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Abstract—Online detection of anomalies is crucial to enhancing
the reliability and resiliency of power systems. We propose a novel
data-driven online event detection algorithm with synchrophasor
data using graph signal processing. In addition to being extremely
scalable, our proposed algorithm can accurately capture and
leverage the spatio-temporal correlations of the streaming PMU
data. This paper also develops a general technique to decouple
spatial and temporal correlations in multiple time series. Finally,
we develop a unique framework to construct a weighted adja-
cency matrix and graph Laplacian for product graph. Case stud-
ies with real-world, large-scale synchrophasor data demonstrate
the scalability and accuracy of our proposed event detection
algorithm. Compared to the state-of-the-art benchmark, the
proposed method not only achieves higher detection accuracy
but also yields higher computational efficiency.

Index Terms—Event detection, graph Fourier transform, graph
signal processing, phasor measurement unit.

I. INTRODUCTION

Timely detection of abnormal power system phenomena
caused by factors such as extreme weather and equipment
failure can facilitate system operators in taking corrective
control actions to restore the system from an insecure or
emergency state. Although the wide-spread adoption of phasor
measurement units (PMUs) makes it possible to develop data-
driven anomaly detection algorithms, it also brings computa-
tional challenges to deal with a large amount of streaming
PMU data with strong spatio-temporal correlations. The goal
of this paper is to develop a data-driven online detection
algorithm of events that cause abnormal phenomena (hereafter,
it is called the abnormal event in this paper), which is not
only computationally efficient but also adequately captures the
complex spatio-temporal correlations in the PMU data.

Disclaimer: this report was prepared as an account of work sponsored
by an agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees, makes any
warranty, express or implied, or assumes any legal liability or responsibility
for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise
does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.

The majority of existing literature for online abnormal event
detection can be categorized into five groups. The first group
of work uses signal processing techniques such as wavelet
transform [1], [2] and short-time Fourier transform [3] to
identify large spectral components in high-frequency bands,
which are indicative of power system events. The second group
of work detects events based on the forecast residuals of PMU
measurements [4], [5], [6]. The third group of work uses
the observation that spatial correlations between PMUs could
encounter significant changes during abnormal events. Event
indicators based on correlation coefficient matrix [7], sample
covariance matrix [8], and tensor sample covariance matrix [9]
are derived. The fourth group of work performs online event
detection based on the observation that the low-rank property
of PMU data no longer holds when the system transitions from
normal to abnormal state [10], [11]. The last group of work
leverages data mining techniques, such as matrix profile, to
detect abnormal events [12].

The complex spatio-temporal correlations in streaming
PMU data have not been fully exploited by the existing
literature. The spatial correlations among different PMUs are
ignored in the first and fifth groups of literature [1], [2], [3],
[12]. The temporal dependency of the streaming PMU data is
not directly modeled in [6], [7], [8], [9]. The spatial and tempo-
ral correlations of PMUs are mixed in the mathematical model
of [4], [5] and could not be analyzed explicitly. Although a
few papers incorporate spatio-temporal correlations into the
analysis, their algorithms are computationally expensive. For
example, in the online event detection stage, singular value
decomposition [10], [11] and convex optimization problem [4]
need to be solved. Thus, they do not scale well to large-scale
networks with thousands of PMUs.

In this paper, we fill the knowledge gap by developing a
scalable online abnormal event detection algorithm based on
graph signal processing (GSP). Our proposed algorithm inher-
its the computational efficiency and remarkable scalability of
the GSP approach. Our proposed algorithm rigorously encodes
the spatial and temporal correlations of the streaming PMU
data in the weighted adjacency matrix and graph Laplacian
of the product graph. A data-driven algorithm is developed
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Fig. 1: Overall framework of the proposed abnormal event detection frame-
work based on GSP.

to construct the graph Laplacian of the product graph based
on the decoupled spatial and temporal correlation matrices. In
the offline stage, we first fit a vector autoregressive (VAR)
model to capture the intrinsic spatio-temporal correlations
of the streaming PMU data. Then a convex optimization
problem is solved online to identify the decoupled spatial
and temporal correlations of the PMU data. Our proposed
GSP based algorithm has a linear time complexity for online
implementation, providing great potential in real-time event
detection for very large PMU networks.

The unique contributions of this paper are as follows:
• We develop a computationally efficient and scalable on-

line abnormal event detection algorithm based on GSP
for streaming PMU data.

• We propose a novel data-driven approach to construct
graph Laplacian of a product graph based on spatial and
temporal coefficient matrices.

• We design a general approach to decouple the spatial
and temporal correlations in multiple time series based
on GSP and vector autoregressive model.

