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Abstract—We introduce a new method for online Phasor Mea-
surement Unit (PMU) missing value replacement. Our approach
allows us to decompose PMU event responses into a non-dynamic
component (denoted the participation factor) that can be inferred
directly from the past and a dynamic component that can
be inferred directly from all other PMUs (denoted the event
strength). When missing values occur, we can use these two
components, which do not rely on the missing index, to estimate
the correct value. The method is extremely fast and can easily be
used for online applications. Furthermore, extensive testing on
real power system event data reveals that our approach achieves
state-of-the-art performance in terms of Mean Absolute Percent
Errors (MAPEs) for PMU data dropped during event periods.
The method also yields an interpretable and simplified view of
events for further analysis and applications. The method relies
only on PMU data and does not take outside information such
as network topology.

Index Terms—Missing value replacement, data imputation,
Phasor Measurement Unit, power system event.

NOMENCLATURE

α Hyper-parameter set.
β Learning rate.
·† Pseudo-inverse.
N Multivariate Gaussian distribution.
σ1 Baseline noise standard deviation.
σ2 Event noise standard deviation.
Θ Parameter set.
θ Laplace distribution width hyper-parameter.
θd Temporal sparsity parameter
d Disturbance value.
F Frobenius norm.
FS Nominal system frequency.
ft N-dimensional time series of frequency data.
IN N ×N Identity matrix.
j PMU superscript index.
N Number of PMUs.
Or Outlier removal algorithm.
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q Number of simultaneous events.
R Sampling frequency.
r Number of simultaneously occurring events.
t Time subscript index.
u ADMM auxiliary dual variable.
v Participation factor.
Xt N-dimensional time series of any non-frequency data.
y Deviation from baseline.
z ADMM auxiliary variable.

I. INTRODUCTION

PHASOR Measurement Units (PMUs) measure electrical
quantities on the power system using a common time

source for synchronization, which greatly improves the situ-
ational awareness for the system operators. The gathering of
high-frequency snapshots of local voltage and current phasors
at the control center enables developing a wide range of
data-driven power system management, control, and protection
applications. The amount of PMU data collected by system
operators worldwide has seen a gigantic increase over the last
decade. In the United States alone, more than 2000 PMUs [1]
have been installed in the transmission grids.

However, synchrophasor systems often have several data
quality issues, which can be problematic for critical data-
driven applications that depend on streaming PMU data. For
instance, if someone were to use PMU data for power system
event detection and classification, then, while missing data
during normal periods of operation would be unproblematic,
any data unreported during the event period could severely
impact the quality of that task. In practice, failures in PMUs,
phasor data concentrators (PDCs), and communication links
could lead to missing PMU data [2].

Our goal is to improve upon the methods of missing value
replacement for PMU data. Since our primary motivation is to
enhance the performance of downstream applications, most of
which are online, we will need our method of missing value
replacement to be online as well. Furthermore, our interest is in
improving missing value replacement algorithms that directly
relate to power system events. We will thus focus only on
online missing value replacement strategies for PMU data,
and our method of analysis will focus heavily on data that
is dropped during event periods.

Online missing value replacement has been studied before,
mostly in machine learning literature. In fields where the
missing values are less critical, simple methods such as nearest
neighbors [3] or mean imputation [4] are typically chosen.
Such methods can be improved by graph-structured data
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(when that graph is known) [5]. Using Generative Adversarial
Networks to generate missing value replacements has also
been proposed [6] [7]. For streaming data, low-rank matrix
factorization [8] [9] [10] [11] and matrix completions [12]
have become quite popular. For PMU data, in particular,
streaming linear regressions on past observations have shown
to be fruitful [13]. Techniques in PMU data processing have
also tilted towards low rank tensor factorizations coupled with
subspace selection/tracking [14], leading to the state of the art
algorithm in the field denoted the OnLine Algorithm for PMU
Data Processing (OLAP) [15], which was further tested in
reference [16]. Two variants of OLAP exist - one spatial [15],
and one temporal [17]. The spatial version works by primarily
uses information from other PMUs, while the temporal version
mostly uses information from the past. Our method is able to
beat these two methods by using both of these sources of
information simultaneously and equally.

Our proposed approach, denoted SPIKE-P, is inspired by
the theoretical response of the system states in small-signal
stability analysis, where the system response is given by
a linear combination of various dynamic modes [18]. We
develop a model, which we call the Event-Participation De-
composition Model. This model allows us to decompose event
responses into a non-dynamic component that can be inferred
directly from the past and a dynamic component that can
be inferred from all non-missing data at the current time-
stamp. The non-dynamic component represents the amount
of participation of PMUs have in various disturbances, which
mimics the participation matrix derived from the modal matrix
of the dynamic system. The dynamic component represents the
magnitudes of various disturbances.

