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Abstract—Accurate estimates of network parameters are es-
sential for advanced control and monitoring in power distri-
bution systems. The existing methods for parameter estima-
tion either assume a simple single-phase network model or
require widespread installation of micro-phasor measurement
units (micro-PMUs), which are cost prohibitive. In this paper,
we propose a parameter estimation approach, which considers
three-phase series impedance and only leverages readily available
smart meter measurements. We first build a physical model based
on the linearized three-phase power flow manifold, which links
the network parameters with the smart meter measurements.
The parameter estimation problem is then formulated as a
maximum likelihood estimation (MLE) problem. We prove that
the correct network parameters yield the highest likelihood value.
A stochastic gradient descent (SGD) method with early stopping
is then adopted to solve the MLE problem. Comprehensive
numerical tests show that the proposed algorithm improves the
accuracy of the network parameters.

Index Terms—Distribution network, maximum likelihood esti-
mation, parameter estimation, smart meter.

NOMENCLATURE

E
(i,j)
m×n An m× n matrix, in which the ij-th element is 1

and the rest of elements are all 0.
In n× n identity matrix.
Im(·) Imaginary part of a complex variable.
Re(·) Real part of a complex variable.
diag(·) diag(x) of a vector x is a diagonal matrix with

x on the main diagonal. diag(X1, ..., Xn) is a
block diagonal matrix with diagonal matrices of
X1, ..., Xn.

0m×n An m× n all-0 matrix.

I. INTRODUCTION

Accurate modeling of three-phase power distribution sys-
tems is gaining importance with increasing penetration of dis-
tributed energy resources (DERs). To monitor and coordinate
the operations of DERs in distribution networks, distribution
system operators need key applications such as three-phase
power flow, distribution system state estimation, three-phase
optimal power flow, and distribution network reconfigura-
tion. All of these applications rely on accurate models of
three-phase distribution networks, which include the network
topology and parameters. However, the distribution network
parameters and topology in the geographic information system

(GIS) may contain errors due to unreliable documentation
during the system modifications and upgrades.

Though the topic of topology estimation for distribution
networks has been studied extensively [1]–[5], the estimation
of distribution network parameters such as line impedance
has not received sufficient attention. The task of parameter
estimation in power distribution networks is more challenging
than that in transmission networks because the distribution
lines are almost always not transposed. Untransposed lines will
lead to unequal diagonal and off-diagonal terms in the phase
impedance matrix. Thus, instead of single-phase models, three-
phase line segment models need to be developed. Specifically,
the elements of a 3 × 3 phase impedance matrix need to be
estimated for each three-phase distribution line segment.

Many technical methods have been developed to estimate
transmission network parameters. However, very few of them
can be applied to the three-phase distribution networks with
readily available sensor data. The existing parameter esti-
mation literature can be roughly classified into three groups
based on the sensor data used. The sensor data that were
used for parameter estimation include supervisory control
and data acquisition (SCADA) system information, phasor
measurement unit (PMU) data, and smart meter data.

The first group of literature [6], [7] uses SCADA data such
as power and current injections to estimate network parameters
of the transmission system with a single-phase model. Most
of these works perform joint state and parameter estimation
by residual sensitivity analysis, state vector augmentation, and
Kalman filter.

The second group of literature uses time synchronized
measurements such as voltage and current phasors to estimate
single-phase line models in transmission systems and three-
phase line models in distribution networks [8]–[12]. Although
these algorithms can achieve highly accurate network param-
eter estimates, they require widespread installation of PMUs,
which are extremely costly.

The third group of literature uses readily available smart me-
ter data to estimate network parameters of distribution systems
[13]–[15]. Linear regression models are fitted based on voltage
magnitude and complex power consumption measurements to
estimate line parameters of single-phase secondary feeders
[13], [15]. By solving power flow equations with voltage
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magnitude and complex power measurements, the parameters
of a single-phase distribution line model can be estimated [14].

