
JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. XX, NO. XX, XX XXXX

This article has been accepted for publication in a future issue of this journal, but has not been edited. Content will change prior to final publication.

A Robust Segmented Mixed Effect Regression
Model for Baseline Electricity Consumption

Forecasting
Xiaoyang Zhou, Yuanqi Gao, Weixin Yao, and Nanpeng Yu

Abstract——Renewable energy production has been surging in
the United States and around the world in recent years. To miti‐
gate increasing renewable generation uncertainty and intermit‐
tency, proactive demand response algorithms and programs are
proposed and developed to improve the utilization of load flexi‐
bility further and increase power system operation efficiency.
One of the biggest challenges to efficient control and operation
of demand response resources is how to forecast the baseline
electricity consumption and estimate the load impact from de‐
mand response resources accurately. In this paper, we propose
to use a mixed-effect segmented regression model and a new ro‐
bust estimate for forecasting the baseline electricity consump‐
tion in Southern California by combining the ideas of random
effect regression model, segmented regression model, and the
least trimmed squares estimate. Since the log-likelihood of the
considered model is not differentiable at breakpoints, we pro‐
pose a new backfitting algorithm to estimate the unknown pa‐
rameters. The estimation performance and predictive power of
the new estimation procedure have been demonstrated with
both simulation studies and the real data application for the
electric load baseline forecasting in Southern California.

Index Terms——Segmented regression model, mixed effects,
trimmed maximum likelihood, demand response, electric load.

I. INTRODUCTION

THE renewable energy sector has experienced exponen‐
tial growth in the past five to ten years. The global an‐

nual growth rates of solar photovoltaic and wind energy are
42% and 17% from 2010 through 2015 [1]. The renewable
penetration level in certain parts of the world is much higher
than the global average penetration level. For example, the
renewable energy penetration level in California reached
30% in 2017. The recently passed California Senate Bill No.
100 will further boost renewable penetration level to 60% by

2030 and to 100% by 2045. To mitigate increasing renew‐
able generation uncertainty and intermittency, demand re‐
sponse resources are in critical need. In the past ten years,
traditional and passive price-based and incentive-based de‐
mand response programs have been implemented throughout
the United States. In recent years, proactive demand re‐
sponse algorithms and programs are proposed and developed
to improve the utilization of load flexibility and dispatchabil‐
ity further [2]. Accurate load impact forecasts are needed to
leverage the load flexibility from the demand response re‐
sources effectively. The load impact from a demand re‐
sponse resource is defined as the difference between load
baselines and metered load when a demand response event
is triggered. In practice, it is very challenging to develop a
good estimation of the load baseline which represents the
electric load that would have occurred without demand re‐
sponse event [3].

A sound baseline estimation methodology should represent
an appropriate tradeoff between simplicity and accuracy. The
existing baseline methodology can be categorized into two
types. In Type-I methodology, the baseline is estimated by
using a similar day-based algorithm which depends on histor‐
ical interval meter data and similarity metrics such as weath‐
er and calendar. Simplicity is the most significant advantage
of Type-I baseline method [4], [5]. In Type-II baseline meth‐
odology, more sophisticated statistical methods are adopted
to estimate and forecast the baseline electricity consumption.
Type-II methods typically yield better forecasting accuracy
and are undergoing rapid developments. It can be further di‐
vided into three groups: statistical methods, machine learn‐
ing/deep learning methods, and hybrid methods. In the first
group, [6] proposed a refined multiple linear regression mod‐
el. [7] proposed a method to coherently convert a set of low‐
er-level node forecasts to aggregate nodes using empirical
copula and Monte-Carlo sampling. In the same vein, [8] pro‐
posed an aggregation of random forests load forecasting
framework. The second group of literature utilizes deep
learning algorithms. Reference [9] proposed support vector
regressions models to forecast the demand response baseline.
In [10], an ensemble ResNet deep neural network model was
proposed. The sequence to sequence recurrent neural net‐
work with attention mechanism was adopted in [11]. In the
third group, hybrid methods have been developed, in which
more than one forecasting algorithms serve as building
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blocks for an overall model. Reference [12] proposed a coop‐
erative quantile regression forest and multivariate quantile re‐
gression framework. [13] proposed a two-level hybrid ensem‐
ble of deep belief networks model.

There are several limitations with the existing approaches.
First, some of the methods do not exploit the structure of
the forecasting problem well. For example, the segmented
nature of calendar variables on the load profile is not well
addressed. Second, deep learning-based forecasting algo‐
rithms are typically very computationally expensive to train,
yield un-interpretable results, and can be sensitive to the se‐
lection of hyperparameters. Third, hybrid methods are gener‐
ally complicated to build, thus can be error-prone to imple‐
ment and benchmark. Lastly, most of the existing work build
and train a separate model for each time series. This signifi‐
cantly limits the methods' scalability especially for large ser‐
vice territories operated by the electric utilities.