Our main contributions are as follows:
• We create a model for PMU missing data imputation,

which takes simultaneous but independent advantage of
temporal information and spatial information without
knowledge of the electrical grid topology.

• We develop an algorithm for the inference of parameters
in that model, which is extremely fast - fast enough to
run in real-time.

• We show that missing data imputation under this model
results in state-of-the-art performance in terms of Mean
Absolute Percentage Error for missing values dropped
during system event periods.

• We discuss the implications of the learned model param-
eters related to other problems in the field.

The remainder of the paper is organized as follows. Section
II provides the formulation of the missing value replacement
problem with the event-participation model. The parameter
inference techniques are presented in Section III. Section IV
shows the experimental results with a real-world, large-scale
PMU dataset. The conclusions are stated in Section V.

II. PROBLEM FORMULATION AND MODELING

A. Problem Setup

Let N be the number of PMUs from which we receive
streaming data. Then at each timestamp, sampled every 1/R
seconds, we receive five N-dimensional vectors - one for

voltage magnitude data, one for voltage angle data, one for
current magnitude data, one for current angle data, and one
for frequency data. Since we consider each data type inde-
pendently from the others (other than an explicit relationship
between frequency data and angular data), we will denote any
of the first four of these vectors as Xt where t indexes time
samples. When context on data type is necessary, we will make
the distinction explicit. We will denote the vector of incoming
frequencies as ft. We will use superscripts to denote PMU
indices, typically with the letter ‘j’. Furthermore, when the
time stamp is dropped from the data vector, i.e., when the
symbol X is used alone, we refer to the entire time series. We
will also index all data up until timestamp t via the notation
X:t.

We perform online missing value replacement via inference
on dynamic generative models. Each model is parametric
with parameter set Θ and hyper-parameter set α, giving a
dynamic distribution which we will denote as p(X:t, f:t,Θ;α).
Parameters and missing values are estimated in two stages. In
the first stage, we estimate parameters via maximum apriori
estimation.

Θ∗ = argmax p(Θ|Xobs
:t ; fobs:t , α) (1)

Where the superscript ‘obs’ refers to all data that is non-
missing. In the second stage, we use the estimated parameters
and previously estimated missing values to estimate the new
(incoming) missing PMU values, again through maximum
likelihood.

X∗t , f
∗
t = argmax p(X−obst |Xobs

:t , f
obs
:t , X∗:t−1, f

∗
:t−1,Θ

∗;α)
(2)

Where the superscript ‘-obs’ refers to missing data indices.

B. Normal Behavior Dynamic Model

We begin by describing a baseline generative model of the
dynamics of Xt under normal operating conditions. Under
these conditions, the baseline model considers all magnitude
data to remain constant. On the other hand, Angular data
changes according to deviations of the measured frequency at
the PMU to the nominal system frequency FS (e.g., 60Hz
is the US, and 50Hz in the EU). These simple dynamics
are described in the following equations, letting N (µ; Σ)
denote the multivariate Gaussian distribution with mean µ and
covariance Σ.

base(Xt) =

{
Xt, Magnitude Data
Xt + 360

R (ft − FS1N ), Angle Data

base(ft) = ft

εt ∼ N (0;σ1IN ) (R 3 σ1 > 0)

Xt+1 = base(Xt) + εt (3)

Where R is the PMU sampling rate, IN is the N ×N identity
matrix, and 1N is the N-dimensional vector containing all 1s.
The 360/R term transforms the frequency deviation data into
a per-timestamp angle update.

Inference in the baseline model is rather trivial. There are
no parameters, and maximum likelihood estimation of missing
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values yields X∗t = base(X∗t−1) (note that X∗ is a mix of
observed and estimated data).

C. The Event-Participation Model

The normal behavior dynamic model only describes PMU
data under normal operating conditions. But many applications
utilizing PMUs are designed specifically to extract information
under abnormal operational conditions. As such, a model that
considers disturbances that impact a large area of the system
is necessary.

Critical to our disturbance model is the idea of decomposing
events into a non-dynamic component that can be inferred
directly from the past and a dynamic component that can be
directly inferred from all of the non-missing data at the current
timestamp.

