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Abstract— To tackle the challenge of voltage regulation under
high solar photovoltaics (PV) penetration, the slow timescale
control of conventional voltage regulating devices can be com-
bined with fast timescale control of smart inverters. In this
paper, we develop a two-timescale Volt-VAR control (VVC)
framework. The slow timescale control of voltage regulating
devices is achieved by a model-based approach. The fast time-
scale control of smart inverters is attained with a reinforcement
learning-based method. The deep deterministic policy gradient
(DDPG) algorithm is adopted to control the setpoints of both
real and reactive power of smart inverters. The control policy of
smart inverters is learned from the historical operational data
without relying on accurate distribution network secondary
circuit parameters. Simulation results on the IEEE 34-bus
feeder show that the proposed framework can determine near
optimal set points of smart inverters in real-time operations.
Compared with existing reinforcement learning based smart
inverter control, our approach achieves lower line losses, voltage
deviations, and active power curtailment.

Index Terms— Deep deterministic policy gradient, Volt-VAR
control, smart inverters, reinforcement learning, high PV pen-
etration, two timescale

I. INTRODUCTION

Solar photovoltaics (PV) is projected to constitute 46%
of total renewable generation by 2050, increasing from only
13% in 2018 [1] due to a rapid drop in cost [2]. However,
solar energy is highly intermittent due to cloud cover and
shading, fluctuating up to 15% of their nameplate ratings
within one-minute intervals [3]. The increasing solar PV
penetration in power distribution networks poses serious
operational challenges, particularly in maintaining an appro-
priate feeder-wide voltage profile.

To keep the feeder voltage profile in a reasonable range,
conventional Volt-VAR control (VVC) determines the op-
timal hourly set points for voltage regulating devices such
as voltage regulators, on-load tap changers (OLTCs), and
capacitor banks. However, these voltage regulating devices
are slow operating mechanical equipment and are insufficient
to adapt to distribution systems with fast and significant volt-
age fluctuations due to high solar PV penetration. Chronic
voltage fluctuations can also lead to frequent operations of
voltage regulating devices which will shorten their life cycles
and increase maintenance costs [4].

To mitigate frequent voltage variations in distribution
feeders with high solar PV penetration, smart solar PV
inverter based VVC has been studied. Smart inverters provide
fast and continuous active and reactive power control with
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low operational costs. Besides, they support two-way com-
munications, which allow remote control systems to change
inverter setpoints. This opens up considerable opportunities
for utilities to integrate distributed solar PV systems into
the VVC framework. The IEEE 1547a-2020 standard allows
smart inverters to participate in grid voltage regulation [5].

Previous studies on inverter control consider varying the
reactive power generation of solar PV systems using cen-
tralized [6]–[8], distributed [9]–[13], or local control ap-
proaches [14]–[16]. Centralized and distributed control solve
an optimal power flow (OPF) problem to determine the
inverter reactive power generation. Local control approaches
calculate the reactive power generation using droop control.
However, controlling only reactive power may yield low
feeder power factors and cause high network currents. In
fact, smart inverters can also curtail solar PV systems’
active power generation to regulate feeder voltage [17], [18].
An optimization-based centralized approach is developed to
determine both active and reactive power setpoints for smart
inverters of solar PV systems in [19].

Recently, researchers have been developing two-timescale
model-based VVC by supplementing the conventional slow
timescale VVC with fast timescale smart inverter con-
trol [20]–[23]. However, the decision variables of the fast
timescale smart inverter control only include reactive power
setpoints. References [21] and [22] formulate the VVC as
an OPF problem and propose to solve it using centralized
optimization. The controllable devices on the slow timescale
include capacitor banks [21], [22] and OLTCs [22], [23].

The model-based optimization approaches [24] rely on
accurate and complete distribution network topology [25],
[26] and parameter information [27]. However, the secondary
feeders’ phase connection information is usually not accurate
[28]. To address these problems, researchers have developed
data-driven control approaches for slow timescale VVC prob-
lems [8], [29]–[31] and fast timescale smart inverter control
problem [32] using reinforcement learning (RL) algorithms.
A two-timescale VVC framework considering both slow
timescale voltage regulating devices and fast timescale smart
inverter control is developed in [33]. For the slow timescale,
deep Q-learning is used to determine the switching schedule
of capacitors. For the fast timescale, an optimization-based
approach is adopted to control the smart inverters. Many
existing data-driven approaches need accurate line param-
eters and power injections at every bus which might not be
available in real-time operations [34].

There are two main drawbacks of the existing data-driven
VVC framework involving smart inverters. First, the existing



approaches only consider changing the reactive power set-
points of smart inverters [32] and ignore the fact that active
power could be curtailed for solar PV systems during certain
circumstances. Second, the primary feeders’ model is much
more reliable than that of the secondary feeders. Thus, in the
two-timescale VVC framework, the fast timescale control
involving smart inverters in the secondary feeders should
be data-driven and the slow timescale control involving the
primary feeder can be handled with a model-based approach.

In this paper, we fill the knowledge gap by developing a
two-timescale data-driven Volt-VAR control method, which
does not rely on secondary feeder information. Note that
our method still requires knowledge of the primary feeder,
which is often readily available. Furthermore, we design a
polar action space set up to jointly determine the active
and reactive power setpoints of smart inverters. Specifically,
on the slow timescale, a centralized optimization-based ap-
proach is adopted to determine the tap positions of voltage
regulators, OLTCs, and switchable capacitor banks. On the
fast timescale, a deep deterministic policy gradient (DDPG)-
based algorithm is employed to determine the set points of
real and reactive power of smart inverters.

The unique contributions of this paper are summarized
below.
• We develop a reinforcement learning-based two-timescale

VVC for distribution networks without requiring sec-
ondary feeders’ topology or parameter information.