The rest of this paper is organized as follows: Section II first
introduces the overall framework of the proposed abnormal
event detection algorithm. It then presents the technical meth-
ods for estimating spatial and temporal coefficient matrices,
constructing graph Laplacian, and detecting abnormal events
based on GSP. Section III presents several case studies with
real-world PMU data in the United States. The conclusion is
stated in Section IV.

II. ABNORMAL EVENT DETECTION BASED ON GRAPH
SIGNAL PROCESSING

In this section, we first provide an overview of the overall
framework of the proposed online abnormal event detection
algorithm based on graph inference and graph signal process-
ing. Then we present the key technical methods for modeling
spatial-temporal correlations of PMU data, constructing graph
Laplacian, and detecting abnormal events with graph signal
processing.

A. Overall Framework

The overall framework of the proposed online abnormal
event detection algorithm using streaming PMU data is shown

in Fig. 1. The proposed abnormal event detection algorithm
can be carried out in two stages: off-line training and online
abnormal event detection. The off-line training stage contains
two key modules: the modeling of spatial-temporal correla-
tions of PMU data and the construction of graph Laplacian.
The online event detection stage leverages graph signal pro-
cessing technique to identify abnormal phenomena in power
system operations.

The aim of the off-line training process is to construct
a graph Laplacian based on streaming PMU data for the
online anomaly detection stage. The constructed graph Lapla-
cian should accurately capture the spatio-temporal correlation
among multiple PMUs. The graph Laplacian does not need
to be updated frequently since the majority of the underlying
transmission network topology and power plants stay the same.
In this paper, we construct the graph Laplacian by deriving
the spatial and temporal coefficient matrices of the PMU
data streams from the vector autoregressive processes. The
technical details of the off-line training process will be shown
in Section II.B and II.C.

We develop a graph signal processing-based anomaly de-
tection algorithm to detect abnormal power system events
in the online stage. The algorithm takes incoming PMU
measurements from the phasor data concentrator as inputs and
returns the abnormal event indicator before the next data frame
arrives. The proposed online anomaly detection procedure is
scalable and can be computationally efficient because most of
the computational burden takes place in the off-line stage.

B. Inference of Spatial and Temporal Coefficient Matrices for
PMU Data Streams

In this subsection, we present a two-step process for in-
ferring spatial and temporal coefficient matrices of multiple
PMU time series. In the first step, we model multiple PMU
data streams as a vector autoregressive process. In the second
step, we derive the spatial and temporal coefficient matrices
of the vector autoregressive process. These two coefficient
matrices will be used to construct the graph Laplacian in the
next subsection.

1) Step I: Model multiple PMU Data Streams as Vec-
tor Autoregressive Processes: Suppose we receive streaming
data from N PMUs. Let yt be the data frame of certain
measurements recorded by these N PMUs at time stamp t.
{yt|t = 1, · · · , T} is a vector time series. We model the
vector time series with the following spatio-temporal model
to separate the spatial and temporal correlations:

yt = Ayt +

p∑
j=1

Φjyt−j + εt (1)

where A is called the spatial coefficient matrix. Φj denotes the
j-th temporal coefficient matrix. εt is a white noise vector. p
is the order of the model. Note that this spatio-temporal model
specification is different from the standard VAR model due to
the introduction of spatial coefficient matrix A.



Assuming (I−A) is invertible, we can reformulate (1) into
the standard VAR(p) model form:

yt =

p∑
j=1

(I −A)−1Φjyt−j + (I −A)−1εt. (2)

Let Ψj denote (I − A)−1Φj . Ψjs are the coefficient matri-
ces in the standard VAR(p) model, which can be estimated
through multivariate least squares with a training dataset [13].
The model order p can be determined through the Bayesian
information criterion (BIC) [14].

2) Step II: Derive Spatial and Temporal Coefficient Matri-
ces: The remaining question is how to find a pair of spatial and
temporal coefficient matrices A and Φj , that not only satisfies
the following constraint but also achieves the highest level of
spatio-temporal separation.

Ψj = (I −A)−1Φj (3)

In this study, we focus on solving the first order temporal
coefficient matrix, Φ1, since it captures the majority of the
temporal correlations in streaming PMU data. The temporal
coefficient matrices with longer time lags can be easily derived
once A is known. Furthermore, we only use A and Φ1 in the
graph Laplacian construction. Thus, the temporal coefficient
matrix refers to Φ1 hereafter.