As such, we write such disturbances as a product of factors
vjdt, where vj is an unchanging latent variable specific to the
jth PMU, while dt is a dynamic component that is constant
across PMUs. The intuition for this model, aside from being
convenient for missing value replacement, is that deviations
in dynamics from the baseline model during an event tend
to have a scaled symmetry - all PMUs participating in the
disturbance will have deviations with very similar shapes, but
with different values of how much the disturbance effects
each PMU. Thus, we can interpret the sequence dt as the
shape of the disturbance, and vj as the amount of participation
that the jth PMU has in that disturbance. As such, we will
call vj the participation factor of the jth PMU, and dt as
the event value at time t. We call this model the ‘event-
participation decomposition model’ and describe it in the
following equation block.

v ∼
∏
j

Laplace(0;
1

θ
)

η ∼ N (0;σ2I)

Xj
t+1 = base(Xj

t ) + vjdt + ηjt (4)

Of course, the idea of event-participation decomposition is
agnostic to the prior placed on the latent participation vector v.
We have chosen a Laplacian prior here to induce participation
sparsity. This is because many types of events are known only
to impact a limited number of PMUs significantly.

This model can be generalized to multiple disturbances
occurring simultaneously by letting v be an N × r matrix
and d an r-dimensional vector where r is the number of
simultaneously occurring disturbances.

Letting yt denote Xt − base(Xt−1), the joint probability
distribution can be written as follows. The variables v and d
are considered latent, while θ and σ2 are considered hyper-
parameters.

p(y:t, v|d:t;α) =
1

Z(α)
exp{−‖y:t − vd

T
:t‖2F

2σ2
2

− θ
∑
j

‖vj‖1}

Z(α) =
2

θ

√
2πσ2

2 (5)

Where F denotes the Frobenius norm.

III. PARAMETER INFERENCE

Inference under the event-participation decomposition
model is non-trivial. Maximization of the log-probability con-
ditioned on the observed data yields the objective function
given in the following equation block (ignoring terms that do
not depend on the parameters),

L = −‖y:t − vd
T
:t‖2F

2σ2
2

− g(v)

g(v) = θ
∑
j

‖vj‖1, (6)

which has the form of a regularized low-rank matrix approxi-
mation. While online low-rank matrix approximation itself is
well studied, regularized versions have seen significantly less
development.

To begin describing our estimation algorithm, we first note
that when v is fixed, the solution to d is just a projection. The
derivation of this fact is included in the next equation block.

∂L
∂d:t

=
1

2σ2
2

(−yT:tv + dvT v)

=⇒ d∗:t(v) = yT:tv(vT v)−1 (7)

In other words, dT:t is the projection of y:t onto the vectors
spanned by v. We can thus rewrite our objective function as
given in the following equation:

L = −‖y:t − vv
†y:t‖2F

2σ2
2

− g(v) (8)

Where v† = (vT v)−1vT is the pseudo-inverse of v. We can
then find the regularized optimal v for this equation, and then
use dT:t = v†y:t to find the shape of the disturbances.

A. Proximal Stochastic Implicit Krasulina Updates

To optimize objective function (8), we develop a proximal
variant of the stochastic implicit Krasulina updates [19]. Let
v(k) denote the kth iteration value of v. Let d(k)T:t denote
v(k)†y:t. Then the classic implicit Krasulina updates (to solve
this objective without the regularization term) take the form:

v(k+1) = argmin
ṽ

1

2β
‖v(k) − ṽ‖2F +

1

2
‖y:t − ṽd(k)T ‖2F (9)

where β > 0 is a learning rate.
In the case where y:t is a column vector, the solution to this

minimization problem can be written nicely as:

v(k+1) = v(k) − β

1 + β‖d(k)T ‖2
(v(k)d

(k)T
:t − y:t)d(k):t (10)

(Note that d(k)T:t is just a column vector here). In this case, the
update equation is known as the stochastic implicit Krasulina
update.

The stochastic implicit Krasulina updates are a way of
performing online matrix decomposition. But they alone do not
solve the regularized form. However, they can be generalized
to a method that does solve the regularized form. To see
this, note that the the Krasulina update can be written as
a proximal operator update step coupled with a standard
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minimization step in the attempt to solve argminv,d f(v, d)
(where f = ‖y:t − vdT ‖2F ) via fixed points of v and d:

d(k+1)T = argmind f(v(k), d)

v(k+1) = Proxβf(·,d)

(
v(k)

)
(11)

where proxβf maps v to argminṽ
1
2‖v − ṽ‖

2 + βf(ṽ). The
second step in this iteration, the proximal operator step,
is called the method of multipliers update to the problem
argminvf(v, d). This step works, as our goal is to obtain
0 ∈ ∂f(v) (for optimality), while the proximal operator gives
us a value in v − ṽ ∈ ∂f(ṽ). After several iterations, this
set of equations will converge to a fixed point v∗, giving us
0 = v∗ − v∗ ∈ ∂f(v∗).