• We design a polar action space for reinforcement learning-
based smart inverter control. This design allows joint
determination of real and reactive power setpoints while
explicitly enforcing maximum power capability constraint.

• The degradation costs of the smart inverters are carefully
modeled in the sequential decision-making process of the
VVC problem.
The rest of the paper is organized as follows. Section II

presents an overview of the two-timescale VVC problem.
Section III discusses the problem formulation of the slow
timescale VVC and fast timescale smart inverter control.
Section IV presents the proposed two-timescale VVC algo-
rithms. Section V shows the numerical study results. Finally,
Section VI states the conclusions.

II. TWO-TIMESCALE VVC FRAMEWORK

We consider a power distribution system with both con-
ventional voltage regulating devices and smart inverters. The
smart inverters control the real and reactive power setpoints
of solar PV systems. A generic power distribution network
being modeled is shown in Fig. 1. The overall framework
of the two-timescale VVC is shown in Fig. 2. In the slow
timescale VVC, the optimal tap positions and switching
schedules of the voltage regulator, OLTCs, and capacitor
banks are determined using a centralized optimization-based
method on an hourly basis τ . Within each hour, the tap and
switching positions of these voltage regulating devices are
kept fixed. The technical method of the slow timescale VVC
is discussed in detail in Subsection III-B. In the fast timescale
VVC, the real and reactive power setpoints of smart inverters
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Fig. 1: Diagram of a typical power distribution network with
voltage regulating devices and smart inverters.
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Fig. 2: The overall framework for two-timescale VVC

are determined every minute t to mitigate voltage violations
caused by rapid fluctuations in the maximum potential output
of solar PV systems. The smart inverter dispatch schedule
is determined by the deep deterministic policy gradient
algorithm which does not rely on an accurate secondary
feeder model. The fast timescale VVC problem using smart
inverters is formulated in Section III-C.

III. PROBLEM FORMULATION

A. Problem Setup

Let us consider a radial distribution feeder of N buses
represented by G := (N ,L). Here, N := {1, . . . , N} is the
collection of all nodes and L := {(m,n) ⊂ N ×N} is the
collection of edges representing distribution line segments.
Let rij and xij be resistance and reactance of the distribution
line between node i and j. We assume that the distribution
network is relatively balanced.

Let vi denote the complex voltage phasor at node i for
i ∈ N and ui denote the square of the corresponding voltage
magnitude. Let Iij be the complex current flowing from node
i to node j and `ij be the square of the corresponding current
magnitude. Let Pij and Qij be the real and reactive power
flowing over the line connecting nodes i and j. Let pgi and
qgi be the real and reactive power generation from the smart
inverter connected solar PV system at node i, and pci and
qci be the real and reactive power demand at node i. Let
pGi and qGi be the total real and reactive power generation
respectively at node i from the smart inverter connected solar



PV systems and switchable capacitors. Let pi+jqi be the net
complex power injection at node i where pi := pGi − pci and
qi := qGi − qci . Let p̄git be the available solar PV production
at time t for smart inverter i, which is determined by
solar irradiance and the smart inverters’ nameplate capacity
S̄i. At any time t, the real and reactive power generation
from smart inverters, electric demand pgit, q

g
it, p

c
it, q

c
it, and the

settings of voltage regulators, OLTCs, and capacitor banks
determine the voltages and power flows on the distribution
network. The problem formulation of the slow timescale
VVC using voltage regulating devices and fast timescale
VVC using smart inverters are presented in the following
two subsections.

B. Slow Timescale VVC Using Voltage Regulation Devices

For the slow timescale VVC subtask, the controllable
devices include voltage regulators, OLTCs, and switchable
capacitor banks. Voltage regulators are typically placed at
the reference bus. Each of the voltage regulators and OLTCs
has K tap positions with a step size of Creg and Ctsf

corresponding to the change in turns ratios. The series and
shunt impedance of the voltage regulating devices can be
neglected since their values are very small. Switchable ca-
pacitor banks are installed at different locations on the feeder
to provide local voltage support. Let qcapi be the reactive
power generation from the capacitor bank. Let tapregτ and
taptsfτ , and tapcapτ indicate the tap position of the voltage
regulators, OLTCs, and the switch status of the capacitor
banks respectively at time τ .

For the slow timescale VVC subtask, the reactive power
setpoints of smart inverters are assumed to be 0. Thus,
qGjτ = qcapjτ at every node j. The objective of the slow
timescale VVC is to minimize the sum of line loss Cerij`ijτ
and voltage deviation cost CV (uiτ − 1)

2 at the beginning
of each hour τ , where Cv and Ce are voltage deviation
cost ($/volt) and electricity price ($/MWh) respectively.
The slow timescale VVC is formulated as a mixed-integer
nonlinear programming (MINLP) problem as follows:

min
X

∑
(i,j)∈L

Cerij`ijτ +
∑
i∈N

Cv (uiτ − 1)
2 (1)

s.t. Pijτ =
∑

k:(j,k)∈L

Pjkτ + rij`ijτ + pcjτ − p̄
g
jτ

∀ (i, j) ∈ L (2)

Qijτ =
∑

k:(j,k)∈L

Qjkτ + xij`ijτ + qcjτ − q
cap
iτ

∀ (i, j) ∈ L (3)

ujτ/a
2
ijτ = uiτ − 2 (rijPijτ + xijQijτ ) +

(
r2ij + x2ij

)
`ijτ

∀ (i, j) ∈ L (4)

u1τ =
(
uref + tapregτ × Creg

)
(5)

`ijτ =
P 2
ijτ +Q2

ijτ

uiτ
∀ (i, j) ∈ L (6)