In this paper, we propose to use a mixed-effects segment‐
ed regression (MESR) model, a Type- II baseline methodolo‐
gy, to forecast the hourly electric load baseline in Southern
California at the 220 kV transformer bank level. One com‐
monly used method for electric power demand prediction at
each hour is the multiple linear regression with hour as a cat‐
egorical variable and weather data as continuous covariates.
An alternative model for hour is to include it as a linear pre‐
dictor. However, it is expected that the linear effect of hour
on electric demand does not hold in the whole range of
hour. To this end, we propose to model the hour effect by a
segmented regression model [14]-[17], which can be consid‐
ered as a compromise between modeling hour as a global lin‐
ear predictor and modeling hour as a categorical variable.
The nonlinear relationship with breakpoints is said to be
piece-wise, segmented, broken-line, or multi-phased. The
breakpoints are also called change-points, transition-points
or switch-points in some applications. Using a segmented re‐
gression model for the hour covariate, the hour's effect on
the electric consumption changes continuously across time
so that we can borrow the information from other hours
when estimating the hour's impact. The estimated break‐
points can also tell us how the hour's linear effect changes
across different segmented areas. Segmented regression mod‐
els have been widely used in many areas. In medication, the
segmented regression is a powerful statistical tool for esti‐
mating intervention effects of interrupted time series studies
[18]. The segmented regression is also used to identify the
changes in the recent trend of cancer mortality and incidence
data analysis [19]. In ecology area, the segmented regression
is a widely used statistical tool to model ecological thresh‐
olds [20]. For the geometric purpose, the segmented regres‐
sion statistically models the trends in groundwater levels
[21]. Many other examples with piecewise linear terms have
been studied in the literature including mortality studies
[22], Stanford heart transplant data [23], and mouse leuke‐
mia [24]. Note that electric consumption data are essentially
longitudinal/panel data. They exhibits very strong spatio-tem‐
poral dependencies [25]. To incorporate the correlation
among observations and the individual-specific heterogeneity
from each transformer bank, we propose to use the random

effects regression model [26], [27].
Note that it is not trivial to compute the maximum likeli‐

hood estimate (MLE) for the MESR since its log-likelihood
is not differentiable at breakpoints. Many standard computa‐
tional algorithms, such as the Newton-Raphson algorithm,
can not be used directly. In this paper, we propose a backfit‐
ting algorithm to combine the segmented regression estima‐
tion method proposed by [28] and the mixed effect regres‐
sion estimation method (PWLS: penalized weighted least
squares estimation method) proposed by [29] to maximize
the non-differentiable log-likelihood of the mixed effects seg‐
mented regression model. Note that the MLE is sensitive to
outliers, which is the case of our electric consumption data
collected in the Southern California area. We further propose
a robust estimation procedure for the considered model by
extending the idea of the least trimmed squares (LTS) esti‐
mate [30]. The simulation studies demonstrate the effective‐
ness of the proposed estimation procedures. The LTS also
provides much better prediction performance than the stan‐
dard MLE for the testing data when forecasting the hourly
electric power consumption in Southern California area.

The rest of the article is organized as follows. Section II
introduces the MESR and describes the proposed robust esti‐
mation algorithms. Section III illustrates the finite sample
performance of the proposed method using a simulation
study. In Section IV, we apply the new estimation procedure
to forecast the hourly electric power demand in the Southern
California area. Section V concludes the paper with some
discussions.

II. MODEL

Given a random sample {yijx ijs ijziji = 1nj = 1
ni}, where n is the number of subjects and ni is the number
of observations collected for ith subject, the mixed effects
segmented regression (MESR) model we propose to use for
the load baseline estimation can be written as:

yij = xT
ij ϕ+ sT

ij γ i + β0 zij +∑
k = 1

l

βk (zij - φk)+ + ε ij (1)

where yij is the response, x ij is the p dimension fixed-effect
covariates, s ij is the q dimensional random-effect covariates,
zij is the breakpoint variable with breakpoints {φkk = 1l},
t+ equals to t if t ³ 0 and 0 otherwise, γ i Nq (0Σγ) and ε i =
(ε i1ε ini

)Nni
(0Σε). In this paper, we assume that

Σε = σ 2Ini
. The MESR (1) consists of three parts: multiple lin‐

ear regression xT
ij ϕ , random-effects sT

ij γ i, and segmented re‐
gression β0 zij +∑k = 1

l βk (zij - φk)+, which models the hetero‐

geneous linear effect of zij on yij across different areas of z.
βk measures the difference of slopes (linear effect of zij on
yij) before and after the breakpoint φk. In this paper, we
mainly focus on the situation when the segmented parts are
fixed effects. But the proposed estimation procedure can be
extended to the situation when the segmented parts also con‐
tain random effects [31]-[33].

Let y i = (yi1yini
)T, X i = (xi1x ini

)T, S i = (s i1s ini
)T

and Z i = (z*
i1z*

ini
)T, where z*

ij = (zij(zij - φ1)+(zij - φ l)+)
T.
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Then (1) can be rewritten in matrix format as:
y i =X iϕ + S i γ i +Z i β + ε i (2)

where β = (β0β l)
T. Based on (2), E(yi|X iZ iS i)=X i ϕ +

Z i β and var(yi|X iZ iS i)= S iΣγS
T
i + σ 2

ε Ini
Σ i. Therefore, the

random effects γ i make the observations within each subject
correlated. The log-likelihood function of {yijx ijs ijziji =
1nj = 1ni} is

ℓ(θ)µ∑
i = 1

n

log |( Σi|
-1/2)-

1
2∑i = 1

n

(yi -X i

ϕ -Z i β)TΣ-1
i (yi -X i ϕ -Z i β) (3)

where θ collects all the unknown parameters {ϕβφσΣγ}
in model (1). Unlike the traditional mixed effects model,
maximizing (3) is not trivial since it is not differentiable at
φk. We propose a backfitting algorithm to maximize (3) by
alternately updating the segmented regression part and the
linear mixed effects part. Next we discuss in detail how to
perform such two estimation procedures.