We can continue in this vein to solve the opti-
mization problem argminṽ f(ṽ, d) + 1

2β ‖v
(k) − ṽ‖2F + g(ṽ)

by augmenting the method of multipliers step into an
alternating direction method of multipliers step [20].
To do so, we transform the unconstrained optimization
argminṽf(ṽ, d) + 1

2β ‖v − ṽ‖
2
F + g(ṽ) problem into a con-

strained one as follows:

argminṽf(ṽ, d) +
1

2β
‖v − ṽ‖2F + g(z)

subject to z = ṽ (12)

We have introduced a dummy variable z and constrained it to
be equal to ṽ. Next, we introduce a new variable u, associated
with the Lagrange multiplier of that constraint. We then have
the augmented lagrangian given by the following equation.

L = f(ṽ, d)+Tr(uT (z−ṽ))+
1

2β
‖v−ṽ‖2F+

1

2β
‖ṽ−z‖2F+g(z)

(13)
We have used the same parameter β for the constraint penalty
and the stochastic update penalty.

Finally, we minimize L with dual ascent via the following
update equations:

d(k+1)T = argmind f(v(k), d)

v(k+1) = Prox β
2 f(·,d)

(
z(k) − 1

2
(v(k) + u(k))

)
z(k+1) = Proxβg(·)

(
v(k) + u(k)

)
u(k+1) = u(k) + β

(
z(k+1) − v(k+1)

)
(14)

Where Proxβg(·) maps z to argminz̃ 1
2‖z − z̃‖

2 + βg(z̃).
The argument that this set of equations yields an optimal

solution is similar to the argument given for the equations
in (11). Again, our goal is 0 ∈ ∂f(v) + ∂g(v). The second
update equation gives us z − u− z̃ ∈ ∂f(z̃). The third gives
v + u − ṽ ∈ ∂g(ṽ). Fixed point updates of these equations
have u, z, and v converge to fixed points u∗, z∗, and v∗, in
which case we get from the third equation that z∗ = v∗. We
then get from the second equation that −u∗ ∈ ∂f(v∗), and
from the third that u∗ ∈ ∂g(v∗). Adding these together yields
the result.

In the stochastic case, Proxβf(·,d)
(
z(k) − 1

2 (v(k) + u(k))
)

still has a very similar form to the stochastic implicit Krasulina

update equation, and Proxβg(·) is the shrinkage function
shown in the second equation of the following equation block.

v(k+1) = q(k) − β

1 + β‖d(k)T ‖2
(q(k)d(k)T − y:t)d(k)

(q(k) = z(k) − 1

2
(v(k) + u(k)))

z
(k+1)
ij =


v
(k)
ij + u

(k)
ij − βθ, v

(k)
ij + u

(k)
ij > βθ

v
(k)
ij + u

(k)
ij + βθ, v

(k)
ij + u

(k)
ij < −βθ

0, else

,

(15)

We call these update equations the proximal stochastic implicit
Krasulina updates.

B. Denoising

We want to guard against the possibility of non-event data
heavily influencing the learned values in dT (and, as a result,
the learned values in v). As it currently stands, a PMU whose
behavior significantly deviates from the baseline simply due
to noise may have such an effect. We can deal with this by
slightly altering the update equations in block (14).

The third update equation in the proximal stochastic implicit
Krasulina updates, z(k+1) = Proxβg(·)

(
v(k) + u(k)

)
, can be

expanded upon quite generally. First note that this equation is
the solution to the optimization problem given in the following
equation block.

argmin
z̃∈RN

e−
1
2β ‖v

(k)+u(k)−z̃‖2F e−g(z̃) (16)

which is the maximum likelihood solution to the estimation
of v(k) + u(k) under the corruption of Gaussian noise with a
prior distribution given by e−g(v

