatically from
clustering analyses. We applied the event signature library design to two years of over 1000 actual events in
the bulk U.S. power system. The module obtains remarkable event discrimination capability.

INDEX TERMS Classifier, clustering, deep neural network, event library, power system, PMU, residual
network, event signature.

. INTRODUCTION localization through grid-wide measurement devices [9].

OWER system abnormal events have usually been cate-
P gorized based on stability [1] or power outage scale [2],
[3]. These captured grid events have been listed according to
protective relay logs, system operator’s switching maneuver
logs, and monitoring system logs. The monitoring system-
based event detection has moved to fruition thanks to the
disseminating grid sensors, such as the phasor measurement
unit (PMU) [4], [5], frequency monitoring network (FNET)
[6], and digital fault recorder (DFR) [7]. Specifically, a
forced oscillation event across the Eastern Interconnection
(ED in the U.S. in Jan. 2019 [8] turned engineers’ significant
attention to the need for new event feature extractions with
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Such prosperity of the PMU application studies also trig-
gers the industry’s new interest in event signature datasets.
Specifically, the Department of Energy in the U.S. launched
a new working group, titled “Grid Signature Library User
Group" in March 2022, inviting both academia (universi-
ties and research institutes) and the industry (transmission
system operator (TSO), regional system operator (RTO),
manufacturers, and PMU vendors). The major goal is to
establish a solid and reliable grid event signature library
based on the real-world grid events measured by PMUs
and event logs recorded by TSOs/RTOs (https://darknet-
01.ornl.gov/apps/siglib).
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The North American Electric Reliability Corporation
(NERC) reliability coordinator has dedicated efforts to ful-
filling sufficient energy security, by regulating severe incident
report forms with the definition of its severity level [2], [3].
Tracking the transition of the conventional event signature is
one of the most efficient ways to develop countermeasures
to the rapid change in grid performance due to the RES.
However, such event reports are not entirely sufficient in
scrutinizing the event signature transition mainly because:

The current grid event categorization primarily relies on
the protective relay operations, including warning/alert
system operations,

The aforementioned event categorization is limited to
the large-category level (e.g., frequency, voltage, and
oscillation events), and

The smaller category is determined by TSOs/RTOs with
their own criteria.

The dynamic behavior-based categorization in conjunction
with unified criteria could be one of the promising ap-
proaches for enhancing the current event signature database
to track the above-mentioned signature transition from the
reliability council’s point of view as well as TSO/RTO’s
perspectives.

In light of the above, an event signature library design
that further defines more granular event categories within
the major event categories provided by TSOs/RTOs has been
developed. The proposed library design embraces a super-
vised machine learning approach with a deep neural network
(DNN) model and empirical labels.

The core of the event signature library (hereafter, we call
this the event library) is a power system event classification
module. The existing researches in event classification com-
prise data-driven methods and model-based methods [10]-
[28]. The former is predominant. Data-driven methods are
grouped into two approaches:

1) Supervised learning, such as cost-sensitive weighting
and imbalance-reversed bagging [18], cascading fail-
ures detection using convolutional neural networks [20],
time-frequency representation feature extraction in the
extreme learning machine [16], cluster-based sparse
coding [17], and diffusion kernel density estimation
with deep neural networks [19],

2) Unsupervised learning, such as moving window princi-
pal component analysis [22], the Teager Kaiser energy
operator [23], a brown measure based spectral distribu-
tion analysis [25], nonnegative sparse event unmixing
[21], continuity driven learning [26], the waveshape
similarity metric [24], DBscan [27], and Koopman
mode analysis [28].

The first data-driven approach based on supervised learn-
ing requires labeled data. However, no research deals with
a wide variety of dynamic behaviors in a holistic manner,
and the choice of labels differs from article to article, with
different perspectives shown below:
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Electric quantity (active power, reactive power, voltage)
[26]-[28],

Fault (single-line-to-ground, line-to-line, 3-phase) [26],
(291, [301,

Equipment trip (transmission, bus, generator, load) [17],
[21]-[23], [30], [31].

