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Abstract—Accurate forecasts for the utilization rates of electric
vehicle charging stations (CSs) are crucial to coordinating the
operations of on-site distributed energy resources. In this paper,
we propose to forecast the CS utilization rates by considering key
explanatory variables such as historical utilization rates, traffic
flows, demographic properties, the number of EV registrations,
and points of interest. Three machine learning models, namely
random forest, feed-forward neural network, and long short-
term memory (LSTM) are adopted for the forecasting task.
The proposed algorithms are validated using the real-world
utilization data collected from around 130 CSs in Contra Costa
County, California. The numerical study results show that the
LSTM model achieves the best prediction performance. The
lagged CS utilization rates and traffic flows are the two most
influential features. More interestingly, the traffic flow plays a
more important role in predicting the utilization rates of DC
Fast CSs than that of the level 1 (L1) and level 2 (L2) CSs.

Index Terms—Data-driven forecast, utilization rate, electric
vehicle, charging station.

I. INTRODUCTION

The adoption of electric vehicles (EVs) has accelerated

tremendously in the past decade. To support the continued

growth of the EV market, a network of intelligent EV charging

stations is in critical need. Accurate short-term forecast for

charging station (CS) utilization rate is essential to peak

power reduction and management of on-site distributed energy

resources for intelligent CSs [1].

An early attempt to forecast the charging demand of Plug-in

Hybrid EVs is carried out by [2], which models the charging

demand of multiple vehicles based on queuing theories. The

city-wide hourly EV charging demand is predicted based on

the travel patterns and assumptions for initial charging time

[3]. [4] predicts station-level hourly demand with the assis-

tance of surveillance video in local traffic networks. A macro-

scale charging demand model can be developed by assembling

micro-scale models of EV driver behaviors, which can be

derived from the American National Household Travel Survey

(NHTS) dataset [5], [6]. The customer preferences of charging

time can also be inferred from survey [7], which could be

integrated into other models to determine the temporal patterns

of charging demand.

The aforementioned works predict average hourly charging

demands, which are important for siting of CSs. To facilitate

This research is funded by the University of California Institute of Trans-
portation Studies under the project of UCITS-2021-47.

more efficient operations of CSs, we also need day-ahead and

hour-ahead charging demand forecast at the CS or even cus-

tomer level. Based on the charging data of South Korea in 2018

and 2019, [8] forecasts day-ahead, week-ahead, and month-

ahead charging demands in three different scales: national,

city, and station. [9] uses deep learning method to forecast

traffic flow and 1-hour ahead charging demand of a CS. With

complete charging session data of Nebraska, USA from 2013

to 2019 and unique customer ID, [10] predicts how much

energy an EV will charge given the plug-in time, season and

cost of electricity.

The existing studies discovered that the charging demand

of CSs heavily depends on fast-varying factors such as traffic

flows and slow-varying factors such as land characteristics

[11] and socio-demographic properties [12], [13] of their

neighborhood area.

However, most of the existing work for CS demand forecasts

are performed either without considering the impact of real-

time traffic flows or with simplified traffic flow estimates from

coarse-grained models. Most of the existing time series-based

CS demand forecast work do not incorporate slow-varying

factors such as land-use and socio-demographic properties into

the prediction model. This is acceptable if a large amount of

historical data has been collected for the CS. However, for

a newly installed CS, the lack of historical data will make

it extremely difficult to build a time series-based model with

satisfactory performance.

In this study, we propose a machine learning-based frame-

work for short-term CS demand forecast by considering

both fast-varying and slow-varying explanatory variables. This

unique approach allows us to provide accurate hour-ahead

charging demand forecast for a CS with limited historical data.

The contribution of this paper is summarized below.

1) We develop three machine learning models to perform

hour-ahead charging demand forecast for CSs by using both

fast-varying and slow-varying explanatory variables, which

yields accurate prediction with limited historical data.

