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Abstract—The proliferation of smart meters has led to the
development of data-driven control algorithms in power dis-
tribution systems. However, many of these algorithms rely on
accurate topological data. Network reconfiguration can change
the topology of the system. It is critical for the system operators
to quickly identify the updated topology and take appropriate
control actions accordingly. This paper develops an algorithm
based on graph signal processing to detect changes in the topology
and to identify the new topology after reconfiguration using
smart meter voltage magnitude measurements by comparing
the smoothness of the signal on the possible topologies. The
algorithm is fast, online, and requires only voltage magnitude
measurements. Numerical results are presented on 16, 33, and
70-bus test cases. The algorithm achieves good performance for
both detecting changes and identifying topology across all test
cases.

Index Terms—Topology identification, power distribution sys-
tem, graph signal processing, smart meter.

I. INTRODUCTION

As the costs of advanced metering infrastructure have
dropped in recent years, the penetration of smart meters for
commercial and residential customers has increased substan-
tially. The phenomenon has created a surge in data on power
distribution systems, enabling the development of advanced
data-driven applications [1]. Many such applications, however,
require knowledge of the physical status of the network,
referred to as the network topology. At the same time, the
development of new data-driven applications, such as network
reconfiguration for loss mitigation [2], [3], has increased the
motivation to make network topology increasingly mutable.
Thus, there is a need to develop an algorithm which can
provide insight to the topology of the network, when the
remote monitoring function for switches fails.

We treat the problem in two parts. The first is topology
change detection. A power distribution grid often operates in a
default topology. A fault and subsequent closing of a tie switch
to restore power forces the network to transition to a different
topology. It is key to detect when these changes occur. The
second is topology identification. When such a change occurs,
it is necessary to determine what is the new topology. To solve
the first sub-problem, we propose a graph signal processing
approach to quantify the relationship between a signal of nodal

voltages and the set of possible topologies on which that signal
could have been measured. To solve the second sub-problem,
we propose a robust algorithm that uses these relationships to
detect topology changes and identify reconfigured topologies.
The proposed method serves as a data-driven verification of
the physical operating status of the network.

The remainder of this paper is organized as follows. Section
II reviews works related to the problem of topology identifi-
cation. Section III introduces the foundations of graph signal
processing and the proposed algorithm for topology change
detection and identification. Section IV describes the experi-
mental setup and evaluates the performance of the proposed
algorithm. Section V presents the conclusions.

II. RELATED WORK

The problem of topology change detection and identification
in distribution systems is well-studied, and can be grouped into
three main classes. The first class, fault detection, typically
seeks to detect when a fault occurs, thus cutting off service
to some part of the grid. Many such algorithms leverage
knowledge of the physical parameters along with a limited
measurements such as from micro phasor measurement units
(µ-PMUs) [4]–[6] or power-flow meters [7]. Broadly speaking,
these algorithms either rely on the assumption that µ-PMU
penetration is at a sufficient level in distribution systems,
or assume that additional metering infrastructure could be
installed in order to enable the algorithm.

The second class focuses on reconstructing the topology as
well as line parameters from measurement data. Algorithms
have been proposed which take data-driven approaches to
estimating topology and parameters using power injection data
[8] or estimating topology using sensors on distributed energy
resources [9]. Principle component analysis and graph theory
have also been used to estimate the topology of the system
from smart meter measurements alone [10]. However, these
methods estimate topology on windows of data, with window
lengths on the scale of days, or much longer. As topologies
become increasingly mutable, it is important to detect the
change in a topology as soon as it occurs.

The third class, and the one that the present work most
relates, focuses on detecting changes to topology or identifying
the current topology in real-time operations. In other words,
the algorithms work on single time-step measurements or very978-1-6654-4875-8/21/$31.00 ©2021 IEEE



short windows, so that a change can be detected almost as soon
as it occurs. A kernel-node-map technique is used to identify
topology, but not line parameters, from a subset of feasible
topologies [11]. A time-series signature verification method
is proposed to identify topology changes using µ-PMU data
along with knowledge of physical parameters of the system
[12]. However, these methods rely on voltage and current
phasor measurements at high frequencies from µ-PMUs, which
have very limited penetration in distribution grids and thus the
assumption that these measurements are available may not be
realistic.

