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Abstract—Accurate estimation of dynamic parameters of gen-
erators is crucial to building a reliable model for dynamical
studies and reliable operation of the power system. This paper
develops a physics-based neural ordinary differential equations
(ODE) approach to learn the parameters of generator dynamic
model using phasor measurement units (PMU) data. We design
a physics-based neural network to represent the swing equations
of the power system dynamics. A loss function is defined as the
difference between dynamic simulation results from the physics-
based neural networks and pseudo PMU measurements. The
parameters of generator dynamic model are iteratively updated
using the neural ODEs and the adjoint method. By exploiting
the mini-batch scheme in neural ODE training, the parameter
estimation performance is significantly improved. Numerical
study results on a 3-machine 9-bus system show that the proposed
algorithm outperforms state-of-the-art baseline method in both
computation time and dynamic parameter estimation accuracy.

Index Terms—Dynamic parameter, generator model, neural
ordinary differential equations, adjoint method, phasor measure-
ment unit.

I. INTRODUCTION

High fidelity power system dynamic models are critical
to both dynamic studies and reliable operation of the power
system. Without accurate parameters, power engineers can not
mimic historical disturbances and system events. But the non-
linearities and high dimensionality of the time-varying power
system dynamic model make it challenging to estimate the
parameters of generator dynamic models with high accuracy.

The advent of phasor measurement unit (PMU) provides
system operators with time synchronized voltage and current
phasor measurements in real-time [1]. The widespread deploy-
ment of PMUs around the world enables the development of
data-driven algorithms to estimate the parameters of dynamic
generator models in real-time [2]. This paper proposes a
physics-based neural ordinary differential equations (ODE)
approach to estimate these parameters with PMU data.

The topic of parameter estimation for power system and
generator dynamic models has been studied extensively in the
past [3], [4]. Given the space limitation, we briefly review a
few representative research articles in this area. One of the first
works formulates the dynamic parameter estimation problem
as a nonlinear least squares problem using the sensitivities of
the algebraic state of the system with respect to continuous
dynamic state [5]. The parameters of the generator dynamic
model are updated iteratively with a Gauss-Newton approach.

The sensitivities are derived with respect to the initial operat-
ing condition, which may not be sufficiently accurate for bulk
power system disturbances.

In another work [6], a black-box neural network is adopted
with input neurons represented by transient stability indices
and the output neurons represented by parameters of the gener-
ator dynamic model. The lack of power system domain knowl-
edge in the black-box model led to low estimation accuracy
and poor sample efficiency. Reference [7] used the Extended
Kalman filtering (EKF) for this same task, but the linearization
step resulted in similarly low parameter estimation accuracy.
To address the shortcomings of the EKF approach, reference
[8] applied the unscented Kalman filter (UKF). However,
the accuracy of UKF significantly reduces if the signal-to-
noise ratio is low. Reference [9] utilized a weighted least
squares method by using sensitivities of measured modal
frequencies and damping to the parameters. The drawback
of this approach is that it relies on estimating dynamic
modes of the power system, which may not be sufficiently
accurate. A Bayesian approach is proposed in [10], which
formulates the dynamic parameter estimation as a maximum
a posteriori (MAP) problem. The discrete adjoint method is
used to estimate the gradient of the loss function with respect
to the dynamic parameters. A local optimization approach
called the quasi-Newton method is applied to solve the MAP
minimization problem. This approach may lead to local optima
when initial dynamic parameters are drastically different from
the ground truth, or the posterior distribution is non-Gaussian.
To deal with non-Gaussian posterior distribution, a Markov
chain Monte Carlo (MCMC) method aimed at finding the
global optima for the MAP estimator is proposed [11].

This paper extends the prior work [10], [11] by converting
the forward solver of the ODEs representing power system
dynamics into physics-informed neural networks. Then we
calculate the loss function over mini-batches of samples based
on the difference between dynamic simulation results from
the neural networks and pseudo PMU measurements. The
gradients of the loss function with respect to parameters
are calculated based on the neural ODE technique and the
corresponding adjoint method. Finally, the parameters of the
dynamic model are updated with a quasi-Newton method.