2) Our proposed models achieve great performance on

real-world noisy charging data, dynamic traffic flow data,

and socio-economic data. The numerical study results of the

relative importance of input features reveal that EV traffic

flows have a greater influence on the charging demand at DC

Fast CSs than at L1/L2 CSs.
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The rest of this paper is structured as follows. Section II 
introduces the adopted machine learning models for charging 
demand forecast. Section III provides the source, collection 
method, and data preprocessing techniques for the real-world 
datasets. Section IV presents the numerical study to verify the 

performance of the proposed prediction models. Limitations 
and potential future work are provided in Section V. The 
conclusions are stated in Section VI. 

II. MACHINE LEARNING MODELS FOR CHARGING 

DE MAND FORECAST 

A. Machine Learning Models 

To forecast the utilization rate of CSs, we adopt three 
different machine learning algorithms: random forest, feed 
forward neural network (FNN), and long short-term memory 
(LSTM). They are widely used prediction models and have 
been successfully demonstrated in many other domains. 

We briefly introduce them in this subsection. 

1) Random Forest. Originated from decision tree model, a 
random forest consists of a set of decision trees, which are 
constructed randomly and independently. Each of the decision 
trees will output a prediction, and the output of the random 
forest is the average of the outputs from individual decision 
trees. 

2) FNN. An FNN consists of one input layer, one or multiple 
hidden layers, and one output layer. Each layer contains a 
certain number of nodes. Starting from the first hidden layer, 
each node receives weighted inputs from all of the nodes in 

the previous layer, and the sum of these inputs will be fed into 
a non-linear activation function before serving as the input of 
the next layer. The weights between any of the adjacent layers 
will be updated through back-propagation of gradients taken 
from minimizing a well designed loss function to match the 
goal of learning. 

3) LSTM. LSTM is a recurrent neural network that is 

designed for learning time series data. An LSTM cell consists 
of an input gate, an output gate, and a forget gate. Each of 
the gates is a parameterized linear function followed by a 

non-linear activation function. The forget gate controls what 
information from the previous calculation should be kept for 
current calculation. The schematics of an unfolded LSTM is 
shown in Fig. 1. The input x is fed into the LSTM model by 
following the time-series order, i.e., the earliest input Xt-n is 
the first being processed, and the output hidden states ht-n 
and cell state Ct-n are serving as the input to the next time 
step. The final output is obtained from a fully connected 
layer with inputs from the last hidden state. Similar to FNN, 

the parameters in an LSTM model are updated through the 
gradient backpropagation. 

The hyper-parameters of the aforementioned models are 
summarized in Table I. The final reported performance is 
obtained for the best combination of hyper-parameters of each 
model on the validation dataset. 

TABLE I: Summary of Model Configurations 

Model 

Random Forest 

FNN* 

LSTM* 

Model Configuration 

Number of trees E {500, 1000, 5000}; 

Two hidden layers with [128, 128] or [256, 
256] neurons in each layers. 

Two LSTM layers with [50, 100, 200] features 
in the hidden state. 

* For FNN and LSTM, the following parameter combinations 
are tested: Learning rate E {lo-3, 10-4, 10-5}. Optimizer 
E {SGD, Adam}. Batchsize E {32, 64, 128}. 

x,.J 

Fig. 1: Unfolded computational graph of an LSTM. 

B. Interpret Machine Learning Models with the SHAP Method 

While the adopted machine learning models are capable of 
making accurate predictions, it is difficult to directly interpret 
the trained models. We use the recently developed SHAP 
framework [14], [15] to evaluate and quantify the feature 
importance in the trained models. 

The working principal of the SHAP method can be ex­
plained as follows: Suppose we have a trained model f 
that predicts y from y = f(x), where x E X and x = 
[x1,x2, ... ,xKf contains K input features. For the ith input 
x(il sampled from X, the SHAP framework calculates the 

contribution vector of input features ¢Cil = [¢ii), cjJ�i), ... , ¢�] 
such that f(x(i)) = "Lf=l c/J�i) + ExEx(f(x)). The kth 

element in contribution vector ¢, i.e., ¢�i), is also referred 

to the SHAP value of feature k for sample x(i). 
We define the relative importance (RI) of a feature k to be: 

(l) 

The SHAP method can be applied to various machine 
learning models as it is model agnostic. In this study, we 
will calculate the SHAP values of different input features and 
compare their relative importance. 