This paper overcomes these shortcomings by providing an
algorithm which is fast, reliable, and requires no additional
sensor infrastructure other than the increasingly-prevalent
smart meters. The method also requires relatively little training
data. Finally, the algorithm can be used online on single time
steps of data as soon as those data points are available.

III. TECHNICAL METHOD

A. Overall Framework

The proposed algorithm is based on graph signal processing
(GSP), and in particular, the notion that voltage signals will be
smoothest on the graph that represents the physical topology of
the power distribution network. The overall framework of the
proposed algorithm consists of a training phase and an online
testing phase as shown in Fig. 1. In the training phase, the
smoothness of the voltage signals on topologies representing
normal operations is studied. In the online testing phase, the
algorithm consists of two steps. The first step detects topology
change in the distribution network. If a topology change is
detected, in the second step the topology of the reconfigured
network is identified.

Fig. 1. Overall framework of the proposed topology change detection and
identification algorithm for power distribution systems.

B. Review of Graph Signal Processing

A graph is defined by a set of N nodes or vertices
V ∈ [v1, ..., vN ], and a set of M edges E ∈ [e1, . . . , eM ]
between nodes. These connections are modelled by the N×N
adjacency matrix, a symmetric matrix where the ijth element
aij = 1 if eij exists and 0 otherwise. The weight matrix W is
an extension of the adjacency matrix, in which the wij may
assume some value relating to the strength of the connection
between nodes i and j. The degree matrix D is a diagonal
matrix in which the entries dii are calculated as the sum of
all weights of edges connected to node i: dii =

∑N
j=1 wij .

Finally, the graph Laplacian, the basic building block of graph
signal processing, can then be defined as L = D −W .

Graph signal processing extends traditional graph theory by
defining a signal as a set of N measurements x = {x1, ..., xN}
on the nodes of the graph. The graph Laplacian may be
decomposed by eigenvalue decomposition as L = UΛU ,
where the columns of U are the eigenvectors of L and Λ is a
matrix comprised of the eigenvalues on its diagonal. Typically,
the eigenvalues and corresponding eigenvectors are sorted
in ascending order [13]. The magnitude of the eigenvalues
corresponds to the frequency component of the signal, with
eigenvectors corresponding to small eigenvalues being part of
the low-frequency component.

Using the eigenvalue decomposition of the Laplacian, the
graph Fourier transform (GFT) X of signal x, or the spectral
signal, is defined as:

X = U−1x (1)

Similar to the Fourier transform of a classical signal, the
GFT takes the signal from the vertex domain to the frequency
domain. Arising from this transformation is a notion of
‘smoothness’, a measure of the overall variation across the
graph. A signal is smooth if it varies slowly in the frequency
domain, and thus has mostly low-frequency components. A
so-called ‘smoothness score’ may be defined [13] as:

s = xTLx (2)

This score quantifies the smoothness of a signal on a graph.
A smaller score corresponds to a signal x that is more smooth
on the graph with Laplacian L.

C. GSP for Power Distribution System Measurements

Power distribution systems can be readily represented by
the graph theoretical framework. The nodes of the graph may
be represented by the buses in the system. The edges of the
graph are represented by the distribution lines connecting the
nodes. We define the signal on the graph as the set of nodal
voltage magnitude measurements recorded by smart meters.

1) Weight Matrix Definition: The graph representation of
physical lines has a natural choice for the weights of edges:
the line admittance. The admittance Y is the reciprocal of the
line impedance Z: Y = 1

Z . The intuition behind this choice
is that the voltage signal should be more similar at nodes
connected by lines with small impedance values than those



connected by lines with large impedances. In essence, the
line admittance functions as a proxy for the line voltage drop.
However, impedance is complex, consisting of resistance and
reactance. The ordering of eigenvalues for complex Laplacians
is not well-defined in graph signal processing. To avoid such
issues, we use the magnitude of the complex impedance in the
weight matrix. The weight between nodes i and j, if they are
connected by a line with impedance Zij , is then defined as
wij = 1

|Zij | .