As shown above, the employed label is mainly generated
from the protective relay operation log and warning system
log instead of dynamic behavior-based distinction. Therefore,
those labels are not exploited for our dynamic behavior-based
event library for practical purposes.

The second data-driven approach based on unsupervised
learning requires preassigned large-category dynamic aspects
to be studied, i.e., it needs to narrow down the targeted event
signature. This approach cannot accurately handle the com-
bined event signatures, such as the mixture of voltage and
frequency events, specifically when multiple events occur
simultaneously. Although subsequent event classifications
have been studied [17], [21]-[23], only frequency signals
were exploited. Because many combined events have oc-
curred in the actual grid, unsupervised learning is not suited
for the event library design.

Our proposed event library leverages three predominant
signals among four signals (voltage, frequency, active power,
and reactive power), specifically designed to identify the
following simultaneous events:

Voltage event and frequency event,
Voltage event and oscillation event,

and the following distinctive detailed signatures:
Frequency event with and without frequency transients,
Voltage event with and without slow voltage recovery,
Inter-area oscillation and local oscillation, including
sub-synchronous oscillation.

The developed event library is designed with the real-
world grid-wide event data in 2016-2017 in the U.S. recorded
by PMUs, and the corresponding event labels generated by
electric utilities and TSO/RTOs with further refinement by
Pacific Northwest National Laboratory (PNNL) [32]. How-
ever, the quality of not only PMU data [33] but also labels
[34] does not always suffice. Specifically, the following in-
consistencies or incompleteness in the provided labels are
prone to deteriorate the event log quality:

Power equipment and power system phenomena are
categorized in the same group/level (e.g., transformer
and oscillation).

Cause and effect are categorized in the same group/level
(e.g., equipment failure and line trip).

Only one event of subsequent multiple events is listed
(e.g., generator tripping is only indicated although a line
fault occurred before the tripping).

A part of the phenomena is only listed (e.g., frequency
drop behavior is only depicted, although power swing
oscillation was also observed throughout the event).

Due to the aforementioned event label quality issues, the
only large-category label becomes capitalized as the starting
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point for our event library. Then, small-category labels are
manually specified by subject-matter experts reviewing indi-
vidual, real-world events. The onus is on engineers to prove
that these refinements have value. Such proof is one of the
primary goals of this paper. However, very little research in
the machine learning community exists on the justification
of labels themselves. Thus, motivated by the widely used
inception scores utilized in deep generative models [35], we
have decided to use an external classifier as a means of deter-
mining label value. The idea is that if a classification module
trains on these labels, then when a new event occurs, that
event should be assigned to just one of these labels without
confusion. To this end, the Shannon entropy of predictions is
employed as a quality of measure. This entropy is performed
by an external deep neural network (DNN) on future events,
relative to the events used to train the model. This quality
measure yields the additional benefit of allowing the user to
quickly identify a new/unprecedented event label to be added.

The developed event library is capable of displaying the
average dynamic characteristics for each category. Although
examples of event signatures are showcased in many text-
books, scholarly articles, and technical reports, the standard
dynamic responses for individual event signatures are not
mandated in a systemic manner. Therefore, illustrating the
representative waveforms for each event category is benefi-
cial for the engineer’s educational purposes.

It is emphasized that the event signature library is dif-
ferent from the event classification/identification. Generally,
the event classifier attempts to categorize all events into a
preassigned label. However, the event library may collect or
extract events of interest only. In other words, unconventional
events may also be present in the event library. The main
contributions of this paper are:

To detect exceptionally rare event types or discover
unprecedented event types, through which TSOs/RTOs
can recognize how rare the event is and we may suggest
adding a new classification label

To serve smaller event categories, such as

-- combined (e.g., voltage and frequency) events,
-- voltage events with/without slow voltage recovery,
-- oscillation events with/without local-area oscillation,

which appends a more detailed view to the current event
report that TSOs/RTOs prepare and more granular event
labels for machine learning research studies,

To clarify the representative signature for each event
type, which may be embraced for research and educa-
tion purposes,

To demonstrate that the manually created labels showed
a better classification performance with the event clas-
sifier compared to automatically-created labels, which
justifies the necessity of domain expert’s knowledge for
accurate event signature labels.