In this paper, we propose a data-driven algorithm to estimate
the serial conductance and serial susceptance of the π equiva-
lent model for three-phase distribution lines by using the read-
ily available smart meter measurements of voltage magnitude,
real power consumption, and reactive power consumption. The
serial conductance and susceptance are the real and imaginary
part of the inverse of a line’s phase impedance matrix. By
linearizing the three-phase power flow manifold, we first build
a physical model, which links smart meter measurements and
the three-phase serial conductance and susceptance. We then
formulate the three-phase parameter estimation problem as a
maximum likelihood estimation (MLE) problem and prove that
the correct network parameters yield the highest likelihood
value. At last, we adopt the stochastic gradient descent (SGD)
algorithm with early stopping to solve the MLE problem.

Compared to the existing parameter estimation methods,
our proposed algorithm has two advantages. First, our pro-
posed approach is specifically designed to estimate network
parameters of three-phase distribution networks, which takes
unequal self and mutual serial conductance and susceptance
into consideration. Second, our proposed approach only uses
readily available smart meter data and can be easily applied
in real-world distribution circuits.

The rest of the paper is organized as follows. Section II
describes the problem setup and builds the physical model
linking network parameters with smart meter measurements.
Section III formulates the parameter estimation problem as
an MLE problem and proposes an SGD algorithm to solve
it. Section IV evaluates the performance of the proposed
algorithm with a comprehensive numerical study. Section V
states the conclusion and future work.

II. PROBLEM SETUP AND THE MODEL OF NETWORK
PARAMETER ESTIMATION

A. Problem Setup

We aim to estimate the serial conductance and susceptance
(i.e., the real and imaginary part of the inverse of the phase
impedance matrix) of three-phase primary lines of a distribu-
tion feeder’s network. The network contains L lines/edges and
N + 1 nodes, indexed as node 0 to N , in which node 0 is the
substation. There are M loads connected to the primary lines
through the non-substation nodes. The loads can be single-
phase, two-phase, or three-phase.

B. Assumptions

1) Availability of Measurement Data and Network Model:
First, for a single-phase load on phase i, we know its power
injection (both real and reactive power) and voltage magnitude
of phase i. Second, for a two-phase delta-connected load
between phase i and j, we know its power injection and
voltage magnitude across phase i and j. Third, for a three-
phase load, we know its total power injection and the voltage
magnitude of a known phase i. Fourth, for the source node,
we know the voltage measurement. Fifth, it is assumed that

each load’s phase connection is known. Sixth, the topology of
the primary line network is known. Seventh, we assume that
the GIS has rough estimates of the network parameters, which
are inaccurate but not far from the correct values. Finally, we
assume that the distribution feeder is not severely unbalanced.
Assumptions one to four are based on the typical measurement
configurations of smart meters and SCADA. Assumptions five
to seven are based on the available information in GIS. The
last assumption holds for distribution feeders under normal
operations. The task of network parameter estimation is to
estimate the 3×3 serial conductance and susceptance matrices
of the three-phase primary line segments.

2) Statistical Assumptions: First, we assume that the incre-
mental changes in measured real, reactive power, and voltage
magnitudes across different time intervals are independent.
Second, we assume that the noise term which represents the
model errors and the measurement errors is i.i.d. Gaussian.
Note that the noise term will be derived later in Section
II-C. Third, we assume that the noise term is independent of
the incremental changes in smart meter measurements. These
statistical assumptions have been verified in [16].

C. Linearized Power Flow Model of Distribution Feeders

In order to build the model of network parameter estimation,
we first introduce a linearized three-phase power flow model
[16] as shown in (1). This linearized model links three parts
of a distribution system: the first difference of smart meter
measurement time series (ṽ(t), ṽref(t), p̃(t), and q̃(t)), the
load phase connection X , and the primary feeder’s topology
and parameters (U1, U2, Û1, Û2, P , and Â). Next, we will
explain these three parts in detail. For the detailed derivation
of the linearized three-phase power flow model, please refer
to [16]. Note that n(t) is the noise term, which represents the
model errors and the measurement errors and is assumed to
be i.i.d. Gaussian.