X :=
(
Pτ ,Qτ ,uτ , `τ , tap

reg
τ , taptsfτ , tapcapτ

)
(7)
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Fig. 3: (a) Action space for reactive power control strategy,
(b) Rectangular action space for inverter control with both
real and reactive power, (c) Polar action space for inverter
control with both real and reactive power.

where aijτ = 1+taptsfτ ×Ctsf if there is an OLTC on branch
(i, j) and aijτ = 1 otherwise. Note that MINLP is not as
scalable as the state-of-the-art MILP solvers. As a result,
formulating the slow timescale VVC as a MINLP problem
might not be a feasible approach as the size of the distribution
network grows and the number of discrete tap positions of
the conventional VVC devices increases.Also note that in
our current formulation, the slow timescale VVC controller
is not aware of the reactive power from the smart inverter
in the coming hour. However, we shall see in our numerical
study section that, this formulation still improve the baseline
without leading to the canceling effect of the two controllers
in different timescales.

C. Fast Timescale VVC by Smart Inverters

1) Smart Inverter Control Strategies: A solar PV inverter
has a maximum apparent power capability S̄i > max (p̄git).
There are three operational strategies for smart solar PV
inverters:

a) Reactive Power Control Strategy: If the i-th solar
PV inverter allows reactive power control only, then the set
of its operating points FRPCi is defined as:

FRPCi :=

{
(pgit, q

g
it)
∣∣∣pgit = p̄git, |q

g
it| ≤

√
S̄2
i − (p̄git)

2

}
Under this control strategy, the active power output is the
available solar PV generation, and the reactive power output
is limited by the inverter rating. The set FRPCi is represented
by the vertical line segment in Fig. 3(a). If the inverter is not
oversized, then smart inverter can not provide reactive power
compensation when p̄git = S̄i. With oversized inverters, the
entire inverter rating can be utilized to supply reactive power
when no active power is produced.

b) Real and Reactive Power Control with Rectangular
Operating Space: Under this control strategy, smart invert-
ers are allowed to adjust both active and reactive power.
However, the reactive power compensation is limited by the
inverter rating and available solar PV production p̄git at time t
with q̄gRit =

√
S̄2
i − (p̄git)

2. Thus, the smart inverter operating



space is a rectangle as shown in Fig. 3(b). The set of possible
operating points of the smart inverter is given by:

FRPCRi :=
{

(pgit, q
g
it)
∣∣∣0 ≤ pgit ≤ p̄git, |qgit| ≤ q̄gRit }

Under this control strategy, when 0 ≤ pgit < p̄git, active
power curtailment takes place. The amount of real power
curtailment pCit equals p̄git − p

g
it.

c) Real and Reactive Power Control with Polar Operat-
ing Space: Under this strategy, solar PV inverters are allowed
to adjust both active and reactive powers. The reactive power
compensation is limited by the inverter rating and the actual
solar PV production pgit at time t as in q̄gPit =

√
S̄2
i − (pgit)

2,
which makes the inverter operating space a curtailed semi-
circle as shown in Fig. 3(c). Here, q̄gPit > q̄gRit when active
power curtailment take place, i.e. pgit < p̄git. Consequently,
the set of possible operating points is given by

FRPCPi :=
{

(pgit, q
g
it)
∣∣∣0 ≤ pgit ≤ p̄git, |qgit| ≤ q̄gPit }

2) Optimization based Fast Timescale Inverter Control:
If the power distribution network model is complete and
accurate, the optimal setpoints of smart inverters can be
found by solving the following optimization problem at every
time slot t within each interval τ . The tap positions of the
voltage regulator, OLTC transformers, and capacitor banks
are available from the last interval on the slow timescale. In
addition to minimizing line loss and voltage deviation, the
active power curtailment cost Cc |p̄git − p

g
it| of each inverter

is minimized where Cc is the active power curtailment
cost $/MWh. By relaxing the nonconvex quadratic equality
constraint (13), the optimization problem can be converted
to a Second Order Cone Program (SOCP) defined over a
convex feasible set [21]. It has been shown that SOCP
relaxation can be exact under certain conditions in the sense
that the equality in (13) holds for optimal solutions [35],
[36]. However, reverse power flows from extreme solar PV
generation and an objective minimizing voltage deviation can
lead to non-zero duality gap and non-physical solutions [37]–
[39]. Nevertheless, our numerical study shows that the non-
zero duality gap issue does not occur, which confirms the
global optimality and exactness of the optimization-based
benchmark.

min
X

∑
(i,j)∈L

Cerij`ijt +
∑
i∈N

[
Cv (uit − 1)

2
+ Cc |p̄git − p

g
it|
]

(8)

s.t Pijt =
∑

k:(j,k)∈L

Pjkt + rij`ijt + pcjt − p
g
jt ∀(i, j) ∈ L

(9)

Qijt =
∑

k:(j,k)∈L

Qjkt + xij`ijt + qcjt − q
g
jt − q

cap
jτ

∀(i, j) ∈ L (10)

ujt/a
2
ijτ = uit − 2 (rijPijt + xijQijt) +

(
r2ij + x2ij

)
`ijt

∀(i, j) ∈ L (11)

u1t =
(
uref + tapregτ × Creg

)
(12)

`ijt =
(
P 2
ijt +Q2

ijt

)
/uit ∀(i, j) ∈ L (13)

0 ≤ pgit ≤ p̄
g
it,−q̄

g
it ≤ q

g
it ≤ q̄

gP
it ∀i ∈ N (14)

X := (Pt,Qt,p
g
t , q

g
t ,ut, `t) (15)

Note that the tap position variables aijτ , qcapjτ , and tapregτ are
taken from the last interval of the slow timescale VVC. In
the future, we plan to further enhance the model prediction
control (MPC)-based fast timescale VVC algorithm by taking
the inverter degradation into account. This makes the baseline
algorithm more consistent with the proposed reinforcement
learning-based algorithm.