A. Estimating Breakpoints

Given the estimate { ϕΣ̂ i}, the model (1) will be a seg‐
mented regression model. Breakpoints and slopes in segment‐
ed regression can be estimated through many ways such as
regression spline as well as Bayesian MCMC methods [34],
[35]. We will extend the linearization technique proposed by
[28] to MESR (1) due to its simplicity of computation. Ac‐
cording to the definition of breakpoints, the log-likelihood is
not differentiable at φk. The breakpoint estimation can be per‐
formed via a first-order Taylor expansion of (zij - φk)+
around an initial value φ(0)

k :

(zij - φk)+ » (zij - φ(0)
k )+ + (φk - φ(0)

k )(-1)I(zij >φ(0)
k ) (4)

where I(×) is the indicator function. It equals 1 if the condi‐
tion inside the parenthesis is true and 0 otherwise; (-1)I(zij >
φ(0)

k ) is the first derivative of (zij - φk)+ assessed in φ(0)
k .

Let v ij = ((-1)I(zij >φ(0)
1 )(-1)I(zij >φ(0)

l ))T, z͂ ij = (zij(zij -
φ(0)

1 )+(zij - φ(0)
l )+)

T, and δk = βk (φk - φ(0)
k ). Define V i =

(v i1v ini
)T, δ = (δ1δ l)

T and Z͂ i = (z͂ i1z͂ ini
)T. Given the

estimate { ϕΣ̂ i}, the log-likelihood (3) can be simplified to:

ℓ1 (βδ)µ-
1
2∑i = 1

n

(y͂i - Z͂ i β -V i δ)
TΣ̂-1

i (y͂i - Z͂ i β -V i δ) (5)

where y͂ i = y i -X i ϕ . Therefore, β and δ in (5) can be easily
found by weighted least squares estimate. Note that φk =
(δk /βk)+ φ(0)

k . The iterative algorithm will terminate at δk = 0.
The algorithm to estimate the breakpoints, given the esti‐
mate { ϕΣ̂ i}, is summarized as follows.

B. Estimating Mixed-effects Regression Models

In this section, we discuss how to maximize (3) given the
estimate β and φ , where φ = (φ1φ l)

T. Let Ẑ i be the esti‐
mate of Z i after replacing φk by φ̂k. Plugging in the estimate
{Ẑiβ} into the model (1), we have:

y*
i =X i ϕ + S i γ i + ε i (6)

where y*
i = y i - Ẑ i β . Therefore, the model (6) is simply a tra‐

ditional mixed-effects regression model. We propose to em‐
ploy the penalized weighted least squares (PWLS) method
developed by [29] to estimate the unknown parameters in
(6). Please refer to [29] for more detail about how to com‐
pute linear mixed-effects regression model, which is also im‐
plemented in R package lme4.

C. Mixed-effects Breakpoint Estimation

By combining the estimation procedures in Section II-A
and II-B, we propose the following backfitting algorithm to
maximize the log-likelihood (3) for the model (2).

D. Robust Mixed-effects Segmented Regression Estimation

It is well known that the MLE is sensitive to outliers and
might give misleading results when there are outliers in the
data, which is the case for our collected electric power de‐
mand data in Southern California area. Please see Section IV
for more detail. The issue of outlier is well recognized in the
field of load forecasting, and is typically solved using robust
regression algorithms. For example, [36] considered Huber's
robust regression; [37] advocated the use of L1 regression
model. In the statistics literature, many robust regression
methods have been proposed, although not all of them have
been investigated in the load forecasting literature. See, for
example, M-estimates [38], R-estimates [39], Least Median
of Squares (LMS) estimates [40], Least Trimmed Squares
(LTS) estimates [30], S-estimates [41], MM-estimates [42],
robust and efficient weighted least squares estimator [43, RE‐
WLSE], mean shift method [44]-[46]. [47] provided a good
review of some commonly used robust regression estimation
methods. Next we propose to use the idea of least trimmed
squares estimate [30] to provide a robust estimate of the
model (1). Given an integer trimming parameter h£N where
N is the total number of training samples, the least trimmed
squares minimizes the sum of the smallest h squared residu‐
als with objective function:

∑
k = 1

h

r 2
(k) (7)

Algorithm 2: MLE

1. Set initial values of breakpoint φ(0)
k and β(0).

2. Repeat
3. Given current breakpoint values φ(s)

k and slopes β(s), calculate y*(s)
i = yi -

Ẑ(s)
i β

(s).
4. Fit mixed-effects regression model by the PWLS estimation procedure
introduced in Section II-B to obtain covariance matrix Σ(s)

r and the fixed ef‐
fect regression estimate ϕ(s).
5. Calculate y͂(s)

i = yi -Xi ϕ
(s).