We formulate the following optimization problem to find
the spatial and temporal coefficient matrices A and Φ1:

minimize
A,Φ1

||Φ1 − I||F (4)

subject to (I −A)Ψ1 = Φ1 (5)

A = AT (6)

Φ1 = ΦT
1 (7)

where || · ||F denotes the matrix Frobenius norm. The motiva-
tion for selecting the objective function (4) is to decouple the
spatial and temporal correlations in the most powerful fashion.
This can be achieved by suppressing the off-diagonal elements
of Φ1. The resultant Φ1 primarily captures the temporal
correlation while A accounts for the majority of the spatial
correlation. While any diagonal matrix could replace the
identity matrix in (4), we chose the identity matrix due to its
connection to the standard Discrete Fourier Transform (DFT)
in graph signal processing. Since graph signal processing-
based anomaly detection can be seen as a spatio-temporal
generalization of the DFT, it makes sense to keep the temporal
component as close to the standard temporal DFT as possible.
Constraint (5) is equivalent to (3). Constraints (6) and (7)
enforce A and Φ1 to be symmetric. The reason for enforcing
these two constraints will be evident in the graph Laplacian
construction process.

Note that the above optimization problem is convex and can
be easily tackled by commercial solvers such as Gurobi.

C. Graph Laplacian Construction

In this subsection, we build the graph Laplacian from the
spatial and temporal coefficient matrices derived from the

PMU 1

PMU 3

PMU 2

Fig. 2: Product graph construction for PMU data streams.

VAR model. We first develop a product graph to represent
the targeted PMUs’ time-series data. Then, we construct the
Laplacian matrix for the product graph.

1) Product Graph: We adopt an undirected product
graph to represent the domain of PMU time series
{yt,yt−1, · · · ,yt−Tw+1} with a window length of Tw. For-
mally, the proposed product graph G = (V, E) is a strong
product of a complete graph G1 = (V1, E1) and a line graph
G2 = (V2, E2). The nodes in G1 and G2 represent different
PMUs and their time stamps. The nodes (also called vertices)
and edges of G can be derived from those of G1 and G2 [15]:

|V| = |V1| · |V2| (8)
E = E1 ⊗ E2 + E1 ⊗ I|V2| + E2 ⊗ I|V1| (9)

where | · | returns the cardinality of a set, ⊗ denotes the
Kronecker product, and IN is the identity matrix of size N .

Fig. 2 shows an example of the proposed product graph with
three PMUs and a window length Tw = 3. In Fig. 2, the blue
graph, G1, on the left has three fully connected nodes and
represents the spatial correlations among PMUs. The yellow
graph, G2, in the middle corresponds to the temporal rela-
tionship between adjacent time stamps. The resulting product
graph is shown on the right hand side.

2) Laplacian Matrix: The Laplacian matrix, L of a graph
G can be derived as L = D−W , where W is the (symmetric)
weighted adjacency matrix. The degree matrix D is a diagonal
matrix with Dmm =

∑
nWmn [16]. The graph Laplacian is

symmetric.
To construct the symmetric graph Laplacian matrix rep-

resenting the PMU data streams, we need to first build the
weighted adjacency matrix W of the product graph. We
propose to build the weighted adjacency matrix W with the
spatial and temporal coefficient matrices A and Φ1 as follows:

W =



A Φ1 0 · · · 0

Φ1 A Φ1

...

0 Φ1
. . . . . . 0

...
. . . A Φ1

0 · · · 0 Φ1 A


(10)

Note that the blue edges of the product graph G in Fig. 2
model the spatial correlations among different PMUs. Thus,
the diagonal sub-matrices of W are set as the spatial coefficient
matrix A. Similarly, the yellow edges represent the temporal
correlations between measurements from two adjacent time



stamps in the product graph. Hence, we set the sub-matrices
adjacent to the diagonal sub-matrices in W as the temporal
coefficient matrix Φ1. Note that the size of W is (N × Tw)
by (N × Tw), which means, the size of W depends on the
number of PMUs and the window length.

D. Online Abnormal Event Detection

In this subsection, we present the online abnormal event
detection algorithm based on graph signal processing. First,
we briefly describe the basics of graph signal spectral analysis
using graph Fourier transform. Then we explain how to
calculate abnormal event indicator for streaming PMU data
with graph Fourier transform technique.

1) Graph Fourier Transform: Let s = [s(1), · · · , s(n)]
denote the graph signals at a particular time stamp, where
s(n) represents the value of the signal at the n-th node. In
this study, n = N × Tw. The graph Fourier transform (GFT)
of a signal S converts the original signal s into the Laplacian
spectral domain as follows [17]:

S = U−1s (11)

where U = [u1, · · · ,un] is a matrix of eigenvectors of the
graph Laplacian L, i.e., UΛU−1 = L. Λ is a diagonal matrix
consisting of the eigenvalues of L. The graph Laplacian matrix
is positive semi-definite by definition. Its eigenvalues are real
and non-negative, and its eigenvectors form an orthonormal
basis. We follow the convention that the eigenvectors in U
are written in an ascending order with respect to their corre-
sponding eigenvalues. It is worth noting that the eigenvectors
with smaller eigenvalues correspond to the lower frequency
components [16].