IV. TWO-TIMESCALE VVC USING DDPG

A. Fast Timescale VVC as a Markov Decision Process

We briefly review the basics of the Markov decision pro-
cess (MDP). An MDP can be defined as a tuple consists of a
state space S, an action space A = <M (M is the dimension
of the action space), an initial state distribution p (s1), a
transition probability p (st+1|st, at), and a reward function
R : S ×A ∈ <. The agent interacts with the environment E
according to some policy µ : S → A to generate trajectories
of the form s1, a1, r1, . . . , st, at, rt, . . . , sT , aT , rT , where
rt = R(st, at). The return from a state is defined as the sum
of discounted future reward Gt =

∑T
i=t γ

(i−t)R (si, ai) with
a discounting factor γ ∈ [0, 1]. The goal is to learn a policy
which maximizes the expected return from the initial state
J = Es∼p(s1)Eµ[Gt|s1 = s]

To formulate the fast timescale VVC problem as an MDP,
the distribution system operator or controller is treated as
the agent and the distribution network is treated as the
environment. We define the state, action, and reward function
as follows:

a) State: The state consists of real and reactive power
injection of inverters pgt , q

g
t , and loads pct , q

c
t at relevant

nodes at time t, solar PV production potential of the inverters
determined by solar irradiance and technical parameters of
the respective PV systems p̄gt , voltage magnitude at each bus
|vt|, and current tap positions of voltage regulating devices
tapreg, taptsf , tapcap.

b) Action: In the VVC strategy adopted in this paper,
the smart inverters are allowed to adjust both active and
reactive power outputs. The active power provided by the
smart inverter i can be expressed by pgit = app̄

g
it where

ap ∈ [0, 1] is a variable in the action space. It regulates
the amount of active power curtailment.

Under the strategy with rectangular action space shown in
Fig. 3(b), the reactive power injected/absorbed by inverter i
is limited by the active power capacity of the inverter. It can
be expressed by |qgit| ≤ q̄

gR
it where q̄gRit =

√
S̄2
i − (p̄git)

2. We
rewrite the equation as qgit = aq q̄

gR
it , where aq ∈ [−1, 1] is

another variable in the action space. It controls the reactive
power set point of the inverter.



Under the control strategy with polar action space shown
in Fig. 3 (c), the reactive power injected/absorbed by inverter
i is limited by the active power provided by inverter. It can
be expressed by |qgit| ≤ q̄gPit where q̄gPit =

√
S̄2
i − (pgit)

2.
We rewrite the equation as qgit = aq q̄

gP
it where aq ∈ [−1, 1].

c) Reward: The reward received by the reinforcement
learning agent consists of four terms as shown in (16):
line loss, voltage violations, active power curtailment cost,
and the inverter degradation cost. The line losses, voltage
deviation losses, and the active power curtailment cost are
formulated in the same way as in Section III-C. The inverters
include power switching devices such as insulated gate
bipolar transistors (IGBTs) and diodes. Change in the real
and reactive power injection by the smart inverters leads
to temperature swings in the switching components which
can cause additional thermal stresses, ultimately leading to
a reduction of the inverter lifetime. Therefore, we model
the inverter degradation cost proportional to the change in
the real and reactive power levels of the inverter in con-
secutive time steps. Let CI be the inverter degradation cost
($/W change in inverter real power and $/VAR change in
inverter reactive power) and Nr be the nodes with inverters,
then the inverter degradation cost is expressed by dt =∑
i∈Nr CI

(∣∣∣pgi(t+1) − p
g
it

∣∣∣+
∣∣∣qgi(t+1) − q

g
it

∣∣∣).
The reward at time t then can be written as follows:

rt = −
∑

(i,j)∈L

Cerij`ijt−
∑
i∈N

Cv (uit − 1)
2

−
∑
i∈Nr

Cc |p̄git − p
g
it| − dt (16)

B. Deep Deterministic Policy Gradient

The fast timescale VVC by smart inverters has a con-
tinuous and high dimensional action space. In addition,
the complete distribution feeder parameters are not always
available. Thus, we adopt the deep deterministic policy
gradient (DDPG) algorithm [40], a model-free approach, to
solve the fast timescale VVC problem. DDPG is an off-
policy deep reinforcement learning algorithm with the actor-
critic architecture and function approximators. As such, both
policy and value functions are approximated by deep neural
networks. The actor-network maintains a deterministic policy
µ using a neural network parameterized by θµ. The input
of the neural network is the state s and the output is a
deterministic continuous action a = µ (s|θµ). To ensure
exploration, noise sampled from a noise process η, e.g.,
an Ornstein-Uhlenbeck process [41] is added to the output:
µ′ (st) = µ (st|θµt ) + η. The critic network approximates
the corresponding Q function of the policy using the neural
network parameterized by θQ. To improve the stability of
learning, two target networks Q′

(
s, a|θQ′

)
and µ′

(
s|θµ′

)
are introduced to provide stable learning targets. As such,
the update equations of the network are not interdependent
on the values calculated by the network itself and therefore
are not prone to divergence.

To further stabilize the training process, the experience
replay mechanism is employed to break the correlations

between the training experiences: the experience tuples
(st, at, rt, st+1) are stored in a replay buffer. Then, random
mini-batches of experience are sampled from the replay
buffer while updating the value and policy networks.

Since the target policy is deterministic, the Bellman equa-
tion can be expressed as follows:

Qµ (st, at) = E [R (st, at) + γ [Qµ (st+1, µ (st+1))]] (17)

The training of the critic network is based on minimizing
the following loss function using batches of experiences with
Nm number of transitions.