The main contributions of this work are as follows:

e We adopt neural ODEs and the corresponding adjoint



method to learn the parameters of dynamic generator
models online, which provides accurate estimates for
parameter gradients.

o By designing physics-based neural networks to represent
the forward functions of ODEs, we are able to leverage
the parallel computing capabilities of graphics processing
units (GPUs) to accelerate the dynamic parameter learn-
ing. This advantage becomes more apparent as the grid
size increases.

o By leveraging the mini-batch scheme in updating dy-
namic parameters, the estimation time can be shortened
and the buildup of errors in the ODE solver can be
reduced.

o Comprehensive numerical studies demonstrate that our
proposed method can accurately estimate not only the
inertia constant but also mechanical power inputs using
PMU data during transmission line events.

The rest of the paper is organized as follows. Section II
presents the simplified power system dynamic model. Sec-
tion III introduces the technical methods, including neural
ODE, physics-based neural network design, and adjoint-based
gradient calculation method. The numerical study results are
provided in Section IV. Section V concludes the paper.

II. POWER SYSTEM DYNAMIC MODEL

For ease of demonstration, a simplified dynamic model of
a multi-machine interconnected power system is adopted. The
proposed neural ODE-based parameter estimation technique
can be applied to more complex dynamic models. The simpli-
fied model assumes that in the short observation period (a few
seconds), the mechanical power input, P,,, is constant, and the
classical model represents a generator with a constant voltage
source behind a known transient reactance without damper
winding. The terminal voltage V; and current phasors I; of all
power plants are assumed to be measured by PMUs.

The differential equation of the classical generator model is
represented by the swing equation shown in (1) [12].
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where, M is a inertia constant, MW - s/yMVA, wg denotes the
rated rotor speed of a generator, § is the angular position of a
rotor relative to a synchronously rotating reference.
The algebraic equations coupling the classical generator
model to the rest of the power system are represented by the
following equations:

Pei = %{EZI:} = %{ r:ducedEiQ}7 (2)

where P,, denotes the active power output of the generator
i, and F; is the generator ’s internal voltage phasor. R{-}
extracts the real part of a complex number, and * is the
complex conjugate operation. Yiequced = Ygg — Yngslesg
is the reduced Y-bus matrix. Yg, Yys, Y4, and Y, are sub-
matrices of the admittance matrix of the entire system, where
g and s correspond to the generator buses and other buses

in the system. Constant impedance loads are assumed to be
embedded into the Y-bus matrix.

The internal voltage of the classical generator dynamic
model can be calculated with PMU measurements at the
terminal as: F; = V;+ jx;ili, where 5‘/’;1, is the D-axis transient
reactance of generator . Thus, the active power output of unit
¢ can be calculated as:

Pei = §R{ r:duced(‘/i +]x/cl111)2} (3)

III. TECHNICAL METHODS

The overall framework of the iterative neural ODE-based
dynamic parameter estimation algorithm is shown in Fig. 1.
We feed the initial states and start/end timestamps into a
physics-informed neural network representing the ODEs to
produce estimates of future states and PMU measurements.
A loss function that quantifies the difference between the
estimated and observed system states is summed over every
time stamp, and its gradients (via adjoint) are back-propagated
to dynamic parameters. Finally, the dynamic parameters are
updated using gradient descent.
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Fig. 1. Neural ODE-based dynamic parameter estimation framework.

A. Overview of Neural ODEs

Neural ODEs are deep learning models which differ from
standard machine learning methods in one key way - while
standard machine learning methods map input variables to
hidden variables for immediate use, Neural ODEs map input
variables to the derivative of hidden variables which must
first be integrated before their use [13]. Mathematically, We
can write a standard neural network via the two equations
s = f"(z),y = fO(s). In contrast a neural ODE can be
written as the two equations %2 = fi(z),y = f§"(s) where
now the function fg" returns time derivatives of the state
variables instead of the state variables themselves. Here, o and
0 represent the parameters of the two corresponding models.