ṽ(t) =Xṽref(t) +X
[
U1 U2

]
PǍ−1PT

[
Û1 Û2

−Û2 Û1

]
·
[
XT

XT

] [
p̃(t)
q̃(t)

]
+ n(t)

(1)

1) The Smart Meter Measurements: The measurements are
modeled as follows. Let v̂(t), p̂(t), and q̂(t) denote M × 1
vectors of the measurement of voltage magnitude, real power,
and reactive power of the M loads at time t. Let vi0 denote the
substation’s voltage magnitude of phase i, and let vij0 denote
the substation’s voltage magnitude across phase ij. Define a
3M×1 vector v̂ref(t) , [v̂ref

1 (t), . . . , v̂ref
M (t)]T , where v̂ref

m (t) =
[va0 (t), vb0(t), vc0(t)] if load m is single-phase or three-phase;
v̂ref
m = [vab0 (t), vbc0 (t), vca0 (t)] if load m is two-phase. ṽ(t) ,

v̂(t)− v̂(t−1). p̃(t), q̃(t), and ṽref(t) are defined in a similar
way as ṽ(t).

2) The Load Phase Connection: The M × 3M block
diagonal matrix X , diag([x11 x21 x31], ..., [x1M x2M x3M ])
represents the loads’ phase connections. xim = 0 or 1, and∑

i x
i
m = 1, ∀ m. If load m is single-phase, then x1m, x2m,

and x3m represent AN , BN , and CN connections. If m is
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two-phase, then x1m, x2m, and x3m represent AB, BC, and
CA connections. If m is three-phase and one of AN , BN ,
and CN voltages is measured, then x1m, x2m, and x3m represent
which phase is measured.

3) The Primary Feeder’s Topology and Parameters: The
primary feeder’s topology and parameters are modeled as
follows. Let α = e−j 2π

3 and let I(N+1) be an identity matrix
of size N + 1. Let’s first define matrix Y as follows:

Y ,

Y aa Y ab Y ac

Y ba Y bb Y bc

Y ca Y cb Y cc

 (2)

where Y ij is the (N + 1)× (N + 1) nodal admittance matrix
between phase i and j. Define a block diagonal matrix Φ ,
diag(I(N+1), αI(N+1), α

2I(N+1)) and define matrix A as

A ,

[
Re(Φ−1Y Φ) −Im(Φ−1Y Φ)
−Im(Φ−1Y Φ) −Re(Φ−1Y Φ)

]
(3)

By removing the rows and columns corresponding to the
substation from A, we obtain a 6N × 6N matrix Ǎ. P is
a known constant 6N × 6N permutation matrix that regroups
the rows and columns of Ǎ by nodes instead of by phases.
U1 and U2 are 3M×3N matrices. Û1 and Û2 are 3N×3M

matrices. These four matrices represent which of the N non-
substation nodes each load is connected to and how many
phases each load is connected to. Please refer to [16] for
the details on the calculation of these matrices. The elements
of these matrices are determined once each load’s location
and the number of phases are given. In this paper, these four
matrices are treated as constant matrices.

D. Explicit Model of Distribution Line Parameters in Lin-
earized Power Flow Model

The distribution line parameters are implicitly considered in
Ǎ−1 of the linearized power flow model (1) derived in Section
II-C. In this subsection, we explicitly model the distribution
line parameters in the linearized power flow model.

A three-phase line segment l’s serial conductance and
susceptance can be represented by two symmetric matrices,
the serial conductance matrix [g]l and the serial susceptance
matrix [b]l:

[g]l ,

gaal gabl gacl
gbal gbbl gbcl
gcal gcbl gccl

 , [b]l ,

baal babl bacl
bbal bbbl bbcl
bcal bcbl bccl

 (4)

Since both matrices are symmetric, only 12 independent
parameters need to be derived for each line segment. Define
Λ as the set of all line parameters, i.e., Λ , {gijl , b

ij
l | l ∈

{1,. . . ,L}, ij ∈ {aa,ab,ac,bb,bc,cc}}. Define gij and bij as
gij , [gij1 , . . . , g

ij
L ] and bij , [bij1 , . . . , b

ij
L ]. Then, the serial

conductances can be grouped in a 3L× 3L matrix as:

Λg ,

diag(gaa) diag(gab) diag(gac)
diag(gab) diag(gbb) diag(gbc)
diag(gac) diag(gbc) diag(gcc)

 (5)