L =
1

Nm

∑
i

(
yi −Q (si, ai) |θQ

)2
(18)

yi = R (si, ai) + γQ′
(
si+1, µ

′
(
si+1|θµ

′
)
|θQ

′
)

(19)

The parameters of the actor network are updated using the
critic network and the policy gradient algorithm with batches
of experience with Nm transitions.

∇θµJ ≈
1

Nm

∑
i

∇aQ
(
s, a|θQ

)
|s=si,a=µ(si)∇θµµ (s|θµ) |si

(20)

C. Summary of the Two-timescale VVC Algorithm

First, the slow timescale control problem is solved for each
hour τ using (1)-(7) to determine the tap positions of the
voltage regulators, OLTCs, and switchable capacitor banks.
Within the interval τ , the switching decisions of these devices
are kept fixed. Now, the fast timescale control of the smart
inverters is performed for each time segment t within τ .
The corresponding distribution system voltage at each bus
along with the load and PV generation and time stamp data
is utilized to assemble the state vector st for the DDPG
training. The state vector is provided to the agent which
generates the suggested actions, i.e., the real and reactive
power outputs of the inverters. The suggested actions are
executed in the environment and the agent gathers the state
variables from the environment which transitions to the next
time period st+1. The transition (st, at, rt, st+1) is stored.
The actor and critic network is updated following Section
IV-B utilizing target network and experience replay till the
terminal state is reached. After completing the training, the
trained DDPG agent can be utilized to determine the real and
reactive power setpoints of the smart inverters for the fast
timescale VVC. The detailed process for the two-timescale
VVC is shown in Algorithm 1.

V. NUMERICAL STUDY

The performance of the proposed two-timescale VVC in
Algorithm 1 is tested on a modified IEEE 34 node test feeder.

A. Simulation Setup

As shown in Fig. 1, the IEEE 34-bus test feeder has a volt-
age regulator at node 800. There are two OLTCs connecting
node 814 to node 850 and node 852 to node 832 respectively.
Two capacitors are placed at node 844 (100 kVar) and node
847 (150 kVar). Three solar PV systems with nameplate



Algorithm 1 Two-timescale Volt-VAR Control scheme

Input: Initial actor network parameters θµ, critic network
parameters θQ, and empty replay buffer D. Initialize a
random process η for action exploration

1: Initialize target network parameters: θµ
′ ← θµ, θQ

′ ←
θQ

2: for t = 1 . . . T × T do
3: Fix the tap positions of the conventional voltage

regulating devices at the solution obtained from (1)-
(7) at the corresponding hour τ

4: Obtain load, solar PV generation and voltage magni-
tude information at time t to form state vector st.

5: Feed the state vector into the actor network to generate
suggested actions, i.e., the real and reactive power
outputs of inverters. Select action at = µ (st|θµ) + ηt
according to current policy and exploration noise.

6: Execute at in the environment.
7: Gather information for the next state st+1. Calculate

the reward rt.
8: Store (st, at, rt, st+1) in replay buffer D
9: Randomly sample a batch of Nm transitions from D,

B = {(si, ai, ri, si+1)}
10: Compute target yi using (19)
11: Update Q-function by minimizing loss in (18)
12: Update policy by one step of gradient ascent using

(20)
13: Update target networks with θQ

′
= ρθQ + (1− ρ)θQ

′

and θµ
′

= ρθµ + (1− ρ)θµ
′

14: end for

capacity 22 KW , 67 KW , and 133 KW are added to
the feeder at the nodes 840, 862, and 838 respectively. The
inverters are not oversized. The solar PV penetration level of
the feeder is 120%. To illustrate the algorithm’s capability
for active power curtailment and reactive power absorption
under low load and high PV production conditions, we
double the line impedances so that the benefits of active
power curtailment and reactive power absorption are more
pronounced.

All voltage regulators and on-load tap changers have 11
tap positions, which correspond to turns ratios ranging from
0.95 to 1.05. The capacitors can be switched on/off remotely
and the number of ‘tap positions’ is treated as 2. In the
initial state, the turns ratios of voltage regulators and on-
load tap changers are 1 and the capacitors are switched
off. The electricity price Ce is assumed to be $40/MWh.
The operating cost per tap change is set to be $0.1 for all
devices. The penalty coefficient CV is set as $1/volt. The
inverter degradation cost CI is set to be $0.04/MW . One
year of hourly smart meter energy consumption data from
London [42] is used. The aggregated load data is scaled and
allocated to each node according to the existing spatial load
distribution of the IEEE 34-bus test feeder. One year of solar
PV generation data from Austin, Texas in 2019 is obtained
from the Pecan Street Dataset [43] and scaled according

TABLE I: Hyperparameter settings for DDPG

Parameters Value
Size of hidden layers (512, 512)
Activation function ReLU
Batch size 100
Discount factor 0.99
Learning rate actor and critic network 0.0001
Epoch 2
Start steps before running policy 100
Standard deviation for exploration noise 0.4

to the corresponding nameplate capacity of the solar PV
systems. Five weeks of data from the 9th to 13th week
is used for training, in which the agent interacts with the
environment and updates its policy and value networks. One
week of data for week 14 is used for out-of-sample testing, in
which the trained reinforcement learning agent takes control
actions without further updating its neural networks.

B. Setup of the Benchmark and Our Proposed Algorithms

Under the model-free reinforcement learning-based con-
trol framework, we compare our proposed DDPG-based
smart inverter control with polar action space with two other
benchmark reinforcement learning algorithms, which have
a reactive power control strategy and a real and reactive
power control strategy with a rectangular operating space,
respectively. In addition, we consider three baseline control
scenarios under the model-based control assuming the accu-
rate and complete distribution network model is available.