(k)+u(k)).
Reference [21] proposed that we may replace this proximal

update, which is fundamentally a denoising step, with any
denoising algorithm of our choice - regardless of whether
or not that algorithm corresponds to an actual prior distri-
bution. In that reference, the authors chose to use standard
image denoising algorithms instead of a proximal update
corresponding to an explicit prior. However, in our case, we
do want the sparsity induced by the exponential prior - we
just also want our v vector to not have any ridiculously high
values corrupting our results. Thus, we will keep the original
proximal operator of this update step but compose it with an
outlier removal algorithm. More explicitly, we will replace the
third update step with the equation

z(k+1) = Or ◦ Proxβg(·)
(
v(k) + u(k)

)
(17)

Where Or refers to an outlier removal algorithm.
Our outlier removal algorithm of choice will be straightfor-

ward. If v (after shrinkage operation) has less than q nonzero
entries, all nonzero entries are considered noise and set to zero.
The reasoning behind such a simple outlier removal algorithm
is that the effect of outliers on our parameter estimation is most
significant when there is no event occurring; taking outliers
into account during these non-event periods would force d to
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be nonzero, which is undesirable. Since events tend to involve
several PMUs simultaneously, the sparsity of any column in
the v matrix can be used to infer whether or not an event is
occurring. If that column is too sparse, hence no event, we
can safely remove the values in the column that do exist and
deem them outliers. In our experiments, we set the threshold
q to be 5% of the number of all PMUs.

C. Zero-Initialization and Kick-starting

For our parameters to be interpretable, we ideally want both
v and d to be zero during non-event periods. However, this
is a bit of a problem for the alternating minimization of the
objective function ‖y − vd‖2F + g(v). Particularly, the optimal
solution to this objective, conditioned on v = 0, is d = 0,
and visa-versa. Thus the parameter estimation algorithm above
cannot escape this zero-zero state. To combat this, we modify
the algorithm such that, when v = 0, we attempt to kick-start
the parameter estimation out of this state every time new data
is received.

Kick-starting occurs when a new data column comes in and
consists first of checking if z is zero. If z is indeed zero, then
we set d to the average absolute value of y, d ← Enm [|y|]
where Enm is the sample expectation over the non-missing
data at the new timestamp. The first column of v is then set
to y/d, and the algorithm proceeds normally. However, if z is
still zero after the algorithm iterates for this timestamp, then
d is set back to zero, and a new kick-start will be attempted
at the next data reception.

When data is missing at the time instance of a successful
kick-start, we set the v values of those missing indices to the
median value of the corresponding column of the v values that
we have estimated during the kick-start.

D. Warm Up and Escaping

Also, for parameter interpretation purposes, we want v,
when it is nonzero, to change rather slowly. This means that
we need to have a pretty good value of v before receiving
the next data point at the kick-start time of an event. For this
purpose, we use more iterations than usual during, and only
during, the kick-start. Our experiments will use 20 iterations
for the kick-starts and just 1 iteration for every other time
instance. However, this means that all non-event periods use
many iterations (since all non-event periods attempt a kick-
start), which would slow the algorithm down significantly. We
can deal with this by exiting the iterations (and setting d = 0)
whenever z = 0 at the end of one of them.

E. Temporal Sparsity, Event Clearing, Static Participation,
and Median Slope Regression

We also use the shrinkage operator on d [the second
equation in equation block (15)]. Every time d is computed,
we apply shrinkage with a separate parameter θd substituting
the original βθ terms. This allows for better temporal sparsity.
Furthermore, if d is ever zero for two iterations in a row, we
consider the event to be cleared and set all parameters (v, z,
and u) back to zero.

The updates (14) are only computed during the kick-start.
After a successful kick-start, the participation factors are held
constant, and only d is updated. To avoid the case of a small
number of noisy outliers continuing the event beyond its true
timespan, we estimate d during these periods as the median
slope estimate over PMUs with nonzero participation factors.
That is, during event continuation periods, we estimate d via
the following equation.

d = Median (y/z | |z| > 0) (18)

This can be viewed as a slight simplification to the Theil-
Sen estimator [22].

F. Summary / Organization of Submodules

The organization of these SPIKE-P submodules can be
summarized as follows: 1) Initialize all variables to zero.
2) Receive a new data vector. 3) Attempt kick-start via
iterations of (14) coupled with denoising; escape on failure,
mark event=True if successful. If event is True: 4) Receive
more data. Estimate d via median filtering. 5) Check for event
clearing; mark event=False if cleared. Data is replaced at each
retrieval of new data.