6. Fit segmented regression model with y͂(s)
i and Σ(s)

r using Algorithm 1 and
update segmented regression parameter estimate to φ(s+ 1) and β(s+ 1).
7. Until converge

Algorithm 1: Segmented regression estimation

1. Set initial values of all breakpoints φ(0)
k , for k = 1...l and calculate the

variable Z͂i and the variable Vi.
2. Repeat
3. Fit the regression model of y͂i on Z͂i and Vi by maximizing the log-like‐

lihood (5). Update the breakpoint with equation φ(s+ 1)
k = (δ(s)

k /β (s)
k )+φ(s)

k ,
where φ(s)

k is the estimate of φk at sth iteration.
4. Until converge

3



JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. XX, NO. XX, XX XXXX

This article has been accepted for publication in a future issue of this journal, but has not been edited. Content will change prior to final publication.

where r 2
(1) £ ...£ r 2

(N) are the ordered squared residuals {yij -
ŷiji = 1n; j = 1ni} with ŷij = xT

ij ϕ + sT
ij γ i + β̂0 zij +∑k = 1

l β̂k (zij - φ̂k)+. The robust MESR estimation based on

LTS is described in the following table.

To increase the chance of finding the global minimum,
one might run Algorithm LTS from many random subsam‐
ples and choose the solution which has the smallest trimmed
squares. Let r be the dimension of θ . The initial sample size
h* can be any small number larger than r as long as the ini‐
tial parameter estimate θ(0) can be computed based on the
subsample. The maximum breakpoint [48], i.e., the smallest
fraction of contamination that can cause the estimator to
take arbitrary large values, of LTS is 0.5 and is attained
when h=[(N + r + 1)/2]. If we have the prior that the propor‐
tion of outliers is no more than α, we can also set h=[N(1-
α)+ 1], where α is called the trimming proportion. In prac‐
tice, one might also try several α values to evaluate LTS and
check how the estimate behaves with different trimming pro‐
portions [49]-[51]. In our real data application, we use a vali‐
dation data to choose the trimming proportion.

III. SIMULATION STUDY

In this section, we use a simulation study to illustrate the
performance of the proposed estimation procedure for the
MESR. All the computations are implemented in R. We use
R package segmented:: segmented for breakpoint estimation
and lme4:: lmer for random-effect estimation. We generate
observations {yijx ijs ijziji = 1nj = 1ni}, from the fol‐
lowing model

yij = ϕ0 + ϕ1 xij + γ i0 + sijγ i1 + β0 zij +

β1 (zij - φ1)+ + β2 (zij - φ2)+ + ε ij (8)

where xij  Pois(10), sij  Uniform(510), zij's are ni arithmetic
sequence ranging from (020), ε ij N (00.5),

( )γ i0

γ i1

N (( )0
0
( )σ 2

r1 ρσr1σr2

ρσr1σr2 σ 2
r2

) with σr1 = σr2 = 1ρ= 0.5, i =

1nj = 1ni. The other parameters in (8) are set to be:
ϕ0 = -2.5; ϕ1 = 1.5; β0 = 1.5; β1 = 1.5; β2 = -2.5; φ1 = 6.67;
φ2 = 13.33.

We consider the following four simulation scenarios:
1) n= 50ni is randomly chosen from (90110).
2) n= 50ni is randomly chosen from (1822).
3) n= 200ni is randomly chosen from (450550).

4) n= 200ni is randomly chosen from (1822).
First, we utilize model (8) to simulate dataset without out‐

liers. The model is estimated with Algorithm MLE. In Ta‐
bles I-IV, we report the Mean, Median, and Standard Devia‐
tion for the estimates of fixed-effects regression parameters,
breakpoints, segmented regression parameters, and random-
effects covariance matrix, respectively based on 500 replica‐
tions.

From Tables I-IV, we can see that the proposed MLE algo‐
rithm performs well when the dataset does not contain any
outliers. Also, when the sample size increases, standard devi‐
ation of each parameter estimate decreases.

Next, we simulate dataset with outliers based on model
(8). Model parameters are estimated by both Algorithm
MLE and Algorithm LTS. In order to check how robust each
estimate is against the outliers, we randomly choose 5% of
each simulated data and add 30 to the response Y (the range
of Y is (1569)) and 10 to the value of X (the range of X is
(010)). When applying LTS, we need to choose the trim‐
ming proportion α, which has long been a difficult problem.
However, LTS can provide a robust model estimate as long
as the proportion of outliers is less than α but with low effi‐
ciency if the α is too large. Usually a conservative choice of
α is recommended in practice. For our examples, we report
the results for both α= 0.1 and α= 0.2. Note that the results
of LTS will be better if α= 0.05 is used.

In Tables VI-IX, we report the simulation results for the
estimates of fixed-effects regression parameters, breakpoints,
segmented regression parameters, and random-effects covari‐
ance matrix, respectively based on 200 replications. From
the tables, we can see that the standard MLE fails to provide
reasonable estimates of fixed-effects regression parameters
and random-effects covariance matrix when the data contain
5% outliers while LTS can provide reasonable estimates for
all parameters with both α= 0.1 and α= 0.2.