The three baseline control scenarios under the model-
based control framework are set up as follows:

1) Baseline 1: No Volt-VAR control is executed.
2) Baseline 2: Only slow timescale VVC is executed fol-

lowing the method in Section III-B. The smart inverters
operate at unity power factor with no reactive power
injection/absorption or active power curtailment.

3) Baseline 3: Slow timescale VVC is executed following
the method in Section III-B. The smart inverters are
controlled following the method in Section III-C.

The slow timescale VVC is formulated as a mixed-
integer nonlinear programming (MINLP) and solved by the
BONMIN solver in the OPTI toolbox [44] in MATLAB. The
optimization-based fast timescale inverter control in baseline
scenario 3 is implemented using the CVX toolbox [45] in
MATLAB after the convex relaxation is performed.

The setup of our proposed two-timescale Volt-VAR control
scheme with three different action space are discussed below:

1) DDPG with only reactive power control: Slow timescale
VVC is executed following Section III-B. The smart in-
verters are controlled using DDPG with only adjustable
reactive power setpoint as depicted in Fig. 3(a).

2) DDPG with rectangular action space: Slow timescale
VVC is executed following Section III-B. The smart
inverters are controlled using DDPG with rectangular
action space for real and reactive power setpoints as
depicted in Fig. 3(b).



TABLE II: Comparison of the operation costs of the proposed two-timescale VVC schemes along with three baseline
scenarios in the test dataset

Operational cost ($) Baseline 1
(no VVC)

Baseline 2
(slow time
scale VVC)

Baseline 3 (opti-
mization based two
timescale VVC)

DDPG and reactive
power based two
timescale VVC

DDPG based two
timescale VVC with
rectangular action space

DDPG based two
timescale VVC with
polar action space

Switching 0.00 38.20 38.20 38.20 38.20 38.20
Line loss 33.78 81.30 127.47 169.40 150.60 115.79
Voltage deviation 3264.66 1118.60 352.73 436.12 410.18 414.47
APC 0.00 0.00 14.38 0.00 13.05 16.95
Inverter degradation 0.75 0.75 4.16 4.10 2.80 2.37
Total 3299.20 1238.86 536.96 648.44 614.85 587.78

3) DDPG with polar action space: Slow timescale VVC
is executed following Section III-B. The inverters are
controlled using DDPG with polar action space for real
and reactive power setpoints as depicted in Fig. 3(c).

The feedforward neural networks of both actor and critic
networks have 2 fully connected hidden layers of 512
neurons each. At the start of the training, uniform-random
actions are selected before running the real policy to help
exploration. The training of the agent is performed for 2
epochs. A n epoch refers to one cycle through the full
training dataset. The hyperparameter settings for the DDPG
algorithm of all three control strategies are provided in Table
I.

C. Result and Analysis

To evaluate the performance of the proposed reinforcement
learning-based VVC methods, we compute the line loss,
voltage violation cost, active power curtailment cost (APC),
switching cost of the conventional voltage regulating devices,
inverter degradation cost, and the total operational cost.
A lower total operational cost indicates a better control
performance in voltage regulation. Table II shows the op-
erational cost comparison of three variations of the proposed
reinforcement learning-based two-timescale VVC algorithm
with three model-based baseline control scenarios on the test
dataset. The result is based on the trained model, which
achieves the best performance out of 20 random experiments
in the training dataset.
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Fig. 4: Comparison of voltage deviations at node 838 for
three VVC schemes

It can be observed from Table II that although the slow
timescale VVC (Baseline 2) provides voltage regulation
service, it is not adequate as the rapid change in the solar
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Fig. 5: AVR vs number of samples for the two-timescale
VVC schemes with polar action space and with only ad-
justable reactive power

PV production within each hour causes high voltage violation
cost. As shown in column 4-7 of Table II, all of the two-
timescale VVC schemes achieved considerably lower total
operational cost. In particular, among the DDPG-based smart
inverter control schemes, the proposed two-timescale VVC
with polar action space yields the lowest operational cost.

The DDPG-based two-timescale VVC with polar action
space has a larger reactive power adjustment range than that
of the control strategy with rectangular action space as shown
in Fig 3. Thus, the reinforcement learning-based control
with polar action space provides better voltage regulation
service and consequently lower operation costs. Although
the model-based fast timescale inverter control together with
the slow timescale control offers the lowest operation cost, it
requires complete and accurate knowledge of the secondary
distribution circuit model and parameters. The DDPG-based
fast timescale control on the other hand is model-free and
produces relatively low total operational cost. The cost for
active power curtailment and inverter degradation during
the six week training period is $633 for the customers
of the 34-bus distribution network as opposed to $91.71
if the optimization from Baseline 3 is implemented. Such
training costs are inevitable in reinforcement learning based
VVC methods involving smart inverter control as there are
exploratory actions.

Next, we compare the voltage profiles of two baseline
control scenarios and our proposed DDPG-based VVC with
polar action space. The voltage magnitude time series of
node 838 corresponding to no VVC, only slow timescale
VVC, and the proposed two-timescale VVC with polar
action space are shown in Fig. 4. Node 838 is selected



for the comparison because it experiences the worst voltage
violation when no VVC is employed. It can be seen that
our proposed DDPG-based VVC with polar action space
significantly improves the voltage regulation performance.
Furthermore, our proposed two-timescale DDPG-based VVC
is capable of maintaining the voltage within 1±0.05 p.u. for
almost the entire operating week.