The rest of the paper is organized as follows: Section II
clarifies how to capitalize on the event library design, Sec-
tion III illustrates how to establish the event library design,
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Section IV justifies the performance of the event library via
case studies, Section V manifests future work.

Il. ARCHITECTURE OF EVENT SIGNATURE LIBRARY
DESIGN

This section articulates how the event library design enhances
the event report that the reliability coordinator currently
requires. Then, it reveals how to establish the event classifier
module in the event library.

A. FLOW OF EVENT SIGNATURE LIBRARY DESIGN

The event report typically consists of the cause, impact, and
action taken [36]. Both the power equipment loss or failure
and the excursions of electric quantities, such as voltage and
frequency, are the dominating criteria for declaring disruptive
events in the event report [2] (treated as high-level labels).
Figure 1 overviews the scope of the event library design,
contrasting the aforestated event report. The event library
assumes that the high-level (large-category) labels are known
through the event report. Low-severity events, such as fault
type and affected power equipment with its location, may be
recorded by electric utilities and TSOs/RTOs spontaneously.
However, they cannot be leveraged on their own for the
event library due to the deficient consistency of the low-level
(small-category) labels between TSOs/RTOs. It is empha-
sized that PMU locations are not disclosed by the PNNL.
The event library is separately designed depending on
high-level (large-category) labels. The event library design
starts to function once the high-level (large-category) label
and PMU data are provided as input. Then, the classifier
module in the event library design identifies the low-level
(small-category) labels for the designated high-level label.
Specifically, the established classifier module calculates the
probabilities of individual labels/clusters, and the label with
the highest probability is treated as the identified label. The
identified low-level label is scrutinized with the information
entropy. If the probability is not concentrated on a particular
label, the selected low-level label is rejected, and the possible
discovery of a new event type will be manually examined.

B. CLASSIFIER MODULE ESTABLISHMENT PROCESS

The classifier module in the event library design is estab-
lished through supervised learning algorithms. The overall
procedure for establishing the classifier module is illustrated
in Fig. 2.

Training the module requires corresponding labels (i.e.,
low-level event types) as well as PMU data. These labels
can be generated manually or automatically. Experienced
engineers can prepare the labels empirically by perceiving
a significant event signature, whereas clustering techniques
can be used for automation. This paper creates automatic
labels via the K-means clustering with dynamic time warping
(DTW) chosen as its distance metric. We will treat these
automatically-generated labels as the baseline module. The
performance of this baseline module is compared with the
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FIGURE 2. Procedure of establishing classifier module in event library design.

performance of the manually-generated labels. The afore-
mentioned information entropy is employed for the compari-
son. Specifically, the classifier module with the smaller mean
entropy (taken over all the samples) has labels that are more
easily distinguishable from each other by their corresponding
trained classifier and will therefore be considered the better
set of labels.

lll. ESTABLISHMENT OF EVENT SIGNATURE LIBRARY
DESIGN

This Section embodies the event signature library design,
showcasing the preprocessing, manually-generated label,
electric quantity selection, DNN modeling, and event label
scrutiny.

A. PREPROCESSING
PMU data contains various types of imperfections:
Erroneous and missing data

Data with low signal to noise ratios (SNR)
Oscillatory signals

Various techniques have been studied to cope with the low-
quality data [37], [38] and are categorized into two groups:

1) Removing PMUs that have low-quality data
2) Replacing missing data with plausible data

The first group improves data reliability, but reduces the
available data volume. The second group increases the avail-
able data, but decreases the data integrity. As the volume of
data grows, the latter becomes less critical.

Not all PMU data and not all the events properly exhibit
noticeable signatures relative to the particular phenomenon.
Extracting a few remarkable signals from hundreds of PMUs
is more crucial than leveraging ample PMUs (some of which
could have low-quality data). Furthermore, the preprocessing
speed is not necessarily a problem because TSOs/RTOs are
permitted to spend anywhere from a few hours [39] up to a
month [2] generating their event reports.