TABLE I
SIMULATION RESULTS OF FIXED-EFFECT PARAMETER ESTIMATES BY

ALGORITHM MLE FOR SITUATION WITHOUT OUTLIERS

MLE

n= 50ni U(90110)

n= 50ni U(1822)

n= 200ni U(450550)

n= 200ni U(1822)

ϕ0 =-2.5

Mean

-2.505

-2.500

-2.498

-2.491

Median

-2.508

-2.502

-2.497

-2.498

SD

0.125

0.169

0.064

0.125

ϕ1 = 1.5

Mean

1.500

1.500

1.500

1.500

Median

1.499

1.500

1.500

1.500

SD

0.002

0.005

0.001

0.004

TABLE II
SIMULATION RESULTS OF BREAKPOINTS ESTIMATES WITH ALGORITHM MLE

FOR SITUATION WITHOUT OUTLIERS

MLE

n= 50ni U(90110)

n= 50ni U(1822)

n= 200ni U(450550)

n= 200ni U(1822)

φ1 = 6.667

Mean

6.667

6.667

6.667

6.667

Median

6.666

6.664

6.667

6.666

SD

0.022

0.053

0.006

0.023

φ2 = 13.333

Mean

13.334

13.334

13.333

13.332

Median

13.332

13.333

13.333

13.332

SD

0.012

0.034

0.003

0.023

Algorithm 3: LTS

1. A subsample of size h* is selected randomly from the data and then the
model (1) is fitted to the subsample using Algorithm MLE of Section
II-C. Let θ(0) be the initial parameter estimate.

2. Repeat
3. Based on current model parameter estimate θ(s), make prediction of N

responses: ŷ(s)
ij , and calculate the residuals r (s)

ij = yij - ŷ(s)
ij . Rank the

squared residuals from smallest to largest and select the first h obser‐
vations that correspond to the smallest h squared residuals.

4. Fit the model (1) to the subsample selected in Step 3 using Algorithm
MLE and get the model parameter estimate θ(s+ 1).

5. Until converge

4
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IV. REAL DATA ANALYSIS

In this Section, we illustrate the application of the pro‐
posed estimation procedure of MESR to forecast the electric

load in Southern California.

A. Data

The electric consumption data are aggregated to 52 220
kV transformer banks from 12/31/2012 to 11/1/2013 in
Southern California Edison's service territory. The task is to
build a prediction model for the total residential customer
electricity consumption at each 220 kV transformer bank on
weekdays. The data cleansing of the raw dataset is done in
two steps. First, we exclude daily observations for commer‐
cial customers and remove zero-usage records from electric
consumption data file. Second, we add daily temperature and
humidity information for each Bank according to Banks' zip‐
codes.

The response variable Usage t is the aggregated customers'
hourly electricity consumption recorded through the smart
meters. We use the following transformation to make it com‐
parative among 52 subgroups.

TABLE III
SIMULATION RESULTS OF BREAKPOINTS SLOPE ESTIMATES WITH ALGORITHM MLE FOR SITUATION WITHOUT OUTLIERS

MLE

n = 50, ni U(90110)

n = 50, ni U(1822)

n = 200, ni U(450550)

n = 200, ni U(1822)

β0 = 1.5

Mean

1.499

1.499

1.500

1.499

Median

1.500

1.500

1.500

1.499

SD

0.006

0.013

0.001

0.010

β1 = 1.5

Mean

1.499

1.502

1.500

1.502

Median

1.499

1.502

1.500

1.501

SD

0.008

0.020

0.001

0.014

β2 =-2.5

Mean

-2.499

-2.502

-2.500

-2.501

Median

-2.499

-2.502

-2.500

-2.502

SD

0.008

0.019

0.002

0.014

TABLE IV
SIMULATION RESULTS OF RANDOM-EFFECT ESTIMATES WITH ALGORITHM MLE FOR SITUATION WITHOUT OUTLIERS

MLE

n = 50, ni U(90110)

n = 50, ni U(1822)

n = 200, ni U(450550)

n = 200, ni U(1822)

σr1 = 1

Mean

0.969

0.988

0.990

0.987

Median

0.959

0.988

0.991

0.990

SD

0.108

0.141

0.050

0.101

σr2 = 1

Mean

0.978

0.993

0999

0.997

Median

0.976

0.990

0.999

1.000

SD

0.101

0.096

0.056

0.068

ρ= 0.5

Mean

0.504

0.490

0.499

0.500

Median

0.503

0.501

0.499

0.506

SD

0.121

0.150

0.001

0.094

TABLE V
SEVEN EXPLANATORY VARIABLES IN REAL DATA APPLICATION

Notation

log(Usage pert - 48)

Temperature t

Humidity t

Hour t

AC tonnage pert

Total AC tonnage

A Bank

Explanatory variable

two-day lagged electricity consumption

Daily average ambient temperature

Humidity of the day

Hour/Time of the day

Duty cycle percentage

Total AC tonnage under the same transformer bank

The indicator variable of transformer bank

Note: Variable A Bank is the random-effect variable; variable Hour is the
segmented variable.

TABLE VI
SIMULATION RESULTS OF FIXED-EFFECT ESTIMATES VIA ALGORITHM MLE AND ALGORITHM LTS WITH DIFFERENT α LEVELS FOR SITUATION WITH

OUTLIERS

Performance

n = 50, ni U(90110)

n = 50, ni U(1822)

n = 200, ni U(450550)

n = 200, ni U(1822)

MLE

LTS α= 0.2

LTS α= 0.1

MLE

LTS α= 0.2

LTS α= 0.1

MLE

LTS α= 0.2

LTS α= 0.1

MLE

LTS α= 0.2

LTS α= 0.1

ϕ0 =-2.5

Mean

3.332

-2.535

-2.521

3.293

-2.471

-2.496

3.310

-2.502

-2.502

3.359

-2.464

-2.488

Median

3.334

-2.539

-2.522

3.298

-2.438

-2.485

3.314

-2.507

-2.505

3.417

-2.437

-2.491

SD

0.663

0.283

0.210

1.069

0.616

0.539

0.180

0.130

0.089

1.049

0.290

0.267

ϕ1 = 1.5

Mean

1.019

1.500

1.500

1.490

1.500

1.499

1.017

1.500

1.500

1.493

1.500

1.500

Median

1.017

1.500

1.500

1.487

1.500

1.500

1.017

1.500

1.500

1.496

1.500

1.499

SD

0.026

0.004

0.003

0.045

0.015

0.014

0.006

0.001

0.001

0.046

0.007

0.007

5



JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. XX, NO. XX, XX XXXX

This article has been accepted for publication in a future issue of this journal, but has not been edited. Content will change prior to final publication.