III. DATA SOURCE S  AND PRE PROCE SSING STE PS 

In this section, we introduce the datasets by data categories, 
including the data collection and preprocessing procedures. 
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Fig. 2: The location of charging stations and freeways within the study area (Contra Costa, CA). 
Source of the base map: OpenStreetMap. 

A. Charging Stations 

We obtain the locations of public CSs within the bound­
ary of Contra Costa County (California, USA) from Google 
Map, which provides station specific information such as CS 
operator, number and power level of chargers, and real-time 
charging status of the individual chargers. 

1) Utilization Rate: The number of chargers in use can 
represent the demand of a CS to a certain degree. However, 
the individual chargers at a charging station may have different 
power specifications. Thus, we measure the charging demand 
of a CS as the ratio of its actual energy usage to its max­
imum possible energy usage. Specifically, we formulate our 
dependent variable, utilization rate (UR) as follows: 

UR(t) = LiEf n;(t)p;
' LiEfN;p; 

(2) 

where I is the set of all types of chargers, Ni is the total 
number of type i chargers with power rating Pi, n; ( t) is the 
number of occupied type i chargers at time t. LiEf NiPi 
represents the maximum energy usage of the charging station, 
while LiEf ni ( t )Pi represents the actual charging energy 
usage, assuming all the chargers are running at their nominal 
powers. The range of UR is [0, 1]. We collect real-time charger 
status every 5 minutes for DC Fast CSs and every 15 minutes 

for Ll/L2 CSs. The hourly UR is estimated as the average of 
UR(t) of multiple readings during the hour. 

2) Charging Station Properties: Based on the power spec­
ification of chargers as shown in Table II, we divide the CSs 
into two types: Ll/L2 and DC Fast. As the power ratings are 

drastically different between these two types of CSs, we expect 
the utilization patterns to be different as well. 

Since some CSs have both types of chargers, we treat such 
a CS as if it were two distinct CSs, corresponding to their 
charger types. The geographical location of L l/L2 and DC Fast 
CSs are shown in Fig. 2. The CS type is modeled with one­
hot encoding, where 1 represents DC Fast CS and 0 represents 

Ll/L2 CS. 

In addition to power specifications, the operator of a CS 
could also have potential impacts on the quality of service. 

There are five CS operators involved in our study area, and 

they are represented by an one-hot encoded 5 x 1 vector. 

TABLE II: Charger Types in the Study Area 

Type 

LIIL2 

DC Fast 

Charger Specifications 

Wall outlet: 1.92 kW 
J-1772: 3.6 I 5.0 16.21 6.7 17.217.7 I 8.3 19.6 kW 

CHAdeMO: 40.5 I 54.0 I 62.5 I !00 kW 
CSS: 28.5 I 29.8 I 50 I 62.5 I 100 kW 

B. Traffic Flow (TF) 

Previous studies have shown that utilization rates of CSs are 
highly correlated with traffic flows [2], [4]. We obtain traffic 

flow data from Performance Measurement System (PeMS) 
[16]. PeMS provides hourly traffic flow of major freeways in 
California. The freeways in our study area are shown in Fig. 2. 
Note that most of the CSs are located along the freeways. 

In order to estimate the amount of traffic flow that can be 
potentially served by a CS, we first identify the closest freeway 
to the CS. Then we collect the amount of traffic flow from the 
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6 closest vehicle detector stations on this freeway, as shown 

in Fig. 3. Finally, we use the average traffic flow recorded 
by these 6 vehicle detector stations as one of the independent 

variables. 

C. Service Area of Charging Stations 

The geographic area that a CS can serve has a great impact 
on its utilization rate [17], [18]. Usually, drivers will be waiting 
at home or office while their EVs are charging at an Ll/L2 
station, as the charging time can be very long. In this case, 
the CS should be within reasonable walking distance. On the 
other hand, for the DC Fast CSs, the relatively short charging 

time makes it feasible for drivers to wait around the stations. 
Thus, driving to a DC Fast CS that is outside of reasonable 
walking distance is acceptable. A survey conducted by the 
Contra Costa Transportation Authority (CCTA) confirms this 
assumption and shows that people can tolerate a 0.5-mile 

walking distance and a 2-mile driving distance to access an 
Ll/L2 station and a DC Fast station, respectively. We use these 
two distances to construct the service areas for the L1/L2 and 
DC fast CSs. Fig. 3 shows the service area of an Ll/L2 station. 
As introduced later this section, the service area determines a 
set of features of the forecasting model. 