1) Standard deviation-based thresholds

NERC and IEEE standards specify normal operation ranges
in voltage and frequency at steady-state [40]. However, such
normal ranges cannot be leveraged as threshold values to
identify malfunctioning PMUs because this would eliminate
important event data violating said normal range. Instead,
we must note that malfunctioning PMUs, including out-of-
service PMUs, present values outside of the normal range
continuously or intermittently. We thus filter out PMUSs only
when their standard deviation exceeds a threshold - where the
standard deviation is calculated over a time period exceeding
that of a typical event. After reviewing over 700 events with
187 PMUs, the following standard deviation thresholds are
leveraged, as shown in Table 1.

As shown in Table 1, threshold values consist of lower
thresholds and upper thresholds. Lower thresholds are pri-
marily determined for the purpose of differentiating the
nearly constant electric quantities due to out-of-service or
malfunctioning PMUs from the ambient electric quantities,
such as active power. Upper thresholds are primarily deter-
mined for the purpose of excluding out-of-range or erroneous
measurements with sufficient margins. The fundamental cri-
teria of lower thresholds were determined based on probabil-
ities of recorded standard deviations of electric quantities in
the EI
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TABLE 1. Thresholds for Excluding Malfunctioning PMUs

TABLE 2. Empirical Low-level Label of Frequency Event

*: per unit value calculated with system complex power base of 100 MVA
**: data with small effective digits and data with no change for a second

a: Lower Threshold:

Thresholds of active power, P, and reactive power, Q, were
selected between the two modes of the P=Q histogram at
0 5% percentile: 1) the histogram of the ambient P=Q fluc-
tuation, and 2) the histogram of the erroneous P=Q signals
(see Fig. 3). It is noted that P and Q standard deviations
are similarly distributed. Therefore, we may employ the same
lower thresholds of 0.003 for P and Q.

Similarly, the voltage magnitude, V, also contains two
modes on the histogram at 0 5" percentile. Because the V
threshold is extremely small, we rounded the V threshold to
0.0001 (i.e., from 0.00006 to 0.0001).

However, the frequency, F, possesses only one mode on
the histogram at 0 5™ percentile. Because all the other
electric quantities have the threshold at the 1% percentile, the
same 1% percentile was employed for the F threshold, i.e.,
0.0012 Hz.

b: Upper Threshold:

The active power flow can potentially show immediate
change from the initial power flow to zero following grid
events. This power flow change would reach a few GW.
Not to exclude significant grid events with such large power
changes, 3 GW/Gvar (3000 MW/Mvar) was selected as the
threshold, which corresponds to 9 GW/Gvar of power devia-
tion (3 times the standard deviation covers the sojourn rate of
99.7%).

The transmission voltage is generally in the continuous
operation range of 0.05 0.10 pu relative to the nominal
voltage (e.g., 1.0 1.1 pu for 500 kV and 0.95 1.05 for
69 345kV in the PJM). Considering the 0.02 pu margin and
assuming that the voltage peak-to-peak is equal to 6 times
the standard deviation of voltage, the threshold of 0.02 pu
was selected, which corresponds to 0.12 pu (= 0.1 pu + 0.02
pu margin) of the peak-to-peak voltage fluctuation.

The frequency nadir in the bulk power systems (such as
the EI and WECC) is generally less than 0.5 Hz that is used
as the lower operating limit in the PJM. Ensuring the 0.1 Hz
margin and assuming that the frequency deviation is equal to
3 times the standard deviation of frequency, the threshold of
0.2 Hz was selected, which corresponds to 0.6 Hz (= 0.5 Hz
+ 0.1 Hz margin) of the frequency deviation.

VOLUME 4, 2016

Standard deviation Lower limit Upper limit Label | Frequency change | Voltage sag Remark
1) Remove low 1) Remove 1 No frequency drop No no-event
resolution signal** oscillatory signal 2 Large transient Tiny/no
Role of thresholds 2) Remove out-of- 2) Remove low 3 Large transient Large following voltage event
service PMU S/N signal 4 Tiny or no transient Tiny/no
Active power, P pu* 0.003 30
Reactive power, Q pu* 0.003 30
Voltage, V pu 0.0001 0.02 .
Frequency, F Hz 0.0012 02 2) K-shape clustering

Threshold values in Table 1 are not entirely effective in
removing oscillatory signals and low SNR measurements
because the amplitude of those signals varies widely depend-
ing on location, power system configuration, and operation
conditions. A clustering technique, called K-shape clustering
[41], is employed to take out these missed signals. Among
a wide variety of clustering methods, K-shape clustering is
adopted because it is both scale and shift-invariant.