TABLE VII
SIMULATION RESULTS OF BREAKPOINT ESTIMATES VIA ALGORITHM MLE AND ALGORITHM LTS WITH DIFFERENT α LEVELS FOR SITUATION WITH OUTLIERS

Performance

n = 50, ni U(90110)

n = 50, ni U(1822)

n = 200, ni U(450550)

n = 200, ni U(1822)

MLE

LTS α= 0.2

LTS α= 0.1

MLE

LTS α= 0.2

LTS α= 0.1

MLE

LTS α= 0.2

LTS α= 0.1

MLE

LTS α= 0.2

LTS α= 0.1

φ1 = 6.667

Mean

6.647

6.670

6.670

6.319

6.425

6.603

6.671

6.670

6.670

6.307

6.427

6.606

Median

6.679

6.380

6.677

6.317

6.445

6.616

6.673

6.685

6.677

6.316

6.433

6.610

SD

0.546

0.755

0.415

0.204

0.185

0.170

0.172

0.293

0.166

0.209

0.082

0.076

φ2 = 13.333

Mean

13.322

13.351

13.323

12.656

13.027

13.116

13.333

13.325

13.328

12.643

13.030

13.190

Median

13.317

13.342

13.332

12.651

13.037

13.117

13.337

13.330

13.330

12.649

13.039

13.116

SD

0.324

0.519

0.283

0.139

0.237

0.145

0.098

0.166

0.094

0.144

0.118

0.067

TABLE VIII
SIMULATION RESULTS OF THE BREAKPOINT SLOPE ESTIMATES VIA ALGORITHM MLE AND ALGORITHM LTS WITH DIFFERENT α LEVELS FOR THE SITUATION

WITH OUTLIERS

Performance

n = 50, ni U(90110)

n = 50, ni U(1822)

n = 200, ni U(450550)

n = 200, ni U(1822)

MLE

LTS α= 0.2

LTS α= 0.1

MLE

LTS α= 0.2

LTS α= 0.1

MLE

LTS α= 0.2

LTS α= 0.1

MLE

LTS α= 0.2

LTS α= 0.1

β0 = 1.5

Mean

1.493

1.501

1.506

1.590

1.556

1.575

1.500

1.500

1.495

1.587

1.574

1.553

Med

1.494

1.502

1.503

1.590

1.556

1.576

1.502

1.502

1.497

1.586

1.574

1.553

SD

0.109

0.123

0.070

0.039

0.027

0.029

0.035

0.054

0.022

0.037

0.014

0.014

β1 = 1.5

Mean

1.521

1.510

1.505

1.544

1.584

1.557

1.500

1.502

1.506

1.549

1.557

1.571

Med

1.518

1.500

1.501

1.536

1.564

1.557

1.499

1.500

1.505

1.544

1.556

1.566

SD

0.154

0.166

0.083

0.074

0.102

0.069

0.040

0.051

0.026

0.075

0.048

0.035

β2 =-2.5

Mean

-2.516

-2.519

-2.509

-2.610

-2.602

-2.590

-2.500

-2.499

-2.506

-2.605

-2.499

-2.506

Med

-2.522

-2.505

-2.507

-2.602

-2.580

-2.588

-2.502

-2.502

-2.499

-2.611

-2.502

-2.499

SD

0.163

0.168

0.071

0.135

0.109

0.070

0.042

0.054

0.028

0.138

0.054

0.028

TABLE IX
SIMULATION RESULTS OF RANDOM-EFFECT ESTIMATES VIA ALGORITHM MLE AND ALGORITHM LTS WITH DIFFERENT α LEVELS FOR SITUATION WITH

OUTLIERS

Performance

n = 50, ni U(90110)

n = 50, ni U(1822)

n = 200, ni U(450550)

n = 200, ni U(1822)

MLE

LTS α= 0.2

LTS α= 0.1

MLE

LTS α= 0.2

LTS α= 0.1

MLE

LTS α= 0.2

LTS α= 0.1

MLE

LTS α= 0.2

LTS α= 0.1

σr1 = 1

Mean

0.518

1.000

0.992

0.529

0.823

0.746

0.769

0.992

0.992

0.535

0.884

0.763

Med

0.379

0.993

0.998

0.529

0.825

0.744

0.897

0.990

0.989

0.531

0.848

0.763

SD

0.582

0.097

0.111

0.111

0.121

0.114

0.435

0.048

0.048

0.118

0.060

0.056

σr2 = 1

Mean

1.019

0.993

0.994

0.533

0.779

1.080

1.013

0.998

0.998

0.553

0.781

1.082

Med

1.026

1.003

0.999

0.523

0.779

1.073

1.015

0.998

0.997

0.550

0.782

1.082

SD

0.117

0.097

0.097

0.318

0.066

0.079

0.056

0.047

0.047

0.315

0.033

0.038

ρ= 0.5

Mean

0.843

0.509

0.511

0.815

0.498

0.494

0.619

0.495

0.496

0.787

0.476

0.493

Med

0.999

0.510

0.519

0.816

0.485

0.493

0.592

0.496

0.496

0.787

0.473

0.493

SD

0.612

0.115

0.107

0.158

0.066

0.079

0.272

0.050

0.049

0.148

0.085

0.071
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logUsage pert = log(Usage t /Total AC tonnage). (9)