D. Topology Change Detection and Identification Algorithm

A power distribution network consists of a set of normally-
closed line switches and normally-open tie switches. The
distribution network may have more than one feeder. First,
we assume that there is a default operating topology for the
distribution system. Under normal conditions, the distribution
system operates in this default topology. The network may
transition to a different topology by the opening of a normally-
closed switch and the closing of a tie line. This transition
may occur due to a fault or the operation of a network
reconfiguration algorithm. To provide an example, in Fig.
1, τ0 represents the default topology, and τ1, τ2 represent
reconfigured topologies. It is also assumed that the operator
has access to the set of all possible topologies that the
distribution network may operate in. Let ntops be the number
of all possible topologies, and the set T = {τ0, τ1, ..., τntops−1

}
be the set of all possible topologies, where τ0 denotes the
default operating topology. Also, let brackets {} denote an
unordered set, and parentheses () denote an ordered set.

The proposed algorithm is based on the smoothness score,
and in particular, the idea that the voltage signal at any given
time step will be smoothest on the graph that corresponds to
the physical status of the power distribution network at that
time. Thus, the ordering of the smoothness scores can be used
to not only detect when the network changes from normal
operating status, but also the reconfigured topology.

The algorithm consists of a training phase, and an online
detection phase. In the online phase, the algorithm comprises
two steps: one step for detecting a change in topology from
the default operating topology, and a step for identifying the
new topology. The pseudo code of the algorithm is described
in Algorithm 1.

1) Training phase: The algorithm first requires a training
phase in order to learn the behavior of smoothness scores for
all topologies under default operation. Intuitively, it is expected
that under normal operation, the smoothest score corresponds
to the default topology τ0. However, the physical parameters
of the network as well as fluctuations in voltage signals can
result in one or more altered topologies having comparable or
better smoothness during certain periods of normal operation.
As a result, requiring that τ0 be the smoothest during normal
operation may lead to many normal time steps being misla-
beled as reconfigured. Much more stable than the smoothest
topologies is the ordering of topologies, ranked by ascending
smoothness score. In particular, for normal operation, a few
topologies will consistently be amongst the smoothest.

Algorithm 1: Topology Change Detection and Identi-
fication

define nbest;
define T = {τ0, τ1, ..., τntops

};
initialize Tnormal = {};
normal ∈ {True, False}
while training do

S ←− {sτ0 , sτ1 , ..., sτntops−1
};

Ts←− (T,≺);
Tnbest ←− (Tsi)1≤i≤nbest

;
if Tnbest /∈ Tnormal then
Tnormal ←− {Tnormal, Tnbest};

end
end
while online do

S ←− {sτ0 , sτ1 , ..., sτntops
};

Ts←− (T,≺);
T (nbest) ←− (Tsi)1≤i≤nbest

;
if Tnbest ∈ Tnormal then

normal=True;
else

normal=False;
end
if normal then

τcurrent = τ0
else

τcurrent = arg minτn sτn
end

end

We assume the training phase data is exclusively from
periods where the default topology is used. For each time step
comprising the most recent nodal voltage snapshot, compute
the smoothness score sτ for each τ ∈ T = {τ0, τ1, ...}.
With a slight abuse of notation, let Ts = (T,≺) be the
set T sorted by ascending sτ . Then, Tnbest is the truncation
of this ordered set, keeping only the first nbest topologies:
Tnbest = (Tsi)1≤i≤nbest

. These steps can be visualized
by the topology smoothness ranking subsection of Fig. 1.
Let Tnormal be the set of Tnbest corresponding to normal
operation. Tnormal is initialized empty. At each time step,
Tnbest is calculated and added to Tnormal if it is not already in
the set. Tnormal is then the set of unique, ordered Tnbest which
corresponds to normal operating conditions. These steps are
shown in the training phase subsection of Fig. 1. This set will
then be used during the online phase to determine whether the
network is operating in an altered topology.