K-shape clustering uses a shape-based distance (SBD), as
shown in Eq. (1). The vectors, X and Y , denote two time-
series data. The function, CC, denotes a cross-correlation
that is widely-used as the similarity index. The variable, S
BD, searches for the maximal inner product with the nor-
malized cross-correlation of the two time-series data.

CCw(X;Y)
SBD(X:Y)=1 B 1
( ) e " Ro(X;X) Ro(Y;Y) M

where,
CCw(X;Y)=Rw m(X;Y );w2f1;2;::2m 19

E,”;lkxm( yik 0

RGY) = g (Y XDk < 0

K-shape clustering effectively distinguishes the event sig-
nature to be observed from oscillatory behavior that is irrele-
vant to the targeted event signature. Fig. 4 shows an example
of a frequency event with K-shape clustering. Event timings
are assumed to be known for each event and adjusted to
600 in this figure. This figure shows that the first cluster
includes a noisy signal, and the third cluster indicates inter-
area oscillation. In this example, the second cluster is the best
cluster to extract prominent frequency event signatures. It is
noted that K-shape clustering is embraced only for frequency
events and voltage events.

B. EMPIRICAL (MANUALLY-GENERATED) LABELS
As described earlier, high-level (large category) labels pro-
vided by the PNNL, consist of three categories:

1) Frequency-related event

2) Voltage-related event

3) Oscillation event

Based on the rigorous review of several hundreds of those
events, low-level (small category) labels, are established for
each category (see Tables 2, 3, and 4). Those low-level labels
nearly cover the labels listed in a similar research study using
the same datasets [34], [42]. It is noted that domain experts
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FIGURE 3. Histograms of standard deviations of active power, reactive power, voltage, and frequency.

FIGURE 4. Example result of K-shape clustering for frequency using Z-score normalization.

TABLE 3. Empirical Low-level Label (Small-category Label) of Voltage Event

. Subsequent
Label Yo_ltage Reactlye power Slow voltage voltage Remarks
deviation/drop deviation recovery .
dynamics

1 Less than 0.5% N/A Imperceptible No Non-event and nearly non-event

2 N/A N/A Perceptible Yes Subsequent dynamics with voltage recovery

3 N/A N/A Clearly perceptible No Pronounced slow voltage recovery

4 Greater than 3.0% | Greater than 30 pu Imperceptible No Large voltage drop

5 Greater than 0.5% Less than 100 pu Imperceptible No Medium-scale voltage drop with no slow voltage recovery

derived the listed labels shown in references [34], [42]. The
cause of events is out-of-scope for the low-level label because
of the deficiency of relevant information, e.g., no information
on the placement of PMUs, which could deteriorate the low-
level label accuracy. Identifying the affected power equip-
ment is also excluded in this study for the same reason.

1) Frequency Event

Frequency event signatures are differentiated by the presence
of voltage events (label 3) and significant voltage phase
jumps (labels 2 and 3). Label 1 is assigned for non-event
signatures.

2) Voltage Event
Voltage event signatures are distinguished by the presence
of slow voltage recovery (labels 2 and 3), significant voltage
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dip (label 4), and subsequent voltage sag (label 2). Label 1 is
allocated to non-event signatures.

3) Oscillation Event

Oscillation event signatures are separated by the presence of
voltage events (label 2) and have two different participation
rates of local area oscillations (labels 1 and 3). The inter-area
oscillation is assumed to be observed in the oscillation event
explicitly. Signals with weak inter-area oscillation are treated
as non-events (label 5).

C. ELECTRIC QUANTITY SELECTION

Prominent signals emerge in specific electric quantities.
PMU data captures voltage and current data as time-domain
phasor information, allowing us to derive active power, reac-
tive power, frequency, and rate of change of frequency. The

VOLUME 4, 2016