2) Abnormal Event Detection in the Laplacian Spectral
Domain: The measurements from different PMUs have strong
spatio-temporal correlations under the same system configura-
tion. The measurements of an individual PMU vary slowly
across time during normal system operations. As a conse-
quence, synchrophasor data under normal operating conditions
exhibit low rank property [10], [11].

This low-rank property indicates that the DC component
becomes dominant in the Laplacian spectral domain for
PMU data under normal operating conditions. When abnormal
events occur, the non-DC components, especially the high-
frequency ones, become pronounced. Thus, we select the
following weighted sum of the non-DC Laplacian spectral
components as the abnormal measurement indicator (AMI) for
each type of PMU measurement:

AMI =

n∑
i=2

λiS(i) (12)

where λi is the i-th eigenvalue, and S(i) is the coefficient of
the i-th Laplacian spectral component. Once a new PMU data
frame arrives, the corresponding AMI is calculated.

The voltage and current phasor data gathered from PMUs
are typically first converted to into real power P , reactive
power Q, voltage magnitude |V |, and frequency f for system
monitoring and event detection. We call data of this format

Fig. 3: PQ|V |f data of a sample frequency event.

PQ|V |f data. Note these four types of measurements might
not be equally important in detecting different types of abnor-
mal events. To address this issue, we introduce the abnormal
event indicator (AEI), which is a weighted sum of abnormal
indicators for PMU measurements of P , Q, |V |, and f :

AEI = wP AMIP + wQAMIQ + w|V |AMI|V | + wfAMIf
(13)

where AMIP , AMIQ, AMIV , and AMIf are the abnormal
measurement indicators for P , Q, |V |, and f , respectively.
wP , wQ, w|V |, and wf are the corresponding weights. These
weights can be derived based on domain knowledge. Once the
AEI exceeds a designated threshold, the algorithm reports that
an abnormal event is detected.

In this study, we use an adaptive threshold based on moving
average:

Th(t) = p ·
t−K∑

k=t−1

Th(k) (14)

where K is the size of moving window. p is an adjustable
parameter. With a sufficient amount of data, p can be selected
using grid search with validation dataset.

III. CASE STUDY WITH REAL-WORLD PMU DATA

In this section, we evaluate the performance of our pro-
posed abnormal event detection algorithm using synchrophasor



TABLE I: Weights of P , Q, |V |, and f associated with different categories
of events

Weight wP wQ w|V | wf

Category 1 0.1 0.3 0.4 0.2
Category 2 0.4 0.3 0.15 0.15
Category 3 0.5 0.3 0.05 0.15

data from one of the three interconnections across the U.S.
The PMU data is provided by Pacific Northwest National
Laboratory (PNNL). The state-of-the-art power system event
detection algorithm, OLAP [10], is selected as the benchmark.
In this section, we first describe the dataset and the abnormal
event labeling process. Then, we evaluate the performance
of our proposed event detection algorithm based on graph
signal processing and the benchmark using different types of
real-world events. Finally, we validate the scalability of the
proposed algorithm using a Dell workstation with a CPU of
Intel Xeon E3-1226 v3 @ 3.30GHz.

A. Data Source, Parameters, and Event Labeling

The historical synchrophasor data corresponding to 30 ab-
normal power system events in the United States are extracted
from the entire dataset. These 30 events fall into three cate-
gories: voltage events with faults, voltage events without faults,
and frequency events. Each category includes 10 different
events. The number of PMUs with valid data during each event
period varies between 89 and 138. The sampling rate of PMUs
is 30 Hz. 4 minutes of PMU data are used for each event.
The actual event occurs in the last three minutes of the 4-
minute window. The offline graph Laplacian construction uses
the PMU data from the first minute of the 4-minute window.
In this study, we first apply z-score normalization on the input
PQ|V |f data with a rolling window size of 120 samples, as
a preprocessing. The graph window length Tw is set as 2.

The weights associated with abnormal measurement indica-
tors of P , Q, |V |, and f are shown in Table I. Based on the
domain knowledge, we select different sets of weights to detect
different types of power system events. In practice, the event
type is often unknown. Thus, abnormal event indicators for
different types of events need to be calculated simultaneously
to detect all types of events.