D. Demographic and Socioeconomic Factors 

We also include a variety of demographic and socioe­
conomic characteristics to forecast charging demand [13], 
[17]. The demographic and socioeconomic factors, including 
population, income, education, employment, percentage of 
work travel by private cars, and number of multifamily units, 

are available from National Historical Geographic Information 
System (NHGIS) [19] at the granularity level of census block 
groups (CBGs). 

We assume that a CBG could be served by a CS if it 
geographically intersects with the service area of the CS. The 

total population, employment and multifamily units served by 
a CS is derived by summing up these factors for all CBGs 
served by the CS. The income, education level, and percentage 
of work travel by private cars are obtained from averaging the 
corresponding factors over the served CBGs. 

E. EV Registration 

The number of EV registrations in a CBG is expected 
to greatly influence the charging demand. We obtain the 
EV registration data from California Department of Motor 
Vehicles at the level of ZIP code tabulation area (ZCTA). To 

make EV registration data consistent with other demographic 
variables, we interpolate the number of EV registrations at 
each CBG using population weighting, as follows: 

c pope 
z 

nEv = -- nEv, 
popz (3) 

where n'Ev and n'Ev are the number of registered EVs in a 
CBG and the ZCTA that the CBG belongs to. pope and popz 

are the population in the CBG and ZCTA. Note that only CBGs 
whose median household income is higher than $ 48,500 [20] 
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Fig. 3: An example service area covered by an L1/L2 CS, 
along with other nearby CSs, vehicle detector stations, and 

POls 

are considered in the interpolation process due to the relatively 

high price of EVs. 

F Point of Interest 

Existing literature also found that charging demand is 
significantly impacted by certain types of point of interest 
(POI) such as transport, retail, and commercial [11]. Thus, 
we include the number of POls in the service area of a 
CS as another feature of the prediction model, as shown in 

Fig. 3. In particular, we count the number of transit stations 
and convenience stores based on the raw data gathered from 
Google Places API. 

G. Nearby Charging Stations 

The utilization rate of a CS will be influenced by its nearby 
CSs. Thus, we include the number of CSs in the same service 
area as the target CS as an input feature of the prediction 
model as shown in Fig. 3. 

H. Summary of Data 

There are a total of 139 CSs in the study area, which are 
managed by 5 different operators. Among these stations, 123 
CSs only have Ll/L2 chargers and 12 CSs only have DC 
Fast chargers. The remaining 4 CSs have mixed L1/L2 and 
DC Fast chargers. As stated in Subsection A, we split each 
of them into two different CSs. As a result, we have 127 
Ll/L2 CSs and 16 DC Fast CSs. We collect and derive 48 
days of hourly CS usage data from Dec 28, 2020 to Feb 14, 

2021. Note that a few CSs have constant utilization rates in a 
long period of time (e.g. more than 24 hours), possibly due to 
equipment break-down or maintenance. Data points with such 
properties are eliminated and they account for less than 5% 
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of the overall dataset. Finally, the remaining data is split into

training, validation, and testing sets with 30 days, 9 days, and

9 days of data respectively.

The input features of the machine learning model is sum-

marized in Table III.

TABLE III: Summary of Model Input Features

Category Feature Name Short Name

Lagged UR
Lagged utilization rates

of the past x houra
UR-xh

Lagged TF
Lagged traffic flow
of the past x hour

TF-xh

Temporal
Hour of the day Hourb

Weekday or weekends Weekdayc

Nearby CS
No. of nearby DC Fast CSs NDC

No. of nearby L1/L2 CSs NLC

Station
DC Fast or L1/L2 Fastc

Business Operator Operatorc

Transportation

No. of registered EV NEV

% of population travel to work
by private cars

Pct.WTP

Residential vehicle miles traveled RVMT

Work vehicle miles traveled WVMT

Demographic

Population served Population

Median household income Income

% of population with
bachelors or higher

Education

No. of Employments Employment

No. multifamily units NML

POI
No. of nearby transit stations NTST

No. of nearby convenience stores NCVN

a Here we choose x ∈ [1, 2, 3].
b Hour h is converted to sin(h) and cos(h) to reflect periodicity.
c One-hot encoded variables.