Finally, the RL algorithm employed to solve the VVC
problem should be sample efficient and scalable. We demon-
strate the sample efficiency of the proposed DDPG-based
two-timescale VVC algorithm. The number of training sam-
ples collected versus the average weekly return (AVR) on the
testing weeks are shown in Fig. 5. The AVR is defined as
the summation of all the components of the reward function
accumulated over the testing period. The middle curve shows
the mean AVR averaged over 10 independent runs. The
light-colored region corresponds to the error bounds. Fig.
5 also demonstrates the sensitivity of the test set results to
the training sequence. It is observed that with about three
weeks of training data, the algorithm is able to learn a very
effective VVC policy. It should be noted that in Fig. 5, each
point on the horizontal axis corresponds to a “training set”,
which consists of the data from the beginning up to that
point, whereas the testing dataset always starts from week
14. Thus the latter does not immediately follow the end of
the training dataset. This further shows the effectiveness of
the algorithm on out-of-sample data. In addition, as shown by
the error bound, these results are consistent across different
random initialization and training sessions.

VI. CONCLUSION

A two-timescale Volt-VAR control scheme that does not
depend on accurate secondary feeder models is proposed in
this paper. In the slow timescale control, tap positions of
conventional voltage regulating devices, such as the voltage
regulator, on load tap changers, and switchable capacitor
banks are determined by a model-based controller. On the
fast timescale, a DDPG-based algorithm is developed to
determine the real and reactive power setpoints of the smart
inverters. The proposed algorithm is relatively safe to imple-
ment in the real world as the slow timescale VVC devices
are set according to an optimization based approach; only the
smart inverters are allowed to perform exploratory actions.
As shown in the numerical study, there is no severe voltage
violation during the training period. The proposed DDPG-
based smart inverter control strategy with polar action space
outperforms the strategy with the rectangular action space
and the strategy with only adjustable reactive power. It is
capable of maintaining the voltage within a reasonable range.
In addition, it is very sample efficient and only requires
three weeks of training data to achieve near-optimal results.
In the future, we plan to make the entire two-timescale
VVC framework model-free. This way, the VVC does not
even depend on an accurate primary feeder model in power
distribution systems, which may not always be available.
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[9] K. Turitsyn, P. Šulc, S. Backhaus, and M. Chertkov, “Distributed
control of reactive power flow in a radial distribution circuit with high
photovoltaic penetration,” IEEE PES general meeting, pp. 1–6, 2010.

[10] K. Turitsyn, P. Sulc, S. Backhaus, and M. Chertkov, “Options for
control of reactive power by distributed photovoltaic generators,”
Proceedings of the IEEE, vol. 99, no. 6, Jun. 2011.

[11] E. Dall’Anese, S. V. Dhople, B. B. Johnson, and G. B. Giannakis,
“Decentralized optimal dispatch of photovoltaic inverters in residen-
tial distribution systems,” IEEE Transactions on Energy Conversion,
vol. 29, no. 4, pp. 957–967, 2014.

[12] D. K. Molzahn, F. Dörfler, H. Sandberg, S. H. Low, S. Chakrabarti,
R. Baldick, and J. Lavaei, “A survey of distributed optimization and
control algorithms for electric power systems,” IEEE Transactions on
Smart Grid, vol. 8, no. 6, pp. 2941–2962, Nov. 2017.

[13] K. E. Antoniadou-Plytaria, I. N. Kouveliotis-Lysikatos, P. S. Georgi-
lakis, and N. D. Hatziargyriou, “Distributed and decentralized voltage
control of smart distribution networks: Models, methods, and future
research,” IEEE Transactions on Smart Grid, vol. 8, no. 6, pp. 2999–
3008, Nov. 2017.

[14] K. Turitsyn, P. Sulc, S. Backhaus, and M. Chertkov, “Local control of
reactive power by distributed photovoltaic generators,” in 2010 First
IEEE International Conference on Smart Grid Communications, Oct.
2010, pp. 79–84.

[15] P. Jahangiri and D. C. Aliprantis, “Distributed Volt/Var control by PV
inverters,” IEEE Transactions on Power Systems, vol. 28, no. 3, pp.
3429–3439, Aug. 2013.

[16] M. Farivar, L. Chen, and S. Low, “Equilibrium and dynamics of local
voltage control in distribution systems,” in 52nd IEEE Conference on
Decision and Control, Dec. 2013, pp. 4329–4334.

[17] R. Tonkoski, L. A. C. Lopes, and T. H. M. El-Fouly, “Coordinated ac-
tive power curtailment of grid connected PV inverters for overvoltage
prevention,” IEEE Transactions on Sustainable Energy, vol. 2, no. 2,
pp. 139–147, Apr. 2011.

[18] R. Tonkoski and L. A. C. Lopes, “Impact of active power curtailment
on overvoltage prevention and energy production of PV inverters
connected to low voltage residential feeders,” Renewable Energy,
vol. 36, no. 12, pp. 3566–3574, 2011.

[19] E. Dall’Anese, S. V. Dhople, and G. B. Giannakis, “Optimal dispatch
of photovoltaic inverters in residential distribution systems,” IEEE
Transactions on Sustainable Energy, vol. 5, no. 2, pp. 487–497, Apr.
2014.



[20] B. A. Robbins, C. N. Hadjicostis, and A. D. Domı́nguez-Garcı́a,
“A two-stage distributed architecture for voltage control in power
distribution systems,” IEEE Transactions on Power Systems, vol. 28,
no. 2, pp. 1470–1482, May 2013.

[21] M. Farivar, R. Neal, C. Clarke, and S. Low, “Optimal inverter VAR
control in distribution systems with high PV penetration,” in 2012
IEEE Power and Energy Society General Meeting, Jul. 2012, pp. 1–7.

[22] Y. Xu, Z. Y. Dong, R. Zhang, and D. J. Hill, “Multi-timescale coor-
dinated Voltage/Var control of high renewable-penetrated distribution
systems,” IEEE Transactions on Power Systems, vol. 32, no. 6, pp.
4398–4408, Nov. 2017.