In equation (9), the transformed response variable is de‐
rived through dividing the aggregated usage by total air con‐
ditioning tonnage of a residential customer in the air condi‐
tioning cycling program under the transformer bank and ap‐
plying the log-transformation. The electricity consumption is
divided by the total AC tonnage because the latter deter‐
mines the numerical magnitude of the load measurements.
Since the new response variable represents the electricity
consumption level per unit of air conditioning tonnage, it
makes the effects of other explanatory variables comparable
across different transformer banks, which allows us to use
common slopes to simplify the model. Fig. 1 depicts the
transformed response variable for a few sample banks over 5
days (120 hours).

The explanatory variables we collected are listed in Table
V. Two-day lagged electricity consumption variable is select‐
ed rather than the one-day lagged variable because the de‐
mand response resources load impact estimates need to be
submitted to the independent system operator one day before
the actual operations. The average temperature and humidity
are included because they are highly correlated with electrici‐
ty consumption. The duty cycle option variable indicates the
percentage of participation rate of air conditioning load in
the program and has substantial influence over the load im‐
pact for air conditioning cycling demand response program.
The transformer bank indicator variable A Bank is chosen as
the random effect, because it contains information about the
data from different geographic areas and thus is expected to
be heterogeneous with different baselines. A random effect
model, assuming that A Banks are sampled from a larger
population, is able to incorporate the individual-specific het‐
erogeneity of A Banks while allowing to borrow information
across A Banks with much smaller number of parameters
(compared to one fixed effect parameter for each of 52 A
Banks). In addition, this allows us to extend the model to ad‐
ditional transformer banks.

In this work, the training dataset is chosen as the samples
in the first 205 observed weekdays for all transformer banks.
The testing dataset consists of the samples from the 10 ob‐

served weekdays immediately following the training dataset.
The total number of testing sample is 12480.

B. Model and Result

We apply the proposed estimation procedure of MESR to
forecast the electricity consumption. Figure 2 displays the
hourly trend for average electric consumption and its predic‐
tion for a typical forecasting day. There are two breakpoints.
The first breakpoint locates between 2am and 3am. The sec‐
ond breakpoints locates between 6pm and 8pm.

It seems that the curve corresponding to the actual con‐
sumption (after the log transformation) indicates three seg‐
ments with two breakpoints. The first breakpoint locates be‐
tween 2am and 3am and the second breakpoint lies between
6pm and 8pm. We also tried the model with three break‐
points (one more breakpoint in the middle segmented area)
but the BIC for two breakpoints is smaller. The prediction
curve in Fig. 2 corresponds to the predicted values across all
Banks for the same forecasting day. It can be seen that the
proposed model can predict the actual values very well and
the fitted values also matched the breakpoint relationship.

The observations collected over time within the same
transformer bank are correlated. To see this, we plot the au‐
to-correlation function of the observation time series of each
transformer bank. In Fig. 3, the time series demonstrates
strong auto-correlation patterns.

Ignoring such correlation by fixed effect model would re‐
sult in inefficient estimates and lose prediction power. In or‐
der to incorporate such correction, the transformer bank is

Fig. 1. Data visualization of transformed response variable logUsage pert.

Fig. 2. Trend between average hourly electric consumption LogUsage pert

with variable Hour averaged over all A Bank.

Fig. 3. Auto-correlation function of the observation time series of each
transformer bank.
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treated as random-effects. Using a random-effects model can
also drastically reduce the number of unknown parameters in
the model and thus has more efficient parameter estimates.

Next we describe the construction of the fixed effects.
The first six explanatory variables described in Table V,
along with their two-way and three-way interactions, are con‐
sidered as potential explanatory variables. The model vari‐
ables are selected via LASSO regression method [52], which
improves prediction accuracy and model interpretability. The
final selected MESR is shown in (10).

log(Usage pert)= A Bank + Hour t + (Hour t - φ1)+ +

(Hour t - φ2)+ + Temperature t + Humidity t +

AC tonnage pert + log(Usage pert - 48)+[(Hour +

(Hour t - φ1)+ + (Hour t - φ2)+]× Temperature t +

[(Hour + (Hour t - φ2)+]× Humidity t +[(Hour +

(Hour t - φ1)+ + (Hour t - φ2)+]× AC tonnage pert +

[Temperature t + Humidity t]× AC tonnage pert +

Temperature t ×Humidity t (10)

where A Bank N (0σ 2
ABankI). We apply both MLE and LTS

algorithm to estimate the model and compare their forecast‐
ing performance. Since the true proportion of outliers is un‐
known, we choose three proportions α= 0.150.100.05 for
LTS to fit the model (10). In addition, we compare our pro‐
posed algorithms with two benchmarks: the multiple linear
regression model discussed in [53] and the cooperative quan‐
tile regression forest (QRF)/multivariate quantile regression
(MQR) method described in [12]. We set the training/testing
data partitioning of these benchmarks to be the same as our
setup discussed in Section IV-A. We compare their perfor‐
mance by mean absolute percentage error (MAPE) and root
mean squared errors (RMSE) on the testing dataset. The for‐
mula for MAPE and RMSE are given by MAPE =

1
N
å

|| yij - ŷij

yij

and RMSE =
å(yij - ŷij)

2

N
, where N is the to‐

tal number of testing samples. For better comparison, we al‐
so report three quartiles of absolute percentage error (APE)
and absolute error (AE).