Λb can be defined in a similar way for serial susceptances.
Next we define four 3L× 3L matrices:

sin(Φ−1) , diag
(

sin(0)·IL, sin(
2π

3
)·IL, sin(−2π

3
)·IL

)
cos(Φ−1) , diag

(
cos(0)·IL, cos(

2π

3
)·IL, cos(−2π

3
)·IL

)
sin(Φ) , diag

(
sin(0)·IL, sin(−2π

3
)·IL, sin(

2π

3
)·IL

)
cos(Φ) , diag

(
cos(0)·IL, cos(−2π

3
)·IL, cos(

2π

3
)·IL

)
(6)

Define two rotation matrices R(Φ−1) and R(Φ) as:

R(Φ−1) ,

[
cos(Φ−1) sin(Φ−1)
− sin(Φ−1) cos(Φ−1)

]
R(Φ) ,

[
cos(Φ) sin(Φ)
− sin(Φ) cos(Φ)

] (7)

Let A denote the (N+1)×L incidence matrix representing
the topology of the primary feeder. If line segment l connects
node i and j (i < j), then Ail = 1, Ajl = −1, and
Akl = 0,∀k 6= i, j. By removing the row corresponding to
the substation, we obtain a N × L matrix Ǎ. Define Ǎ6N as
Ǎ6N , diag(Ǎ, Ǎ, Ǎ, Ǎ, Ǎ, Ǎ) and define Λy as:

Λy ,

[
Λg −Λb

−Λb −Λg

]
(8)

Then, it can be shown that

Ǎ = Ǎ(Λ) = Ǎ6NR(Φ−1)ΛyR(Φ)T ǍT
6N (9)

By plugging (9) into (1), we can obtain an explicit model of
network parameters in the linearized power flow model.

III. MAXIMUM LIKELIHOOD ESTIMATION OF
DISTRIBUTION NETWORK PARAMETERS

In this section, we first show how to formulate the network
parameter estimation problem using maximum likelihood esti-
mation (MLE). Then, we derive the gradient of the negative log
likelihood function with respect to network parameters. Lastly,
we develop an SGD-based algorithm with early stopping to
solve the MLE problem.

A. MLE Problem Formulation

Define ṽ(t,Λ) as the theoretical value of ṽ(t), i.e., the first
difference of voltage time series with network parameters Λ:

ṽ(t,Λ) , Xṽref(t) +X
[
U1 U2

]
PǍ(Λ)−1PT

[
Û1 Û2

−Û2 Û1

]
·
[
XT

XT

] [
p̃(t)
q̃(t)

]
(10)

Then, ṽ(t) = ṽ(t,Λ) +n(t), in which Λ is the set of network
parameters to estimate.

As stated in Section II-B2, we assume that the noise
n(t) is independent of ṽref(t), p̃(t), and q̃(t) and is i.i.d.
Gaussian n(t) ∼ N (0M×1,Σn), where Σn is an unknown
underlying covariance matrix. Given these conditions, n(t) is
also independent of ṽ(t,Λ). Thus, the likelihood of observing
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{ṽ(t)}Tt=1 given X , {ṽref(t)}Tt=1, {p̃(t)}Tt=1, and {q̃(t)}Tt=1 is
a function of Λ:

Prob({ṽ(t)}Tt=1|X, {ṽ
ref(t)}Tt=1, {p̃(t)}Tt=1, {q̃(t)}Tt=1; Λ) =

|Σn|−
T
2

(2π)
MT
2

×exp
{
− 1

2

T∑
t=1

[ṽ(t)−ṽ(t,Λ)]T Σ−1
n [ṽ(t)−ṽ(t,Λ)]

}
(11)

Taking the negative logarithm of (11), removing the constant
term, and scaling by 2

T , we get

f(Λ) ,
1

T

T∑
t=1

[ṽ(t)− ṽ(t,Λ)]T Σ−1
n [ṽ(t)− ṽ(t,Λ)] (12)

It will be shown in Lemma 1 that the correct network param-
eters Λ maximize the likelihood function (11) and minimizes
f(Λ) under two mild assumptions.

Lemma 1. Let Λ∗ be the correct network parameters. If the
following two conditions are satisfied, then as T →∞, Λ∗ is
a global minimizer of f(Λ).

1) n(tk) is i.i.d. and independent of ṽref(tl), p̃(tl), and
q̃(tl), for ∀tk, tl ∈ Z+.