2) Online Phase: In the online detection phase, Tnormal is
used to determine if the observed Tnbest corresponds to normal
operation. Streaming data is assumed, meaning data is made
available to the algorithm at the same rate as it is collected.
For each new voltage signal, the smoothness score for each
topology is calculated, and Tnbest is formed. Then Tnbest

is compared to the Tnormal discovered during the training



phase. If the current Tnbest is found, then the current time
step has normal topology and the topology at the current step
τcurrent = τ0. The two sets must have both the same members
and ordering to be considered equal. If the current Tnbest was
not observed during the training phase, then the time step is
flagged as having abnormal topology. If abnormal topology is
flagged, then the topology on which the signal is the smoothest
is labelled as the current topology, τcurrent = arg minτ sτ .

The algorithm requires very little parameter tuning. The
only true hyperparameter, nbest, is not extremely sensitive.
The parameter can be tuned by observing the number of sets
discovered in the training phase. If a very small number of sets
(e.g., less than 3) are found, the parameter is likely too low, and
there is a likelihood that in the online phase, some abnormal
time steps would have the same Tnbest . Essentially, the sets
are too general. Conversely, if there are a very large number
of sets (e.g., more than 10), the sets are likely too specific and
the chosen nbest is too large. In this case, the training phase
sets will not generalize well to the online detection phase.

The choice of training set size also functions as a pseudo-
hyperparameter. If the training set is too small, the model is
more likely to incorrectly flag normal topologies as topology
changes. If the training set is too large, the model may label
altered topologies as normal. In essence, too small and too
large training sets may cause underfitting and overfitting,
respectively. There is a notable drop in the true positive rate
when the training set size is increased from 100 to 300.
Essentially, when the training set is this small, the full set
of normal topologies can not be presented in the training set.

This behavior invites the suggestion that, rather than in-
cluding every set in T , there should be a minimum frequency
of Tnbest to be included. By doing so, it would be expected
that the problems too-large training sets would be avoided. In
practice, this has several drawbacks. The first is that selecting
a value for this threshold is more sensitive than selecting a
training set size. The second is that if several unique Tnbest

share the same frequency in the training phase, they will either
be all included or all excluded from T . Conversely, increasing
or decreasing the set size by some amount may only affect the
inclusion or exclusion of a single Tnbest . For these reasons,
no such threshold is used.

IV. EXPERIMENTAL VALIDATION

A. Experimental Setup

To validate the performance of the proposed method, we
implement the algorithm on three distribution networks. The
16-bus network has 3 feeders and 3 tie switches [14]. The 33-
bus network has 1 feeder and 5 tie switches [15]. The 70-bus
network has 2 feeders and 11 tie switches [16].

We model load data with Commission for Energy Regu-
lation smart meter data from the Irish Social Science Data
Archive [17]. Time-series data is generated by representing
each load in the networks by 200 randomly-sampled customers
in the data set. The aggregated loads are then scaled such that
the average load at each node is equal to the load specified
in the original test cases, yielding approximately 8 months of

data in 30-minute intervals. Nodal voltage data is obtained by
the power flow solutions, where the topology at each time step
is defined in the following way.

To generate the chosen topology for each timestep, a
window-based approach is taken. Windows of static topology
are assigned with lengths uniformly distributed between 12
and 16 time steps, corresponding to 6 to 8 hours of data. In
each window, normal topology is assigned with probability
0.7. The probability 0.7 is chosen to provide a reasonable bal-
ance between normal and reconfigured topologies to evaluate
the algorithm. In the altered topology windows, a normally-
closed line is chosen at random to open from the set of all
normally-closed lines and a tie switch to close to restore
service to every node. In the cases where more than one
tie switch could close to restore service for the selected
open line, a simple reconfiguration algorithm is implemented
by comparing the power flow solution for each topology,
and choosing the one that best preserves voltage quality. In
these networks, under normal loading, a given open line will
generally have a single tie corresponding to the best preserved
voltage quality across all time steps. Some topologies have
poor power flow convergence characteristics, so the corre-
sponding open-close switch pairs are not allowed. We also do
not allow configurations which isolate a feeder completely and
shift all loads to another feeder, as this would cause voltage
magnitude to dip below acceptable levels. In total, the 16-
, 33-, and 70-bus feeders each have 9, 26 and 52 possible
reconfigured topologies, not including the default topology.