IV. CASE STUDY RESULTS

In this section, we compare the CS utilization rate prediction

performance of the adopted machine learning models and

analyze the relative importance of various input features.

A. Forecasting Performance of Machine Learning Models

We train the three adopted machine learning models and

select the set of hyper-parameters for each model based on the

results on the validation dataset. We also include a multivariate

linear regression as the baseline method.

The performance of a forecasting model is quantified by the

root mean square error:

RMSE =

√

1

N

∑

i∈test dataset

(URi,predicted − URi,actual)2, (4)

where N is the number of data samples in the testing dataset.

The impact of using different feature sets on the perfor-

mance of machine learning models is shown in Table IV. All

of the models have significant improvements in performance

when traffic flow and other explanatory variables are included

as additional input features. The LSTM model achieves the

best performance with all of the input features. Note that the

RMSE is relatively low across all models. This is because a

large portion of CSs have very low utilization rates during

the period with stay-at-home orders. Thus, we also compare

the model performances for daily peak hours and non-peak

hours in Table V. Clearly, the three adopted machine learning

models all have much better peak hour predictions compared

to the benchmark. Random forest is slightly better than FNN

and LSTM is the best in peak UR prediction.

TABLE IV: RMSE of 4 Models with Different Combinations

of Input Features

Model

Input Features LRa RFb FNN LSTM

Lagged UR only 0.1571 0.1330 0.1308 0.1319

UR + TF 0.1453 0.1302 0.1285 0.1296

All features 0.1390 0.1258 0.1260 0.1211

a Linear regression.
b Random forest.

TABLE V: RMSE of 4 Models in Peak and Non-peak

Hoursa (All Features are Included)

Model

Study Period LR RF FNN LSTM

Peak hours 0.3301 0.2574 0.2589 0.2377

Non-peak hours 0.1305 0.1202 0.1199 0.1161

a For each day in the 9 day testing period, we identify the
peak hour as the one with the highest UR for each CS.
The remaining hours are identified as non-peak hours.

We also quantify the performance of machine learning mod-

els for different types of CSs. The hour-ahead CS utilization

rate forecasting performance are shown in Table VI. The

utilization rate prediction is more accurate for L1/L2 stations.

Fig. 4 visualizes the utilization prediction results for three

stations. CS 1 and 2 have L1/L2 chargers, and CS 3 have

DC Fast chargers. The predicted utilization rates have a much

better match with the actual utilization for L1/L2 CS compared

with the DC Fast CS.
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Fig. 4: Utilization rate forecast (LSTM) on three CSs. CS 1 and 2 have Ll!L2 chargers and CS 3 has DC Fast chargers. 

TABLE VI: RMSE of 4 Models for Different CS Types 
(All Features are Included) 

Model 

CS Type LR RF FNN LSTM 

Ll/L2 0.1381 0.1257 0.1261 0.1201 

DC Fast 0.1454 0.1281 0.1263 0.1267 

B. Relative Importance of Input Features 

Beyond the utilization prediction accuracy, we also want to 
understand how much each feature contributes to the outputs. 
To compare the relative importance of features, we calculate 
the SHAP values for each input feature. We then compare the 
absolute magnitude of the SHAP values to the ratio of the sum 
as an indicator of the relative importance of the input features. 

Here we choose the random forest model to quantify the input 
feature importance. 

I) Relative Importance of Feature Categories: We first 
analyze the contribution of all feature categories. As Ll/L2 
and DC Fast CSs have different characteristics, we separately 
compare the relative importance of feature categories for them. 
As shown in Fig. 5, lagged utilization rate of the CS has the 
largest impact on UR predictions for both Ll/L2 and DC Fast 
CSs. Lagged traffic flow is the second most important feature. 