The advantage of Neural ODEs over more typical models
is that the hidden variable, s, is now actually a smooth family
of hidden variables parameterized by a new variable, t. This



variable is typically used to represent a continuous ‘“depth”
of the network, but can also represent a time variable when
modeling dynamical systems, in which we have the single
hidden variable per time instance. Our work will adopt the
latter interpretation. Since our goal is to model an existing
function of time, this hidden variable can be used directly as
our output (i.e., fg" is the identity function).

The disadvantage of using Neural ODEs is that hidden
variables need to be integrated. In practice, this means they
must be sent through an ODE solver. Furthermore, we need to
take gradients of the solver regarding the parameters so that
the ODE must also be back-propagated through.

The existing ODE solvers can be divided into two groups.
One group consists of adaptive-step ODE solvers, such as
the Dormand—Prince method [14]; another group consists of
fixed-step ODE solvers, such as the Euler method [15] and the
Runge-Kutta method [16]. The latter is faster and more widely
used in the industry than the former. This paper adopts the
explicit fourth-order Runge-Kutta method with the 3/8 rule.

B. Physics-Informed Neural Network Design

Neural ODEs typically use the expressivity of large neural
networks to model the parameters of an ODE as a parametric
black box. However, in our case, the ODE we are modeling
possesses explicit mathematical expressions - namely, the
swing equation. Thus, our neural network is explicitly modeled
to the form of this known physical equation.

Let us assume that n generators and that | E;| and Y}, are
given. Denote the element in the Y, ., matrix located at
the i-th row and j-th column as |Y;;|e“?#. Then, the dynamic

equations of the ¢-th generator can be formulated as follows:
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where 0; and w; are the rotor angle and the rotor angle speed of
generator ¢ respectively. The unknown parameters are P,,,, and
My,. A neural network structure is strictly derived following
(4). An example of this design for two generators is visualized
in Fig. 2. In the case of multiple generators, we only need to
extend this figure horizontally. It is too difficult for Neural
ODE to solve all the unknown noisy parameters in one layer.
Therefore, we use two nonlinear layers exp(-) and In(:) to
separate them, improving the nonlinear fitting ability of neural
network. Since the reciprocal of My, may be very small, it is
amplified using a factor of k, and then an extra activation
function is added before the output layer, which multiplies
its input by a factor of % The weights and bias are fixed in
the first two layers. Thus, only the unknown parameters are
updated. The neural network corresponding to g; is relatively
simple since every weight and bias are fixed.
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Fig. 2. The diagram of the physics-informed neural network design. Only
the parameters in yellow boxes will be updated, others are fixed.

C. Loss Function and Gradient Descent

The following mean square error loss function is used to
train the physics-informed neural network:

L(s) = |lx(t) - s(t)|3, (5)

t=to

where x(t) represents the vector time-series for calculated state
variables (i.e., 0; and w;) from the PMU data. s(¢) denotes
the vector time-series of state variables estimated from the
physics-based neural networks.
To calculate aa—g, the gradients of L with respect to s(¢) need
to be computed first. The adjoint method is chosen to derive
the gradient of L with respect to the estimated state variables
[17]. Specifically, a new time series, a(t) = %{;), which we
call the adjoint of s(t), is created. It satisfies the following
ODE [13]:
da(t) Of(s(t),t,0)
dt Os ’
where f denotes two physics-based neural networks, g and
h, and 6 denotes the parameters of the physics-based neural
network My, and P,,,.
The gradient of the loss function with respect to the neural
network parameters, 6, is a reverse integral over [to, 1] [13]:

dL _ (" 7 0f(s(t).t.0)

=—a(t)" (6)

The gradient calculation steps are summarized in Algorithm
1. Finally, we update the dynamic parameters 6 with the



Algorithm 1 Calculate gradient w.r.t. 8 by adjoint method.