B. Numerical Results

The performance of the method is evaluated using metrics
both for detection and identification. For detection, the true
positive rate and true negative rate are presented, where posi-
tives represent reconfigured topology and negatives represent
normal topology. We present the Fβ score with β = 0.5, a
variation of the well-known F1 score.

Fβ = (1 + β2) · precision · recall
β2 · precision+ recall

(3)

Precision and recall in the above equation are calculated as:

precision =
True Positives

True Positives + False Positives

recall =
True Positives

True Positives + False Negatives

In practice, there is a high degree on unbalance between
normal operation and reconfigured operation, with a network
operating in the normal configuration for the vast majority
of the time. In such a scenario, a small increase in the false
positive rate would have a disproportionate effect on the ratio
between true and false positives, which would quickly erode
the ability of an operator to trust results of the algorithm. As
such, greater importance is placed on precision than recall. For
this reason, we present the Fβ score with β = 0.5.

Each unique topology can be represented by the changes
in switches with regard to the normal topology. In other



TABLE I
TOPOLOGY CHANGE DETECTION PERFORMANCE OF GSP-BASED

ALGORITHM

Network True Positive Rate True Negative Rate F0.5 Score
16 bus 1.00 0.999 0.999
33 bus 0.925 0.997 0.982
70 bus 0.944 0.992 0.982

TABLE II
TOPOLOGY IDENTIFICATION PERFORMANCE OF GSP-BASED ALGORITHM

Network Open Accuracy Closed Accuracy τ Accuracy
16 bus 1.000 1.000 1.000
33 bus 0.875 0.876 0.875
70 bus 0.848 0.940 0.848

words, the reconfigured topology can be described by the
opened line and the closed tie. In some cases, the algorithm
correctly identifies the tie that closed but not the opened line.
For this reason, we present the accuracy for closed switch
identification, open switch identification, and entire topology
τ identification. Metrics for identification are calculated with
respect to only reconfigured time steps. Thus these metrics
include false negatives from the previous step but not true
negatives nor false positives.

Detection metrics are shown in Table I. The algorithm
achieves great performance with regards to detecting topology
change across all test cases. Most importantly, high true
positive rate is accompanied by a high true negative rate.
The result is that there is a high degree of confidence in
those events identified as altered topology, and the unbalanced
nature of real-world operation would not result in an undue
number of false positives. This is reflected in the high F0.5

score. Identification metrics are shown in Table II. In all cases,
the algorithm successfully identifies the reconfigured topology
with high accuracy. In general, the closed switch accuracy is
equal or greater than the open switch accuracy. This is due
to the nature of distribution systems, where the number of tie
switches is generally much fewer than the number of normally-
closed switches, making it easier to select the correct tie switch
amongst them.

Figures 2 and 3 show the performance of the algorithm
with different values of the parameter nbest and the training
set size pseudo-parameter. The figures show the algorithm is
not particularly sensitive to the values of these parameters. The
figures also show how choice of parameter involves a tradeoff
between true positive and true negative rate, with a higher true
positive achievable at the expense of lower true negative and
vice versa.

V. CONCLUSION

In this paper, we proposed a novel algorithm for monitoring
power distribution system topology. The algorithm exploits
the behavior of the smoothness scores of a voltage signal on
possible topologies to determine when a change occurs, and
identify the new topology. The algorithm relies on very little

Fig. 2. Detection and identification metrics for training set sizes of 100, 300,
500, 700, and 1000 measurements in the 33-bus system.

Fig. 3. Detection and identification metrics for nbest values of 2, 3, 4, and
5 measurements in the 33-bus system.

parameter tuning, and can be used online. The performance
of the algorithm is verified using real-world data modeled
on 16-bus, 33-bus, and 70-bus test cases. In all cases, the
algorithm has excellent performance with regards to both
topology change detection and topology identification, with
extremely low misdetection of normal topology time steps.
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