Specifically, the relative importance of lagged UR of Ll!L2 
CSs (57%) is slightly higher than that of the DC Fast CSs 
(41 %). On the other hand, the relative importance of lagged 

TF for Ll/L2 CSs (14%) is slightly lower than that of the DC 
Fast CSs (19%). This phenomena can be explained by different 

charging behaviors of EVs at Ll/L2 CSs and DC Fast CSs. In 
an Ll!L2 CS, the EVs being charged in previous hours are very 

likely to extend their dwelling to the next hour because of the 
slow charging rates. The likelihood of an EV staying in a DC 
Fast CS for two consecutive hours is lower. The incoming EV 
traffic play a more important role in predicting the utilization 

Ll/L2 

Lagged UR 57 

Lagged TF 14% 

Transportation 

Temporal 

Demographic 

Station 

POl 

Nearby CS 1% 

0 20 40 

Relative Importance(%) 

60 0 

41% 

1% 

20 40 

Relative Importance(%) 

60 

Fig. 5: Relative importance of different feature categories 

rate of DC Fast CSs than that of Ll/L2 CSs. 

2) Relative Importance of Individual Features: The top 
ten individual features for predicting the utilization rate of 
CSs are reported for Ll!L2 and DC Fast CSs separately in 
Table VII. As shown in the table, 1-hour lagged UR and TF 
are the most important individual features, which have stronger 
influence than 2-hour and 3-hour lagged variables. The other 
key features include Hour, Operator, and Population. Table VII 
reveals that work related features also contribute significantly 

to the CS utilization rates. For example, Pet. WTP and WVMT 
features rank 7th and lOth for Ll/L2 CSs. Employment and 
Pet. WTP rank 3rd and lOth for DC Fast CSs. This finding 
could be useful to guide the siting of future CSs. 

V. LIMITATIONS AND FUTURE WORK 

This study has several limitations. First, the number of 

charging stations and the duration of data collection (48 days) 
are limited. Second, only sensor data along the freeway are 
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TABLE VII: Top Ten Features for the UR Prediction of

L1/L2 and DC Fast CSs

Rank L1/L2 R.I.a DC Fast R.I.

1 UR-1h 47.6% UR-1h 33.3%

2 TF-1h 8.9% TF-1h 13.3%

3 Hour 7.0% Employment 6.8%

4 UR-2h 6.8% Hour 5.5%

5 Operator 3.5% UR-2h 4.6%

6 UR-3h 3.0% Population 4.1%

7 Pct. WTP 2.9% Operator 3.3%

8 TF-3h 2.5% TF-3h 3.1%

9 TF-2h 2.2% UR-3h 2.7%

10 WVMT 1.3% Pct. WTP 2.4%

Sum - 85.7% - 79.1%

a R.I.- Relative importance

used to estimate traffic flows. In practice, traffic data for

arterial roads could also serve as useful input features. Third,

the data collection period overlaps with the local lockdown

order due to the Covid-19 outbreak. The charging behavior of

EVs during the study period could be significantly different

from the pre-Covid period. In the future, we plan to perform

another round of data collection with an expanded study area

and longer duration when the pandemic is under control. To

enhance the input features related to traffic flows, we plan to

leverage a network model that can map freeway-level traffic

flow to the arterial-level. The prediction model can also serve

as the basis of a recommendation system, which matches EV

drivers with the best CS by considering both travel and waiting

cost.

VI. CONCLUSION

This paper develops short-term prediction models to esti-

mate the utilization rates of charging stations. The proposed

machine learning models leverage both slow-varying features

(e.g., land-use and socio-demographic properties) and fast-

varying features (traffic flow). The proposed machine learning

models are trained based on real-time charging session data

from around 130 charging stations in Contra Costa County,

California, traffic data, and socio-economic data from the

nearby census block groups. The numerical study results reveal

that the LSTM model yields much lower prediction error than

that of random forest, FNN, and linear regression models.

The analysis of feature importance based on SHAP framework

shows that the lagged utilization rates and the traffic flows are

the two most important features for the model outputs. The

trained machine learning models can be used to forecast real-

time charging demand at both existing and planned charging

stations. The charging station utilization prediction model

serves as a critical tool in supporting the strategic planning

and design of EV charging infrastructure.
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