The dynamic behavior caused by an event is generally
observed in a few seconds. However, the event time stamp
provided in the raw dataset is rounded to the minute level.
To verify the proposed algorithm and the benchmark, we
manually labeled the initiating point of all events up to the
second level by inspecting the point-on-wave PQ|V |f data.
Figure 3 shows the PQ|V |f data streams of the PMUs for a
sample frequency event. The red rectangles indicate the timing
when the event occurs.

B. Performance Evaluation for Event Detection Algorithms

In this subsection, we compare the abnormal event detec-
tion performance of the proposed approach with that of a
benchmark algorithm, OLAP [10], on the 30-event datasets.
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We follow Algorithm 2 of [10] and the parameters therein.
Note that we use PQ|V |f data instead of phasors as OLAP’s
inputs, which produces four indicators similar to AMI. In this
study, we call them AMIOP , AMIOQ, AMIO|V |, and AMIOf . An
abnormal event indicator for OLAP, denoted by AEIO, is also
derived similarly through (13).

We run both algorithms on the last three minutes of PQ|V |f
data, which produces two sets of four abnormal measurement
indicators for each event. Figures 4 and 5 show the four
abnormal measurement indicators provided by the proposed
GSP-based approach and the OLAP algorithm for the sample
frequency event depicted in Fig. 3. As shown in Figs. 4 and
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5, the abnormal measurement indicators of the proposed algo-
rithm are more prominent than those of the OLAP approach
during the event period.

Fig. 6 shows the abnormal event indicators derived from
the proposed GSP-based approach and the OLAP algorithm
for the sample generator tripping event. The dotted lines
show the adaptive thresholds with p = 2.2 for GSP and
p = 18 for OLAP, respectively. The peak of the abnormal
event indicator of our proposed method falls in the event
period while the OLAP algorithm fails to detect it. It’s worth
noting the proposed approach also produces a false positive
between time step 4,500 and 5,000. We test both algorithms
on all 30 events in our dataset. Fig. 7 shows the numbers
of true positives and false positives with different values of p.
Table II shows the F1 scores with p = 2.5 for GSP and p = 36
for OLAP, where they achieve the highest values for all test
events. It is observed that the GSP based approach generally
outperforms the OLAP algorithm on the dataset in terms of
both precision and F1 score.

C. Execution Speed and Scalability of the Proposed Algorithm

In this subsection, we evaluate the scalability of the pro-
posed GSP-based approach. For 30 power system events tested
in the previous subsection, the average runtime of the proposed
method on the 3-minute testing data is 6.16 seconds per

TABLE II: F1 scores of the proposed GSP based approach and the OLAP
algorithm

Method GSP OLAP

Category 1 0.7692 0.9
Category 2 1 0.8889
Category 3 0.8889 0.75
All Events 0.8750 0.8519

TABLE III: Scalability test results

Number of PMUs 30 60 90 120

Runtime 3.01 s 4.45 s 5.80 s 6.95 s

event, which is shorter than the 132.88 seconds runtime of the
OLAP algorithm. The enhanced execution speed is because
most of the computation is carried out offline in our proposed
algorithm. Note that the graph Laplacian does not need to be
updated frequently in online abnormal event detection process.

To validate the scalability of the proposed GSP-based event
detection algorithm, we vary the number of PMUs for testing
datasets in the range of 30 and 120 and record the runtime. The
algorithm runtime and the corresponding number of PMUs
are shown in Table III. By comparing the second and the
fifth columns, we can see that the runtime of the algorithm
only increases by a factor of 1.83 while the number of PMUs
quadruples. These results show that the GSP based approach
has excellent scalability.

IV. CONCLUSION

This paper develops a novel online event detection algorithm
based on graph signal processing using steaming synchropha-
sor data. The proposed algorithm has two components: off-line
training and online event detection. In the off-line training
stage, we propose a graph Laplacian construction algorithm,
which separately captures the spatial and temporal correlation
structures of streaming synchrophasor data. In the online event
detection stage, abnormal measurement and event indicators
are derived based on the non-DC components of the graph
Fourier transform of the PMU data. The testing results on
real-world synchrophasor data in the U.S. show that our
proposed algorithm outperforms the state-of-the-art benchmark
algorithm in terms of both precision and execution speed.
Furthermore, our proposed algorithm demonstrates excellent
scalability.
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[16] L. Stanković and E. Sejdić, Vertex-Frequency Analysis of Graph Signals.
Springer, 2019.

[17] A. Sandryhaila and J. M. Moura, “Discrete signal processing on graphs,”
IEEE Transactions on Signal Processing, vol. 61, no. 7, pp. 1644–1656,
Jan. 2013.