2) ṽref(tk), p̃(tk), and q̃(tk) are independent of ṽref(tl),
p̃(tl), and q̃(tl), for ∀tk, tl ∈ Z+, tk 6= tl

For the proof of Lemma 1, please refer to Appendix E
of Ref. [16]. The only difference is that in this paper, the
decision variable is the network parameter Λ, while in Ref.
[16], the decision variable is the phase connection x. In real-
world applications, Σn is unknown, so we can use IM instead.
With IM , Lemma 1 still holds and the proof is similar.

By substituting (10) into (12), we can see that directly
minimizing f(Λ) is very difficult because it is nonconvex and
highly nonlinear. Thus, we adopt SGD to solve the problem.

B. Derive Gradient of the Negative Log-likelihood Function

In this subsection, we derive the gradient of f(Λ), which
will be used to find the Λ that minimizes f(Λ). To derive the
gradient in matrix form, we define the following terms:

y(t) , ṽ(t)−Xṽref(t), z(t) ,

[
p̃(t)
q̃(t)

]
C , X

[
U1 U2

]
P, D , PT

[
Û1 Û2

−Û2 Û1

] [
XT

XT

]
(13)

Then ṽ(t)−ṽ(t,Λ) = y(t)−CǍ(Λ)−1Dz(t). Using the chain
rule, for ∀λ ∈ Λ, we have

∂f(Λ)

∂λ
= Tr

([
∂f(Λ)

∂(CǍ(Λ)−1D)

]T
× ∂(CǍ(Λ)−1D)

∂λ

)
(14)

where

∂f(Λ)

∂(CǍ(Λ)−1D)
=− 2

T
Σ−1

n ·
T∑

t=1

(
y(t)−CǍ(Λ)−1Dz(t)

)
z(t)T

(15)
Calculating ∂(CǍ(Λ)−1D)/∂λ is equivalent to calculating
every element’s derivative ∂[CǍ(Λ)−1D]i,j/∂λ, in which
[CǍ(Λ)−1D]i,j is the ijth element of (CǍ(Λ)−1D) , i =

1,. . .,M and j = 1,. . . ,2M . Using the chain rule, we have

∂[(CǍ(Λ)−1D)]i,j
∂λ

=Tr

([
∂[CǍ(Λ)−1D]i,j

∂Ǎ(Λ)

]T
× ∂Ǎ(Λ)

∂λ

)
(16)

Define E(i,j)
m×n as an m×n matrix, in which the ij-th element

is 1 and the rest of elements are all 0. Using the rules of matrix
derivatives [17], we have

∂[CǍ(Λ)−1D]i,j

∂Ǎ(Λ)
= −Ǎ(Λ)−TCTE(i,j)

M×2MD
T Ǎ(Λ)−T (17)

Let [Ǎ(Λ)]i,j be the ijth element of Ǎ(Λ). Using the chain
rule, we get

∂[Ǎ(Λ)]i,j
∂λ

= Tr

([
∂[Ǎ(Λ)]i,j
∂Λy

]T
× ∂Λy

∂λ

)
(18)

Using the rules of matrix derivatives [17], we have

∂[Ǎ(Λ)]i,j
∂Λy

= R(Φ−1)T ǍT
6NE

(i,j)
6N×6N Ǎ6NR(Φ) (19)

From (8), we have
∂Λy

∂λ
=

[
∂Λg/∂λ −∂Λb/∂λ
−∂Λb/∂λ −∂Λg/∂λ

]
(20)

The calculation of ∂Λg/∂λ is straightforward. By (5), we have

∂Λg

∂λ
=


03L×3L if λ /∈ Λg

E
(i,i)
3L×3L if λ is the ii-th diagonal element in Λg

E
(i,j)
3L×3L + E

(j,i)
3L×3L if λ is the ij-th and ji-th

off-diagonal elements in Λg

(21)
∂Λb/∂λ can be calculated in a similar way. Based on the

derivations above, we can calculate the gradient∇f(Λ) for any
given Λ by calculating ∂f(Λ)/∂λ for all λ ∈ Λ as follows.
First, calculate ∂[Ǎ(Λ)]i,j/∂λ for ∀i, j using (18), (19), (20),
and (21). Next, calculate ∂[(CǍ(Λ)−1D)]i,j/∂λ for ∀i, j using
(16) and (17). Lastly, calculate ∂f(Λ)/∂λ using (14) and (15).