IV. EXPERIMENTS

A. Comparison Methods

1) OLAP: OLAP, short for ‘OnLine Algorithm for PMU
data processing’ [15], may be considered state of the art in
PMU missing value replacement literature. At its core, OLAP
is a Singular Value Decomposition (SVD) based approach
that relies on the assumption that a streaming window of
vector PMU data will form a low-rank matrix. At each new
data retrieval, SVD is performed, and all but the first few
singular vectors are dropped. The remaining right singular
vectors can then be used on the observed data to obtain a
linear combination of left singular vectors that best fit those
observations. We can fill in the unobserved data with the
corresponding values in that linear combination. OLAP also
features an event-detection submodule, making it quite useful
in practice. However, this event detection scheme is irrelevant
to performance comparisons on missing value replacement,
so we will not cover it here. OLAP features a few hyperpa-
rameters - most importantly, the number of retained singular
values and the size of the rolling window of data. We have
found that using both a window size of one and just one
singular vector yields the best trade-off of performance vs.
time through experimentation. These hyper-parameters also
ensure that OLAP and SPIKE-P have very similar computation
times. Thus these are the hyperparameters that we will use for
comparison against SPIKE-P.

2) Ensemble of Correlation Predictors: This is a method in
which the correlation (in terms of deviations from the baseline
model) between every pair of PMUs is kept track of. We will
denote the correlation between PMUs i and j as ρij . Each
PMU with existing data is then an estimator for the data at
the PMUs with missing data. For example, if the PMU with
index i has missing data, we can approximate Xi −Xi−1 ≈
ρij(Xj−Xj−1). Averaging over all PMUs with observed data
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then yields the Ensemble of Correlation Predictors. This is
quite similar to the method proposed in reference [13].

B. Experimental Setup

Our dataset consists of two years of real data from hundreds
of PMUs and over one thousand event labels of different types
in the Eastern Interconnection of the U.S. power transmission
grid. All data reported by the PMUs are positive sequence
values. The dataset contains about 1000 labeled events with the
exact timing of that event available. Events are broadly clas-
sified as Bus, Generator, Line, Oscillation, and Transformer
events.

For each event in our dataset, we gathered 2 seconds of data
with our best estimation of the event-timing set to the middle
of the window. The tested algorithms do not see this entire
two-second window at once. They see the first timestamp, then
the second, and so on, simulating online processing. At the
event’s peak, we drop all data from 10% of the participating
PMUs for 5 time instances (one-sixth of a second). We apply
our proposed SPIKE-P and comparison methods to estimate
and replace the missing values from the streaming PMU
dataset. The mean average percent error (MAPE) is then
collected over these dropped and estimated data points. The
average MAPE over the PMUs is calculated for each event.
Since the number of events is on the order of one thousand,
we further averaged these reported MAPE values across the
different event labels, which we report in Tables I-VI. The
hyper-parameters for SPIKE-P used in this experimental are
as follows: β = 1.0, θ = 0.01, θd = 0.1.

For each method tested, each data type is considered in-
dependently. Thus missing values in voltage magnitude data,
for example, do not effect the performance of missing value
replacement on current magnitude data.

C. Numerical Results

Results of our large-scale test, covering every event in our
dataset, can be seen in Tables I-VI. All of these methods are
excellent on normal data (see Table I). SPIKE-P and Baseline
are, of course, identical on such data, as the former reduces
to the latter when no kickoff is ever successful. EnCorr is
often equivalent to baseline in these cases since the estimator
learns its deviation from baseline as an average over a bunch of
uncorrelated errors from the other PMUs, which will average
to very near zero deviation. OLAP performs worse during
normal data than these other methods, especially in missing
value replacement for reactive power.

For Bus Events (Table II), SPIKE-P has a clear performance
advantage over all other methods, seeing substantially lower
errors. OLAP is a distant second here. A similar result occurs
for Oscillation Events (Table V) and Transformer Events
(Table VI). On Generator Events (Table III) and Line Events
(Table IV), SPIKE-P performs best on current magnitude data,
real power data, and reactive power data. However, OLAP
takes a slide lead in terms of voltage magnitude performance,
with SPIKE-P following closely. Both SPIKE-P and OLAP
achieve fantastic results on voltage magnitude data for these
types of events. On a final note, we see that voltage magnitude

data does not appear to participate in our available Oscillation
Event data (Table V) and appears to act as it would during
normal data periods - thus, the results in this row mirror the
results in the corresponding row of the Normal Period table
(Table I) closely.

We would also like to note that all of these methods work
quite well on voltage data for every event. As past literature on
missing value recovery has mostly focused on this data type,
this is not surprising. However, SPIKE-P achieves roughly the
same accuracy as these other methods on voltage magnitude,
which is significantly better than those on the other data types.