Input: parameters in the neural network 6, time span [t, t1],

final state s(¢1), adjoint asa(fl)

1: augS, = [s(t1), %,0];
2: Calculate dynamics of augmented state:

Dynamics = [f(s(t),t,6), —a(t)" 3, —a(t)" G]];
3: ODESolver(Dynamics, augS,, to, t1,6) =

[s(to), %» %];

oL .

4: return 50
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Fig. 3. WECC 3-machine-9-bus system [18].

limited-memory Broyden-Fletcher-Goldfarb-Shanno method,
which updates each weight with its own squared gradient.

IV. NUMERICAL STUDY

A. Simulation Set up

We generate pseudo PMU measurements from dynamic
simulation data from a 3-machine 9-bus system (see Fig. 3).
The power system parameters and initial operating conditions
are given in Tables I and II. A single transmission line is
disconnected at 5s as a disturbance, and the simulation time is
set at 10s. The initial values of six state variables are given in
[18] as (52‘:1’2’3 = [0.0396,0.344770.2304], wi:1’2’3[pu] = 1.
V; and I; are calculated from §; and w;, and are considered
to be our input data. Then, random Gaussian noise signal,
G ~ N(0,0.001) is added to the magnitude and angle of V;
and I;, which is consistent with the estimated noise shown
in a standard [19]. Finally, §; = ZFE; can be indirectly
derived from FE;, = V; + jx;iili. Then, w; is calculated by
wilpu] = %—i—wo [20] where wg = 1. Ground truth
values of six parameters are: P,,,, = {0.7141,1.6300,0.8508},
My, = {9.5515,3.3333,2.3516}.

Two disturbance scenarios are studied. The first one is a sin-
gle line tripping between nodes 5 and 7. The dynamic response
for this disturbance is the same as the one illustrated in [18].
The second one disconnects the line between nodes 8 and 9.
Note that the rotor angles of the generators continuously grow
following the line tripping events because damper components
are not modeled. The dynamic simulation time step is set
as 1/120 s for both events. The PMU measurements of the
generators are then downsampled to 30 Hz.

TABLE I
POWER SYSTEM PARAMETERS [18]

Branch Impedance (pu) Capacitance (pu) | Load Pr, & Qp (pu)
z14 = 0.0576¢  z45 = 0.0100 + 0.08507% % = 0.1045¢ Prs =1.25
x:ﬂ =0.06087  z46 = 0.0170 + 0.0920:¢ % = 0.08801 Qrs = 0.50
zo7 = 0.0625¢  z57 = 0.0320 + 0.1610% % = 0.07901 Pre =0.90
@y = 0.1198i 269 = 0.0390 + 0.1700i | £57 = 0.1530 Qres = 0.30
239 = 0.0586¢  z7g = 0.0085 + 0.07207 ng = 0.1790:7 Prg =1.00
9”213 =0.1813¢  zg9 = 0.0119 + 0.1008¢ ? = 0.074517 Qrs =0.35

=52 = 0.1045¢

Note: Per unit values are calculated with T00 MVA base (and nominal voltage).

TABLE I
INITIAL CONDITION OF THREE GENERATORS [18]

G G2 G'3
Active power (pu) 0.7160  1.6300  0.8500
Reactive power (pu) 0.2700  0.0670  -0.1090
Terminal voltage (pu) | 1.0400 1.0250  1.0250

B. Dynamic Parameter Estimation Results

The neural ODE fitting framework is tested with random
[-10%, 10%] errors on the initial value of six parameters. The
dataset for each disturbance contains 5 s of data, i.e., 150
data points. We set k for the generators as k; = {20,7,5} to
make sure the ratio ]\fl—o is almost the same. In the training
process, we set the batch size and batch time as 20 and 10
steps, respectively. This means that we randomly choose 20
data points as the initial state in the range of [tg, {1 — %].
Then, starting from each initial state, we step forward-in-time
through the ODE solver for 10 contiguous timestamps and
back-propagate against each of these segments separately.

1) Parameter Estimation for Two Disturbances: We display
the norm of gradient | 2%||5 against the training iterations
in Fig. 4. As shown in the figure, our proposed algorithm
converges within only two iterations for both disturbances.