C. The SGD Algorithm
We design an SGD-based algorithm with early stopping

to minimize f(Λ) and estimate the network parameters Λ.
As shown in Algorithm 1, in step 1, the parameters Λ are
initialized with their original values in the GIS. The initial
values for the parameters are assumed to be not far from the
correct values. In steps 2 to 17, we iteratively update Λ using
SGD, in which we update Λ by descending f(Λ)’s gradient
over a small group of samples (i.e., a batch) of size nbatch.
We use patience npatience to decide when to stop the iterative
process. That is to say, the algorithm will be stopped if f(Λ)
over all T samples is not improved in npatience epochs (an
epoch goes through all T samples in batches). Steps 4 to 9
show the procedure of updating Λ over each batch of samples,
in which we use the backtracking line search of parameters
astep, α, and β to determine the step size in each move. In
step 18, the parameters Λ with the lowest f(Λ) is selected as
the output.
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Algorithm 1 Network Parameter Estimation Algorithm
Input: First difference of smart meter measurements ṽ(t),

ṽref(t), p̃(t), and q̃(t), t = 1, ..., T ; feeder constant
matrices C, D, R(Φ), R(Φ−1); hyperparameters nbatch,
npatience, astep, α, and β; an initial estimate of Λ for the
L primary line segments.

Output: Updated estimates of Λ.
1: Let Λbest = Λ and fbest = f(Λ), in which f(Λ) is

calculated over all T measurements. nepoch = 0.
2: while nepoch < npatience do
3: Randomly divide the T measurements into batches of

size nbatch.
4: for each batch do
5: Calculate ∇f(Λ) over the batch following Section

III-B. The descent direction is ∆Λ = −∇f(Λ). s = astep.
6: while f(Λ + s∆Λ) > f(Λ) + αs∇f(Λ)T ∆Λ do
7: s = βs
8: end while
9: Λ = Λ + s∆Λ

10: end for
11: Calculate f(Λ) over all T measurements.
12: if f(Λ) < fbest then
13: fbest = f(Λ), Λbest = Λ, nepoch = 0.
14: else
15: nepoch = nepoch + 1
16: end if
17: end while
18: Output the Λbest.

IV. NUMERICAL STUDY

A. Setup for Numerical Tests

We evaluate the performance of our proposed parameter
estimation algorithm with the modified IEEE 13-bus test
feeder, which is shown in Figure 1. We modify the standard
13-bus test feeder by introducing loads with all 7 types of
phase connections, AN , BN . CN , AB, BC, CA, and ABC.
The test circuits’ primary feeder contains 6 line segments and
7 nodes, which serve 10 loads.

Fig. 1. Schematic of the modified IEEE 13-bus test feeder.

We aggregated the hourly average real power consumption
data from the smart meters of a distribution feeder managed
by an electric utility in North America, as the hourly loads
on the test feeder. The length of the real power consumption
time series is 2160, which represents 90 days of measure-
ments. The reactive power time series of the lagging loads
are calculated with power factors randomly sampled from a

uniform distribution U(0.9, 1) (a typical range for distribution
network loads). The peak load of the feeder is 3 MW. The
power flow results are generated using OpenDSS. All smart
meter measurements contain noise, which follows a zero-mean
Gaussian distribution with three-sigma deviation matching
0.1% to 0.2% of the nominal values. The 0.1 and 0.2 accuracy
class smart meters established in ANSI C12.20-2015 represent
the typical noise levels in real-world systems. To make the
parameter estimation task more challenging, we assume the
smart meters have limited precision. That is to say, after adding
measurement noise, the voltage measurements are rounded to
the nearest 1V. The real and reactive power measurements are
rounded to the nearest 0.1 kW and 0.1 kVar. We assume that
the initial estimates for network parameters Λ are randomly
sampled from a uniform distribution within ±50% of the
correct values, which are very inaccurate starting values.