[23] C. Li, V. R. Disfani, H. V. Haghi, and J. Kleissl, “Optimal voltage
regulation of unbalanced distribution networks with coordination of
OLTC and PV generation,” in 2019 IEEE Power Energy Society
General Meeting (PESGM), Aug. 2019, pp. 1–5.

[24] Y. Gao and N. Yu, “Deep reinforcement learning in power distribution
systems: Overview, challenges, and opportunities,” in 2021 IEEE
power & energy society innovative smart grid technologies conference
(ISGT). IEEE, 2021, pp. 1–5.

[25] W. Wang, N. Yu, B. Foggo, J. Davis, and J. Li, “Phase identification in
electric power distribution systems by clustering of smart meter data,”
in 2016 15th IEEE International Conference on Machine Learning
and Applications (ICMLA). IEEE, 2016, pp. 259–265.

[26] B. Foggo and N. Yu, “A comprehensive evaluation of supervised
machine learning for the phase identification problem,” World Acad.
Sci. Eng. Technol. Int. J. Comput. Syst. Eng, vol. 12, no. 6, 2018.

[27] W. Wang and N. Yu, “Parameter estimation in three-phase power
distribution networks using smart meter data,” in 2020 International
Conference on Probabilistic Methods Applied to Power Systems
(PMAPS). IEEE, 2020, pp. 1–6.

[28] B. Foggo and N. Yu, “Improving supervised phase identification
through the theory of information losses,” IEEE Transactions on Smart
Grid, vol. 11, no. 3, pp. 2337–2346, 2019.

[29] W. Wang, N. Yu, Y. Gao, and J. Shi, “Safe off-policy deep rein-
forcement learning algorithm for volt-var control in power distribution
systems,” IEEE Transactions on Smart Grid, vol. 11, no. 4, pp. 3008–
3018, 2020.

[30] Y. Xu, W. Zhang, W. Liu, and F. Ferrese, “Multiagent-based reinforce-
ment learning for optimal reactive power dispatch,” IEEE Transactions
on Systems, Man, and Cybernetics, Part C (Applications and Reviews),
vol. 42, no. 6, pp. 1742–1751, Nov. 2012.

[31] J. G. Vlachogiannis and N. D. Hatziargyriou, “Reinforcement learning
for reactive power control,” IEEE Transactions on Power Systems,
vol. 19, no. 3, pp. 1317–1325, Aug. 2004.

[32] C. Li, C. Jin, and R. Sharma, “Coordination of PV smart inverters
using deep reinforcement learning for grid voltage regulation,” in
2019 18th IEEE International Conference On Machine Learning And
Applications (ICMLA). IEEE, Dec. 2019, pp. 1930–1937.

[33] Q. Yang, G. Wang, A. Sadeghi, G. B. Giannakis, and J. Sun,
“Two-timescale voltage regulation in distribution grids using deep
reinforcement learning,” in 2019 IEEE International Conference on
Communications, Control, and Computing Technologies for Smart
Grids (SmartGridComm), Oct. 2019, pp. 1–6.

[34] H. Xu, A. D. Domı́nguez-Garcı́a, and P. W. Sauer, “Data-driven coor-
dination of distributed energy resources for active power provision,”
IEEE Transactions on Power Systems, vol. 34, no. 4, pp. 3047–3058,
2019.

[35] L. Gan, N. Li, U. Topcu, and S. H. Low, “Exact convex relaxation
of optimal power flow in radial networks,” IEEE Transactions on
Automatic Control, vol. 60, no. 1, pp. 72–87, Jan. 2015.

[36] Q. Yang, G. Wang, A. Sadeghi, G. B. Giannakis, and J. Sun, “Two-
Timescale voltage control in distribution grids using deep reinforce-
ment learning,” IEEE Transactions on Smart Grid, vol. 11, no. 3, pp.
2313–2323, May 2020.

[37] S. Huang, Q. Wu, J. Wang, and H. Zhao, “A Sufficient Condition
on Convex Relaxation of AC Optimal Power Flow in Distribution
Networks,” IEEE Transactions on Power Systems, vol. 32, no. 2, pp.
1359–1368, Mar. 2017.

[38] Q. Li and V. Vittal, “Non-iterative enhanced SDP relaxations for opti-
mal scheduling of distributed energy storage in distribution systems,”
IEEE Transactions on Power Systems, vol. 32, no. 3, pp. 1721–1732,
May 2017.

[39] N. Nazir and M. Almassalkhi, “Voltage positioning using co-
optimization of controllable grid assets in radial networks,” IEEE
Transactions on Power Systems, pp. 1–1, 2020.

[40] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforce-
ment learning,” arXiv preprint arXiv:1509.02971, 2015.

[41] G. E. Uhlenbeck and L. S. Ornstein, “On the theory of the Brownian
motion,” Phys. Rev., vol. 36, pp. 823–841, Sept. 1930.

[42] UK Power Networks, “Smart meter energy consump-
tion data in London households.” [Online]. Avail-
able: https://data.london.gov.uk/dataset/smartmeter-energy-use-data-
in-london-households

[43] “Pecan street Inc. Dataport.” [Online]. Available:
http://www.pecanstreet.org/dataport/

[44] J. Currie and D. I. Wilson, “OPTI: Lowering the Barrier Between Open
Source Optimizers and the Industrial MATLAB User,” in Foundations
of Computer-Aided Process Operations, N. Sahinidis and J. Pinto,
Eds., Savannah, Georgia, USA, 8–11 January 2012.

[45] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex
programming, version 2.1,” http://cvxr.com/cvx, Mar. 2014.