The computation times that we report in all of these tables
is the time it took to perform missing value replacement for
the entire 2 second event window (60 samples) for all four
data variables. Thus times that are reported on the order
of 0.01 seconds is equivalent to about 200 microseconds
per iteration. The computational complexity of the baseline
estimator, OLAP, and SPIKE-P are all O(N) where N is the
number of PMUs. All three of these are extremely suitable
for online use. The computational complexity of EnCorr is
worse, as it requires O(N2) computations. Note that this is
specific to the rank-1 version of OLAP that we used here.
Other implementations of OLAP (i.e., implementations using
a higher rank and window size) have worse computation times.

We have also plotted several samples of event-participation
decomposition values and some plots of the values that SPIKE-
P is replacing. In the lefthand column of Figure 1, we took
one of our bus events and plotted the time-differenced current
magnitude values, the event-strength time-series found by
SPIKE-P, and the participation factors found by SPIKE-P. We
see that SPIKE-P has indeed learned the inherent properties
of this event, as the shape of the event-strength time-series
very closely outlines what we would expect from seeing the
time differenced pure values. Similarly, we can see that the
corresponding participation factors have captured the relative
strength of the event under each PMU. The righthand column
of the same figure shows the same set of learned values for the
voltage magnitude data over the same event. A similar analysis
shows the efficacy of this method for voltage magnitude. In
Figure 2, we show a sample of the true (non-differenced)
values of each variable alongside the values SPIKE-P replaced
them with when they were dropped at the event’s peak.
For voltage magnitude, real power, and reactive power, the
replaced values are extremely close to the true values. The
current magnitude performs a little worse for this event, but
the results are still good. This figure, as well as Figure 4,
are labelled with anonymized PMU identification numbers,
so, for example, the line labelled True (id: 1) corresponds
to the line labelled Replaced (id: 1). The PMU identification
numbers are unique to each figure. Unfortunately, we are not
authorized to provide non-anonymized versions of these PMU
IDs. Figures 3 - 4 show the same plots as figures 1 - 2, but
for a Generator Event Sample. Again, the event-strength time
series closely captures what we would expect of the event.
The participation factors closely match the relative level that
each PMU participates in this event. Furthermore, the replaced
values are extremely close to the true ones for all plotted data
types here (current magnitude, voltage magnitude, and real
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NORMAL Base EnCorr OLAP SPIKE-P
Time (s) 0.006 0.143 0.01 0.006
VM (%) 0.550 0.550 0.733 0.550
IM (%) 2.557 2.557 3.538 2.557
P (%) 1.379 1.434 2.032 1.379
Q (%) 3.351 3.351 30.597 3.351

TABLE I: Average MAPEs over Normal Period Tests.

BUS Base EnCorr OLAP SPIKE-P
Time (s) 0.005 0.303 0.067 0.038
VM (%) 2.449 2.449 1.309 1.082
IM (%) 68.792 56.531 21.393 18.995
P (%) 27.413 22.692 7.888 7.225
Q (%) 28.594 24.442 17.580 10.937

TABLE II: Average MAPEs over Bus Event data.

power; this particular event had no apparent effect on reactive
power).

Finally, Figure 5 shows how SPIKE-P performs when one
event closely follows another. Indeed, SPIKE-P can infer
between these events that the first event has cleared and can
correctly capture the relevant variables for the second event.

The above experiments cover short term data drops occur-
ring at the beginning of an event and lasting a few timestamps.
Since most events are very short, this set of experiments
covers the vast majority of real cases. However, some types
of events, like oscillation events, are more prolonged than
the others. We thus provide another experiment to cover
these cases. For this new experiment, we have taken all
of our oscillation events, and dropped PMUs randomly (at
random starting times) throughout their duration for an entire
two-thirds of a second (20 samples). Resulting MAPEs are
averaged across the events and the data types and summarized
in Table VII. Only SPIKE-P shows significant improvement
over the Baseline model under this scenario.

One weakness inherent to every method of online missing
value replacement for PMU data is that at least one datapoint
of the event must be observed before the datapoint we are
attempting to replace. This means that if any PMU were
to have missing data for an entire event, no method would
have good accuracy at replacing the data of that PMU. This

GEN Base EnCorr OLAP SPIKE-P
Time (s) 0.006 0.212 0.008 0.016
VM (%) 3.066 3.066 1.853 2.082
IM (%) 11.500 9.876 7.532 6.507
P (%) 7.894 7.128 6.790 5.942
Q (%) 7.740 7.028 6.867 6.006

TABLE III: Average MAPEs over Generator Event data.