We set hyperparameters of the SGD algorithm as nbatch =
10, npatience = 10, astep = 1e8, α= 0.3, and β = 0.5. These
values are set empirically so that the algorithm updates f(Λ)
adequately and stops when it saturates. The SGD algorithm
is implemented using MATLAB on a DELL workstation with
3.3 GHz Intel Xeon CPU and 16 GB RAM.

B. Performance of Parameter Estimation Algorithm

We demonstrate the effectiveness of our proposed net-
work parameter estimation algorithm with two meter accuracy
classes (0.1% and 0.2%) and two time windows (30 days and
90 days). We use the mean absolute deviation ratio (MADR) to
measure the parameter estimation error. The MADR between
the estimated Λ and the correct value Λ∗ is defined in (22).

MADR ,

∑12L
i=1 |λi − λ∗i |∑12L

i=1 |λ∗i |
× 100% (22)

The percentage of MADR improvements resulting from ap-
plying our proposed algorithm is reported in Table I. In other
words, we report (MADRinitial−MADRfinal)/MADRinitial×
100%, where MADRinitial and MADRfinal represent the
MADR of the initial and the final network parameter estimates.
The maximum possible MADR improvement is 100% with
perfect estimation, i.e., MADRfinal = 0%. As shown in
the table, our proposed algorithm significantly reduces the
network parameter estimation error. The improvement is more
pronounced with longer periods of more accurate smart meter
data.

TABLE I
IMPROVEMENT IN MADR OF THE NETWORK PARAMETER ESTIMATES OF

THE PROPOSED ALGORITHM

Meter Class Number of Days MADR Improvement

0.1% 30 12.53%
90 13.54%

0.2% 30 8.76%
90 11.64%

To quantify the estimation error of each network parameter,
we define the absolute deviation percentage (ADP) of a
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parameter λi as |λi − λ∗i |/|λ∗i | × 100%. Figure 2 shows the
improvement in ADP due to the proposed algorithm, i.e.,
ADPinitial−ADPfinal. As shown in the figure, our proposed
algorithm reduces ADP for most of the network parameters.
The improvement is more significant for line segments 1 and
2, which are the “backbones” of the feeder. Some parameters’
estimation deteriorates with negative improvement, indicating
that the algorithm may converge to a local minimum.
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Fig. 2. Improvement in ADP of all network parameter estimates due to the
proposed algorithm (0.1% meter class, 90 day data).

C. Performance with Different Smart Meter Penetration Levels

We also evaluate the performance of our proposed method
with different smart meter penetration levels. In the 13-bus
test feeder, there are 10 and 45 possible meter placement
combinations with 90% and 80% smart meter penetration
levels. The reduction in MADR are calculated for each case
and the average reduction in MADR due to our proposed
algorithm are reported in Table II. As shown in the table,
the improvement in MADR decreases when the penetration
level of the smart meters decreases. When the smart meter
penetration level drops to around 80%, our proposed algorithm
is no longer effective. This is because the linearized power
flow model becomes inaccurate when we have incomplete
smart meter measurements. Note that this limitation of our
proposed algorithm will be less concerning as the penetration
level of smart meters continues to increase.

TABLE II
IMPACT OF SMART METER PENETRATION LEVEL ON THE PERFORMANCE

OF THE PROPOSED ALGORITHM

Meter Class 100% Penetration 90% Penetration 80% Penetration
0.1% 13.54% 6.24% -1.41%
0.2% 11.64% 2.23% -7.70%

V. CONCLUSION AND FUTURE WORK

In this paper, we develop a data-driven parameter estimation
algorithm for three-phase power distribution networks. Our
proposed algorithm uses only the readily available smart
meter data to estimate the three-phase serial conductance
and susceptance of the primary line segments. The network
parameter estimation problem is first formulated as an MLE
problem based on the linearized three-phase power flow. It can
be proven that the correct network parameters yield the highest

likelihood value. We design an SGD-based algorithm with
early stopping to solve the MLE problem. The comprehensive
numerical study results show that our proposed algorithm is
capable of improving the accuracy of the parameter estimates.

In the future, we plan to develop parameter estimation
methods that rigorously consider the prior knowledge of
network parameters estimates. In addition, we will develop an
algorithm to jointly estimate network parameters and phase
connections of distribution feeders.
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