We further quantify the accuracy and computation efficiency
of our proposed neural ODE-based dynamic parameter esti-
mation algorithm using the first disturbance. The estimation
errors are calculated for the six unknown parameters with three
different data lengths (1s, 3s, 5s). The relative estimation error

(REE) = W x 100% is used as the accuracy metric.
We treat the algorithm in [10] as the baseline for comparison.
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Fig. 4. The norm of six parameters’ gradient of the neural ODE estimation
framework on 2 disturbances. For each case, we run the experiment 10 times
with different random seed. Each colored line represents an experiment.



TABLE III
RELATIVE ESTIMATION ERROR (%) OF BASELINE AND
NEURALODE-BASED METHOD

Data Length Initial

Is 3s Ss REE

Py 236/150 7.70/1.49 7.47/1.26 421

P, | 076/0.01 505/012 5.01/0.18 5.77

Parameters Py 1.05/041 627/032 6.52/046 4.76
7| Mo, 580/2.86 552/2.06 6.31/3.09 4.80

Mo, 436/319 592/218 5.88/3.67 6.10

Mo, 4.58 /837 550/4.82 549 /1051 5.33

Average 315/272  599/1.83 6.11/3.20 5.16

Note: Baseline / Physics-based Neural ODE Algorithm.

The training stops when the change of ||g—§||2 is less than a
threshold value of 0.001. A large learning rate could lead to
divergence, while a small one requires long computation time.
For a fair comparison, the best learning rate is selected among
0.5, 0.05, and 0.005 to train our proposed and baseline model.
The same random seeds are used in both methods.

2) Parameter Estimation Accuracy: The REEs are calcu-
lated and shown in Table III. The first and second number in
each cell represent the REE of the baseline and the proposed
algorithm respectively. When the PMU data length is 3s,
our proposed algorithm achieves the lowest REE for the six
unkonwn parameters. We can also observe that the estimation
of mechanical power input is more accurate than that of
generator inertia constant. Overall, the physics-based neural
ODE algorithm outperforms the baseline algorithm in terms
of estimation accuracy for most of the unknown parameters.

TABLE IV
RUNNING TIME (S) OF BASELINE AND NEURAL ODE-BASED METHOD.

Running Time (second) .

Data Length Baseline gNeural ODE-based Learning Rate
1s 8.38 3.78 0.5/70.5
3s 38.55 4.82 0.05/0.5
Ss 100.25 4.67 0.05/0.5

Note: Baseline / Physics-based Neural ODE Algorithm.

3) Computation Time & Scalability: The computation time
of the proposed and baseline algorithms for estimating dy-
namic parameters from different length of PMU data are
reported in Table IV. Note that the learning rate of a scenario
in an algorithm is selected such that divergence behavior is
avoided. As shown in the Table IV, our proposed physics-
based neural ODE algorithm has much shorter computation
time than the baseline algorithm. When the data length is 3s,
the running time of our model is just 4.82 seconds, which is
nearly 8 times faster than the baseline model. The mini-batch
scheme of neural network training is leveraged in the proposed
algorithm, which greatly shortens the model running time and
makes the algorithm more scalable in handling longer training
dataset.

V. CONCLUSION

This paper develops an online physics-based neural ODE
algorithm to estimate the parameters of the generator dynamic
model. By synergistically combining the swing equation and

neural ODE model, our proposed algorithm outperforms the
state-of-the-art baseline algorithm in terms of estimation accu-
racy and computation time. Numerical studies on a 3-machine
9-bus power system show that our proposed model is capable
of accurately estimating the dynamic parameters using just 3
seconds of noisy PMU data with 30 Hz sampling frequency.
Furthermore, the entire dynamic parameter estimation proce-
dure takes less than 5 seconds of computation time. In the
future, we plan to further extend the proposed algorithm to
consider more severe power system events and more realistic
power system dynamic models by including damping factor,
automatic voltage regulator module, and primary frequency
controller of synchronous generators.
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