From Tables X and XI, our proposed robust mixed effects
segmented regression model (LTS in the tables) outperforms
the multiple linear regression model in [53] and the QRF/
MQR model in [53]. The improvements are more significant
in terms of the RMSE and AE. The reason why the LTS has
a slightly higher MAPE compared to the QRF/MQR base‐
line is that the LTS produces a bit larger estimation errors
for some transformer banks with lighter loading. This results
in a higher MAPE due to the small denominator. Within the
LTS method, each evaluation criterion reaches the lowest val‐
ue when α= 0.1 and is much smaller than those of MLE.
The breakpoint estimates shown in Table XII confirm the lo‐
cations of breakpoints plotted in Fig. 2.

Table XIII displays the fixed-effects and breakpoints slope
estimates for LTS with α= 0.1. The variance estimates of the
random effects and the error term are 0.0015 and 0.0052, re‐
spectively.

According to Table XIII, all the parameters are significant
at level α= 0.05. When calculating p-values, Satterthwaite
method is used for approximating degrees of freedom of the
t-distribution for the t-test statistics. The variable Hour and
its breakpoints have both positive and negative slopes and
the signs match the plot in Fig. 2. Also, there is sensible pos‐
itive relationship between AC tonnage and electric load Us‐
age.

V. CONCLUSION

In this paper, we propose to use a mixed-effects segment‐
ed regression model to forecast the electric load baseline in
Southern California. When estimating unknown parameters,
we propose a backfitting algorithm by combining the ideas
of the penalized least square method for random-effects re‐
gression model and the linearization technique [28] for seg‐
mented regression.

In addition, we extend the idea of LTS to MESR to pro‐
vide a robust model estimate. Both simulation study and real
data application demonstrate the effectiveness of the pro‐
posed new estimation procedures.

TABLE X
PREDICTION RESULTS EVALUATED BY ABSOLUTE PERCENTAGE ERROR FOR

THE LAST 10 DAYS IN OCTOBER 2013 WITH ALGORITHM MLE COMPARED

WITH ALGORITHM LTS AT DIFFERENT α LEVELS

Performance

GEFcom2012[53]

QRF/MQR[12]

MLE

LTS α= 0.05

LTS α= 0.1

LTS α= 0.15

MAPE

17.97%

10.15%

13.94%

11.08%

10.75%

10.88%

25% APE

5.95%

2.36%

4.55%

2.78%

2.46%

2.55%

50% APE

12.06%

5.25%

8.48%

5.45%

4.95%

5.10%

75% APE

19.80%

10.70%

13.66%

9.37%

8.77%

9.01%

TABLE XI
PREDICTION RESULTS EVALUATED BY ROOT MEAN SQUARE ERROR FOR

LAST 10 DAYS IN OCTOBER 2013 WITH ALGORITHM MLE COMPARED WITH

ALGORITHM LTS AT DIFFERENT α LEVELS

Performance

GEFcom2012[53]

QRF/MQR[12]

MLE

LTS α= 0.05

LTS α= 0.1

LTS α= 0.15

RMSE

1305.65

742.73

672.88

449.68

414.42

420.00

25% AE

26.92

10.01

5.78

3.98

3.65

4.75

50% AE

168.96

67.77

42.19

27.01

24.73

25.26

75% AE

684.95

298.06

164.08

97.45

86.33

88.84

TABLE XII
BREAKPOINTS ESTIMATION FOR ELECTRIC POWER DEMAND DATASET VIA

ALGORITHM MLE AND ALGORITHM LTS AT DIFFERENT α LEVELS

Breakpoint

MLE

LTS α= 0.05

LTS α= 0.1

LTS α= 0.15

φ1

2.64

2.27

2.27

2.27

φ2

20.47

20.47

20.77

20.47
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Since the model was built up with hourly data, we could
also aggregate the data and construct a daily electric load
model. In this paper, we assume that the number of break‐
points is known. If the number of breakpoints is unknown,
one could apply the selection techniques proposed by [54] -
[57] to our model. In the model (1), all random effects are
assumed to have a multivariate normal distribution. It will
be interesting to extend the work of [58] to relax the normal‐
ity assumption of the random effects in (1). In addition, for
LTS, although an conservation α or serval α values can be
used in practice, it requires more research to data adaptively
choose the optimal α so that LTS can have both the robust‐
ness property and the high efficiency. Since we normalized
the response variable by AC tonnage, it is expected that
there is not too much heterogeneity for the effects of other
variables after we controlled the heterogeneity of A Banks.
But it is worthy of more research to try some more compli‐
cated models such as random slopes for all other variables
and their interactions, as well as nonparametric regression
for hour, humidity, or temperature variables.
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