LINE Base EnCorr OLAP SPIKE-P
Time (s) 0.003 0.123 0.004 0.012
VM (%) 1.664 1.664 1.057 1.340
IM (%) 11.683 11.361 11.074 10.389
P (%) 9.171 9.049 8.855 8.678
Q (%) 9.399 9.274 9.103 8.946

TABLE IV: Average MAPEs over Line Event data.

OSC Base EnCorr OLAP SPIKE-P
Time (s) 0.004 0.302 0.052 0.049
VM (%) 1.160 1.160 1.391 1.160
IM (%) 4.885 4.884 7.944 2.710
P (%) 4.899 4.898 7.978 2.712
Q (%) 4.816 4.815 7.881 2.705

TABLE V: Average MAPEs over Oscillation Event data.

TRANS Base EnCorr OLAP SPIKE-P
Time (s) 0.004 0.235 0.013 0.016
VM (%) 1.213 1.213 0.936 0.258
IM (%) 5.826 5.485 6.246 4.632
P (%) 5.212 4.872 5.807 4.104
Q (%) 5.287 4.947 5.867 4.125

TABLE VI: Average MAPEs over Transformer Event data.

Fig. 1: Bus event sample decomposition

Fig. 2: SPIKE-P replacement on a Bus Event sample.
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Fig. 3: Generator Event Sample Decomposition

Fig. 4: SPIKE-P replacement on a Generator Event Sample.

Fig. 5: Line Event Sample Decomposition, Current Magni-
tude. In this sample, a second event closely follows the first.

LONG Base EnCorr OLAP SPIKE-P
Time (s) 0.004 0.235 0.013 0.023
Average (%) 5.20 5.10 5.40 3.41

TABLE VII: Average MAPEs over long term drops on
Oscillation Events.

Fig. 6: SPIKE-P replacement on an event with all data
dropped using only the participation factors of a nearby event.

weakness is present in our method as well, but there is a
workaround - we can take the participation factors of a nearby
event (temporally) and use those as a guess of the participation
factors for any PMU that doesn’t have data at the start of
the event. To demonstrate this, we took one of our windows
which happened to have two events occur within its time-span.
We then estimated participation factors for the first event, and
dropped all data for 2 randomly selected participating PMUs
for the second event. Using only the participation factors of
the first event, the algorithm still only falters by less than 2.5%
MAPE over the completely missing data of the second event.
This results of this experiment are visualized in Figure 6.

D. Discussion

Aside from imputing missing data, SPIKE-P has the po-
tential to drive solutions to other problems. Since the event-
participation decomposition, taken from SPIKE-P as z and d
(generally as vector time-series), we obtain a simple view of
the event, which is quite interpretable. The resulting values
of this decomposition can be used for other purposes. For
example, the event strength could be used as a highly in-
formative engineered feature for event classification, or we
could use SPIKE-P for data augmentation. Data augmentation
refers to a popular scheme of generating fake data points by
perturbing existing data and often helps fill out the space
of inputs needed to train machine learning algorithms. The
use of such techniques is widespread in machine learning
solutions for other domains. SPIKE-P can be used to generate
augmented PMU data spanning over a system event by taking
the decomposition of the original data, slightly perturbing
the participation factors and event strengths, and then re-
integrating those perturbed decomposition variables back into
the original time series.

To improve upon this method, future work will focus on
using a more specialized event detection scheme rather than
the one that is baked into the SPIKE-P estimation steps (with
the kickstart essentially acting as an event detection scheme).
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V. CONCLUSION

We introduce a new method for online Phasor Measure-
ment Unit (PMU) missing value replacement. The approach
is denoted Stochastic Implicit Krasulina Event-Participation
Decomposition (SPIKE-P). It decomposes PMU event re-
sponses into a dynamic component capturing the essence of the
event strength and a static component capturing each PMU’s
participation in that event. When missing values occur, we
can use these two components, which do not rely on the
missing index, to estimate the correct value. Critically, we
used this decomposition on data derived as the deviation from
a baseline model, which considered magnitude data to be
constant and angular data to follow predictably to its frequency
data. Extensive testing on real power system event data showed
that our approach achieved state-of-the-art performance in
terms of Mean Absolute Percent Errors (MAPEs) for PMUs
dropped during event periods and that the method was easily
fast enough to be performed online.
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